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Well-Ordering a Set

We investigate which sets can be well-ordered.
Cantor thought it obvious that every set can be well-ordered.

A fairly intuitive “proof” of this “fact”:
In order to well-order a set A, it suffices to construct a one-to-one
mapping of some ordinal λ onto A. We proceed by transfinite
recursion. Let a be any set not in A. Define

f (0) =

{
some element of A, if A 6= ∅
a, otherwise

f (1) =

{
some element of A− {f (0)}, if A− {f (0)} 6= ∅
a, otherwise

Generally,

f (α) =

{
some element of A− ran(f ↾ α), if A− ran(f ↾ α) 6= ∅
a, otherwise

Intuitively, f lists the elements of A, one by one, as long as they are
available. When A is exhausted, f has value a.
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Finishing the “Proof”

First notice that A does get exhausted at some stage λ < h(A), the
Hartogs number of A.

Indeed, for α < β, if f (β) 6= a, then f (β) ∈ A− ran(f ↾ β),
f (α) ∈ ran(f ↾ β), and thus f (α) 6= f (β). If f (α) 6= a were to hold
for all α < h(A), f would be a one-to-one mapping of h(A) into A,
contradicting the definition of h(A) as the least ordinal which cannot
be mapped into A by a one-to-one function.

Let λ be the least α < h(A), such that f (α) = a. The previous
considerations show that f ↾ λ is one-to-one. The “proof” is complete
if we show that ran(f ↾ λ) = A.

Clearly ran(f ↾ λ) ⊆ A: if ran(f ↾ λ) ⊂ A, A− ran(f ↾ λ) 6= ∅ and
f (λ) 6= a, contradicting our definition of λ.
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Issues with the “Proof”

If one tries to justify this transfinite recursion by the Recursion
Theorem, one discovers a need for a function G such that f can be
defined by f (α) = G(f ↾ α). Such a function G should satisfy:

G(f ↾ α) ∈ A− ran(f ↾ α), if A− ran(f ↾ α) 6= ∅,
G(f ↾ α) = a, otherwise.

If A were well-orderable, some such G could easily be defined:

G(x) =







the ≺-least element of A− ranx ,
if x is a function and A− ranx 6= ∅

a, otherwise
,

where ≺ is some well-ordering of A.
In the absence of well-orderings on A, no property which could be
used to define such a function G is obvious.

George Voutsadakis (LSSU) Set Theory June 2014 6 / 41



The Axiom of Choice The Axiom of Choice and its Equivalents

Choice Functions and Zermelo’s Theorem

Let S be a system of sets. A function g defined on S is called a
choice function for S if g(X ) ∈ X , for all nonempty X ∈ S .
If we now assume that there is a choice function g for P(A), we are
able to fill the gap in the previous proof by defining

G(x) =

{
g(A− ranx), if x is a function and A− ranx 6= ∅
a, otherwise

We proved the difficult half of Zermelo’s theorem:

Theorem

A set A can be well-ordered if and only if the set P(A) of all subsets of A
has a choice function.

⇒: If ≺ well-orders A, we define a choice function g for P(A):

g(x) =

{
the least element of x in ≺, if x 6= ∅
∅, if x = ∅
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Finite Systems of Sets have Choice Functions

The problem of well-ordering the set A is now reduced to an
equivalent question, that of finding a choice function for P(A).

Theorem

Every finite system of sets has a choice function.

Proceed by induction. Let us assume that every system with n
elements has a choice function. Let |S | = n + 1. Fix X ∈ S . The set
S − {X} has n elements, and, consequently, a choice function gX .

If X = ∅, g = gX ∪ {(X , ∅)} is a choice function for S .
If X 6= ∅, g x = gX ∪ {(X , x)} is choice function for S (for any x ∈ X ).

This proof cannot be generalized to show that every countable system
of sets has a choice function.

It is easy to find a choice function for P(N) or P(Q), but no such
function for P(R) is evident.
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The Axiom of Choice

Choice functions for infinite systems of sets of real numbers have
been used by analysts at least since the end of the nineteenth century.

The Axiom of Choice (Zermelo 1904)

There exists a choice function for every system of sets.

In 1963, Paul Cohen showed that the Axiom of Choice cannot be
proved from the axioms of Zermelo-Fraenkel set theory.

The Axiom of Choice asserts that certain sets, the choice functions,
exist without describing those sets as collections of objects having a
particular property.

Because of this, and because of some of its counterintuitive
consequences, some mathematicians raised objections to its use.

We look at equivalent formulations and some consequences.

To keep track of the use of the Axiom of Choice, we denote the
theorems whose proofs depend on it by an asterisk.
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Equivalent Formulations

Theorem

The following statements are equivalent:

(a) (The Axiom of Choice) There exists a choice function for every
system of sets.

(b) Every partition has a set of representatives.

(c) If 〈Xi : i ∈ I 〉 is an indexed system of nonempty sets, then there is a
function f such that f (i) ∈ Xi , for all i ∈ I .

Recall that a partition of a set A is a system of mutually disjoint
nonempty sets whose union equals A. We call X ⊆ A a set of

representatives for a partition S of A if, for every C ∈ S , X ∩ C has
a unique element.

The statement (c) can be equivalently formulated as:

(d) If Xi 6= ∅, for all i ∈ I , then
∏

i∈I Xi 6= ∅.
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Proof of the Theorem

(a) implies (b): Let f be a choice function for the partition S . Then
X = ranf is a set of representatives for S : Notice that for any C ∈ S ,
f (C ) ∈ X ∩ C , but f (D) 6∈ X ∩ C for D 6= C (because f (D) ∈ D and
D ∩ C = ∅). So X ∩ C = {f (C )}, for any C ∈ S .

(b) implies (c): Let Ci = {i} × Xi . Since i 6= i ′ implies Ci ∩ Ci ′ = ∅,
S = {Ci : i ∈ I} is a partition. If f is a set of representatives for S , f
is a set of ordered pairs, and for each i ∈ I , there is a unique x such
that (i , x) ∈ f ∩ Ci . But this means that f is a function on I and
f (i) ∈ Xi , for all i ∈ I .

(c) implies (a): Let S be a system of sets. Set I = S − {∅}, XC = C ,
for all C ∈ I . Then {XC : C ∈ I} is an indexed system of nonempty
sets.

If ∅ 6∈ S , and f ∈
∏

C∈I XC , f is a choice function for S .
If ∅ ∈ S , then f ∪ {(∅, ∅)} is a choice function for S .
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Two Consequences of the Axiom of Choice

Other equivalents to the Axiom of Choice are the Well-Ordering
Theorem and Zorn’s Lemma, which we prove later.

First, some consequences of the Axiom of Choice:

Theorem∗

Every infinite set has a countable subset.

Let A be an infinite set. A can be well-ordered, i.e., arranged in a
transfinite one-to-one sequence 〈aα : α < Ω〉, whose length Ω is an
infinite ordinal. The range C = {aα : α < ω} of the initial segment
〈aα : α < ω〉 of this sequence is a countable subset of A.

Theorem∗

For every infinite set S there exists a unique aleph ℵα such that |S | = ℵα.

As S can be well-ordered, it is equipotent to some infinite ordinal.
Hence, also to a unique initial ordinal number ωα.

George Voutsadakis (LSSU) Set Theory June 2014 12 / 41



The Axiom of Choice The Axiom of Choice and its Equivalents

Rigorous Justification of Cardinal Numbers

In set theory with the Axiom of Choice, we can define, for any set X ,
its cardinal number |X | as the initial ordinal equipotent to X .

Sets X and Y are equipotent if and only if |X | is the same ordinal as
|Y | (i.e., |X | = |Y |).

Also, the ordering < of cardinal numbers by size agrees with the
ordering of ordinals by ∈ : |X | < |Y | if and only if |X | ∈ |Y |.

These considerations rigorously justify: There are sets called cardinals

with the property that, for every set X , there is a unique cardinal |X |,
and sets X and Y are equipotent if and only if |X | is equal to |Y |.

Theorem∗

For any sets A and B either |A| ≤ |B | or |B | ≤ |A|.

∈ is a linear ordering (a well-ordering) on any set of ordinal numbers.

George Voutsadakis (LSSU) Set Theory June 2014 13 / 41



The Axiom of Choice The Axiom of Choice and its Equivalents

Countable Collections of Countable Sets

Theorem∗

The union of a countable collection of countable sets is countable.

Let S be a countable set whose every element is countable, and let
A =

⋃
S . We show that A is countable. As S is countable, there is a

one-to-one sequence 〈An : n ∈ N〉, such that S = {An : n ∈ N}. For
each n ∈ N, the set An is countable. Thus, there exists a sequence
whose range is An. By the Axiom of Choice, we can choose one such
sequence for each n: For each n, let Sn be the set of all sequences
whose range is An. Let F be a choice function on {Sn : n ∈ N}, and
let sn = F (Sn) for each n.
Having chosen one sn = 〈an(k) : k ∈ N〉 for each n, we obtain a
mapping f of N×N onto A by letting f (n, k) = an(k). Since N×N

is countable and A is its image under f , A is also countable.
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2ℵ0 and ω1

Corollary∗

The set of all real numbers is not the union of countably many countable
sets.

The set R is uncountable.

Corollary∗

The ordinal ω1 is not the supremum of a countable set of countable
ordinals.

If {αn : n ∈ N} is a set of countable ordinals, then its supremum
α = sup {αn : n ∈ N} =

⋃

n∈N αn is a countable set, α < ω1.

Theorem∗

2ℵ0 ≥ ℵ1

This follows from the theorem and the fact that 2ℵ0 > ℵ0.

As a result, the Continuum Hypothesis can be reformulated as the
conjecture that 2ℵ0 = ℵ1, the least uncountable cardinal number.
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Cardinality of Image and Union

Theorem∗

If f is a function and A is a set, then |f [A]| ≤ |A|.

For each b ∈ f [A], let Xb = f −1({b}). Note that Xb 6= ∅ and
Xb1 ∩ Xb2 = ∅ if b1 6= b2. Take g ∈

∏

b∈f [A] Xb. Then g : f [A] → A

and b1 6= b2 implies g(b1) ∈ Xb1 , g(b2) ∈ Xb2 . So g(b1) 6= g(b2),
i.e., g is one-to-one mapping of f [A] into A, and, thus, |f [A]| ≤ |A|.

Theorem∗

If |S | ≤ ℵα, and, for all A ∈ S , |A| ≤ ℵα, then |
⋃

S | ≤ ℵα.

We assume that S 6= ∅ and all A ∈ S are nonempty. Write
S = {Aν : ν < ℵα}. For each ν < ℵα, choose a transfinite sequence
aν = 〈aν(κ) : κ < ℵα〉, such that Aν = {aν(κ) : κ < ℵα}. We define
a mapping f on ℵα × ℵα onto

⋃
S by f (ν, κ) = aν(κ). By the

preceding theorem, |
⋃

S | = |ℵα × ℵα| = ℵα.
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The Well-Ordering Principle and Zorn’s Lemma

Theorem

The following statements are equivalent:

(a) (The Axiom of Choice) There exists a choice function for every
system of sets.

(b) (The Well-Ordering Principle) Every set can be well-ordered.

(c) (Zorn’s Lemma) If every chain in a partially ordered set has an upper
bound, then the partially ordered set has a maximal element.

Recall that a chain is a linearly ordered subset of an ordered set.
(a) equivalent to (b): Follows immediately from a preceding theorem.
(a) implies (c): Let (A,4) be a partially ordered set in which every
chain has an upper bound. Our strategy is to search for a maximal
element of (A,4) by constructing a 4-increasing transfinite sequence
of elements of A. We fix some b ∈ A and a choice function g for
P(A), and define 〈aα : α < h(A)〉 by transfinite recursion.
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Proof of (a) implies (c)

(a) implies (c) (Cont’d): Given 〈aξ : ξ < α〉, we consider two cases:

If b 6= aξ for all ξ < α and Aα = {a ∈ A : aξ ≺ a holds for all ξ < α},
we let aα = g(Aα);
Otherwise we let aα = b.

The definition is justified by recursion. We note that aα = b for some
α < h(A): Otherwise, 〈aξ : ξ < h(A)〉 would be a one-to-one mapping
of h(A) into A. Let λ be the least α for which aα = b. Then the set
C = {aξ : ξ < λ} is a chain in (A,4) and so it has an upper bound
c ∈ A. If c ≺ a for some a ∈ A, we have a ∈ Aλ 6= ∅ and
aλ = g(Aλ) 6= b, a contradiction. So c is a maximal element of A. (It
is easy to see that, in fact, λ = β + 1 and c = aβ.)
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Proof of (c) implies (a)

(c) implies (a): It suffices to show that every system of nonempty sets
S has some choice function. Let F be the system of all functions f
for which domf ⊆ S and f (X ) ∈ X holds for any X ∈ domf .

The set F is ordered by inclusion ⊆.
If F0 is a linearly ordered subset of (F ,⊆) (i.e., either f ⊆ g or g ⊆ f

holds for any f , g ∈ F0), f0 =
⋃
F0 is a function.

We can check that f0 ∈ F and f0 is an upper bound on F0 in (F ,⊆).

The assumptions of Zorn’s Lemma being satisfied, we conclude that
(F ,⊆) has a maximal element f .

Claim: domf = S .
If not, select some X ∈ S − domf and x ∈ X . But, then, the function
f = f ∪ {(X , x)} ∈ F . Moreover, f ⊃ f , contradicting the maximality
of f .
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Subsection 2

The Use of the Axiom of Choice in Mathematics
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Example I: Closure Points

A sequence of real numbers 〈xn : n ∈ N〉 converges to a ∈ R if, for
every real number ε > 0, there exists nε ∈ N, such that |xn − a| < ε

holds for all natural numbers n ≥ nε (note, |x | denotes the absolute
value of x ; not the cardinality of x).

Let A be a set of real numbers. Closure points of A can be defined in
either (or both) of the following ways:
(a) a ∈ R is a closure point of A if and only if there exists a sequence

〈xn : n ∈ N〉 with values in A, which converges to a.
(b) a ∈ R is a closure point of A if and only if, for every positive real

number ε, there exists x ∈ A, such that |x − a| < ε.

It is then necessary to prove that (a) and (b) are equivalent:
(a) implies (b): Given ε > 0, there is nε ∈ N, such that |xn − a| < ε for
all n ≥ nǫ. In particular, |xnε − a| < ε and xnε ∈ A.
(b) implies (a): Let Xn = {x ∈ A : |x − a| < 1

n
}. By (b), Xn 6= ∅, for all

n ∈ N. Let 〈xn : n ∈ N〉 be a sequence such that xn ∈ Xn, for all
n ∈ N. Then each xn ∈ A and 〈xn : n ∈ N〉 converges to a.
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Equivalence Requires the Axiom of Choice

What reasons do we have to assume that the sequence 〈xn : n ∈ N〉
exists?

Notice that we do not give any property P(x , y), such that P(n, y)
holds if and only if y = xn, for all n ∈ N.

Such a property can be exhibited in special cases, e.g., if A is open.

However, it has been shown that the equivalence of (a) and (b) for all
A ⊆ R cannot be proved from the axioms of Zermelo-Fraenkel set
theory alone.

Of course, if we do assume the Axiom of Choice, the fact that X 6= ∅,
for all n ∈ N, immediately implies that

∏

n∈N Xn 6= ∅.
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Example II: Continuity of a Function

Continuity of a real-valued function of a real variable is defined in one
of the following ways:

(a) f : R → R is continuous at a ∈ R if and only if, for every ε > 0, there
is δ > 0, such that |f (x)− f (a)| < ε, for all x such that |x − a| < δ.

(b) f : R → R is continuous at a ∈ R if and only if for every sequence
〈xn : n ∈ N〉 converging to a, 〈f (xn) : n ∈ N〉 converges to f (a).

(a) implies (b): If 〈xn : n ∈ N〉 converges to a and if ε > 0 is given,
then, first, we find δ > 0 as in (a), and, because 〈xn : n ∈ N〉
converges, there exists nδ, such that |xn − a| < ε whenever n ≥ nδ.
Clearly, |f (xn)− f (a)| < ε, for all such n.

If we assume the Axiom of Choice, then (b) also implies (a), and,
hence, (a) and (b) are two equivalent definitions of continuity.
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Example II: Continuity of a Function (Cont’d)

Recall the two definitions:

(a) f : R → R is continuous at a ∈ R if and only if, for every ε > 0, there
is δ > 0, such that |f (x)− f (a)| < ε, for all x such that |x − a| < δ.

(b) f : R → R is continuous at a ∈ R if and only if for every sequence
〈xn : n ∈ N〉 converging to a, 〈f (xn) : n ∈ N〉 converges to f (a).

Suppose that (a) fails. Then, there exists ε > 0, such that, for each
δ > 0, there exists an x such that |x − a| < δ but |f (x)− f (a)| ≥ ε.
In particular, for each k = 1, 2, 3, . . ., we can choose some xk , such
that |xk − a| < 1

k
and |f (xk)− f (a)| ≥ ε. The sequence 〈xk : k ∈ N〉

converges to a, but the sequence 〈f (xk) : k ∈ N〉 does not converge
to f (a). So (b) fails as well.

The equivalence of (a) and (b) cannot be proved from the axioms of
Zermelo-Fraenkel set theory alone.

George Voutsadakis (LSSU) Set Theory June 2014 24 / 41



The Axiom of Choice The Use of the Axiom of Choice in Mathematics

Example III: Basis of a Vector Space

We assume familiarity with the notion of a vector space over a field
(e.g., over the field of real numbers).

A set A of vectors is linearly independent if no finite linear
combination a1v1 + · · ·+ anvn of elements v1, . . . , vn of A, with
a1, . . . , an not all zero from the field, is equal to the zero vector.

A basis of a vector space V is a maximal (in the ordering by
inclusion) linearly independent subset of V .

Theorem∗

Every vector space has a basis.

The theorem is a straightforward application of Zorn’s Lemma: If C is
a ⊆-chain of independent subsets of the given vector space, then the
union of C is also an independent set. Consequently, a maximal
independent set, exists.

The theorem cannot be proved in Zermelo-Fraenkel set theory
without using the Axiom of Choice.
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Example IV: Hamel Basis

Consider the set of all real numbers as a vector space over the field of
rational numbers.

By the preceding theorem, this vector space has a basis, called a
Hamel basis for R. In other words, a set X ⊆ R is a Hamel basis for
R if every x ∈ R can be expressed in a unique way as

x = r1x1 + · · ·+ rnxn,

for some mutually distinct x1, . . . , xn ∈ X and some nonzero rational
numbers r1, . . . , rn.

A set of real numbers X is called dependent if there are mutually
distinct x1, . . . , xn ∈ X and r1, . . . , rn ∈ Q not all zero, such that
r1x1 + · · ·+ rnxn = 0.

A set which is not dependent is called independent.
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Example IV: Hamel Basis (Cont’d)

Let A be the system of all independent sets of real numbers. We use
Zorn’s Lemma to show that A has a maximal element in the
⊆-ordering. Finally, we show that any maximal independent set is a
Hamel basis.
Consider A0 ⊆ A linearly ordered by ⊆. Let X0 =

⋃
A0. X0 is an

upper bound of A0 in (A,⊆), since X0 ∈ A, i.e., X0 is independent:

Suppose there were x1, , . . . , xn ∈ X0 and r1, . . . , rn ∈ Q, not all zero,
such that r1x1 + · · ·+ rnxn = 0. Then there would be X1, . . . ,Xn ∈ A0,
such that x1 ∈ X1, . . . , xn ∈ Xn. Since A0 is linearly ordered by ⊆, the
finite subset {X1, . . . ,Xn} of A0 would have a ⊆-greatest element, say
Xi . But then x1, . . . , xn ∈ Xi , so Xi would not be independent.

By Zorn’s Lemma, (A,⊆) has a maximal element X . It remains to be
shown that X is a Hamel basis.
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Example IV: X is a Hamel Basis (Existence)

Suppose that x ∈ R cannot be expressed as r1x1 + · · ·+ rnxn, for any
r1, . . . , rn ∈ Q and x1, . . . , xn ∈ X . Then x 6∈ X (otherwise, x = 1x),
so X ∪ {x} ⊃ X , and X ∪ {x} is dependent (X is a maximal
independent set). Thus, there are x1, . . . , xn ∈ X ∪ {x} and
s1, . . . , sn ∈ Q, not all zero, such that s1x1 + · · ·+ snxn = 0. Since X

is independent, x ∈ {x1, . . . , xn}, say x = xi and the corresponding
coefficient si 6= 0. But then

x = xi = (−
s1

si
)x1 + · · ·+ (−

si−1

si
)xi−1

+ (−
si+1

si
)xi+1 + · · · + (−

sn

si
)xn.

This contradicts the assumption on x .
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Example IV: X is a Hamel Basis (Uniqueness)

Suppose now that some x ∈ R can be expressed in two ways:

x = r1x1 · · · + rnxn = s1y1 + · · ·+ skyk ,

where x1, . . . , xn, y1, . . . , yk ∈ X and r1, . . . , rn, s1, . . . , sk ∈ Q− {0}.
Then r1x1 + · · ·+ rnxn − s1y1 − · · · − skyk = 0.
If {x1, . . . , xn} 6= {y1, . . . , yk} (say, xi 6∈ {y1, . . . , yk}) then the above
expression contradicts the independence of X . Hence, n = k and
x1 = yi1 , . . . , xn = yin , for some one-to-one mapping 〈i1, . . . , in〉
between indices 1, 2, . . . , n. We, thus, obtain
(r1 − si1)x1 + · · ·+ (rn − sin)xn = 0.
Since x1, . . . , xn are mutually distinct elements of X , we conclude that
r1 − si1 = 0, . . . , rn − sin = 0, i.e., that r1 = si1 , . . . , rn = sin .
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Example V: Additive Functions

A function f : R → R is called additive if f (x + y) = f (x) + f (y), for
all x , y ∈ R.

Example: For fixed a ∈ R, fa, with fa(x) = a · x , for all x ∈ R, is
additive.

Any additive function looks much like fa, for some a ∈ R.

Let f be additive, and set f (1) = a. Then, f (2) = f (1) + f (1) = a · 2,
f (3) = f (2) + f (1) = a · 3, and, by induction, f (b) = a · b, for all
b ∈ N− {0}. Since f (0) + f (0) = f (0 + 0) = f (0), we get f (0) = 0.
Next, f (−b) + f (b) = f (0) = 0, so f (−b) = −f (b) = a · (−b), for
b ∈ N. To compute f ( 1

n
), notice that a = f (1) = f ( 1

n
) + · · ·+ f ( 1

n
)

︸ ︷︷ ︸
n times

.

Consequently, f ( 1
n
) = a · 1

n
. Continuing along these lines, we can

easily prove that f (x) = a · x , for all rational numbers x . It is now
natural to conjecture that f (x) = a · x holds for all real numbers x ,
i.e., that every additive function is of the form fa for some a ∈ R.
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Additive Functions Not of Form fa

We conjectured that f (x) = a · x holds for all real numbers x , i.e.,
that every additive function is of the form fa, for some a ∈ R.

This conjecture cannot be disproved in Zermelo-Fraenkel set theory.

It is, however, false if we assume the Axiom of Choice.

Theorem∗

There exists an additive function f : R → R, such that f 6= fa, for all
a ∈ R.

Let X be a Hamel basis for R. Choose fixed x ∈ X . Define

f (x) =

{
ri , if x = r1x1 + · · ·+ rixi + · · ·+ rnxn and xi = x

0, otherwise

It is easy to check that f is additive. Also that 0 6∈ X and X is
infinite (actually, |X | = 2ℵ0). We have f (x) = 1, while f (x) = 0, for
any x ∈ X , x 6= x . If f = fa was true for some a ∈ R, we would have
f (x) = 1 = a · x , showing a 6= 0. But f (x) = 0 = a · x , showing a = 0.
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Example VI: The Hahn-Banach Theorem

A function f defined on a vector space V over the field R of real
numbers and with values in R is called a linear functional on V if
f (au+ bv) = af (u) + bf (v), for all u, v ∈ V and a, b ∈ R.

A function p defined on V and with values in R is called a sublinear

functional on V if p(u+ v) ≤ p(u) + p(v), for all u, v ∈ V , and
p(au) = ap(u), for all u ∈ V and a ≥ 0.

The following theorem, due to Hans Hahn and Stefan Banach, is one
of the cornerstones of functional analysis:

Theorem∗

Let p be a sublinear functional on the vector space V and f0 be a linear
functional defined on a subspace V0 of V , such that f0(v) ≤ p(v), for all
v ∈ V0. Then, there is a linear functional f defined on V , such that f ⊇ f0
and f (v) ≤ p(v), for all v ∈ V .
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Example VI: Proof of the Hahn-Banach Theorem I

Let F be the set of all linear functionals g defined on some subspace
W of V and such that f0 ⊆ g and g(v) ≤ p(v), for all v ∈ W . We
obtain the desired linear functional f as a maximal element of (F ,⊆).
To verify the assumptions of Zorn’s Lemma, consider a nonempty
F0 ⊆ F linearly ordered by ⊆. If g0 =

⋃
F0, g0 is a ⊆-upper bound on

F0 provided g0 ∈ F . Clearly, g0 is a function with values in R and
g0 ⊇ f0. Since the union of a set of subspaces of V linearly ordered by
⊆ is a subspace of V , domg0 =

⋃

g∈F0
domg is a subspace of V . To

show that g0 is linear consider u, v ∈ domg0 and a, b ∈ R. Then there
are g , g ′ ∈ F0, such that u ∈ domg and v ∈ domg ′. Since F0 is
linearly ordered by ⊆, we have either g ⊆ g ′ or g ′ ⊆ g . In the first
case, u, v, au+ bv ∈ domg ′ and
g0(au+ bv) = g ′(au+ bv) = ag ′(u) + bg ′(v) = ag0(u) + bg0(v); the
second case is analogous. Finally, g0(u) = g(u) ≤ p(u), for any
u ∈ domg0 and g ∈ F0, such that u ∈ domg . Thus, g0 ∈ F .
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Example VI: Proof of the Hahn-Banach Theorem II

By Zorn’s Lemma, (F ,⊆) has a maximal element f . It remains to be
shown that domf = V . We prove that domf ⊂ V implies that f is
not maximal.
Fix u ∈ V − domf . Let W be the subspace of V spanned by domf

and u. Since every w ∈ W can be uniquely expressed as w = x+ au,
for some x ∈ domf and a ∈ R, the function fc defined by
fc(w) = f (x) + a · c is a linear functional on W and fc ⊃ f . The
proof is complete if we show that c ∈ R can be chosen so that

fc(x+ au) = f (x) + ac ≤ p(x+ au),

for all x ∈ domf and a ∈ R. Since the properties of f guarantee this,
for a = 0, it suffices to choose c so as to satisfy:

(a) For all a > 0 and x ∈ domf , f (x) + ac ≤ p(x+ au).
(b) For all a > 0 and y ∈ domf , f (y) + (−a)c ≤ p(y + (−a)u).
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Example VI: Proof of the Hahn-Banach Theorem III

Equivalently,

f (y)− p(y − au) ≤ ac ≤ p(x+ au)− f (x)

and then

f

(
1

a
y

)

− p

(
1

a
y − u

)

≤ c ≤ p

(
1

a
x+ u

)

− f

(
1

a
x

)

should hold for all x, y ∈ domf and a > 0. But, for all v, t ∈ domf ,

f (v) + f (t) = f (v + t) ≤ p(v + t) ≤ p(v − u) + p(t+ u)

and, thus,
f (v) − p(v − u) ≤ p(t+ u)− f (t).

If A = sup {f (v) − p(v− u) : v ∈ domf },
B = inf {p(t+ u)− f (t) : t ∈ domf },

we have A ≤ B . By choosing c , such that A ≤ c ≤ B , we can make
the required identity hold.
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Example VII: The Measure Problem

An important problem in analysis is to extend the notion of length of
an interval to more complicated sets of real numbers.

Ideally, one would like to have a function µ defined on P(R), with
values in [0,∞) ∪ {∞}, and having the following properties:
(0) µ([a, b]) = b − a, for any a, b ∈ R, a < b.
(i) µ(∅) = 0, µ(R) = ∞.
(ii) If {An}

∞

n=0 is a collection of mutually disjoint subsets of R, then
µ(
⋃

∞

n=0 An) =
∑

∞

n=0 µ(An). (This property is called countable

additivity or σ-additivity of µ.)
(iii) If a ∈ R, A ⊆ R, and A+ a = {x + a : x ∈ A}, then µ(A + a) = µ(A)

(translation invariance of µ).

Several additional properties of µ follow immediately from (0)-(iii):
(iv) If A ∩ B = ∅, then µ(A ∪ B) = µ(A) + µ(B) (finite additivity).
(v) If A ⊆ B, then µ(A) ≤ µ(B) (monotonicity).

However, the Axiom of Choice implies that no function µ with the
aforementioned properties exists.
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Example VII: Nonexistence of a Measure

Theorem∗

There is no µ : P(R) → [0,∞) ∪ {∞}, with the properties (0)-(v).

We define an equivalence relation ≈ on R by:

x ≈ y if and only if x − y is a rational number,

and use the Axiom of Choice to obtain a set of representatives X for
≈. It is easy to see that R = {X + r : r is rational}. Moreover, if q
and r are two distinct rationals, then X + q and X + r are disjoint.
Note that µ(X ) > 0: If µ(X ) = 0, then µ(X + q) = 0, for every
q ∈ Q, and µ(R) =

∑

q∈Q µ(X + q) = 0, a contradiction. By
countable additivity, there exists [a, b], such that µ(X ∩ [a, b]) > 0.
Let Y = X ∩ [a, b]. Then

⋃

q∈Q∩[0,1](Y + q) ⊆ [a, b + 1] and the
left-hand side is the union of infinitely many mutually disjoint sets
Y + q, each of measure µ(Y + q) = µ(Y ) > 0. Thus, the left-hand
side has measure ∞, contrary to µ([a, b + 1]) = b + 1− a.
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σ-Additive Measures on σ-Algebras

The requirements on µ have to be relaxed.
We give up the condition that µ be defined for all subsets of R.

Definition (σ-Algebra)

Let S be a nonempty set. A collection S ⊆ P(S) is a σ-algebra of
subsets of S if
(a) ∅ ∈ S and S ∈ S.

(b) If X ∈ S, then S − X ∈ S.

(c) If Xn ∈ S, for all n, then
⋃

∞

n=0 Xn ∈ S and
⋂

∞

n=0 Xn ∈ S.

Definition (σ-Additive Measure)

A σ-additive measure on a σ-algebra S of subsets of S is a function
µ : S → [0,∞) ∪ {∞}, such that
(i) µ(∅) = 0, µ(S) > 0.

(ii) If {Xn}∞n=0 is a collection of mutually disjoint sets from S, then
µ(
⋃

∞

n=0 Xn) =
∑

∞

n=0 µ(Xn).

The elements of S are called µ-measurable sets.
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Nonmeasurable Sets

P(S) is the largest σ-algebra of subsets of S ; we refer to a measure
defined on P(S) as a measure on S .
The theorem we proved takes the form:

Corollary

Let µ be any σ-additive measure on a σ-algebra S of subsets of R such
that
(0) [a, b] ∈ S and µ([a, b]) = b − a, for all a, b ∈ R, a < b.

(iii) If A ∈ S, then A+ a ∈ S and µ(A+ a) = µ(A), for all a ∈ R.

Then there exist sets of real numbers which are not µ-measurable.

In real analysis, one constructs a particular σ-algebra M of Lebesgue
measurable sets, and a σ-additive measure µ on M, the Lebesgue

measure, satisfying properties (0) and (iii) of the Corollary.

So existence of Lebesgue nonmeasurable sets is a consequence of the
Axiom of Choice. Robert Solovay showed that the Axiom of Choice is
necessary to prove this result.
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The Axiom of Countable Choice

There are many fundamental and intuitively acceptable results
concerning countable sets and topological and measure-theoretic
properties of the real line, whose proofs depend on the Axiom of
Choice.

However, closer investigation of the preceding proofs of Examples I
and II reveals that only a very limited form of the Axiom is needed:

Axiom of Countable Choice

There exists a choice function for every countable system of sets.

It might well be that the Axiom of Countable Choice is intuitively
justified, but the full Axiom of Choice is not.

Moreover, the full Axiom of Choice has some counterintuitive
consequences, such as the existence of nonlinear additive functions, or
the existence of Lebesgue nonmeasurable sets, none of which follows
from the Axiom of Countable Choice.
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Full Axiom of Choice: Striking Applications

Many important applications require the Axiom of Choice in almost
full strength:

The Hahn-Banach Theorem;
Tichonov’s Theorem: A topological product of any system of compact
topological spaces is compact.
The Maximal Ideal Theorem: Every ideal in a ring can be extended to
a maximal ideal.

Some of them are even equivalent to it.

The irreplaceable role of the Axiom of Choice is to simplify general
topological and algebraic considerations which, otherwise, would be
bogged down in irrelevant set-theoretic detail.

For this pragmatic reason, the Axiom of Choice will always keep its
place in set theory.
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