Introduction to Set Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

Arithmetic of Cardinal Numbers

- Infinite Sums of Cardinal Numbers
- Infinite Products of Cardinal Numbers
- König's Theorem

Subsection 1

Infinite Sums of Cardinal Numbers

Infinite Sum of Cardinal Numbers

- We define sums and products of infinitely many cardinal numbers.
- E.g., it is natural to expect that $\underbrace{1+1+\cdots}_{\aleph_0 \text{ times}} = \aleph_0$ or, more generally,
- The sum of two cardinals κ_1 and κ_2 is the cardinality of $A_1 \cup A_2$, where A_1 and A_2 are disjoint sets such that $|A_1| = \kappa_1$ and $|A_2| = \kappa_2$.

Definition (Sum of Infinitely Many Cardinals)

Let $\langle A_i : i \in I \rangle$ be a system of mutually disjoint sets and $|A_i| = \kappa_i$, for all $i \in I$. We define the **sum** of $\langle \kappa_i : i \in I \rangle$ by $\sum_{i \in I} \kappa_i = |\bigcup_{i \in I} A_i|$.

- The definition of $\sum_{i \in I} \kappa_i$ uses particular sets A_i , $i \in I$. Unlike in the finite case one needs the Axiom of Choice in order to prove the independence of the sum from the choice of the particular sets A_i .
- Without the Axiom of Choice, there may exist $\langle A_n : n \in \mathbb{N} \rangle$, $\langle A'_n : n \in \mathbb{N} \rangle$, of mutually disjoint sets, with $|A_n| = 2$ and $|A'_n| = 2$, but $\bigcup_{n=0}^{\infty} A_n$ not equipotent to $\bigcup_{n=0}^{\infty} A'_n$.

 λ times

Independence of the Choice of Sets

• The Axiom of Choice is assumed from now on.

Lemma

If $\langle A_i : i \in I \rangle$ and $\langle A'_i : i \in I \rangle$ are systems of mutually disjoint sets, such that $|A_i| = |A'_i|$, for all $i \in I$, then $|\bigcup_{i \in I} A_i| = |\bigcup_{i \in I} A'_i|$.

- For each $i \in I$, choose a one-to-one mapping f_i of A_i onto A'_i . Then $f = \bigcup_{i \in I} f_i$ is a one-to-one mapping of $\bigcup_{i \in I} A_i$ onto $\bigcup_{i \in I} A'_i$.
- This lemma makes the definition of $\sum_{i \in I} \kappa_i$ legitimate.
- Since infinite unions of sets satisfy the associative law, it follows that the infinite sums of cardinals are also associative.
- The operation \sum has other reasonable properties:
 - If $\kappa_i \leq \lambda_i$, for all $i \in I$, then $\sum_{i \in I} \kappa_i \leq \sum_{i \in I} \lambda_i$.
 - However, if $\kappa_i < \lambda_i$, for all $i \in I$, it does not necessarily follow that $\sum_{i \in I} \kappa_i < \sum_{i \in I} \lambda_i$.

 λ times

Theorem for Infinite Sum

• If
$$\kappa_i = \kappa$$
, for all $i \in \lambda$, then $\sum_{i \in \lambda} \kappa_i = \underbrace{\kappa + \kappa + \cdots}_{i \in \lambda} = \kappa \cdot \lambda$.

• It is not very difficult to evaluate infinite sums, e.g., consider $\sum_{n \in \mathbb{N}} n = 1 + 2 + 3 + \cdots$. This sum is equal to \aleph_0 .

Theorem

Let λ be an infinite cardinal, $\kappa_{\alpha}, \alpha < \lambda$, be nonzero cardinal numbers, and $\kappa = \sup \{\kappa_{\alpha} : \alpha < \lambda\}$. Then $\sum_{\alpha < \lambda} \kappa_{\alpha} = \lambda \cdot \kappa = \lambda \cdot \sup \{\kappa_{\alpha} : \alpha < \lambda\}$.

• On the one hand, $\kappa_{\alpha} \leq \kappa$, for each $\alpha < \lambda$. So $\sum_{\alpha < \lambda} \kappa_{\alpha} \leq \sum_{\alpha < \lambda} \kappa = \kappa \cdot \lambda$.

On the other hand, $\lambda = \sum_{\alpha < \lambda} 1 \leq \sum_{\alpha < \lambda} \kappa_{\alpha}$. Also $\kappa \leq \sum_{\alpha < \lambda} \kappa_{\alpha}$: The sum $\sum_{\alpha < \lambda} \kappa_{\alpha}$ is an upper bound of the κ_{α} 's and κ is the least upper bound. Now since both κ and λ are $\leq \sum_{\alpha < \lambda} \kappa_{\alpha}$, it follows that $\kappa \cdot \lambda$, which is the greater of the two, is also $\leq \sum_{\alpha < \lambda} \kappa_{\alpha}$. The conclusion is now a consequence of the Cantor-Bernstein Theorem.

Subsection 2

Infinite Products of Cardinal Numbers

Product of Infinitely Many Cardinal Numbers

Corollary

If κ_i , $i \in I$, are cardinal numbers, and if $|I| \leq \sup \{\kappa_i : i \in I\}$, then

$$\sum_{i\in I}\kappa_i=\sup_{i\in I}\kappa_i.$$

Note the assumption is satisfied if all the κ_i 's are mutually distinct.

The product of two cardinals κ₁ and κ₂ is the cardinality of the cartesian product A₁ × A₂, where A₁ and A₂ are arbitrary sets such that |A₁| = κ₁ and |A₂| = κ₂.

Definition (Product of Infinitely Many Cardinals)

Let $\langle A_i : i \in I \rangle$ be a family of sets, such that $|A_i| = \kappa_i$, for all $i \in I$. We define the **product** of $\langle \kappa_i : i \in I \rangle$ by $\prod_{i \in I} \kappa_i = |\prod_{i \in I} A_i|$.

 We use the same symbol for the product of cardinals (the left-hand side) as for the cartesian product of the indexed family ⟨A_i : i ∈ I⟩.

Independence from Choice of Sets

• The definition of $\prod_{i \in I} \kappa_i$ does not depend on the particular sets A_i :

Lemma

If $\langle A_i : i \in I \rangle$ and $\langle A'_i : i \in I \rangle$ are such that $|A_i| = |A'_i|$, for all $i \in I$, then $|\prod_{i \in I} A_i| = |\prod_{i \in I} A'_i|$.

For each i ∈ I, choose a one-to-one mapping f_i of A_i onto A'_i. Let f be the function on ∏_{i∈I} A_i defined as follows: If x = ⟨x_i : i ∈ I⟩ ∈ ∏_{i∈I} A_i, let f(x) = ⟨f_i(x_i) : i ∈ I⟩. Then f is a one-to-one mapping of ∏_{i∈I} A_i onto ∏_{i∈I} A'_i

• The infinite products share many properties of finite products:

- If at least one κ_i is 0, then $\prod_{i \in I} \kappa_i = 0$.
- They satisfy the associative law.
- If $\kappa_i \leq \lambda_i$, for all $i \in I$, then $\prod_{i \in I} \kappa_i \leq \prod_{i \in I} \lambda_i$.

• If all the factors $\kappa_i = \kappa$, then we have $\prod_{i \in \lambda} \kappa_i = \underbrace{\kappa \cdot \kappa \cdots}_{i \in \lambda} = \kappa^{\lambda}$.

Properties of Exponentiation

- If all the factors $\kappa_i = \kappa$, then we have $\prod_{i \in \lambda} \kappa_i = \underbrace{\kappa \cdot \kappa \cdots}_{\lambda \text{ times}} = \kappa^{\lambda}$.
- The following rules, involving exponentiation, also generalize from the finite to the infinite case:

$$\left(\prod_{i\in I}\kappa_i\right)^{\lambda} = \prod_{i\in I}(\kappa_i^{\lambda})$$
$$\prod_{i\in I}(\kappa^{\lambda_i}) = \kappa^{\sum_{i\in I}\lambda_i}.$$

Evaluation of Infinite Products

- Infinite products are more difficult to evaluate than infinite sums.
- In some special cases, for instance when evaluating the product $\prod_{\alpha < \lambda} \kappa_{\alpha}$, of an increasing sequence $\langle \kappa_{\alpha} : \alpha < \lambda \rangle$ of cardinals, some simple rules can be proved.
- Consider the following very special case:

$$\prod_{n=1}^{\infty} n = 1 \cdot 2 \cdot 3 \cdots$$

First, note that $\prod_{n=1}^{\infty} n \leq \prod_{i=1}^{\infty} \aleph_0 = \aleph_0^{\aleph_0} = 2^{\aleph_0}$. Conversely, we have $2^{\aleph_0} \leq \prod_{n=1}^{\infty} 2 \leq \prod_{n=2}^{\infty} n = \prod_{n=1}^{\infty} n$. Therefore, $1 \cdot 2 \cdot 3 \cdots = 2^{\aleph_0}$.

Subsection 3

König's Theorem

König's Theorem

König's Theorem

If κ_i and λ_i , $i \in I$, are cardinal numbers, and if $\kappa_i < \lambda_i$, for all $i \in I$, then $\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$.

• First, let us show $\sum_{i \in I} \kappa_i \leq \prod_{i \in I} \lambda_i$. Let $\langle A_i : i \in I \rangle$ and $\langle B_i : i \in I \rangle$ be such that $|A_i| = \kappa_i$, and $|B_i| = \lambda_i$, for all $i \in I$ and the A_i 's are mutually disjoint. We may further assume that $A_i \subset B_i$, for all $i \in I$. We find a one-to-one mapping f of $\bigcup_{i \in I} A_i$ into $\prod_{i \in I} B_i$. We choose $d_i \in B_i - A_i$, for each $i \in I$, and define a function f as follows: For each $x \in \bigcup_{i \in I} A_i$, let i_x be the unique $i \in I$, such that $x \in A_i$. Let $f(x) = \langle a_i : i \in I \rangle$, where $a_i = \begin{cases} x, & \text{if } i = i_x \\ d_i, & \text{if } i \neq i_x \end{cases}$. If $x \neq y$, let f(x) = a and f(y) = b and let us show that $a \neq b$. • If $i_x = i_y = i$, then $a_i = x$ while $b_i = y$. • If $i_x \neq i_y = i$, then $a_i = d_i \notin A_i$ while $b_i = y \in A_i$. In either case $f(x) \neq f(y)$.

Proof of König's Theorem

• We show that $\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$. Let $B_i, i \in I$, be such that $|B_i| = \lambda_i$, for all $i \in I$. If the product $\prod_{i \in I} \lambda_i$ were equal to the sum $\sum_{i \in I} \kappa_i$, we could find mutually disjoint subsets X_i , of the cartesian product $\prod_{i \in I} B_i$, such thai $|X_i| = \kappa_i$, for all i, and $\bigcup_{i \in I} X_i = \prod_{i \in I} B_i$. We show that this is impossible.

For each
$$i \in I$$
, let $A_i = \{a_i : a \in X_i\}$:

Now we can easily show that b is not a member of any X_i , $i \in I$: For any $i \in I$, $b_i \notin A_i$, and so $b \notin X_i$. Hence $\bigcup_{i \in I} X_i$ is not the whole set $\prod_{i \in I} B_i$, a contradiction.

Cantor's Theorem as a Special Case of König's Theorem

- König's Theorem and its proof are generalizations of Cantor's Theorem which states that 2^κ > κ, for all κ.
- If we express κ as the infinite sum

$$\kappa = 1 + 1 + 1 + \cdots$$
 (κ times)

and 2^{κ} as the infinite product

$$2^{\kappa} = 2 \cdot 2 \cdot 2 \cdot \cdots$$
 (κ times),

we can apply König's Theorem (since 1 < 2) and obtain

$$\kappa = \underset{i \in \kappa}{\sum} 1 < \underset{i \in \kappa}{\prod} 2 = 2^{\kappa}.$$