Introduction to Set Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Alephs

- Initial Ordinals
- Addition and Multiplication of Alephs

Subsection 1

Initial Ordinals

Finite Ordinals and Cardinals

- We proved results involving the cardinality $|X|$ of a set X, but we have not defined $|X|$ itself, except in the case when X is finite or countable.
- We now find "representatives" of cardinalities.
- Natural numbers play this role satisfactorily for finite sets.
- We showed that ordinal numbers have many properties of natural numbers, e.g, inductive proofs and recursive constructions.
- However, ordinal numbers do not represent cardinalities; instead, they represent types of well-orderings.
- Since any infinite set can be well-ordered in many different ways, there are many ordinal numbers of the same cardinality;
- E.g., $\omega, \omega+1, \omega+2, \ldots, \omega+\omega, \ldots, \omega \cdot \omega, \omega \cdot \omega+1, \ldots$ are all countable ordinal numbers; i.e., $|\omega|=|\omega+1|=|\omega+\omega|=\cdots=\aleph_{0}$.
- The good behavior of ordinal numbers of finite cardinalities is due to the fact that all linear orderings of a finite set are isomorphic, and they are well-orderings. Thus, for any finite X, there exists unique ordinal n such that $|n|=|X|$, called the cardinal number of X.

Initial Ordinals

- To get representatives for cardinalities of infinite (well-orderable) sets, we take the least ordinal number of any given cardinality as the representative of that cardinality:

Definition (Initial Ordinal)

An ordinal number α is called an initial ordinal if it is not equipotent to any $\beta<\alpha$.

- Example:
- Every natural number is an initial ordinal.
- ω is an initial ordinal, because ω is not equipotent to any natural number.
- $\omega+1$ is not initial, because $|\omega|=|\omega+1|$.
- Similarly, none of $\omega+2, \omega+3, \omega+\omega, \omega \cdot \omega, \omega^{\omega}, \ldots$ is initial.

Cardinal Numbers

Theorem

Each well-orderable set X is equipotent to a unique initial ordinal number.

- By a preceding theorem, X is equipotent to some ordinal α. Let α_{0} be the least ordinal equipotent to X. Then α_{0} is an initial ordinal because $\left|\alpha_{0}\right|=|\beta|$, for some $\beta<\alpha_{0}$, would imply $|X|=|\beta|$, a contradiction.
If $\alpha_{0} \neq \alpha_{1}$ are initial ordinals, they cannot be equipotent, because $\left|\alpha_{0}\right|=\left|\alpha_{1}\right|$ and, say, $\alpha_{0}<\alpha_{1}$, would violate the fact that α_{1} is initial.
This proves the uniqueness.

Definition (Cardinal Number)

If X is a well-orderable set, then the cardinal number of X, denoted $|X|$, is the unique initial ordinal equipotent to X. In particular, $|X|=\omega$ for any countable set X, and $|X|=n$ for any finite set of n elements.

Hartogs Number of a Set

- Are there other initial ordinals besides the natural numbers and ω ?
- Let A be any set; A may not be well-orderable itself, but it certainly has some well-orderable subsets; for example, all finite subsets of A are well-orderable.

Definition (Hartogs Number)

For any A, let $h(A)$ be the least ordinal number which is not equipotent to any subset of $A . h(A)$ is called the Hartogs number of A.

- By definition, $h(A)$ is the least ordinal α such that $|\alpha| \not \leq|A|$.

Lemma

For any $A, h(A)$ is an initial ordinal number.

- Assume that $|\beta|=|h(A)|$ for some $\beta<h(A)$. Then β is equipotent to a subset of A, and β is equipotent to $h(A)$. We conclude that $h(A)$ is equipotent to a subset of A, i.e., $h(A)<h(A)$, a contradiction.

Existence of Hartogs Numbers

- How do we know that the Hartogs number of A exists?

If all infinite ordinals were countable, $h(\omega)$ would consist of all ordinals!

Lemma

The Hartogs number of A exists for all A.

- By a preceding theorem, for every well-ordered set (W, R) where $W \subseteq A$, there is a unique ordinal α, such that $(\alpha,<)$ is isomorphic to (W, R). By Replacement, there exists a set H such that, for every well-ordering $R \in \mathcal{P}(A \times A)$, its isomorphic ordinal α is in H.
Claim: H contains all ordinals equipotent to a subset of A.
If f is a one-to-one function mapping α into A, we set $W=\operatorname{ran} f$ and $R=\{(f(\beta), f(\gamma)): \beta<\gamma<\alpha\} . R \subseteq A \times A$ is then a well-ordering isomorphic to α (by the isomorphism f). These considerations show that $h(A)=\{\alpha \in H: \alpha$ is an ordinal equipotent to a subset of $A\}$. Thus, by Axiom Schema of Comprehension, $h(A)$ exists.

The Hierarchy of Omegas

- We can now define a "scale" of larger and larger initial ordinal numbers by transfinite recursion:

Definition (Omegas)

$$
\begin{aligned}
\omega_{0} & =\omega ; \\
\omega_{\alpha+1} & =h\left(\omega_{\alpha}\right), \text { for all } \alpha ; \\
\omega_{\alpha} & =\sup \left\{\omega_{\beta}: \beta<\alpha\right\}, \text { if } \alpha \text { is limit } \alpha \neq 0 .
\end{aligned}
$$

- We know that $\left|\omega_{\alpha+1}\right|>\left|\omega_{\alpha}\right|$, for each α, and so $\left|\omega_{\alpha}\right|<\left|\omega_{\beta}\right|$ whenever $\alpha<\beta$.

Theorem

(a) ω_{α} is an infinite initial ordinal number for each α.
(b) If Ω is an infinite initial ordinal number, then $\Omega=\omega_{\alpha}$ for some α.

Proof of the Theorem

(a) The proof is by induction on α. The only nontrivial case is when α is a limit ordinal. Suppose that $\left|\omega_{\alpha}\right|=|\gamma|$ for some $\gamma<\omega_{\alpha}$; then there is $\beta<\alpha$ such that $\gamma \leq \omega_{\beta}$ (by the definition of supremum). But this implies $\left|\omega_{\alpha}\right|=|\gamma| \leq\left|\omega_{\beta}\right| \leq\left|\omega_{\alpha}\right|$ and yields a contradiction.
(b) First, an easy induction shows that $\alpha \leq \omega_{\alpha}$ for all α. Therefore, for every infinite initial ordinal Ω, there is an ordinal α such that $\Omega<\omega_{\alpha}$, (for example, $\alpha=\Omega+1$). Thus, it suffices to prove the following: Claim: For every infinite initial ordinal $\Omega<\omega_{\alpha}$, there is some $\gamma<\alpha$ such that $\Omega=\omega_{\gamma}$.
By induction on α.

- The claim is trivially true for $\alpha=0$.
- If $\alpha=\beta+1, \Omega<\omega_{\alpha}=h\left(\omega_{\beta}\right)$ implies that $|\Omega| \leq\left|\omega_{\beta}\right|$ so either $\Omega=\omega_{\beta}$ and we can let $\gamma=\beta$, or $\Omega<\omega_{\beta}$ and existence of $\gamma<\beta<\alpha$ follows from the inductive assumption.
- If α is a limit ordinal, $\Omega<\omega_{\alpha}=\sup \left\{\omega_{\beta}: \beta<\alpha\right\}$ implies that $\Omega<\omega_{\beta}$ for some $\beta<\alpha$. The inductive assumption again guarantees the existence of some $\gamma<\beta$, such that $\Omega=\omega_{\gamma}$.

Conclusions

- Every well-orderable set is equipotent to a unique initial ordinal.
- Infinite initial ordinal numbers form a transfinite sequence ω_{α} with α ranging over all ordinal numbers.
- Infinite initial ordinals are, by definition, the cardinalities of infinite well-orderable sets. It is customary to call these cardinal numbers alephs, i.e., we define

$$
\aleph_{\alpha}=\omega_{\alpha}, \text { for each } \alpha
$$

- The cardinal number of a well-orderable set is thus either a natural number or an aleph.
- Note that the ordering of cardinal numbers by size defined previously agrees with the ordering of natural numbers and alephs as ordinals by $<$ (i.e., \in):

$$
\begin{aligned}
& \text { If }|X|=\aleph_{\alpha} \text { and }|Y|=\aleph_{\beta} \text {, then }|X|<|Y| \text { if and only if } \aleph_{\alpha}<\aleph_{\beta} \text { (i.e., } \\
& \omega_{\alpha} \in \omega_{\beta} \text {). }
\end{aligned}
$$

- A similar equivalence holds if one or both of $|X|$ and $|Y|$ are natural numbers.

Cardinal and Ordinal Operations

- We have defined addition, multiplication, and exponentiation of cardinal numbers.
- These agree with the corresponding ordinal operations if the ordinals involved are natural numbers but they may differ for infinite ordinals.
- Example:
- $\omega_{0}+\omega_{0} \neq \omega_{0}$ if + stands for the ordinal addition; but $\omega_{0}+\omega_{0}=\omega_{0}$ if + stands for the cardinal addition.
- The addition of cardinal numbers is commutative, but the addition of ordinal numbers is not.
- For clarity, the ω-symbolism is used when the ordinal operations are involved, and the \aleph-symbolism for the cardinal operations.
- Thus:
- $\omega_{0}+\omega_{0}$ and $2^{\omega_{0}}$ indicate ordinal addition and exponentiation:
- $\omega_{0}+\omega_{0}=\sup \left\{\omega+n: n<\omega_{0}\right\}>\omega_{0}$;
- $2^{\omega_{0}}=\sup \left\{2^{n}: n<\omega_{0}\right\}=\omega_{0}$.
- $\aleph_{0}+\aleph_{0}$ and $2^{\aleph_{0}}$ cardinal operations:
- $\aleph_{0}+\aleph_{0}=\aleph_{0}$;
- $2^{\aleph_{0}}$ is uncountable.

Subsection 2

Addition and Multiplication of Alephs

Revisiting Cardinal Addition and Multiplication

- Let κ and λ be cardinal numbers. We have defined $\kappa+\lambda$ as the cardinality of the set $X \cup Y$, where $|X|=\kappa,|Y|=\lambda$, and X and Y are disjoint:

$$
|X|+|Y|=|X \cup Y|, \text { if } X \cap Y=\emptyset
$$

This definition does not depend on the choice of X and Y.

- The product $\kappa \cdot \lambda$ has been defined as the cardinality of the cartesian product $X \times Y$, where X and Y are any two sets of respective cardinalities κ and λ :

$$
|X| \cdot|Y|=|X \times Y|
$$

This definition is also independent of the choice of X and Y.

- Addition and multiplication satisfy:

$$
\begin{array}{rlrl}
\kappa+\lambda & =\lambda+\kappa & \kappa \cdot \lambda & =\lambda \cdot \kappa \\
\kappa+(\lambda+\mu) & =(\kappa+\lambda)+\mu & \kappa \cdot(\lambda \cdot \mu) & =(\kappa \cdot \lambda) \cdot \mu \\
& \kappa \cdot(\lambda+\mu)=\kappa \cdot \lambda+\kappa \cdot \mu
\end{array}
$$

Some Examples of Operations involving Alephs

- The arithmetic of infinite numbers differs substantially from the arithmetic of finite numbers.
- In fact, the rules for addition and multiplication of alephs are very simple.
- Example:
- $\aleph_{0}+n=\aleph_{0}$, for every natural number n.
- $\aleph_{0}+\aleph_{0}=\aleph_{0}$, since the set of all natural numbers is the union of two disjoint countable sets: the set of even numbers and the set of odd numbers.
- $\aleph_{0} \cdot \aleph_{0}=\aleph_{0}$ (The set of all pairs of natural numbers is countable.)
- We prove, next, a general theorem that determines completely the result of addition and multiplication of alephs.

Theorem

$\aleph_{\alpha} \cdot \aleph_{\alpha}=\aleph_{\alpha}$, for every α.

- We prove the theorem by transfinite induction. For every α, we construct a certain well-ordering \prec of the set $\omega_{\alpha} \times \omega_{\alpha}$ and show, using the induction hypothesis $\aleph_{\beta} \cdot \aleph_{\beta} \leq \aleph_{\beta}$ that the order-type of the well-ordered set $\left(\omega_{\alpha} \times \omega_{\alpha}, \prec\right)$ is at most ω_{α}. Then, it follows that $\aleph_{\alpha} \cdot \aleph_{\alpha} \leq \aleph_{\alpha}$ and since $\aleph_{\alpha} \cdot \aleph_{\alpha} \geq \aleph_{\alpha}$, we have $\aleph_{\alpha} \cdot \aleph_{\alpha}=\aleph_{\alpha}$. We construct the well-ordering \prec of $\omega_{\alpha} \times \omega_{\alpha}$ uniformly for all ω_{α}, i.e., we define a property \prec of pairs of ordinals and show that \prec well-orders $\omega_{\alpha} \times \omega_{\alpha}$, for every ω_{α}.
$\left(\alpha_{1}, \alpha_{2}\right) \prec\left(\beta_{1}, \beta_{2}\right)$ if and only if either $\max \left\{\alpha_{1}, \alpha_{2}\right\}<\max \left\{\beta_{1}, \beta_{2}\right\}$ or $\max \left\{\alpha_{1}, \alpha_{2}\right\}=\max \left\{\beta_{1}, \beta_{2}\right\}$ and $\alpha_{1}<\beta_{1}$ or $\max \left\{\alpha_{1}, \alpha_{2}\right\}=\max \left\{\beta_{1}, \beta_{2}\right\}, \alpha_{1}=\beta_{1}$ and $\alpha_{2}<\beta_{2}$.
We show that \prec is a well-ordering (of any set of pairs of ordinals).

is an Ordering

- \prec is transitive: Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ be such that $\left(\alpha_{1}, \alpha_{2}\right) \prec\left(\beta_{1}, \beta_{2}\right)$ and $\left(\beta_{1}, \beta_{2}\right) \prec\left(\gamma_{1}, \gamma_{2}\right)$. By definition $\max \left\{\alpha_{1}, \alpha_{2}\right\} \leq \max \left\{\beta_{1}, \beta_{2}\right\} \leq \max \left\{\gamma_{1}, \gamma_{2}\right\}$, whence $\max \left\{\alpha_{1}, \alpha_{2}\right\} \leq \max \left\{\gamma_{1}, \gamma_{2}\right\}$.
- If $\max \left\{\alpha_{1}, \alpha_{2}\right\}<\max \left\{\gamma_{1}, \gamma_{2}\right\}$, then $\left(\alpha_{1}, \alpha_{2}\right) \prec\left(\gamma_{1}, \gamma_{2}\right)$.
- If $\max \left\{\alpha_{1}, \alpha_{2}\right\}=\max \left\{\beta_{1}, \beta_{2}\right\}=\max \left\{\gamma_{1}, \gamma_{2}\right\}$, then we have $\alpha_{1} \leq \beta_{1} \leq \gamma_{1}$, and so $\alpha_{1} \leq \gamma_{1}$.
- If $\alpha_{1}<\gamma_{1}$, then $\left(\alpha_{1}, \alpha_{2}\right) \prec\left(\gamma_{1}, \gamma_{2}\right)$;
- Otherwise, we have $\alpha_{1}=\beta_{1}=\gamma_{1}$. In this last case, $\max \left\{\alpha_{1}, \alpha_{2}\right\}=\max \left\{\beta_{1}, \beta_{2}\right\}=\max \left\{\gamma_{1}, \gamma_{2}\right\}$, and $\alpha_{1}=\beta_{1}=\gamma_{1}$, so, necessarily, $\alpha_{2}<\beta_{2}<\gamma_{2}$, and it follows again that $\left(\alpha_{1}, \alpha_{2}\right) \prec\left(\gamma_{1}, \gamma_{2}\right)$.

is Linear

- We verify that for any $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$, either

$$
\left(\alpha_{1}, \alpha_{2}\right) \prec\left(\beta_{1}, \beta_{2}\right) \text { or }\left(\beta_{1}, \beta_{2}\right) \prec\left(\alpha_{1}, \alpha_{2}\right) \text { or }\left(\alpha_{1}, \alpha_{2}\right)=\left(\beta_{1}, \beta_{2}\right)
$$

and that these three cases are mutually exclusive. This follows directly from the definition:

Given (α_{1}, α_{2}) and (β_{1}, β_{2})

- we first compare $\max \left\{\alpha_{1}, \alpha_{2}\right\}$ and $\max \left\{\beta_{1}, \beta_{2}\right\}$,
- then α_{1} and β_{1}
- and last the ordinals α_{2} and β_{2}.

\prec is a Well-Ordering

- \prec is a well-ordering: Let X be a nonempty set of pairs of ordinals. We find the \prec-least element of X. Let δ be the least maximum of the pairs in X, i.e., let δ be least element in $\{\max \{\alpha, \beta\}:(\alpha, \beta) \in X\}$. Let $Y=\{(\alpha, \beta) \in X: \max \{\alpha, \beta\}=\delta\}$. The set Y is a nonempty subset of X, and, for every $(\alpha, \beta) \in Y$, we have $\max \{\alpha, \beta\}=\delta$. Moreover, $\delta<\max \left\{\alpha^{\prime}, \beta^{\prime}\right\}$, for any $\left(\alpha^{\prime}, \beta^{\prime}\right) \in X-Y$, and hence $(\alpha, \beta) \prec\left(\alpha^{\prime}, \beta^{\prime}\right)$ whenever $(\alpha, \beta) \in Y$ and $\left(\alpha^{\prime}, \beta^{\prime}\right) \in X-Y$.
Therefore, the least element of Y, if it exists, is also the least element of X. Now let α_{0} be the least ordinal in the set $\{\alpha:(\alpha, \beta) \in Y$ for some $\beta\}$ and let $Z=\left\{(\alpha, \beta) \in Y: \alpha=\alpha_{0}\right\}$. The set Z is a nonempty subset of Y. Also $(\alpha, \beta) \prec\left(\alpha^{\prime}, \beta^{\prime}\right)$ whenever $(\alpha, \beta) \in Z$ and $\left(\alpha^{\prime}, \beta^{\prime}\right) \in Y-Z$.
Finally, let β_{0} be the least ordinal in the set $\left\{\beta:\left(\alpha_{0}, \beta\right) \in Z\right\}$. Clearly, $\left(\alpha_{0}, \beta_{0}\right)$ is the least element of Z. It follows that $\left(\alpha_{0}, \beta_{0}\right)$ is the least element of X.

Finishing the Proof

- Having shown that \prec is a well-ordering of $\omega_{\alpha} \times \omega_{\alpha}$ for every α, we use this well-ordering to prove, by transfinite induction on α, that $\left|\omega_{\alpha} \times \omega_{\alpha}\right| \leq \aleph_{\alpha}$, i.e., $\aleph_{\alpha} \cdot \aleph_{\alpha} \leq \aleph_{\alpha}$.
- For $\alpha=0$, we know that $\aleph_{0} \cdot \aleph_{0}=\aleph_{0}$.
- So let $\alpha>0$, and let us assume that $\aleph_{\beta} \cdot \aleph_{\beta} \leq \aleph_{\beta}$, for all $\beta<\alpha$. We prove that $\left|\omega_{\alpha} \times \omega_{\alpha}\right| \leq \aleph_{\alpha}$. If suffices to show that the order-type of the well-ordered set $\left(\omega_{\alpha} \times \omega_{\alpha}, \prec\right)$ is at most ω_{α}.
If the order-type of $\left(\omega_{\alpha} \times \omega_{\alpha}, \prec\right)$ were greater than ω_{α}, then there would exist $\left(\alpha_{1}, \alpha_{2}\right) \in \omega_{\alpha} \times \omega_{\alpha}$, such that the cardinality of the set $X=\left\{\left(\xi_{1}, \xi_{2}\right) \in \omega_{\alpha} \times \omega_{\alpha}:\left(\xi_{1}, \xi_{2}\right) \prec\left(\alpha_{1}, \alpha_{2}\right)\right\}$ is at least \aleph_{α}. Thus, it suffices to prove that, for any $\left(\alpha_{1}, \alpha_{2}\right) \in \omega_{\alpha} \times \omega_{\alpha}$, we have $|X|<\aleph_{\alpha}$. Let $\beta=\max \left\{\alpha_{1}, \alpha_{2}\right\}+1$. Then $\beta \in \omega_{\alpha}$ and, for every $\left(\xi_{1}, \xi_{2}\right) \in X$, we have $\max \left\{\xi_{1}, \xi_{2}\right\} \leq \max \left\{\alpha_{1}, \alpha_{2}\right\}<\beta$, so $\xi_{1} \in \beta$ and $\xi_{2} \in \beta$, i.e., $X \subseteq \beta \times \beta$.
Let $\gamma<\alpha$ be such that $|\beta| \leq \aleph_{\gamma}$. Then $|X| \leq|\beta \times \beta|=|\beta| \cdot|\beta| \leq$ $\aleph_{\gamma} \cdot \aleph_{\gamma}$ and $\aleph_{\gamma} \cdot \aleph_{\gamma} \leq \aleph_{\gamma}$, by the induction hypothesis. Thus, $|X| \leq \aleph_{\gamma}$, and, hence, $|X|<\aleph_{\alpha}$.

Rules of Cardinal Arithmetic

Corollary

For every α and β such that $\alpha \leq \beta$, we have $\aleph_{\alpha} \cdot \aleph_{\beta}=\aleph_{\beta}$. Also, $n \cdot \aleph_{\alpha}=\aleph_{\alpha}$, for every positive natural number n.

- If $\alpha \leq \beta$, then
- $\aleph_{\beta}=1 \cdot \aleph_{\beta} \leq \aleph_{\alpha} \cdot \aleph_{\beta}$
- $\aleph_{\alpha} \cdot \aleph_{\beta} \leq \aleph_{\beta} \cdot \aleph_{\beta}=\aleph_{\beta}$, by the theorem.

Thus by the Cantor-Bernstein Theorem $\aleph_{\alpha} \cdot \aleph_{\beta}=\aleph_{\beta}$. The equality $n \cdot \aleph_{\alpha}=\aleph_{\alpha}$ is proved similarly.

Corollary

For every α and β such that $\alpha \leq \beta$, we have $\aleph_{\alpha}+\aleph_{\beta}=\aleph_{\beta}$. Also, $n+\aleph_{\alpha}=\aleph_{\alpha}$, for all natural numbers n.

- If $\alpha \leq \beta$, then $\aleph_{\beta} \leq \aleph_{\alpha}+\aleph_{\beta} \leq \aleph_{\beta}+\aleph_{\beta}=2 \cdot \aleph_{\beta}=\aleph_{\beta}$ and the assertion follows. The second part is proved similarly.

