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Subsection 1

Well-Ordered Sets
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Ordinal Numbers Well-Ordered Sets

Extending Counting Beyond the Natural Numbers

When we introduced natural numbers, we were motivated by the need
to formalize the process of “counting”:

The natural numbers start with 0 and are generated by successively
increasing the number by one unit: 0, 1, 2, 3, . . . and so on.

We defined “successor” by S(x) = x ∪ {x} and introduced natural
numbers as elements of the smallest set containing 0 and closed
under S .

We want to be able to continue counting beyond natural numbers.

The idea is that we can imagine an infinite number ω that comes
“after” all natural numbers and then continue the counting process
into the transfinite: ω, ω + 1, (ω + 1) + 1, and so on.

We formalize the process of transfinite counting, and introduce
ordinal numbers as a generalization of natural numbers

The theorems on induction and recursion are generalized to theorems
on transfinite induction and transfinite recursion.
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Transfinite Ordinal Generation

Recall that each natural number is identified with the set of all
smaller natural numbers: n = {m ∈ N : m < n}.
By analogy, we let ω, the least transfinite number, to be the set N of
all natural numbers: ω = N = {0, 1, 2, . . .}.
It is easy to continue the process after this “limit” step is made. The
operation of successor can be used to produce numbers following ω:

S(ω) = ω ∪ {ω} = {0, 1, 2, . . . , ω},
S(S(ω)) = S(ω) ∪ {S(ω)} = {0, 1, 2, . . . , ω,S(ω)}, etc.

We use the suggestive notation

S(ω) = ω + 1,S(S(ω)) = (ω + 1) + 1 = ω + 2, etc.

In this fashion, we can generate greater and greater “numbers”: ω,
ω + 1, ω + 2, . . ., ω + n, . . ., for all n ∈ N.

A number following all ω + n can again be conceived of as a set of all
smaller numbers: ω · 2 = ω + ω = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . .}.
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Well-Ordered Sets

We can introduce still greater numbers:

ω · 2 + 1 = ω + ω + 1 = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω},
ω · 3 = ω + ω + ω = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω,

ω + ω + 1, . . .},
ω · ω = {0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2 + 1, . . . ,

ω · 3, . . . , ω · 4, . . .}.

The sets we generate are linearly ordered by ∈, and every nonempty
subset has a least element.

Definition (Well-Ordering)

A set W is well-ordered by the relation < if

(a) (W , <) is a linearly ordered set.

(b) Every nonempty subset of W has a least element.

The sets above are all examples of sets well-ordered by ∈.

We will show that all well-orderings can be so represented.

George Voutsadakis (LSSU) Set Theory June 2014 6 / 67



Ordinal Numbers Well-Ordered Sets

Initial Segments of Well-Ordered Sets

Let (L, <) be a linearly ordered set. A set S ⊆ L is called an initial

segment of L if S is a proper subset of L (i.e., S 6= L) and if for
every a ∈ S , all x < a are also elements of S .

Example: Both the set of all negative reals and the set of all
nonpositive reals are initial segments of the set of all real numbers.

Lemma

If (W , <) is a well-ordered set and if S is an initial segment of (W , <),
then, there exists a ∈ W , such that S = {x ∈ W : x < a}.

Let X = W − S . As S 6= W , X 6= ∅. So X has a least element, say a,
in the well-ordering <. If x < a, then x cannot belong to X , as a is
its least member, so x belongs to S . If x ≥ a, then x cannot be in S

because otherwise a would also be in S as S is an initial segment.
Thus, S = {x ∈ W : x < a}.

If a is an element of a well-ordered set (W , <), we call the set
W [a] = {x ∈ W : x < a} the initial segment of W given by a.
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Increasing Functions

A function f on a linearly ordered set (L, <) into L is increasing if
x1 < x2 implies f (x1) < f (x2).

An increasing function is one-to-one, and is an isomorphism of (L, <)
and (ranf , <).

Lemma

If (W , <) is a well-ordered set and if f : W → W is an increasing
function, then f (x) ≥ x , for all x ∈ W .

If the set X = {x ∈ W : f (x) < x} is nonempty, it has a least
element a. But, then, f (a) < a, and f (f (a)) < f (a) because f is
increasing. This means that f (a) ∈ X , which is a contradiction
because a is least in X .
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Isomorphisms Between Well-Ordered Sets

Corollary (Isomorphisms Between Well-Ordered Sets)

(a) No well-ordered set is isomorphic to an initial segment of itself.

(b) Each well-ordered set has only one automorphism, the identity.

(c) If W1 and W2 are isomorphic well-ordered sets, then the isomorphism
between W1 and W2 is unique.

(a) Assume that f is an isomorphism between W and W [a] for some
a ∈ W . Then f (a) ∈ W [a] and, therefore, f (a) < a, contrary to the
lemma, as f is an increasing function.

(b) Let f be an automorphism of W . Both f and f −1 are increasing
functions. So, for all x ∈ W , f (x) ≥ x and f −1(x) ≥ x , therefore,
x ≥ f (x). It follows that f (x) = x , for all x ∈ W .

(c) Let f and g be isomorphisms between W1 and W2. Then f ◦ g−1 is
an automorphism of W1 and hence is the identity map. It follows that
f = g .
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Comparison of Well-Ordered Sets By “Length”

Theorem

If (W1, <1) and (W2, <2) are well-ordered sets, then exactly one of the
following holds:

(a) Either W1 and W2 are isomorphic, or

(b) W1 is isomorphic to an initial segment of W2, or

(c) W2 is isomorphic to an initial segment of W1.

In each case, the isomorphism is unique.

Let W1 and W2 be well-ordered sets.
The three cases (a), (b), and (c) are mutually exclusive: For example,
if W1 were isomorphic to W2[a2] for some a2 ∈ W2 and at the same
time W2 were isomorphic to W1[a1] for some a1 ∈ W1, then the
composition of the two isomorphisms would be an isomorphism of a
well-ordered set onto its own initial segment.
Uniqueness of the isomorphism in each case follows from the corollary.
We must show that one of the three cases (a), (b) and (c) always holds.
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Continuing the Proof of the Comparison Theorem

We define a set of pairs f ⊆ W1 ×W2 and show that either f or f −1

is an isomorphism attesting to (a), (b) or (c). Let

f = {(x , y) ∈ W1 ×W2 : W1[x ] is isomorphic to W2[y ]}.

First, by the corollary, f is a one-to-one function: If W1[x ] is isomorphic
both to W2[y ] and to W2[y

′], then y = y ′; otherwise W2[y ] would be
an initial segment of W2[y

′] (or vice versa) while they are isomorphic,
and that is impossible. Hence (x , y) ∈ f and (x , y ′) ∈ f imply y = y ′.
A similar argument shows that (x , y) ∈ f and (x ′, y) ∈ f imply x = x ′.
Second, x < x ′ implies f (x) < f (x ′): If h is the isomorphism between
W1[x

′] and W2[f (x
′)], then the restriction h ↾ W1[x ] is an isomorphism

between W1[x ] and W2[h(x)]. So f (x) = h(x) and f (x) < f (x ′).

Hence f is an isomorphism between its domain, a subset of W1, and
its range, a subset of W2.
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Finishing the Proof of the Comparison Theorem

We showed f = {(x , y) ∈ W1 ×W2 : W1[x ] is isomorphic to W2[y ]}
is an isomorphism between its domain and its range.

If domf = W1 and ranf = W2, then W1 is isomorphic to W2.
We show now that if the domain of f is not all of W1 then it is its
initial segment, and the range of f is all of W2. (This suffices to
complete the proof as the remaining case is obtained by interchanging
the roles of W1 and W2.) So assume that domf 6= W1.

We note that the set S = domf is an initial segment of W1: If x ∈ S

and z < x , let h be the isomorphism between W1[x] and W2[f (x)]; then
h ↾ W1[z] is an isomorphism between W1[z] and W2[h(z)], so z ∈ S .
To show that the set T = ranf = W2, we assume otherwise and, by a
similar argument as above, show that T is an initial segment of W2.
But, then, domf = W1[a], for some a ∈ W1, and ranf = W2[b], for
some b ∈ W2. In other words, f is an isomorphism between W1[a] and
W2[b]. This means, by the definition of f , that (a,b) ∈ f . So
a ∈ domf = W1[a], i.e., a < a, a contradiction.

We say that W1 has smaller order type than W2 if W1 is isomorphic
to W2[a] for some a ∈ W2.
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Subsection 2

Ordinal Numbers
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Ordinals as Order Types of Well-Ordered Sets

Natural numbers were used to represent both the cardinality and the
order type of finite sets. They were also used to prove theorems on
induction and recursion.

We now generalize this definition by introducing ordinal numbers.

Each ordinal is well-ordered by the ∈ relation.
The collection of all ordinal numbers (which is not a set) is itself
well-ordered by ∈, and contains the natural numbers as an initial
segment.
Ordinal numbers are representatives for all well-ordered sets, i.e., every
well-ordered set is isomorphic to an ordinal number. Thus ordinal
numbers can be viewed as order types of well-ordered sets.

George Voutsadakis (LSSU) Set Theory June 2014 14 / 67



Ordinal Numbers Ordinal Numbers

Transitive Sets and Ordinal Numbers

Definition (Transitive Set)

A set T is transitive if every element of T is a subset of T .

In other words, a transitive set has the property that u ∈ v ∈ T

implies u ∈ T .

Definition (Ordinal Number)

A set α is an ordinal number if

(a) α is transitive.

(b) α is well-ordered by ∈.

Lowercase Greek letters are used for ordinal numbers.

Ordinal numbers are often simply called ordinals.
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The Ordinal Number ω

For every natural number m, if k ∈ ℓ ∈ m (i.e., k < ℓ < m), then
k ∈ m. Hence, every natural number is a transitive set.

Also, every natural number is well-ordered by the ∈ relation (because
every n ∈ N is a subset of N and N is well-ordered by ∈).

Theorem

Every natural number is an ordinal.

The set N of all natural numbers is easily seen to be transitive, and is
also well-ordered by ∈. Thus N is an ordinal number.

Definition (ω)

ω = N.
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Successor and Limit Ordinals, Ordering of Ordinals

Lemma

If α is an ordinal number, then S(α) is also an ordinal number.

S(α) = α ∪ {α} is a transitive set. Moreover, α ∪ {α} is well-ordered
by ∈, α being its greatest element, and α ⊂ α ∪ {α} being the initial
segment given by α. So S(α) is an ordinal number.

We denote the successor of α by α+ 1:

α+ 1 := S(α) = α ∪ {α}.

An ordinal number α is called a successor ordinal if α = β + 1 for
some β. Otherwise, it is called a limit ordinal.

For all ordinals α and β, we define α < β if and only if α ∈ β, thus
extending the definition of the ordering of natural numbers.
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The Ordering of the Ordinal Numbers I

Lemma

If α is an ordinal number, then α 6∈ α.

Although X ∈ X is not forbidden by the axioms, the sets which arise
in mathematical practice do not have this peculiar property.

If α ∈ α, then the linearly ordered set (α,∈α) has an element x = α,
such that x ∈ x , contrary to asymmetry of ∈α.

Lemma

Every element of an ordinal number is an ordinal number.

Let α be an ordinal and let x ∈ α.
x is transitive: Let u and v be such that u ∈ v ∈ x . Since α is
transitive and x ∈ α, we have v ∈ α and therefore, also u ∈ α. Thus,
u, v and x are all elements of α and u ∈ v ∈ x . Since ∈α linearly
orders a, we conclude that u ∈ x .
∈ is a well-ordering of x : By transitivity of α, we have x ⊆ α. So, the
relation ∈x is a restriction of ∈α. Since ∈α is a well-ordering, so is ∈x .
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The Ordering of the Ordinal Numbers II

Lemma

If α and β are ordinal numbers such that α ⊂ β, then α ∈ β.

Let α ⊂ β. Then β − α is a nonempty subset of β. Thus, it has a
least element γ in the ordering ∈β.

Notice that γ ⊆ α: If not, then any δ ∈ γ −α would be an element of
β − α smaller than γ (by transitivity of β).

It suffices to show that α ⊆ γ (and, hence, α = γ ∈ β): Let δ ∈ α.
We show δ ∈ γ. If not, γ ∈ δ or γ = δ (both γ and δ belong to β,
which is linearly ordered by ∈). But this implies that γ ∈ α, since α is
transitive. That contradicts the choice of γ ∈ β − α.
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The Ordering of the Ordinal Numbers is a Well-Ordering

Theorem

Let α, β and γ be ordinal numbers.

(a) If α < β and β < γ, then α < γ.

(b) α < β and β < α cannot both hold.

(c) Either α < β or α = β or β < α holds.

(d) Every nonempty set of ordinal numbers has a <-least element.
Consequently, every set of ordinal numbers is well-ordered by <.

(e) For every set of ordinal numbers X , there is an ordinal number α 6∈ X

(i.e., “the set of all ordinal numbers” does not exist).

(a) If α < β and β < γ, then α < γ because γ is transitive.

(b) Assume that α < β and β < α. By transitivity, α ∈ α, contradicting
a preceding lemma.
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Proof (Cont’d)

(c) If α and β are ordinals, α ∩ β is also an ordinal (it is transitive and
well-ordered) and α ∩ β ⊆ α and α ∩ β ⊆ β.

If α ∩ β = α, then α ⊆ β whence, by lemma, α ∈ β or α = β.
Similarly, α ∩ β = β implies β ∈ α or β = α.
Finally α ∩ β ⊂ α and α ∩ β ⊂ β is impossible: it implies
α ∩ β ∈ α ∩ β, contradicting a preceding lemma.

(d) Let A be a nonempty set of ordinals. For α ∈ A, consider α ∩ A.
If α ∩ A = ∅, α is the least element of A.
If α ∩ A 6= ∅, α ∩ A ⊆ α has a least element β in the ordering ∈α.
Then β is the least element of A in the ordering <.

(e) Let X be a set of ordinal numbers. Since all elements of X are
transitive sets,

⋃

X is also a transitive set. It follows from part (d)
that ∈ well-orders

⋃

X . Consequently,
⋃

X is an ordinal number. Let
α = S(

⋃

X ). α is an ordinal number and α 6= X . (Otherwise, we get
α ⊆

⋃

X and, by a preceding lemma, either α =
⋃

X or α ∈
⋃

X ,
and, in both cases, α ∈ S(

⋃

X ) = α, contradicting the lemma.)
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Every Set of Ordinals has a Supremum

The ordinal number
⋃

X used in the proof of Part (e) is called the
supremum of X and is denoted supX .

This is justified by observing that
⋃

X is the least ordinal greater
than or equal to all elements of X :

(a) If α ∈ X , then α ⊆
⋃

X , so, α ∈
⋃

X .
(b) If α ≤ γ, for all α ∈ X , then α ⊆ γ, for all α ∈ X , and so

⋃

X ⊆ γ,
i.e.,

⋃

X ≤ γ.

If the set X has a greatest element β in the ordering <, then
supX = β. Otherwise, supX > γ, for all γ ∈ X (and it is the least
such ordinal). Therefore, every set of ordinals has a supremum in <.
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Natural Numbers are Exactly the Finite Ordinals

Ordinals are indeed a generalization of the natural numbers:

Theorem

The natural numbers are exactly the finite ordinal numbers.

We already know that every natural number is an ordinal, and of
course, every natural number is a finite set. So we only have to prove
that all ordinals that are not natural numbers are infinite sets. If α is
an ordinal and α 6∈ N, then, by a preceding theorem, it must be the
case that α ≥ ω (because α ≮ ω), so α ⊇ ω because α is transitive.
So α has an infinite subset and hence is infinite.

Every ordinal is a well-ordered set, under the well-ordering ∈.
If α and β are distinct ordinals, then they are not isomorphic, as
well-ordered sets because one is an initial segment of the other.

Each ordinal number α bas the property that

α = {β : β is an ordinal and β < α}.
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Subsection 3

The Axiom of Replacement
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Representation of Well-Ordered Sets by Ordinals

Theorem

Every well-ordered set is isomorphic to a unique ordinal number.

The “proof” has a deficiency: it uses an assumption which does not
follow from the axioms introduced so far.

Let (W , <) be a well-ordered set. Let A be the set of all those a ∈ W

for which W [a] is isomorphic to some ordinal number. As no two
distinct ordinals can be isomorphic (one is an initial segment of the
other), this ordinal number is uniquely determined, and we denote it
by αa. Suppose that there exists a set S such that S = {αa : a ∈ A}.
The set S is well-ordered by ∈ as it is a set of ordinals. It is also
transitive: If γ ∈ αa ∈ S , let ϕ be the isomorphism between W [a] and
αa and let c = ϕ−1(γ). It is easy to see that ϕ ↾ c is an isomorphism
between W [c] and γ and so γ ∈ S . Therefore, S is an ordinal
number, S = α.
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Representation by Ordinals II

A similar argument shows that a ∈ A, b < a imply b ∈ A: let ϕ be
the isomorphism of W [a] and αa. Then ϕ ↾ W [b] is an isomorphism
of W [b] and an initial segment I of αa. By a preceding lemma, there
exists β < αa, such that I = {γ ∈ αa : γ < β}, i.e., β = αb. This
shows that b ∈ A and αb < αa. We conclude, based on the same
lemma, that either A = W or A = W [c], for some c ∈ W .

We now define a function f : A → S = α by f (a) = αa From the
definition of S and the fact that b < a implies αb < αa it is obvious
that f is an isomorphism of (A, <) and α. If A = W [c], we would
thus have c ∈ A, a contradiction. Therefore A = W , and f is an
isomorphism of (W , <) and the ordinal α.

This would complete the proof if we were justified to make the
assumption that the set S exists.
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Example Illustrating Need for New Axiom

To construct a sequence

〈∅, {∅}, {{∅}}, {{{∅}}}, . . .〉

we might define

a0 = ∅
an+1 = {an}, for all n ∈ N

following the general pattern of recursive definitions.

The difficulty here is that to apply the Recursion Theorem we need a
set A, given in advance, such that g : N× A → A, defined by
g(n, x) = {x}, can be used to compute the (n + 1)-st term of the
sequence from its n-th term.

It is not obvious how to prove from our axioms that any such set A
exists. It seems as if the definition of A itself required recursion.
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Another Example Illustrating Need for New Axiom

In Chapter 3, we have postulated existence of ω.

From it, the sets ω + 1 = ω ∪ {ω}, ω + 2 = (ω + 1) ∪ {ω + 1}, etc.,
can easily be obtained by repeated use of operations union and
unordered pair.

We “defined” ω + ω as the union of ω and the set of all ω + n, for all
n ∈ ω, and passed over the question of existence of this set.

Although it does not seem to be more questionable than the existence
of ω, the existence of ω + ω cannot be proved from the axioms we
accepted so far.

We know that, to each n ∈ ω, there corresponds a unique set ω + n;
but, as yet, we do not have any axiom that would allow us to collect
all these ω + n into one set.
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The Axiom Schema of Replacement

The Axiom Schema of Replacement

Let P(x , y) be a property such that, for every x , there is a unique y for
which P(x , y) holds. For every set A, there is a set B such that, for every
x ∈ A, there is y ∈ B for which P(x , y) holds.

Let F be the operation defined by the property P, i.e., let F(x) denote
the unique y for which P(x , y). The corresponding Axiom of
Replacement can then be stated as follows:

For every set A, there is a set B , such that for all x ∈ A,
F(x) ∈ B .

Of course, B may also contain elements not of the form F(x) for any
x ∈ A. An application of the Axiom Schema of Comprehension shows
that {y ∈ B : y = F(x), for some x ∈ A} = {y ∈ B : P(x , y) holds
for some x ∈ A} = {y : P(x , y) holds for some x ∈ A} exists. We call
this set the image of A by F, written {F(x) : x ∈ A} or simply F[A].

George Voutsadakis (LSSU) Set Theory June 2014 29 / 67



Ordinal Numbers The Axiom of Replacement

More on The Axiom Schema of Replacement

The Axiom Schema of Comprehension allows us to go through
elements of a given set A, check for each x ∈ A whether or not it has
the property P(x), and collect those x which do into a set. In an
entirely analogous way, the Axiom Schema of Replacement allows us
to go through elements of A, take for each x ∈ A the corresponding
unique y having the property P(x , y), and collect all such y into a set.
It is intuitively obvious that the set F[A] is “no larger than” the set A.

Let F be the operation defined by P. The Axiom of Replacement
implies that the operation F on elements of a given set A can be
represented, “replaced,” by a function, i.e., a set of ordered pairs.

For every set A, there is a function f such that domf = A and
f (x) = F(x), for all x ∈ A.

We simply let f = {(x , y) ∈ A× B : P(x , y)}, where B is the set
provided by the Axiom of Replacement. We use notation F ↾ A for
this uniquely determined function f and note that ran(F ↾ A) = F[A].
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Completing the Proof of the Representation Theorem

We have concluded earlier that in order to prove the theorem, we only
have to guarantee the existence of the set S = {αa : a ∈ W }, where
for each a ∈ W , αa is the unique ordinal number isomorphic to W [a].

Let P(x , y) be the property:

Either x ∈ W and y is the unique ordinal isomorphic to W [x ],
or x 6∈ W and y = ∅.

Applying the Axiom of Replacement with this P(x , y), we conclude
that for A = W , there exists a set B such that for all a ∈ W there is
α ∈ B for which P(a, α) holds. Then we let

S = {α ∈ B : P(a, α) holds for some a ∈ W } = F[W ],

where F is the operation defined by P.
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Order Types

Definition (Order Type)

If W is a well-ordered set, then the order type of W is the unique ordinal
number isomorphic to W .

To accommodate the examples mentioned above, we need a more
general Recursion Theorem than the one proved earlier:

The Recursion Theorem

Let G be an operation. For any set a there is a unique infinite sequence
〈an : n ∈ N〉 such that

(a) a0 = a.

(b) an+1 = G(an, n), for all n ∈ N.

With this theorem, the existence of the sequence 〈∅, {∅}, {{∅}}, . . .〉
and of ω + ω follows .

We prove this Recursion Theorem, as well as the more general
Transfinite Recursion Theorem, in the next section.
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Subsection 4

Transfinite Induction and Recursion
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The Transfinite Induction Principle

We show how the Induction Principle and the Recursion Theorem
generalize to ordinal numbers.

The Transfinite Induction Principle

Let P(x) be a property (possibly with parameters). Assume that, for all
ordinal numbers α,

If P(β) holds for all β < α, then P(α).

Then P(α) holds for all ordinals α.

Suppose that some ordinal number γ fails to have property P. Let S
be the set of all ordinal numbers β ≤ γ that do not have property P.
The set S has a least element α. Since every β < α has property P,
it follows, by hypothesis, that P(α) holds, a contradiction.
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Second Version of the Transfinite Induction Principle

The Transfinite Induction Principle has a form which resembles more
closely the usual formulation of the Induction Principle for N.

Second Version of the Transfinite Induction Principle

Let P(x) be a property. Assume that

(a) P(0) holds.

(b) P(α) implies P(α + 1) for all ordinals α.

(c) For all limit ordinals α 6= 0, if P(β) holds for all β < α, then P(α) holds.

Then P(α) holds for all ordinals α.

It suffices to show that the assumptions (a), (b) and (c) imply the
hypothesis of the Original Version. So, let α be an ordinal such that
P(β) for all β < α.

If α = 0, then P(α) holds by (a).
If α = β + 1 is a successor, P(β) holds, so P(α) holds by (b).
If α 6= 0 is limit, we have P(α) by (c).
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A Transfinite Recursion Theorem

We generalize the Recursion Theorem: Functions whose domain is an
ordinal α are called transfinite sequences of length α.

Theorem

Let Ω be an ordinal number, A a set, and S =
⋃

α<Ω Aα the set of all
transfinite sequences of elements of A of length less than Ω. Let g : S → A

be a function. Then there exists a unique function f : Ω → A, such that

f (α) = g(f ↾ α), for all α < Ω.

The proof is based on a more general Transfinite Recursion Theorem.

If ϑ is an ordinal and f is a transfinite sequence of length ϑ, we use
the notation f = 〈aα : α < ϑ〉.

The theorem states that, if g is a function on the set of all transfinite
sequences of elements of A of length less than Ω with values in A,
then there is a transfinite sequence 〈aα : α < Ω〉 such that for all
α < Ω, aα = g(〈aξ : ξ < α〉).
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The Transfinite Recursion Theorem

For a given operation G, t is a computation of length α based on G

if t is a function, domt = α+ 1 and, for all β ≤ α, t(β) = G(t ↾ β).

The Transfinite Recursion Theorem

Let G be an operation. Then, the property P(x , y)






x is an ordinal number and y = t(x), for some computation t

of length x based on G,
or x is not an ordinal number and y = ∅.

defines an operation F such that F(α) = G(F ↾ α), for all ordinals α.

P(x , y) defines an operation: If x is not an ordinal, this is obvious. To
prove it for ordinals, it suffices to show by transfinite induction: For
every ordinal α there is a unique computation of length α.
The inductive assumption is that, for all β < α, there is a unique
computation of length β. We must prove the existence and
uniqueness of a computation of length α.
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The Existence Part

According to the Axiom Schema of Replacement applied to the
property “y is a computation of length x” and the set α, there is a set

T = {t : t is a computation of length β for some β < α}.

Moreover, the inductive assumption implies that for every β < α,
there is a unique t ∈ T , such that the length of t is β. T is a system
of functions. Set t =

⋃

T . Finally, let τ = t ∪ {(α,G(t))}. We prove
that τ is a computation of length α.
Claim: τ is a function and domτ = α+ 1.
We have domt =

⋃

t∈T
domt =

⋃

β∈α(β + 1) = α. Consequently,
domτ = domt ∪ {α} = α+ 1. Since α 6∈ domt, it is enough to prove
that t is a function. This follows from the fact that T is a compatible
system of functions: Let t1 and t2 ∈ T be arbitrary, and let
domt1 = β1, domt2 = β2. Assume that, β1 ≤ β2. Then β1 ⊆ β2, and
it suffices to show that t1(γ) = t2(γ), for all γ < β1. We do that by
transfinite induction.
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The Existence Part (Cont’d)

Assume that γ < β1 and t1(δ) = t2(δ), for all δ < γ. Then
t1 ↾ γ = t2 ↾ γ, and we have t1(γ) = G(t1 ↾ γ) = G(t2 ↾ γ) = t2(γ).
We conclude that t1(γ) = t2(γ), for all γ < β1.

Claim: τ(β) = G(τ ↾ β), for all β ≤ α.

This is clear if β = α, as τ(α) = G(t) = G(τ ↾ α). If β < α, pick
t ∈ T such that β ∈ domt. Since t is a computation, and t ⊆ τ ,

τ(β) = t(β) = G(t ↾ β) = G(τ ↾ β).
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The Uniqueness Part

Let σ be another computation of length α; we prove τ = σ.
As τ and σ are functions and domτ = α+ 1 = domσ, it suffices to
prove by transfinite induction that τ(γ) = σ(γ), for all γ ≤ α.
Assume that τ(δ) = σ(δ), for all δ < γ. Then

τ(γ) = G(τ ↾ γ) = G(σ ↾ γ) = σ(γ).

The assertion follows.
This concludes the proof that the property P defines an operation F.
Notice that for any computation t, F ↾ domt = t. This is because for
any β ∈ domt, tβ = t ↾ (β + 1) is obviously a computation of length
β, whence, by the definition of F, F(β) = tβ(β) = t(β).

To prove that F(α) = G(F ↾ α), for all α, let t be the unique
computation of length α; we have

F(α) = t(α) = G(t ↾ α) = G(F ↾ α).
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The Transfinite Recursion Theorem, Parametric Version

We prove a parametric version of the Transfinite Recursion Theorem.

If F(z , x) is an operation in two variables, we write Fz(x) in place of
F(z , x). For any fixed z , Fz is an operation in one variable.

If F is defined by Q(z , x , y), the notations Fz [A] and Fz ↾ A mean
Fz [A] = {y : Q(z , x , y), for some x ∈ A};
Fz ↾ A = {(x , y) : Q(z , x , y), for some x ∈ A}.

Call t a computation of length α based on G and z if t is a
function, domt = α+ 1, and, for all β ≤ α, t(β) = G(z , t ↾ β).

The Transfinite Recursion Theorem, Parametric Version

Let G be an operation. The property Q(z , x , y)






x is an ordinal number and y = t(x), for some computation t

of length x based on G and z ,
or x is not an ordinal number and y = ∅.

defines an operation F such that F(z , α) = G(z ,Fz ↾ α), for all ordinals α
and all sets z .
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The Transfinite Recursion Theorem (Successor-Limit)

To distinguish between successor ordinals and limit ordinals in various
constructions, we reformulate the Transfinite Recursion Theorem:

The Transfinite Recursion Theorem (Successor-Limit)

Let G1,G2 and G3 be operations, and let G be the operation defined by






















G(x) = y if and only if either
(a) x = ∅ and y = G1(∅)
(b) x is a function, domx = α+ 1, for ordinal α, and y = G2(x(α))
(c) x is a function, domx = α, for limit ordinal α, and y = G3(x)
(d) x is none of the above and y = ∅

Then, the property P






x is an ordinal number and y = t(x), for some computation t

of length x based on G,
or x is not an ordinal number and y = ∅.

(based on G) defines an operation F such that F(0) = G1(∅),
F(α+ 1) = G2(F(a)), for all α, F(α) = G3(F ↾ α), for all limit α 6= 0.
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Proof of the Successor-Limit Version

Consider the operation























G(x) = y if and only if either
(a) x = ∅ and y = G1(∅)
(b) x is a function, domx = α+ 1, for ordinal α, and y = G2(x(α))
(c) x is a function, domx = α, for limit ordinal α, and y = G3(x)
(d) x is none of the above and y = ∅
and the property P






x is an ordinal number and y = t(x), for some computation t

of length x based on G,
or x is not an ordinal number and y = ∅.

The operation F defined by P satisfies F(α) = G(F ↾ α), for all α.
Using our definition of G, we can verify that F has the required
properties.
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Proof of the Original Recursion Theorem

Recall the Recursion Theorem:

The Recursion Theorem

Let G be an operation. For any set a there is a unique infinite sequence
〈an : n ∈ N〉 such that

(a) a0 = a.

(b) an+1 = G(an, n), for all n ∈ N.

Let G be an operation. We want to find, for every set a, a sequence
〈an : n ∈ ω〉 such that a0 = a and an+1 = G(an, n), for all n ∈ N. By
the parametric version of the Transfinite Recursion Theorem, there is
an operation F, such that F(0) = a and F(n+ 1) = G(F(n), n), for all
n ∈ N. Now we apply the Axiom of Replacement: There exists a
sequence 〈an : n ∈ ω〉 that is equal to F ↾ ω. This proves the theorem.
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Proof of the Generalization to Transfinite Sequences

Recall also the following theorem:

Theorem

Let Ω be an ordinal number, A a set, and S =
⋃

α<Ω Aα the set of all
transfinite sequences of elements of A of length less than Ω. Let g : S → A

be a function. Then there exists a unique function f : Ω → A, such that

f (α) = g(f ↾ α), for all α < Ω.

Define an operation G by

G(t) =

{

g(t), if t ∈ S

∅, otherwise

The Transfinite Recursion Theorem provides an operation F such that
F(α) = G(F ↾ α) holds for all ordinals α. Let f = F ↾ Ω.
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Subsection 5

Ordinal Arithmetic
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Addition of Ordinal Numbers

We use the Transfinite Recursion Theorem to define addition,
multiplication, and exponentiation of ordinal numbers.

Definition (Addition of Ordinal Numbers)

For all ordinals β,

(a) β + 0 = β.

(b) β + (α+ 1) = (β + α) + 1 for all α.

(c) β + α = sup {β + γ : γ < α}, for all limit α 6= 0.

If we let α = 0 in (b), we have the equality β + 1 = β + 1;

the left-hand side denotes the sum of ordinal numbers β and 1;
the right-hand side is the successor of β.
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Justification of the Definition

This definition conforms with the formal version of the Transfinite
Recursion Theorem:

Consider operations G1,G2 and G3, where

G1(z , x) = z ,
G2(z , x) = x + 1, and
G3(z , x) = sup (ranx), if x is a function (and G3(z , x) = 0, otherwise).

We get an operation F such that for all z

F(z , 0) = G1(z , 0) = z

F(z , α+ 1) = G2(z ,Fz (α)) = Fz(α) + 1, for all α.
F(z , α) = G3(z ,Fz ↾ α) = sup (ran(Fz ↾ α))

= sup {F(z , γ) : γ < α}, for limit α 6= 0.

If β and α are ordinals, then we write β + α instead of F(β, α) and
these conditions are exactly the clauses of the definition.
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Some Basic Properties of Addition

Note, for all β, (β + 1) + 1 = β + 2, (β + 2) + 1 = β + 3, etc.

Also, we have (if α = β = ω):

ω + ω = sup {ω + n : n < ω},
(ω + ω) + ω = sup {(ω + ω) + n : n < ω}.

In contrast to these examples, consider the sum m + ω for m < ω.
We have m + ω = sup {m + n : n < ω} = ω, because, if m is a
natural number, m + n is also a natural number. We see that
m + ω 6= ω +m; the addition of ordinals is not commutative.

Notice that, while 1 6= 2, we have 1 + ω = 2 + ω. Thus, cancelations
on the right in equations and inequalities are not allowed.

However, we will show that addition of ordinal numbers is associative
and allows left cancelations.
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Sums of Linear Orders and Ordinal Numbers

Theorem

Let (W1, <1) and (W2, <2) be well-ordered sets, isomorphic to ordinals α1

and α2, respectively, and (W , <) the sum of (W1, <1) and (W2, <2).
Then (W , <) is isomorphic to the ordinal α1 + α2.

Assume that W1 and W2 are disjoint, W = W1 ∪W2, and each
element in W1 precedes in < each element of W2, while < agrees
with <1 and with <2 on both W1 and W2. We prove the theorem by
induction on α2.

If α2 = 0, then W2 = ∅, W = W1, and α1 + α2 = α1.
If α2 = β + 1, then W2 has a greatest element a, and W [a] is
isomorphic to α1 + β; the isomorphism extends to an isomorphism
between W and α1 + α2 = (α1 + β) + 1.
Let α2 be a limit ordinal. For each β < α2, there is an isomorphism fβ
of α1 + β onto W [aβ ], where aβ ∈ W2; moreover, fβ is unique, aβ is
the β-th element of W2, and if β < γ, then fβ ⊆ fγ . Let f =

⋃

β<α2
fβ .

As α1 + α2 =
⋃

β<α2
(α1 + β), it follows that f is an isomorphism of

α1 + α2 onto W .
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Ordering of Ordinals

Lemma

(a) If α1, α2, β are ordinals, then α1 < α2 if and only if β + α1 < β +α2.

(b) For all ordinals α1, α2 and β, β + α1 = β + α2 if and only if α1 = α2.

(c) (α+ β) + γ = α+ (β + γ), for all ordinals α, β and γ.

(a) We use transfinite induction on α2 to show that α1 < α2 implies
β + α1 < β + α2. Assume that α2 is an ordinal greater than α1 and
that α1 < δ implies β + α1 < β + δ, for all δ < α2.

If α2 is a successor ordinal, then α2 = δ + 1, where δ ≥ α1. By the
inductive assumption in case δ > α1, and trivially in case δ = α1, we
obtain β + α1 ≤ β + δ < (β + δ) + 1 = β + (δ + 1) = δ + α2.

If α2 is a limit ordinal, then α1 + 1 < α2 and we have
β+α1 < (β+α1)+1 = β+(α1+1) ≤ sup {β + δ : δ < α2} = β+α2.

For the converse, assume β + α1 < β + α2. If α2 < α1, by the
preceding part, β + α2 < β + α1. Since α2 = α1 is also impossible (it
implies β + α2 = β + α1), the linearity of < implies α1 < α2.
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Ordering of Ordinals (Cont’d)

Continuing with the proof:

(b) This follows immediately from (a): If α1 6= α2, then either α1 < α2 or
α2 < α1 and, thus, either β + α1 < β + α2 or β + α2 < β + α1. If
α1 = α2, then β + α1 = β + α2 holds trivially.

(c) We proceed by transfinite induction on γ.

If γ = 0, then (α+ β) + 0 = α+ β = α+ (β + 0).
Assume that equality holds for γ, and prove it for γ + 1:
(α+ β) + (γ + 1) = [(α+ β) + γ] + 1 = [α+ (β + γ)] + 1 =
α+ [(β + γ) + 1] = α+ [β + (γ + 1)].
Let γ be a limit ordinal, γ 6= 0. Then (α+ β) + γ =
sup {(α+ β) + δ : δ < γ} = sup {α+ (β + δ) : δ < γ}. We observe
that sup {β + δ : δ < γ} = β + γ (the third clause in the definition of
addition) and that β + γ is a limit ordinal (if ξ < β + γ then ξ ≤ β + δ

for some δ < γ and so ξ + 1 ≤ (β + δ) + 1 = β + (δ + 1) < β + γ

because γ is limit). Finally, notice sup {α+ (β + δ) : δ < γ} =
sup {α+ ξ : ξ < β + γ} (because β + γ = sup {β + δ : δ < γ}) and so
we have (a + β) + γ = sup {a + ξ : ξ < β + γ} = α+ (β + γ).
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Subtraction of Ordinals

Lemma (Definition of Difference)

If α ≤ β then there is a unique ordinal number ξ, such that α+ ξ = β.

As α is an initial segment of the well-ordered set β (or α = β), the
main theorem implies that β = α+ ξ, where ξ is the order type of the
set β − α = {ν : α ≤ ν < β}. By Part (b) of the preceding lemma,
the ordinal ξ is unique.
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Multiplication of Ordinal Numbers

Definition (Multiplication of Ordinal Numbers)

For all ordinals β,

(a) β · 0 = 0.

(b) β · (α+ 1) = β · α+ β, for all α.

(c) β · α = sup {β · γ : γ < α}, for all limit α 6= 0.

Examples:
(a) β · 1 = β · (0 + 1) = β · 0 + β = 0 + β = β.

(b) β · 2 = β · (1 + 1) = β · 1 + β = β + β; in particular, ω · 2 = ω + ω.
(c) β · 3 = β · (2 + 1) = β · 2 + β = β + β + β, etc.
(d) β · ω = sup {β · n : n ∈ ω} = sup {β, β · 1, β · 2, . . .}.
(e) 1 · α = α for all α, but this requires an inductive proof:

1 · 0 = 0;
1 · (α+ 1) = 1 · α+ 1 = α+ 1;
If α is limit, α 6= 0, 1 · α = sup {1 · γ : γ < a} = sup {γ : γ < a} = α.

(f) 2 · ω = sup {2 · n : n ∈ ω} = ω. Since ω · 2 = ω + ω 6= ω, we conclude
that, in general, multiplication of ordinals is not commutative.
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Products of Linear Orderings and Ordinal Multiplication

Ordinal multiplication agrees with the general definition of products
of linearly ordered sets:

Theorem

Let α and β be ordinal numbers. Both the lexicographic and the
antilexicographic orderings of the product α× β are well-orderings. The
order type of the antilexicographic ordering of α× β is α · β, while the
lexicographic ordering of α× β has order type β · α.

Let ≺ denote the antilexicographic ordering of α× β. We define an
isomorphism between (α× β,≺) and α · β as follows: for ξ < α and
η < β. let

f (ξ, η) = α · η + ξ.

The range of f is the set {α · η + ξ : η < β and ξ < α} = α · β.
Moreover, f is an isomorphism (this part uses induction).
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Exponentiation of Ordinal Numbers

Definition (Exponentiation of Ordinal Numbers)

For all β,

(a) β0 = 1.

(b) βα+1 = βα · β, for all α.

(c) βα = sup {βγ : γ < α}, for all limit α 6= 0.

Examples:

(a) β1 = β, β2 = β · β, β3 = β · β · β, etc.
(b) βω = sup {βn : n ∈ ω};

In particular, 1ω = 1, 2ω = ω, 3ω = ω, . . ., nω = ω, for any n ∈ ω.
ωω = sup {ωn : n ∈ ω} > ω.

Ordinal arithmetic differs substantially from the arithmetic of
cardinals: For instance, 2ω = ω and ωω are countable ordinals, while
2ℵ0 = ℵℵ0

0 is uncountable.
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Subsection 6

The Normal Form
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Continuity in the Second Variable

Using exponentiation, one can represent ordinal numbers in a normal
form analogous to the decimal expansion of integers.
Observe that the ordinal functions α+ β, α · β and αβ are continuous
in the second variable: If γ is a limit ordinal and β = supν<γ βν ,

α+ β = supν<γ (α+ βν),
α · β = supν<γ (α · βν),

αβ = supν<γ (α
βν ).

Lemma

(a) If 0 < α ≤ γ, then there is a greatest ordinal β, such that α · β ≤ γ.

(b) If 1 < α ≤ γ, then there is a greatest ordinal β, such that αβ ≤ γ.

Since α · (γ + 1) ≥ γ + 1 > γ, there exists a δ, such that α · δ > γ.
Similarly, because αγ+1 ≥ γ + 1 > γ, there is a δ with αδ > γ.
Because of continuity, the least δ such that α · δ > γ (or that αδ > γ)
must be a successor ordinal, say δ = β + 1. Then β is the greatest
ordinal such that α · β ≤ γ (respectively, αβ ≤ γ).
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Division Algorithm for Ordinals

Lemma

If γ is an arbitrary ordinal and if α 6= 0, then there exists a unique ordinal
β and a unique ρ < α such that γ = α · β + ρ.

Let β be the greatest ordinal such that α · β ≤ γ (if α > γ, then
β = 0), and let ρ be the unique ordinal, such that α · β + ρ = γ. The
ordinal ρ is less than α, because otherwise we would have α · (β+1) =
α · β + α ≤ α · β + ρ = γ, contrary to the maximality of β.

To prove uniqueness, let γ = α · β1 + ρ1 = α · β2 + ρ2, with
ρ1, ρ2 < α. Assume that β1 < β2. Then β1 + 1 ≤ β2 and we have
α · β1 + (α+ ρ2) = α · (β1 + 1) + ρ2 ≤ α · β2 + ρ2 = α · β1 + ρ1, and,
by a previous lemma, ρ1 ≥ α+ ρ2 ≥ α, a contradiction. Thus
β1 = β2. Now ρ1 = ρ2 follows by the subtraction lemma.
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The Normal Form Theorem

The normal form is analogous to the decimal expansion of integers,
with the base for exponentiation being the ordinal ω:

Theorem (Normal Form)

Every ordinal α > 0 can be expressed uniquely as

α = ωβ1 · k1 + ωβ2 · k2 + · · · + ωβn · kn,

where β1 > β2 > · · · > βn, and k1 > 0, k2 > 0, . . ., kn > 0 are finite.

Existence: By induction on α. The ordinal α = 1 can be expressed as
1 = ω0 · 1. Now let α > 0 be arbitrary. By the lemma, there exists a
greatest β, such that ωβ ≤ α (if α < ω, then β = 0). Then, by the
preceding lemma, there exist unique δ and ρ, such that ρ < ωβ and
α = ωβ · δ + ρ. As ωβ ≤ α, we have δ > 0 and ρ < α.
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The Normal Form Theorem (Existence)

We found unique δ > 0 and ρ < α, such that ρ < ωβ and
α = ωβ · δ + ρ.

Claim: δ is finite.

If δ were infinite, then α ≥ ωβ · δ ≥ ωβ · ω = ωβ+1, contradicting the
maximality of β.

Thus let β1 = β and k1 = δ.

If ρ = 0, then α = ωβ1 · k1 is in normal form.
If ρ > 0, then by the induction hypothesis, ρ = ωβ2 · k2 + · · ·+ ωβn · kn,
for some β2 > · · · > βn and finite k2, . . . , kn > 0. As ρ < ωβ1 , we have
ωβ2 ≤ ρ < ωβ1 and so β1 > β2. It follows that

α = ωβ1 · k1 + ωβ2 · k2 + · · ·+ ωβn · kn

is expressed in normal form.
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The Normal Form Theorem (Uniqueness)

Claim: If β < γ, then ωβ · k < ωγ for every finite k .

This is because ωβ · k < ωβ · ω = ωβ+1 ≤ ωγ .

From this it easily follows that if
α = ωβ1 · k1 + ωβ2 · k2 + · · ·+ ωβn · kn and γ > β1, then α < ωγ .

We prove the uniqueness of normal form by induction on α.

For α = 1, the expansion 1 = ω0 · 1 is clearly unique.
So let α = ωβ1 · k1 + · · ·+ ωβn · kn = ωγ1 · ℓ1 + · · ·+ ωγm · ℓm. The
preceding observation implies that β1 = γ1. If we let δ = ωβ1 = ωγ1 ,
ρ = ωβ2 · k2 + · · ·+ ωβn · kn and σ = ωγ2 · ℓ2 + · · ·+ ωγm · ℓm, we have
α = δ · k1 + ρ = δ · ℓ1 + σ, and since ρ < δ and σ < δ, a preceding
lemma implies that k1 = ℓ1 and ρ = σ. By the induction hypothesis,
the normal form for ρ is unique, and so m = n, β2 = γ2, . . . , βn = γn
k2 = ℓ2, . . . , kn = ℓn. If follows that the normal form expansion for α is
unique.
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Ordinal Numbers The Normal Form

Weak Goodstein Sequences

We use the normal form to prove an interesting result on Goodstein
sequences.

Recall that for every natural number a ≥ 2, every natural number m
can be written in base a, i.e., as a sum of powers of a:

m = ab1 · k1 + · · ·+ abn · kn,

with b1 > · · · > bn, and 0 < ki < a, i = 1, . . . , n.

Example: The number 324 can be written as 44 + 43 + 4 in base 4
and 72 · 6 + 7 · 4 + 2 in base 7.
A weak Goodstein sequence starting at m > 0 is a sequence
m0,m1,m2, . . . of natural numbers defined as follows:

Let m0 = m, and write m0 in base 2: m0 = 2b1 + · · ·+ 2bn .
To obtain m1, increase the base by 1 (from 2 to 3) and then subtract
1: m1 = 3b1 + · · ·+ 3bn − 1.
In general, to obtain mk+1 from mk (as long as mk 6= 0), write mk in
base k + 2, increase the base by 1 (to k + 3) and subtract 1.
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Ordinal Numbers The Normal Form

An Example of a Weak Goodstein Sequence

The weak Goodstein sequence starting at m = 21 is as follows:

m0 = 21 = 24 + 22 + 1
m1 = 34 + 32 = 90
m2 = 44 + 42 − 1 = 44 + 4 · 3 + 3 = 271
m3 = 54 + 5 · 3 + 2 = 642
m4 = 64 + 6 · 3 + 1 = 1315
m5 = 74 + 7 · 3 = 2422
m6 = 84 + 8 · 2 + 7 = 4119
m7 = 94 + 9 · 2 + 6 = 6585
m8 = 104 + 10 · 2 + 5 = 10025
etc.

George Voutsadakis (LSSU) Set Theory June 2014 64 / 67



Ordinal Numbers The Normal Form

Termination Theorem for Weak Goodstein Sequences

Theorem

For each m > 0, the weak Goodstein sequence starting at m eventually
terminates with mn = 0 for some n.

We use the normal form for ordinals. Let m > 0 and m0,m1,m2, . . .

be the weak Goodstein sequence starting at m. Its ath term is written
in base a + 2: ma = (a + 2)b1k1 + · · ·+ (a + 2)bnkn. Consider the
ordinal αa = ωb1 · k1 + · · ·+ ωbn · kn obtained by replacing base a + 2
by ω. It is easily seen that α0 > α1 > · · · > αa > · · · is a decreasing
sequence of ordinals, necessarily finite. Therefore, there exists some n

such that αn = 0. But clearly ma ≤ αa for every a = 0, 1, 2, . . . , n.
Hence mn = 0.
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Ordinal Numbers The Normal Form

Goodstein Sequences

A number n is written in pure base a ≥ 2 if it is first written in base
a, then so are the exponents and the exponents of exponents, etc.

Example: The number 324 written in pure base 3 is 33+2 + 33+1.
The Goodstein sequence starting at m > 0 is a sequence
m0,m1,m2, . . . obtained as follows:

Let m0 = m and write m0 in pure base 2.
To define m1, replace each 2 by 3, and then subtract 1.
In general, to get mk+1, write mk in pure base k + 2, replace each
k + 2 by k + 3, and subtract 1.

Example: The Goodstein sequence starting at m = 21 is as follows:

m0 = 21 = 22
2
+ 22 + 1

m1 = 33
3
+ 33 ≈ 7.6 × 1012

m2 = 44
4
+ 44 − 1 = 44

4
+ 43 · 3 + 42 · 3 + 4 · 3 + 3 ≈ 1.3× 10154

m3 = 55
5
+ 53 · 3 + 52 · 3 + 5 · 3 + 2 ≈ 1.9× 102184

m4 = 66
6
+ 63 · 3 + 62 · 3 + 6 · 3 + 1 ≈ 2.6× 1036305

etc.
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Ordinal Numbers The Normal Form

Termination Theorem for Goodstein Sequences

Goodstein sequences initially grow even more rapidly than weak
Goodstein sequences, but still:

Termination Theorem

For each m > 0, the Goodstein sequence starting at m eventually
terminates with mn = 0 for some n.

We define a (finite) sequence of ordinals α0 > α1 > · · · > αa > · · · as
follows: When ma is written in pure base a+ 2, we get α, by
replacing each a + 2 by ω.

Example: For instance, in the example above, the ordinals are

ωωω

+ ωω + 1, ωωω

+ ωω,

ωωω

+ ω3 · 3 + ω2 · 3 + ω · 3 + 3, ωωω

+ ω3 · 3 + ω2 · 3 + ω · 3 + 2,
ωωω

+ ω3 · 3 + ω2 · 3 + ω · 3 + 1, etc.

The ordinals αa are in normal form, and again, it can be shown that
they form a (finite) decreasing sequence. Therefore, αn = 0 for some
n, and since ma ≤ αa, for all a, we have mn = 0.
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