Introduction to Set Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

- Initial Ordinals
- Addition and Multiplication of Alephs

Subsection 1

Initial Ordinals

Finite Ordinals and Cardinals

- We proved results involving the cardinality |X| of a set X, but we have not defined |X| itself, except in the case when X is finite or countable.
- We now find "representatives" of cardinalities.
- Natural numbers play this role satisfactorily for finite sets.
- We showed that ordinal numbers have many properties of natural numbers, e.g, inductive proofs and recursive constructions.
- However, ordinal numbers do not represent cardinalities; instead, they represent types of well-orderings.
- Since any infinite set can be well-ordered in many different ways, there are many ordinal numbers of the same cardinality;
- E.g., $\omega, \omega + 1, \omega + 2, \dots, \omega + \omega, \dots, \omega \cdot \omega, \omega \cdot \omega + 1, \dots$ are all countable ordinal numbers; i.e., $|\omega| = |\omega + 1| = |\omega + \omega| = \dots = \aleph_0$.
- The good behavior of ordinal numbers of finite cardinalities is due to the fact that all linear orderings of a finite set are isomorphic, and they are well-orderings. Thus, for any finite X, there exists unique ordinal n such that |n| = |X|, called the cardinal number of X.

Initial Ordinals

• To get representatives for cardinalities of infinite (well-orderable) sets, we take the least ordinal number of any given cardinality as the representative of that cardinality:

Definition (Initial Ordinal)

An ordinal number α is called an **initial ordinal** if it is not equipotent to any $\beta < \alpha$.

- Example:
 - Every natural number is an initial ordinal.
 - ω is an initial ordinal, because ω is not equipotent to any natural number.
 - $\omega + 1$ is not initial, because $|\omega| = |\omega + 1|$.
 - Similarly, none of $\omega + 2, \omega + 3, \omega + \omega, \omega \cdot \omega, \omega^{\omega}, \ldots$ is initial.

Cardinal Numbers

Theorem

Each well-orderable set X is equipotent to a unique initial ordinal number.

By a preceding theorem, X is equipotent to some ordinal α. Let α₀ be the least ordinal equipotent to X. Then α₀ is an initial ordinal because |α₀| = |β|, for some β < α₀, would imply |X| = |β|, a contradiction.
If α₀ ≠ α₁ are initial ordinals, they cannot be equipotent, because |α₀| = |α₁| and, say, α₀ < α₁, would violate the fact that α₁ is initial. This proves the uniqueness.

Definition (Cardinal Number)

If X is a well-orderable set, then the cardinal number of X, denoted |X|, is the unique initial ordinal equipotent to X. In particular, $|X| = \omega$ for any countable set X, and |X| = n for any finite set of n elements.

Hartogs Number of a Set

- Are there other initial ordinals besides the natural numbers and ω ?
- Let A be any set; A may not be well-orderable itself, but it certainly has some well-orderable subsets; for example, all finite subsets of A are well-orderable.

Definition (Hartogs Number)

For any A, let h(A) be the least ordinal number which is not equipotent to any subset of A. h(A) is called the **Hartogs number** of A.

• By definition, h(A) is the least ordinal α such that $|\alpha| \leq |A|$.

Lemma

For any A, h(A) is an initial ordinal number.

• Assume that $|\beta| = |h(A)|$ for some $\beta < h(A)$. Then β is equipotent to a subset of A, and β is equipotent to h(A). We conclude that h(A) is equipotent to a subset of A, i.e., h(A) < h(A), a contradiction.

Existence of Hartogs Numbers

How do we know that the Hartogs number of A exists?
 If all infinite ordinals were countable, h(ω) would consist of all ordinals!

Lemma

The Hartogs number of A exists for all A.

• By a preceding theorem, for every well-ordered set (W, R) where $W \subseteq A$, there is a unique ordinal α , such that $(\alpha, <)$ is isomorphic to (W, R). By Replacement, there exists a set H such that, for every well-ordering $R \in \mathcal{P}(A \times A)$, its isomorphic ordinal α is in H. Claim: H contains all ordinals equipotent to a subset of A. If f is a one-to-one function mapping α into A, we set $W = \operatorname{ran} f$ and $R = \{(f(\beta), f(\gamma)) : \beta < \gamma < \alpha\}$. $R \subseteq A \times A$ is then a well-ordering isomorphic to α (by the isomorphism f). These considerations show that $h(A) = \{ \alpha \in H : \alpha \text{ is an ordinal equipotent to a subset of } A \}$. Thus, by Axiom Schema of Comprehension, h(A) exists.

The Hierarchy of Omegas

• We can now define a "scale" of larger and larger initial ordinal numbers by transfinite recursion:

Definition (Omegas)

$$\begin{array}{rcl} \omega_0 & = & \omega; \\ \omega_{\alpha+1} & = & h(\omega_{\alpha}), \text{ for all } \alpha; \\ \omega_{\alpha} & = & \sup \{\omega_{\beta} : \beta < \alpha\}, \text{ if } \alpha \text{ is limit } \alpha \neq 0. \end{array}$$

• We know that $|\omega_{\alpha+1}| > |\omega_{\alpha}|$, for each α , and so $|\omega_{\alpha}| < |\omega_{\beta}|$ whenever $\alpha < \beta$.

Theorem

(a) ω_{α} is an infinite initial ordinal number for each α .

(b) If Ω is an infinite initial ordinal number, then $\Omega = \omega_{\alpha}$ for some α .

Proof of the Theorem

- (a) The proof is by induction on α. The only nontrivial case is when α is a limit ordinal. Suppose that |ω_α| = |γ| for some γ < ω_α; then there is β < α such that γ ≤ ω_β (by the definition of supremum). But this implies |ω_α| = |γ| ≤ |ω_β| ≤ |ω_α| and yields a contradiction.
 (b) First, an easy induction shows that α ≤ ω_α for all α. Therefore, for every infinite initial ordinal Ω, there is an ordinal α such that Ω < ω_α, (for example, α = Ω + 1). Thus, it suffices to prove the following: Claim: For every infinite initial ordinal Ω < ω_α, there is some γ < α such that Ω = ω_γ. By induction on α.
 - The claim is trivially true for $\alpha = 0$.
 - If $\alpha = \beta + 1$, $\Omega < \omega_{\alpha} = h(\omega_{\beta})$ implies that $|\Omega| \le |\omega_{\beta}|$ so either $\Omega = \omega_{\beta}$ and we can let $\gamma = \beta$, or $\Omega < \omega_{\beta}$ and existence of $\gamma < \beta < \alpha$ follows from the inductive assumption.
 - If α is a limit ordinal, $\Omega < \omega_{\alpha} = \sup \{\omega_{\beta} : \beta < \alpha\}$ implies that $\Omega < \omega_{\beta}$ for some $\beta < \alpha$. The inductive assumption again guarantees the existence of some $\gamma < \beta$, such that $\Omega = \omega_{\gamma}$.

Conclusions

- Every well-orderable set is equipotent to a unique initial ordinal.
- Infinite initial ordinal numbers form a transfinite sequence ω_{α} with α ranging over all ordinal numbers.
- Infinite initial ordinals are, by definition, the cardinalities of infinite well-orderable sets. It is customary to call these cardinal numbers **alephs**, i.e., we define

 $\aleph_{\alpha} = \omega_{\alpha}$, for each α .

- The cardinal number of a well-orderable set is thus either a natural number or an aleph.
- Note that the ordering of cardinal numbers by size defined previously agrees with the ordering of natural numbers and alephs as ordinals by < (i.e., ∈):

If $|X| = \aleph_{\alpha}$ and $|Y| = \aleph_{\beta}$, then |X| < |Y| if and only if $\aleph_{\alpha} < \aleph_{\beta}$ (i.e., $\omega_{\alpha} \in \omega_{\beta}$).

• A similar equivalence holds if one or both of |X| and |Y| are natural numbers.

Cardinal and Ordinal Operations

- We have defined addition, multiplication, and exponentiation of cardinal numbers.
- These agree with the corresponding ordinal operations if the ordinals involved are natural numbers but they may differ for infinite ordinals.
- Example:
 - $\omega_0 + \omega_0 \neq \omega_0$ if + stands for the ordinal addition; but $\omega_0 + \omega_0 = \omega_0$ if + stands for the cardinal addition.
 - The addition of cardinal numbers is commutative, but the addition of ordinal numbers is not.
- For clarity, the ω-symbolism is used when the ordinal operations are involved, and the ℵ-symbolism for the cardinal operations.
- Thus:
 - $\omega_0 + \omega_0$ and 2^{ω_0} indicate ordinal addition and exponentiation:

•
$$\omega_0 + \omega_0 = \sup \{ \omega + n : n < \omega_0 \} > \omega_0;$$

•
$$2^{\omega_0} = \sup \{2^n : n < \omega_0\} = \omega_0.$$

• $\aleph_0 + \aleph_0$ and 2^{\aleph_0} cardinal operations:

•
$$\aleph_0 + \aleph_0 = \aleph_0;$$

• 2^{\aleph_0} is uncountable.

Subsection 2

Addition and Multiplication of Alephs

Revisiting Cardinal Addition and Multiplication

Let κ and λ be cardinal numbers. We have defined κ + λ as the cardinality of the set X ∪ Y, where |X| = κ, |Y| = λ, and X and Y are disjoint:

 $|X| + |Y| = |X \cup Y|$, if $X \cap Y = \emptyset$.

This definition does not depend on the choice of X and Y.

The product κ · λ has been defined as the cardinality of the cartesian product X × Y, where X and Y are any two sets of respective cardinalities κ and λ:

 $|X| \cdot |Y| = |X \times Y|.$

This definition is also independent of the choice of X and Y.Addition and multiplication satisfy:

$$\kappa + \lambda = \lambda + \kappa \qquad \kappa \cdot \lambda = \lambda \cdot \kappa$$

$$\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu \qquad \kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$$

$$\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$$

Some Examples of Operations involving Alephs

- The arithmetic of infinite numbers differs substantially from the arithmetic of finite numbers.
- In fact, the rules for addition and multiplication of alephs are very simple.
- Example:
 - $\aleph_0 + n = \aleph_0$, for every natural number *n*.
 - ℵ₀ + ℵ₀ = ℵ₀, since the set of all natural numbers is the union of two disjoint countable sets: the set of even numbers and the set of odd numbers.
 - $\aleph_0 \cdot \aleph_0 = \aleph_0$ (The set of all pairs of natural numbers is countable.)
- We prove, next, a general theorem that determines completely the result of addition and multiplication of alephs.

$$\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$$

Theorem

$\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$, for every α .

We prove the theorem by transfinite induction. For every α, we construct a certain well-ordering ≺ of the set ω_α × ω_α and show, using the induction hypothesis ℵ_β · ℵ_β ≤ ℵ_β that the order-type of the well-ordered set (ω_α × ω_α, ≺) is at most ω_α. Then, it follows that ℵ_α · ℵ_α ≤ ℵ_α and since ℵ_α · ℵ_α ≥ ℵ_α, we have ℵ_α · ℵ_α = ℵ_α. We construct the well-ordering ≺ of ω_α × ω_α uniformly for all ω_α, i.e., we define a property ≺ of pairs of ordinals and show that ≺ well-orders ω_α × ω_α, for every ω_α.

$$\begin{split} &(\alpha_1,\alpha_2)\prec(\beta_1,\beta_2) \text{ if and only if either } \max\left\{\alpha_1,\alpha_2\right\}<\max\left\{\beta_1,\beta_2\right\} \\ &\text{ or } \max\left\{\alpha_1,\alpha_2\right\}=\max\left\{\beta_1,\beta_2\right\} \text{ and } \alpha_1<\beta_1 \\ &\text{ or } \max\left\{\alpha_1,\alpha_2\right\}=\max\left\{\beta_1,\beta_2\right\}, \, \alpha_1=\beta_1 \text{ and } \alpha_2<\beta_2. \end{split}$$

We show that \prec is a well-ordering (of any set of pairs of ordinals).

\prec is an Ordering

- \prec is transitive: Let $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2$ be such that $(\alpha_1, \alpha_2) \prec (\beta_1, \beta_2)$ and $(\beta_1, \beta_2) \prec (\gamma_1, \gamma_2)$. By definition $\max \{\alpha_1, \alpha_2\} \leq \max \{\beta_1, \beta_2\} \leq \max \{\gamma_1, \gamma_2\}$, whence $\max \{\alpha_1, \alpha_2\} \leq \max \{\gamma_1, \gamma_2\}$.
 - If $\max \{\alpha_1, \alpha_2\} < \max \{\gamma_1, \gamma_2\}$, then $(\alpha_1, \alpha_2) \prec (\gamma_1, \gamma_2)$.
 - If $\max \{\alpha_1, \alpha_2\} = \max \{\beta_1, \beta_2\} = \max \{\gamma_1, \gamma_2\}$, then we have $\alpha_1 \leq \beta_1 \leq \gamma_1$, and so $\alpha_1 \leq \gamma_1$.
 - If $\alpha_1 < \gamma_1$, then $(\alpha_1, \alpha_2) \prec (\gamma_1, \gamma_2)$;
 - Otherwise, we have $\alpha_1 = \beta_1 = \gamma_1$. In this last case, $\max \{\alpha_1, \alpha_2\} = \max \{\beta_1, \beta_2\} = \max \{\gamma_1, \gamma_2\}$, and $\alpha_1 = \beta_1 = \gamma_1$, so, necessarily, $\alpha_2 < \beta_2 < \gamma_2$, and it follows again that $(\alpha_1, \alpha_2) \prec (\gamma_1, \gamma_2)$.

\prec is Linear

• We verify that for any $\alpha_1, \alpha_2, \beta_1, \beta_2$, either

 $(\alpha_1, \alpha_2) \prec (\beta_1, \beta_2) \text{ or } (\beta_1, \beta_2) \prec (\alpha_1, \alpha_2) \text{ or } (\alpha_1, \alpha_2) = (\beta_1, \beta_2)$

and that these three cases are mutually exclusive. This follows directly from the definition:

Given (α_1, α_2) and (β_1, β_2)

- we first compare max $\{\alpha_1, \alpha_2\}$ and max $\{\beta_1, \beta_2\}$,
- then α_1 and β_1
- and last the ordinals α_2 and β_2 .

\prec is a Well-Ordering

 $\bullet \prec$ is a well-ordering: Let X be a nonempty set of pairs of ordinals. We find the \prec -least element of X. Let δ be the least maximum of the pairs in X, i.e., let δ be least element in $\{\max \{\alpha, \beta\} : (\alpha, \beta) \in X\}$. Let $Y = \{(\alpha, \beta) \in X : \max \{\alpha, \beta\} = \delta\}$. The set Y is a nonempty subset of X, and, for every $(\alpha, \beta) \in Y$, we have max $\{\alpha, \beta\} = \delta$. Moreover, $\delta < \max \{ \alpha', \beta' \}$, for any $(\alpha', \beta') \in X - Y$, and hence $(\alpha,\beta) \prec (\alpha',\beta')$ whenever $(\alpha,\beta) \in Y$ and $(\alpha',\beta') \in X - Y$. Therefore, the least element of Y, if it exists, is also the least element of X. Now let α_0 be the least ordinal in the set $\{\alpha : (\alpha, \beta) \in Y \text{ for some } \beta\}$ and let $Z = \{(\alpha, \beta) \in Y : \alpha = \alpha_0\}$. The set Z is a nonempty subset of Y. Also $(\alpha, \beta) \prec (\alpha', \beta')$ whenever $(\alpha, \beta) \in Z$ and $(\alpha', \beta') \in Y - Z$.

Finally, let β_0 be the least ordinal in the set $\{\beta : (\alpha_0, \beta) \in Z\}$. Clearly, (α_0, β_0) is the least element of Z. It follows that (α_0, β_0) is the least element of X.

Finishing the Proof

- Having shown that ≺ is a well-ordering of ω_α × ω_α for every α, we use this well-ordering to prove, by transfinite induction on α, that |ω_α × ω_α| ≤ ℵ_α, i.e., ℵ_α · ℵ_α ≤ ℵ_α.
 - For $\alpha = 0$, we know that $\aleph_0 \cdot \aleph_0 = \aleph_0$.
 - So let α > 0, and let us assume that ℵ_β · ℵ_β ≤ ℵ_β, for all β < α. We prove that |ω_α × ω_α| ≤ ℵ_α. If suffices to show that the order-type of the well-ordered set (ω_α × ω_α, ≺) is at most ω_α.

If the order-type of $(\omega_{\alpha} \times \omega_{\alpha}, \prec)$ were greater than ω_{α} , then there would exist $(\alpha_1, \alpha_2) \in \omega_{\alpha} \times \omega_{\alpha}$, such that the cardinality of the set $X = \{(\xi_1, \xi_2) \in \omega_{\alpha} \times \omega_{\alpha} : (\xi_1, \xi_2) \prec (\alpha_1, \alpha_2)\}$ is at least \aleph_{α} . Thus, it suffices to prove that, for any $(\alpha_1, \alpha_2) \in \omega_{\alpha} \times \omega_{\alpha}$, we have $|X| < \aleph_{\alpha}$. Let $\beta = \max{\{\alpha_1, \alpha_2\}} + 1$. Then $\beta \in \omega_{\alpha}$ and, for every $(\xi_1, \xi_2) \in X$, we have $\max{\{\xi_1, \xi_2\}} \le \max{\{\alpha_1, \alpha_2\}} < \beta$, so $\xi_1 \in \beta$ and $\xi_2 \in \beta$, i.e., $X \subseteq \beta \times \beta$.

Let $\gamma < \alpha$ be such that $|\beta| \leq \aleph_{\gamma}$. Then $|X| \leq |\beta \times \beta| = |\beta| \cdot |\beta| \leq \aleph_{\gamma} \cdot \aleph_{\gamma}$ and $\aleph_{\gamma} \cdot \aleph_{\gamma} \leq \aleph_{\gamma}$, by the induction hypothesis. Thus, $|X| \leq \aleph_{\gamma}$, and, hence, $|X| < \aleph_{\alpha}$.

Rules of Cardinal Arithmetic

Corollary

For every α and β such that $\alpha \leq \beta$, we have $\aleph_{\alpha} \cdot \aleph_{\beta} = \aleph_{\beta}$. Also, $n \cdot \aleph_{\alpha} = \aleph_{\alpha}$, for every positive natural number n.

If α ≤ β, then
ℵ_β = 1 ⋅ ℵ_β ≤ ℵ_α ⋅ ℵ_β
ℵ_α ⋅ ℵ_β ≤ ℵ_β ⋅ ℵ_β = ℵ_β, by the theorem.
Thus by the Cantor-Bernstein Theorem ℵ_α ⋅ ℵ_β = ℵ_β. The equality n ⋅ ℵ_α = ℵ_α is proved similarly.

Corollary

For every α and β such that $\alpha \leq \beta$, we have $\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\beta}$. Also, $n + \aleph_{\alpha} = \aleph_{\alpha}$, for all natural numbers n.

• If $\alpha \leq \beta$, then $\aleph_{\beta} \leq \aleph_{\alpha} + \aleph_{\beta} \leq \aleph_{\beta} + \aleph_{\beta} = 2 \cdot \aleph_{\beta} = \aleph_{\beta}$ and the assertion follows. The second part is proved similarly.