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Alephs Initial Ordinals

Finite Ordinals and Cardinals

We proved results involving the cardinality |X | of a set X , but we have
not defined |X | itself, except in the case when X is finite or countable.

We now find “representatives” of cardinalities.
Natural numbers play this role satisfactorily for finite sets.

We showed that ordinal numbers have many properties of natural
numbers, e.g, inductive proofs and recursive constructions.

However, ordinal numbers do not represent cardinalities; instead, they
represent types of well-orderings.

Since any infinite set can be well-ordered in many different ways,
there are many ordinal numbers of the same cardinality;

E.g., ω, ω + 1, ω + 2, . . . , ω + ω, . . . , ω · ω, ω · ω + 1, . . . are all
countable ordinal numbers; i.e., |ω| = |ω + 1| = |ω + ω| = · · · = ℵ0.
The good behavior of ordinal numbers of finite cardinalities is due to
the fact that all linear orderings of a finite set are isomorphic, and
they are well-orderings. Thus, for any finite X , there exists unique
ordinal n such that |n| = |X |, called the cardinal number of X .
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Alephs Initial Ordinals

Initial Ordinals

To get representatives for cardinalities of infinite (well-orderable) sets,
we take the least ordinal number of any given cardinality as the
representative of that cardinality:

Definition (Initial Ordinal)

An ordinal number α is called an initial ordinal if it is not equipotent to
any β < α.

Example:

Every natural number is an initial ordinal.
ω is an initial ordinal, because ω is not equipotent to any natural
number.
ω + 1 is not initial, because |ω| = |ω + 1|.
Similarly, none of ω + 2, ω + 3, ω + ω, ω · ω, ωω, . . . is initial.
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Alephs Initial Ordinals

Cardinal Numbers

Theorem

Each well-orderable set X is equipotent to a unique initial ordinal number.

By a preceding theorem, X is equipotent to some ordinal α. Let α0

be the least ordinal equipotent to X . Then α0 is an initial ordinal
because |α0| = |β|, for some β < α0, would imply |X | = |β|, a
contradiction.
If α0 6= α1 are initial ordinals, they cannot be equipotent, because
|α0| = |α1| and, say, α0 < α1, would violate the fact that α1 is initial.
This proves the uniqueness.

Definition (Cardinal Number)

If X is a well-orderable set, then the cardinal number of X , denoted |X |, is
the unique initial ordinal equipotent to X . In particular, |X | = ω for any
countable set X , and |X | = n for any finite set of n elements.
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Alephs Initial Ordinals

Hartogs Number of a Set

Are there other initial ordinals besides the natural numbers and ω?

Let A be any set; A may not be well-orderable itself, but it certainly
has some well-orderable subsets; for example, all finite subsets of A
are well-orderable.

Definition (Hartogs Number)

For any A, let h(A) be the least ordinal number which is not equipotent to
any subset of A. h(A) is called the Hartogs number of A.

By definition, h(A) is the least ordinal α such that |α| � |A|.

Lemma

For any A, h(A) is an initial ordinal number.

Assume that |β| = |h(A)| for some β < h(A). Then β is equipotent
to a subset of A, and β is equipotent to h(A). We conclude that h(A)
is equipotent to a subset of A, i.e., h(A) < h(A), a contradiction.
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Alephs Initial Ordinals

Existence of Hartogs Numbers

How do we know that the Hartogs number of A exists?
If all infinite ordinals were countable, h(ω) would consist of all ordinals!

Lemma

The Hartogs number of A exists for all A.

By a preceding theorem, for every well-ordered set (W ,R) where
W ⊆ A, there is a unique ordinal α, such that (α,<) is isomorphic to
(W ,R). By Replacement, there exists a set H such that, for every
well-ordering R ∈ P(A × A), its isomorphic ordinal α is in H.

Claim: H contains all ordinals equipotent to a subset of A.

If f is a one-to-one function mapping α into A, we set W = ranf and
R = {(f (β), f (γ)) : β < γ < α}. R ⊆ A× A is then a well-ordering
isomorphic to α (by the isomorphism f ). These considerations show
that h(A) = {α ∈ H : α is an ordinal equipotent to a subset of A}.
Thus, by Axiom Schema of Comprehension, h(A) exists.
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Alephs Initial Ordinals

The Hierarchy of Omegas

We can now define a “scale” of larger and larger initial ordinal
numbers by transfinite recursion:

Definition (Omegas)

ω0 = ω;
ωα+1 = h(ωα), for all α;
ωα = sup {ωβ : β < α}, if α is limit α 6= 0.

We know that |ωα+1| > |ωα|, for each α, and so |ωα| < |ωβ|
whenever α < β.

Theorem

(a) ωα is an infinite initial ordinal number for each α.

(b) If Ω is an infinite initial ordinal number, then Ω = ωα for some α.
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Alephs Initial Ordinals

Proof of the Theorem

(a) The proof is by induction on α. The only nontrivial case is when α is
a limit ordinal. Suppose that |ωα| = |γ| for some γ < ωα; then there
is β < α such that γ ≤ ωβ (by the definition of supremum). But this
implies |ωα| = |γ| ≤ |ωβ| ≤ |ωα| and yields a contradiction.

(b) First, an easy induction shows that α ≤ ωα for all α. Therefore, for
every infinite initial ordinal Ω, there is an ordinal α such that Ω < ωα,
(for example, α = Ω+ 1). Thus, it suffices to prove the following:
Claim: For every infinite initial ordinal Ω < ωα, there is some γ < α

such that Ω = ωγ .
By induction on α.

The claim is trivially true for α = 0.
If α = β + 1, Ω < ωα = h(ωβ) implies that |Ω| ≤ |ωβ | so either
Ω = ωβ and we can let γ = β, or Ω < ωβ and existence of γ < β < α

follows from the inductive assumption.
If α is a limit ordinal, Ω < ωα = sup {ωβ : β < α} implies that Ω < ωβ

for some β < α. The inductive assumption again guarantees the
existence of some γ < β, such that Ω = ωγ .
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Alephs Initial Ordinals

Conclusions

Every well-orderable set is equipotent to a unique initial ordinal.
Infinite initial ordinal numbers form a transfinite sequence ωα with α

ranging over all ordinal numbers.
Infinite initial ordinals are, by definition, the cardinalities of infinite
well-orderable sets. It is customary to call these cardinal numbers
alephs, i.e., we define

ℵα = ωα, for each α.

The cardinal number of a well-orderable set is thus either a natural
number or an aleph.
Note that the ordering of cardinal numbers by size defined previously
agrees with the ordering of natural numbers and alephs as ordinals by
< (i.e., ∈):

If |X | = ℵα and |Y | = ℵβ , then |X | < |Y | if and only if ℵα < ℵβ (i.e.,
ωα ∈ ωβ).

A similar equivalence holds if one or both of |X | and |Y | are natural
numbers.
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Alephs Initial Ordinals

Cardinal and Ordinal Operations

We have defined addition, multiplication, and exponentiation of
cardinal numbers.
These agree with the corresponding ordinal operations if the ordinals
involved are natural numbers but they may differ for infinite ordinals.
Example:

ω0 + ω0 6= ω0 if + stands for the ordinal addition; but ω0 + ω0 = ω0 if
+ stands for the cardinal addition.
The addition of cardinal numbers is commutative, but the addition of
ordinal numbers is not.

For clarity, the ω-symbolism is used when the ordinal operations are
involved, and the ℵ-symbolism for the cardinal operations.
Thus:

ω0 + ω0 and 2ω0 indicate ordinal addition and exponentiation:
ω0 + ω0 = sup {ω + n : n < ω0} > ω0;
2ω0 = sup {2n : n < ω0} = ω0.

ℵ0 + ℵ0 and 2ℵ0 cardinal operations:
ℵ0 + ℵ0 = ℵ0;
2ℵ0 is uncountable.
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Subsection 2

Addition and Multiplication of Alephs
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Alephs Addition and Multiplication of Alephs

Revisiting Cardinal Addition and Multiplication

Let κ and λ be cardinal numbers. We have defined κ+ λ as the
cardinality of the set X ∪ Y , where |X | = κ, |Y | = λ, and X and Y

are disjoint:
|X |+ |Y | = |X ∪ Y |, if X ∩ Y = ∅.

This definition does not depend on the choice of X and Y .

The product κ · λ has been defined as the cardinality of the cartesian
product X × Y , where X and Y are any two sets of respective
cardinalities κ and λ:

|X | · |Y | = |X × Y |.

This definition is also independent of the choice of X and Y .

Addition and multiplication satisfy:

κ+ λ = λ+ κ κ · λ = λ · κ
κ+ (λ+ µ) = (κ+ λ) + µ κ · (λ · µ) = (κ · λ) · µ

κ · (λ+ µ) = κ · λ+ κ · µ
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Alephs Addition and Multiplication of Alephs

Some Examples of Operations involving Alephs

The arithmetic of infinite numbers differs substantially from the
arithmetic of finite numbers.

In fact, the rules for addition and multiplication of alephs are very
simple.

Example:

ℵ0 + n = ℵ0, for every natural number n.
ℵ0 + ℵ0 = ℵ0, since the set of all natural numbers is the union of two
disjoint countable sets: the set of even numbers and the set of odd
numbers.
ℵ0 · ℵ0 = ℵ0 (The set of all pairs of natural numbers is countable.)

We prove, next, a general theorem that determines completely the
result of addition and multiplication of alephs.
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Alephs Addition and Multiplication of Alephs

ℵα · ℵα = ℵα

Theorem

ℵα · ℵα = ℵα, for every α.

We prove the theorem by transfinite induction. For every α, we
construct a certain well-ordering ≺ of the set ωα × ωα and show,
using the induction hypothesis ℵβ · ℵβ ≤ ℵβ that the order-type of
the well-ordered set (ωα × ωα,≺) is at most ωα. Then, it follows that
ℵα · ℵα ≤ ℵα and since ℵα · ℵα ≥ ℵα, we have ℵα · ℵα = ℵα.

We construct the well-ordering ≺ of ωα × ωα uniformly for all ωα,
i.e., we define a property ≺ of pairs of ordinals and show that ≺
well-orders ωα × ωα, for every ωα.

(α1, α2) ≺ (β1, β2) if and only if either max {α1, α2} < max {β1, β2}
or max {α1, α2} = max {β1, β2} and α1 < β1
or max {α1, α2} = max {β1, β2}, α1 = β1 and α2 < β2.

We show that ≺ is a well-ordering (of any set of pairs of ordinals).
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Alephs Addition and Multiplication of Alephs

≺ is an Ordering

≺ is transitive: Let α1, α2, β1, β2, γ1, γ2 be such that
(α1, α2) ≺ (β1, β2) and (β1, β2) ≺ (γ1, γ2). By definition
max {α1, α2} ≤ max {β1, β2} ≤ max {γ1, γ2}, whence
max {α1, α2} ≤ max {γ1, γ2}.

If max {α1, α2} < max {γ1, γ2}, then (α1, α2) ≺ (γ1, γ2).
If max {α1, α2} = max {β1, β2} = max {γ1, γ2}, then we have
α1 ≤ β1 ≤ γ1, and so α1 ≤ γ1.

If α1 < γ1, then (α1, α2) ≺ (γ1, γ2);
Otherwise, we have α1 = β1 = γ1. In this last case,
max {α1, α2} = max {β1, β2} = max {γ1, γ2}, and α1 = β1 = γ1, so,
necessarily, α2 < β2 < γ2, and it follows again that (α1, α2) ≺ (γ1, γ2).
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Alephs Addition and Multiplication of Alephs

≺ is Linear

We verify that for any α1, α2, β1, β2, either

(α1, α2) ≺ (β1, β2) or (β1, β2) ≺ (α1, α2) or (α1, α2) = (β1, β2)

and that these three cases are mutually exclusive. This follows
directly from the definition:

Given (α1, α2) and (β1, β2)

we first compare max {α1, α2} and max {β1, β2},
then α1 and β1

and last the ordinals α2 and β2.
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Alephs Addition and Multiplication of Alephs

≺ is a Well-Ordering

≺ is a well-ordering: Let X be a nonempty set of pairs of ordinals.
We find the ≺-least element of X . Let δ be the least maximum of the
pairs in X , i.e., let δ be least element in {max {α, β} : (α, β) ∈ X}.
Let Y = {(α, β) ∈ X : max {α, β} = δ}. The set Y is a nonempty
subset of X , and, for every (α, β) ∈ Y , we have max {α, β} = δ.
Moreover, δ < max {α′, β′}, for any (α′, β′) ∈ X − Y , and hence
(α, β) ≺ (α′, β′) whenever (α, β) ∈ Y and (α′, β′) ∈ X − Y .
Therefore, the least element of Y , if it exists, is also the least element
of X . Now let α0 be the least ordinal in the set
{α : (α, β) ∈ Y for some β} and let Z = {(α, β) ∈ Y : α = α0}. The
set Z is a nonempty subset of Y . Also (α, β) ≺ (α′, β′) whenever
(α, β) ∈ Z and (α′, β′) ∈ Y − Z .

Finally, let β0 be the least ordinal in the set {β : (α0, β) ∈ Z}.
Clearly, (α0, β0) is the least element of Z . It follows that (α0, β0) is
the least element of X .
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Alephs Addition and Multiplication of Alephs

Finishing the Proof

Having shown that ≺ is a well-ordering of ωα × ωα for every α, we
use this well-ordering to prove, by transfinite induction on α, that
|ωα × ωα| ≤ ℵα, i.e., ℵα · ℵα ≤ ℵα.

For α = 0, we know that ℵ0 · ℵ0 = ℵ0.
So let α > 0, and let us assume that ℵβ · ℵβ ≤ ℵβ, for all β < α. We
prove that |ωα × ωα| ≤ ℵα. If suffices to show that the order-type of
the well-ordered set (ωα × ωα,≺) is at most ωα.
If the order-type of (ωα × ωα,≺) were greater than ωα, then there
would exist (α1, α2) ∈ ωα × ωα, such that the cardinality of the set
X = {(ξ1, ξ2) ∈ ωα × ωα : (ξ1, ξ2) ≺ (α1, α2)} is at least ℵα. Thus, it
suffices to prove that, for any (α1, α2) ∈ ωα × ωα, we have |X | < ℵα.
Let β = max {α1, α2}+ 1. Then β ∈ ωα and, for every (ξ1, ξ2) ∈ X ,
we have max {ξ1, ξ2} ≤ max {α1, α2} < β, so ξ1 ∈ β and ξ2 ∈ β, i.e.,
X ⊆ β × β.
Let γ < α be such that |β| ≤ ℵγ . Then |X | ≤ |β × β| = |β| · |β| ≤
ℵγ · ℵγ and ℵγ · ℵγ ≤ ℵγ , by the induction hypothesis. Thus,
|X | ≤ ℵγ , and, hence, |X | < ℵα.
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Alephs Addition and Multiplication of Alephs

Rules of Cardinal Arithmetic

Corollary

For every α and β such that α ≤ β, we have ℵα · ℵβ = ℵβ.

Also, n · ℵα = ℵα, for every positive natural number n.

If α ≤ β, then
ℵβ = 1 · ℵβ ≤ ℵα · ℵβ

ℵα · ℵβ ≤ ℵβ · ℵβ = ℵβ , by the theorem.

Thus by the Cantor-Bernstein Theorem ℵα · ℵβ = ℵβ. The equality
n · ℵα = ℵα is proved similarly.

Corollary

For every α and β such that α ≤ β, we have ℵα + ℵβ = ℵβ.
Also, n + ℵα = ℵα, for all natural numbers n.

If α ≤ β, then ℵβ ≤ ℵα + ℵβ ≤ ℵβ + ℵβ = 2 · ℵβ = ℵβ and the
assertion follows. The second part is proved similarly.
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