Introduction to Set Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Arithmetic of Cardinal Numbers

- Infinite Sums of Cardinal Numbers
- Infinite Products of Cardinal Numbers
- König's Theorem

Subsection 1

Infinite Sums of Cardinal Numbers

Infinite Sum of Cardinal Numbers

- We define sums and products of infinitely many cardinal numbers.
- E.g., it is natural to expect that $\underbrace{1+1+\cdots}=\aleph_{0}$ or, more generally, $\underbrace{\kappa+\kappa+\cdots}_{\lambda \text { times }}=\kappa \cdot \lambda$.
\aleph_{0} times
- The sum of two cardinals κ_{1} and κ_{2} is the cardinality of $A_{1} \cup A_{2}$, where A_{1} and A_{2} are disjoint sets such that $\left|A_{1}\right|=\kappa_{1}$ and $\left|A_{2}\right|=\kappa_{2}$.

Definition (Sum of Infinitely Many Cardinals)

Let $\left\langle A_{i}: i \in I\right\rangle$ be a system of mutually disjoint sets and $\left|A_{i}\right|=\kappa_{i}$, for all $i \in I$. We define the sum of $\left\langle\kappa_{i}: i \in I\right\rangle$ by $\sum_{i \in I} \kappa_{i}=\left|\bigcup_{i \in I} A_{i}\right|$.

- The definition of $\sum_{i \in I} \kappa_{i}$ uses particular sets $A_{i}, i \in I$. Unlike in the finite case one needs the Axiom of Choice in order to prove the independence of the sum from the choice of the particular sets A_{i}.
- Without the Axiom of Choice, there may exist $\left\langle A_{n}: n \in \mathbb{N}\right\rangle$, $\left\langle A_{n}^{\prime}: n \in \mathbb{N}\right\rangle$, of mutually disjoint sets, with $\left|A_{n}\right|=2$ and $\left|A_{n}^{\prime}\right|=2$, but $\bigcup_{n=0}^{\infty} A_{n}$ not equipotent to $\bigcup_{n=0}^{\infty} A_{n}^{\prime}$.

Independence of the Choice of Sets

- The Axiom of Choice is assumed from now on.

Lemma

If $\left\langle A_{i}: i \in I\right\rangle$ and $\left\langle A_{i}^{\prime}: i \in I\right\rangle$ are systems of mutually disjoint sets, such that $\left|A_{i}\right|=\left|A_{i}^{\prime}\right|$, for all $i \in I$, then $\left|\bigcup_{i \in I} A_{i}\right|=\left|\bigcup_{i \in I} A_{i}^{\prime}\right|$.

- For each $i \in I$, choose a one-to-one mapping f_{i} of A_{i} onto A_{i}^{\prime}. Then $f=\bigcup_{i \in I} f_{i}$ is a one-to-one mapping of $\bigcup_{i \in I} A_{i}$ onto $\bigcup_{i \in I} A_{i}^{\prime}$.
- This lemma makes the definition of $\sum_{i \in I} \kappa_{i}$ legitimate.
- Since infinite unions of sets satisfy the associative law, it follows that the infinite sums of cardinals are also associative.
- The operation \sum has other reasonable properties:
- If $\kappa_{i} \leq \lambda_{i}$, for all $i \in I$, then $\sum_{i \in I} \kappa_{i} \leq \sum_{i \in I} \lambda_{i}$.
- However, if $\kappa_{i}<\lambda_{i}$, for all $i \in I$, it does not necessarily follow that

$$
\sum_{i \in I} \kappa_{i}<\sum_{i \in I} \lambda_{i} .
$$

Theorem for Infinite Sum

- If $\kappa_{i}=\kappa$, for all $i \in \lambda$, then $\sum_{i \in \lambda} \kappa_{i}=\underbrace{\kappa+\kappa+\cdots}_{\lambda \text { times }}=\kappa \cdot \lambda$.
- It is not very difficult to evaluate infinite sums, e.g., consider $\sum_{n \in \mathbb{N}} n=1+2+3+\cdots$. This sum is equal to \aleph_{0}.

Theorem

Let λ be an infinite cardinal, $\kappa_{\alpha}, \alpha<\lambda$, be nonzero cardinal numbers, and $\kappa=\sup \left\{\kappa_{\alpha}: \alpha<\lambda\right\}$. Then $\sum_{\alpha<\lambda} \kappa_{\alpha}=\lambda \cdot \kappa=\lambda \cdot \sup \left\{\kappa_{\alpha}: \alpha<\lambda\right\}$.

- On the one hand, $\kappa_{\alpha} \leq \kappa$, for each $\alpha<\lambda$. So $\sum_{\alpha<\lambda} \kappa_{\alpha} \leq \sum_{\alpha<\lambda} \kappa=$ $\kappa \cdot \lambda$.
On the other hand, $\lambda=\sum_{\alpha<\lambda} 1 \leq \sum_{\alpha<\lambda} \kappa_{\alpha}$. Also $\kappa \leq \sum_{\alpha<\lambda} \kappa_{\alpha}$: The sum $\sum_{\alpha<\lambda} \kappa_{\alpha}$ is an upper bound of the κ_{α} 's and κ is the least upper bound. Now since both κ and λ are $\leq \sum_{\alpha<\lambda} \kappa_{\alpha}$, it follows that $\kappa \cdot \lambda$, which is the greater of the two, is also $\leq \sum_{\alpha<\lambda} \kappa_{\alpha}$. The conclusion is now a consequence of the Cantor-Bernstein Theorem.

Subsection 2

Infinite Products of Cardinal Numbers

Product of Infinitely Many Cardinal Numbers

Corollary

If $\kappa_{i}, i \in I$, are cardinal numbers, and if $|I| \leq \sup \left\{\kappa_{i}: i \in I\right\}$, then

$$
\sum_{i \in I} \kappa_{i}=\sup _{i \in I} \kappa_{i}
$$

Note the assumption is satisfied if all the κ_{i} 's are mutually distinct.

- The product of two cardinals κ_{1} and κ_{2} is the cardinality of the cartesian product $A_{1} \times A_{2}$, where A_{1} and A_{2} are arbitrary sets such that $\left|A_{1}\right|=\kappa_{1}$ and $\left|A_{2}\right|=\kappa_{2}$.

Definition (Product of Infinitely Many Cardinals)

Let $\left\langle A_{i}: i \in I\right\rangle$ be a family of sets, such that $\left|A_{i}\right|=\kappa_{i}$, for all $i \in I$. We define the product of $\left\langle\kappa_{i}: i \in I\right\rangle$ by $\prod_{i \in I} \kappa_{i}=\left|\prod_{i \in I} A_{i}\right|$.

- We use the same symbol for the product of cardinals (the left-hand side) as for the cartesian product of the indexed family $\left\langle A_{i}: i \in I\right\rangle$.

Independence from Choice of Sets

- The definition of $\prod_{i \in I} \kappa_{i}$ does not depend on the particular sets A_{i} :

Lemma

If $\left\langle A_{i}: i \in I\right\rangle$ and $\left\langle A_{i}^{\prime}: i \in I\right\rangle$ are such that $\left|A_{i}\right|=\left|A_{i}^{\prime}\right|$, for all $i \in I$, then $\left|\prod_{i \in I} A_{i}\right|=\left|\prod_{i \in I} A_{i}^{\prime}\right|$.

- For each $i \in I$, choose a one-to-one mapping f_{i} of A_{i} onto A_{i}^{\prime}. Let f be the function on $\prod_{i \in I} A_{i}$ defined as follows: If $x=\left\langle x_{i}: i \in I\right\rangle \in$ $\prod_{i \in I} A_{i}$, let $f(x)=\left\langle f_{i}\left(x_{i}\right): i \in I\right\rangle$. Then f is a one-to-one mapping of $\prod_{i \in I} A_{i}$ onto $\prod_{i \in I} A_{i}^{\prime}$
- The infinite products share many properties of finite products:
- If at least one κ_{i} is 0 , then $\prod_{i \in I} \kappa_{i}=0$.
- They satisfy the associative law.
- If $\kappa_{i} \leq \lambda_{i}$, for all $i \in I$, then $\prod_{i \in I} \kappa_{i} \leq \prod_{i \in I} \lambda_{i}$.
- If all the factors $\kappa_{i}=\kappa$, then we have $\prod_{i \in \lambda} \kappa_{i}=\underbrace{\kappa \cdot \kappa \cdots}_{\lambda \text { times }}=\kappa^{\lambda}$.

Properties of Exponentiation

- If all the factors $\kappa_{i}=\kappa$, then we have $\prod_{i \in \lambda} \kappa_{i}=\underbrace{\kappa \cdot \kappa \cdots}_{\lambda \text { times }}=\kappa^{\lambda}$.
- The following rules, involving exponentiation, also generalize from the finite to the infinite case:

$$
\begin{aligned}
\left(\prod_{i \in I} \kappa_{i}\right)^{\lambda} & =\prod_{i \in I}\left(\kappa_{i}^{\lambda}\right) \\
\prod_{i \in I}\left(\kappa^{\lambda_{i}}\right) & =\kappa^{\sum_{i \in I} \lambda_{i}}
\end{aligned}
$$

Evaluation of Infinite Products

- Infinite products are more difficult to evaluate than infinite sums.
- In some special cases, for instance when evaluating the product $\prod_{\alpha<\lambda} \kappa_{\alpha}$, of an increasing sequence $\left\langle\kappa_{\alpha}: \alpha<\lambda\right\rangle$ of cardinals, some simple rules can be proved.
- Consider the following very special case:

$$
\prod_{n=1}^{\infty} n=1 \cdot 2 \cdot 3 \cdots
$$

First, note that $\prod_{n=1}^{\infty} n \leq \prod_{i=1}^{\infty} \aleph_{0}=\aleph_{0}^{\aleph_{0}}=2^{\aleph_{0}}$.
Conversely, we have $2^{\aleph_{0}} \leq \prod_{n=1}^{\infty} 2 \leq \prod_{n=2}^{\infty} n=\prod_{n=1}^{\infty} n$.
Therefore, $1 \cdot 2 \cdot 3 \cdots=2^{\aleph_{0}}$.

Subsection 3

König's Theorem

König's Theorem

König's Theorem

If κ_{i} and $\lambda_{i}, i \in I$, are cardinal numbers, and if $\kappa_{i}<\lambda_{i}$, for all $i \in I$, then $\sum_{i \in I} \kappa_{i}<\prod_{i \in I} \lambda_{i}$.

- First, let us show $\sum_{i \in I} \kappa_{i} \leq \prod_{i \in I} \lambda_{i}$. Let $\left\langle A_{i}: i \in I\right\rangle$ and $\left\langle B_{i}: i \in I\right\rangle$ be such that $\left|A_{i}\right|=\kappa_{i}$, and $\left|B_{i}\right|=\lambda_{i}$, for all $i \in I$ and the A_{i} 's are mutually disjoint. We may further assume that $A_{i} \subset B_{i}$, for all $i \in I$. We find a one-to-one mapping f of $\bigcup_{i \in I} A_{i}$ into $\prod_{i \in I} B_{i}$.
We choose $d_{i} \in B_{i}-A_{i}$, for each $i \in I$, and define a function f as follows: For each $x \in \bigcup_{i \in I} A_{i}$, let i_{x} be the unique $i \in I$, such that $x \in A_{i}$. Let $f(x)=\left\langle a_{i}: i \in I\right\rangle$, where $a_{i}=\left\{\begin{array}{ll}x, & \text { if } i=i_{x} \\ d_{i}, & \text { if } i \neq i_{x}\end{array}\right.$. If $x \neq y$, let $f(x)=a$ and $f(y)=b$ and let us show that $a \neq b$.
- If $i_{x}=i_{y}=i$, then $a_{i}=x$ while $b_{i}=y$.
- If $i_{x} \neq i_{y}=i$, then $a_{i}=d_{i} \notin A_{i}$ while $b_{i}=y \in A_{i}$.

In either case $f(x) \neq f(y)$.

Proof of König's Theorem

- We show that $\sum_{i \in I} \kappa_{i}<\prod_{i \in I} \lambda_{i}$. Let $B_{i}, i \in I$, be such that $\left|B_{i}\right|=\lambda_{i}$, for all $i \in I$. If the product $\prod_{i \in I} \lambda_{i}$ were equal to the sum $\sum_{i \in I} \kappa_{i}$, we could find mutually disjoint subsets X_{i}, of the cartesian product $\prod_{i \in I} B_{i}$, such thai $\left|X_{i}\right|=\kappa_{i}$, for all i, and $\bigcup_{i \in I} X_{i}=\prod_{i \in I} B_{i}$. We show that this is impossible. For each $i \in I$, let $A_{i}=\left\{a_{i}: a \in X_{i}\right\}$:

For every $i \in I$, we have $A_{i} \subset B_{i}$, since $\left|A_{i}\right| \leq\left|X_{i}\right|=\kappa_{i}<\lambda_{i}=\left|B_{i}\right|$. Hence there exists $b_{i} \in B_{i}$, such that $b_{i} \notin A_{i}$. Let $b=\left\langle b_{i}: i \in I\right\rangle$.

Now we can easily show that b is not a member of any $X_{i}, i \in I$: For any $i \in I, b_{i} \notin A_{i}$, and so $b \notin X_{i}$. Hence $\bigcup_{i \in I} X_{i}$ is not the whole set $\prod_{i \in I} B_{i}$, a contradiction.

Cantor's Theorem as a Special Case of König's Theorem

- König's Theorem and its proof are generalizations of Cantor's Theorem which states that $2^{\kappa}>\kappa$, for all κ.
- If we express κ as the infinite sum

$$
\kappa=1+1+1+\cdots \quad(\kappa \text { times })
$$

and 2^{κ} as the infinite product

$$
2^{\kappa}=2 \cdot 2 \cdot 2 \cdots \quad(\kappa \text { times }),
$$

we can apply König's Theorem (since $1<2$) and obtain

$$
\kappa=\sum_{i \in \kappa} 1<\prod_{i \in \kappa} 2=2^{\kappa}
$$

