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Unbounded Linear Operators in Hilbert Space

o Let H be a complex Hilbert space.
o We consider linear operators T :2(T)— H, with 2(T) < H.

o T is bounded if and only if there is a real number ¢, such that
| Txll < clixll, forall xe2(T).

o An important unbounded linear operator is the differentiation operator.
o Note that the operator T may be unbounded.

o In the case of a bounded linear operator T on a Hilbert space H,
self-adjointness of T was defined by (Tx,y) = (x, Ty).

o The following theorem shows that an unbounded linear operator T
satisfying this relationship cannot be defined on all of H.
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Unbounded Linear Operators in Hilbert Space

Hellinger-Toeplitz Theorem (Boundedness)

If a linear operator T is defined on all of a complex Hilbert space H and
satisfies (Tx,y) = (x, Ty), for all x,y € H, then T is bounded.

o Suppose, to the contrary, that T is not bounded.
Then H contains a sequence (y;) such that [ly,ll=1 and || Ty,ll — oo.
We consider, for n=1,2,..., the functional f, defined by

fn(x) = {Tx,yn) = (x, Tyn).

Each £, is defined on all of H and is linear.

For each n, f, is bounded, since, by the Schwarz inequality,

1£2 ()1 =106 Tym) | < 1 Tyallllx]l.
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Unbounded Linear Operators in Hilbert Space

o Moreover, for every fixed x € H, the sequence (7,(x)) is bounded.

Indeed, using the Schwarz inequality and [ly,ll =1, we have
() = KTx, ym) | < [ TX|.

By the Uniform Boundedness Theorem, (lIf,ll) is bounded, say,
I fll < k, for all n. Thus, for every x € H, we have

12 (Ol < IfalllIx I < Kl
Taking x = Ty, we get
I Tynll? = (Tyn, Tyn) = lfa( Tyn)l < kIl Tyall
Hence, || Ty, < k. But this contradicts || Ty, — oo.
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Unbounded Linear Operators in Hilbert Space

o By the Hellinger-Toeplitz Boundedness Theorem, 2(T)=H is
impossible for unbounded linear operators satisfying (Tx, y) = (x, Ty).

o The problem is to determine suitable domains for extensions.

o The operator T is an extension of the operator S, written Sc T, if
2(5)<2(T)and S=T lo(s)-

o An extension T of S is a proper extension if 2(S) is a proper subset
of 9(T), ie., 2(T)-2(S) # 2.
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Unbounded Linear Operators in Hilbert Space

©

For bounded operators, the Hilbert-adjoint T* of an operator T plays
a basic role and we want to generalize to the unbounded case.

©

In the bounded case the operator T* is defined by
(Tx,yy =(x, T*y).

o We can write this as

(Tx,y) =(x,y"), y'=T"y.

o T* exists on H and is a bounded linear operator with norm
IT*0=1TI.
o In the general case, T* must be defined for those y € H, for which

there is a y*, such that, for all xe 2(T),

(Tx,y) =(x,y"), y*=T"y.
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Unbounded Linear Operators in Hilbert Space

o The operator T* will be defined by y* = T*y, for those y € H for
which there is a y*, such that, for all xe 2(T),

(Tx,y) =(x,y").

o In order that T* be an operator (a mapping), for each y that belongs
to the domain 2(T*) of T*, the value

y*=T"y

must be unique.
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Unbounded Linear Operators in Hilbert Space

: Uniqueness of y* holds if and only if T is densely defined in H,
i.e., 2(T) is dense in H.
Suppose @(T) is not dense in H. Then @(T) # H.
The orthogonal complement of 2(T) in H contains a nonzero y; .
So y1 L x, for every xe 9(T), i.e., (x,y1) =0.
Then in (Tx,y) ={x,y*), we obtain

XYY =06y + 0 y1) = Gy + y).

This shows non-uniqueness.

Suppose, conversely, 2(T) is dense in H.

Then 2(T)* = {0}.

Hence, (x,y1) =0, for all xe 2(T), implies y; =0.
So y*+y1 =y*. This proves uniqueness.
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Unbounded Linear Operators in Hilbert Space

o We use the following terminology:

o T is an operator on H if 2(T) is all of H;
o T is an operator in H if 2(T) lies in H but may not be all of H.

Definition (Hilbert-Adjoint Operator)

Let T:92(T)— H be a (possibly unbounded) densely defined linear
operator in a complex Hilbert space H. Then the Hilbert-adjoint
operator T*:9(T*)— H of T is defined as follows. The domain 2(T*)
of T* consists of all y € H, such that, there is a y* € H satisfying

(Tx,y)=(x,y"), forall xea(T).

For each such y € 2(T*), the Hilbert-adjoint operator T* is then
defined in terms of that y* by y*=T"*y.
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Unbounded Linear Operators in Hilbert Space

o An element y e H is in 2(T7) if for that y, (Tx,y), considered as a
function of x, can be represented as

(Tx,y) =(x,y"), forall xea(T).
o For that y, the formula
(Tx,y) =(x,y"), forall xea(T),

determines y* uniquely by density.

o Finally, T* is a linear operator.
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Unbounded Linear Operators in Hilbert Space

¢ © ¢ ¢

Let H be a complex Hilbert space.

Let S:92(S)— H and T :2(T)— H be linear operators, where
2(S)<H and 2(T)<H.
Then the sum S+ T of S and T is the linear operator with:

o Domain 2(S+T)=2(S)n2(T);

o For every xe 2(S+T),

(S+ T)x=5x+Tx.

2(S+T) is the largest set on which both S and T make sense.
2(S+T) is a vector space.
Always 0€ 2(S+ T), so that 2(S+ T) is never empty.

Nontrivial results can be expected only if 2(S + T) also contains
nonzero elements.
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Unbounded Linear Operators in Hilbert Space

o Let M be the largest subset of 2(S) whose image S(M) under S lies
in 2(T).

o Then S(M)=2(S)N2(T), where Z(S) is the range of S.

o Then the product TS is defined to be the operator with domain
2(TS) =M, such that for all xe 2(TS),

(TS)x = T(5x).

2(8) A(S) Z(T) R(T)
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Unbounded Linear Operators in Hilbert Space

o Similarly, let M be the largest subset of @(T) whose image T(M)
under T lies in 2(S).

o Then T(M)=2%(T)n2(S), where Z(T) is the range of T.

o Then the Pvroduct ST is defined to be the operator with domain
2(ST) =M, such that for all xe 2(ST),

(5T)x=5(Tx).

o Both TS and ST are linear operators.
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Subsection 2

Hilbert-Adjoint, Symmetric and Self-Adjoint Operators
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Unbounded Linear Operators in Hilbert Space

o By definition, T** =(T%)*.

Theorem (Hilbert-Adjoint Operator)

Let S:92(S)— H and T :2(T) — H be linear operators which are densely
defined in a complex Hilbert space H. Then:

If SC T, then T*< S*.
If 2(T*) is dense in H, then T < T**.

By definition, (Tx,y) =(x, T*y), for all xe 2(T) and all ye 2(T™).

Since Sc T, (Sx,y) =(x, T*y), for all xe 2(S) and y as before.

By the definition of S$*, (Sx,y) = (x,5*y), for all xe 2(S), y e 2(5%).
: The last two equations imply 2(T*) c2(5%).
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Unbounded Linear Operators in Hilbert Space

: The last two equations imply 2(T*)<2(S*).
By the definition of the Hilbert-adjoint operator S*, the domain
2(S*) includes all y for which one has a representation

(Sx,y)=(x,S%y), forall xin 2(S).
But (Sx,y) = (x, T*y) also represents (Sx,y) in the same form, for x
in 2(S).

So the set of y's for which this is valid must be a (proper or improper)
subset of the set of y's for which the previous equation holds.

l.e., we must have 2(T*)c2(S*).
Taking into account both equations, we conclude that

S*y=T"y, forallyea(T").

So, by definition, T* = S*.



Unbounded Linear Operators in Hilbert Space

Taking complex conjugates in (Tx,y) =(x, T*y), we have
(T*y,x)=(y, Tx), forall yea(T*), xe2(T).

Since 2(T7) is dense in H, the operator T** exists.
By definition,

(T*y,x)=(y, T**x), forallyea(T*), xea(T**).

From these equations, reasoning as in Part (a), we see that:

o An xe€9(T) also belongs to 2(T**);
o T**x=Tx, forall xe2(T).

This means that T < T**.
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Unbounded Linear Operators in Hilbert Space

Theorem (Inverse of the Hilbert-Adjoint Operator)

Let T:92(T)— H be a linear operator densely defined in a complex Hilbert
space H. Suppose that T is injective and its range 2(T) is dense in H.
Then T* is injective and

(T*)—l — (T_l)*.

o T* exists, since T is densely defined in H.
Also T~1 exists, since T is injective.
(T'l)* exists, since @(T'l) =%(T) is dense in H.
We must show that (7*)~! exists and satisfies (T*)™1 = (T1)*,
Let ye2(T*). Then, for all xe 2(T71), T-1xe2(T) and

(T T y) =(TT x,y) = (x, ).
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Unbounded Linear Operators in Hilbert Space

o By the definition of the Hilbert-adjoint operator of T71,
(T Ty = (T Ty, forall xea(T™).

This shows that T*y e 2((T~1)*).
Comparing with the preceding equation, we conclude that
(T T'y=y, yea(T").

So T*y =0 implies y =0. Hence, (T*)™1:2(T*)— 2(T*) exists.
Since (T*)~1T* is the identity operator on 2(T*), a comparison with
the preceding equation shows that (7*)™1 < (T71)*.

It suffices now to show that (T*)~1 2 (T1)*.
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Unbounded Linear Operators in Hilbert Space

o Consider any xe 2(T) and y e 2((T71)*).
Then Txe Z(T)=2(T1). Moreover,
(T, (T ) =T Ty = oy,
By the definition of the Hilbert-adjoint operator of T, we have
(Tx,(T™ ) =(x, T*(T™ ) y), forall xeo(T).
From this and the last equation, (T71)*y € 2(T*) and
T*(T_l)*y:y, for all ye@((T_l)*).

By the definition of an inverse:

o T*(T*)7!is the identity operator on 2((T*)™1)=2(T*);

o (T*) L. ®(T*)— 2(T*) is surjective.
Comparing with the preceding, we get 2((T*)™1)22((T1)*).
So (T*)1o(T71)~.



Unbounded Linear Operators in Hilbert Space

Definition (Symmetric Linear Operator)

Let T:92(T)— H be a linear operator which is densely defined in a
complex Hilbert space H. T is called a symmetric linear operator if

(Tx,yy=<(x, Ty), forall x,ye2(T).

Lemma (Symmetric Operator)

A densely defined linear operator T in a complex Hilbert space H is
symmetric if and only if
TcT*.

o By the definition of T%,
(Tx,y)=(x, T*y), forall xea(T), ye2(T").
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Unbounded Linear Operators in Hilbert Space

Suppose, first, that T < T*.
Then T*y =Ty, for all ye2(T).
So the preceding equation, for x,y € 2(T), becomes

<TXry> = (X, Ty>
Hence, T is symmetric.
Suppose, next, that
(Tx,y)=(x,Tyy, forall x,ye2(T).

Then a comparison with (Tx,y) = (x, T*y) shows that:
0 9(T)co(T);
9 T= T* |@(T)'

By definition, T* is an extension of T.
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Unbounded Linear Operators in Hilbert Space

Definition (Self-Adjoint Linear Operator)

Let T:2(T)— H be a linear operator which is densely defined in a
complex Hilbert space H. T is called a self-adjoint linear operator if

T=T".
o Every self-adjoint linear operator is symmetric.

o But a symmetric linear operator need not be self-adjoint.
o In fact, T* may be a proper extension of T, i.e., 2(T)#2(T").
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Unbounded Linear Operators in Hilbert Space

o Of course, 2(T)C 2(T*) cannot happen if 2(T) is all of H.
For a linear operator T : H— H on a complex Hilbert space H, the
concepts of symmetry and self-adjointness are identical.

o Note that in this case, T is bounded, and this explains why the
concept of symmetry did not occur earlier.

o A densely defined linear operator T in a complex Hilbert space H is
symmetric if and only if

(Tx,x) is real, for all xe 2(T).
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Closed Linear Operators and Closures
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Unbounded Linear Operators in Hilbert Space

Definition (Closed Linear Operator)

Let T:2(T)— H be a linear operator, where 2(T)< H and H is a
complex Hilbert space. T is called a closed linear operator if its graph

G(T)={(xy):xe2(T),y = Tx}
is closed in H x H, where the norm on H x H is defined by

1 y) = (1l + lly %) 2.
This norm results from the inner product defined by

((x1,51), (X2, ¥2)) = (x1,%2) + (Y1, 2).
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Unbounded Linear Operators in Hilbert Space

o From the theory of closed linear operators, we get the following facts.

Theorem (Closed Linear Operator)
Let T:2(T)— H be a linear operator, where 2(T)< H and H is a
complex Hilbert space. Then:

T is closed if and only if x, — x, x, € 2(T) and Tx,— y together
imply that x€ 2(T) and Tx=y.

If T is closed and 2(T) is closed, then T is bounded.

For T be bounded, T is closed if and only if 2(T) is closed.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Unbounded Linear Operators in Hilbert Space

Theorem (Hilbert-Adjoint Operator)

Let T:2(T)— H be a linear operator, where 2(T)< H and H is a
complex Hilbert space. The Hilbert-adjoint operator T* is closed.

o Consider any sequence (yn) in 2(T*), such that:
2 Yn =)0,
o T yp— z9.

We show that yp € 2(T*) and zp= T *yp.
By the definition of T*, for every y e 2(T),
Ty, yn) =<y, T yn).

By continuity of the inner product,

(Ty,y0) =(y,z0), forevery ye2(T).

By the definition of T*, we get ype 2(T*) and zg= T*yp.
Applying the preceding theorem, we conclude that T* is closed.



Unbounded Linear Operators in Hilbert Space

Definition (Closable Operator, Closure)
Let T:92(T)— H be a linear operator, where 2(T)< H and H is a
complex Hilbert space.
o If T has an extension T; which is a closed linear operator, then T is
said to be closable, and T; is called a closed linear extension of T.

o A closed linear extension T of a closable linear operator T is said to
be minimal if every closed linear extension Ty of T is a closed linear
extension of T. This minimal extension T of T - if it exists - is called

the closure of T.

o If T exists, it is unique.
o If T is not closed, the problem arises whether T has closed extensions.
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Unbounded Linear Operators in Hilbert Space

Theorem (Closure)

Let T:9(T)— H be a linear operator, where H is a complex Hilbert space
and 2(T) is dense in H. Then, if T is symmetric, its closure T exists and
is unique.

o We define T by:
o First defining the domain M = 2(T);
o Then defining T itself.

Then we show that T is indeed the closure of T.

Let M be the set of all x € H for which there is a sequence (x,) in
2(T) and a y € H, such that

Xp—x and Tx,—y.

We can show that M is a vector space. Clearly, 2(T)< M.



Unbounded Linear Operators in Hilbert Space

o On M we define T by setting
y :7x, xeM,

with y given by
Xp— X, TITxn—y.

To show that T is the closure of T, we have to prove that T has all
the properties by which the closure is defined.

Obviously, T has the domain 2(T) =M.

We shall prove:
To each x € 2(T), there corresponds a unique y.
T is a symmetric linear extension of T.
T is closed and is the closure of T.
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Unbounded Linear Operators in Hilbert Space

Uniqueness of y, for every xe 2(T).
In addition to (x,), let (X,) be another sequence in 2(T), such that

Xp—x and TXx,—Y.

Since T is linear, Txp— TXp = T(xn—Xn).

Since T is symmetric, for every ve 2(T),
(v, Txp— TXp) =4, T(Xn—Xp)) ={Tv,xp—Xp).
Letting n — oo and using the continuity of the inner product,
(v,y =y)=(Tv,x-x)=0.

Therefore, y—y 1. 2(T). Since 2(T) is dense in H, 2(T)* = {0}.
Hence, y—y=0. Thus, y=y.



Unbounded Linear Operators in Hilbert Space

T is a symmetric linear extension of T:

Since T is linear, sois T.

This also shows that T is an extension of T.

We show that the symmetry of T implies that of T.

For all x,z€ @(T), there are sequences (x,),(z,) in @(T), such that

Xp— X, Ixp— Tx
zZn—2, Tlz,— Tz

Since T is symmetric, (zn, Txn) =Tz, Xn)-
Letting n — co and using the continuity of the inner product,

(z,?x) = (?z,x).

Since x,z € @(T) were arbitrary, this shows that T is symmetric.
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Unbounded Linear Operators in Hilbert Space

T is closed and is the closure of T:

We prove closedness of T by considering any sequence (wp,) in 2(T),
such that w,, — x and Tw,, — y and proving x€ 2(T) and Tx=y.
Every wy, (m fixed) is in @(T).

By the definition of @(T), there is a sequence in 2(T) which
converges to wy, and whose image under T converges to T wi,.
Hence, for every fixed m, there is a v;, € 2(T), such that

1 _
IWm=vmll<— and [[Twy— Tvpll < —.
m m

From this, we conclude that v, — x and Tv,, e

By the definitions of 2(T) and T, we get xe 2(T) and y = Tx.
Hence, T is closed.

By the Closed Linear Operator Theorem, every point of @(T) must
also belong to the domain of every closed linear extension of T.

So T is the closure of T. We also get that the closure is unique.
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Unbounded Linear Operators in Hilbert Space

Theorem (Hilbert-Adjoint of the Closure)

For a symmetric linear operator T, we have (T)* =T

o Since T < T, by a preceding theorem, (T)* < T*. Hence
2((T))<c2(T*). We show ye2(T*) implies ye 2((T)*).
Let ye2(T™*). By the definition of the Hilbert-adjoint operator, it

suffices to prove that, for every xe 2(T),
(Tx,y) = (T) vy =, T*y),

where the second equality follows from (T)* < T*.

By the definitions of 2(T) and T, for each x€ 2(T), there is a
sequence (x,) in 2(T), such that x, — x and Tx, — yo = Tx.
Since ye2(T*) and x, € 2(T), by definition, (Txp,y) = (xn, T y).
By continuity of the inner product, (Tx,y) =(x, T*y), x€ @(?)
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Subsection 4

Spectral Properties of Self-Adjoint Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 38/94



Unbounded Linear Operators in Hilbert Space

Theorem (Regular Values)
Let T:2(T)— H be a self-adjoint linear operator which is densely defined
in a complex Hilbert space H. Then a number A belongs to the resolvent
set p(T) of T if and only if, there exists a ¢ >0, such that, for every
xea(T),

I Taxll = clixll,
where Ty =T —Al.

Let A€ p(T). Then, the resolvent Ry = (T —A/)~! exists and is
bounded, say, IRyl = k >0. Since Ry T)x =x, for xe 2(T), we get

XN = 1Ry TaxIl < I RAII TaxIl = kIl Tax|l.

Division by k yields
Il Taxll = clixll,

where ¢ = %
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Unbounded Linear Operators in Hilbert Space

Conversely, suppose || Tyx|l = clixll, x€ 2(T), holds for some ¢ > 0.

We consider the vector space
Y={y:y=Tix,xe2(T)},

i.e., the range of T,. We show that:
Ty:2(T)—Y is bijective;
Y is dense in H;
Y is closed.

These imply that the resolvent R; = T/l_l is defined on all of H.
Boundedness of R; will then follow from hypothesis.

So we will have A€ p(T).
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Unbounded Linear Operators in Hilbert Space

Consider any x1,x2 € 2(T), such that Tyx; = Tyxo.
Since T, is linear, the hypothesis yields

0=1Tix1— Taxall = | Ta(x1 —x2)ll = cllx1 — x2ll.

Since ¢ >0, this implies ||x; —x>| = 0.
Hence, x1 = xo.
So the operator T):2(T)— Y is bijective.
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Unbounded Linear Operators in Hilbert Space

We prove that Y = H by showing that xo L Y implies xo = 0.
Let xo L Y. Then, for every y = T)xe Y,

0=(Tax,x0) = {Tx,x0) — A{x, X0).
Hence, for all xe 2(T),
(T, Xo) = {x, Ax0).

By definition of the Hilbert-adjoint, xo € 2(T*) and T*xp = Axp.
Since T is self-adjoint, 2(T*)=2(T) and T*=T. So Txg = Axo.
Suppose xo #0. This implies that A is an eigenvalue of T.

Hence, A=A must be real. So Txg=Axg. l.e., Tyxp =0.

But now, the hypothesis yields a contradiction:

0=|Tyxoll = clixoll implies |Ixoll =0.

_J_ —
It follows that Y =1{0}. So Y =H.



Unbounded Linear Operators in Hilbert Space

We prove that Y is closed. Let ype Y.

Then there is a sequence (yy) in Y, such that y, — yo.

Since y, € Y, we have y, = T)xp, for some x,€ 2(T,)=2(T).
By the hypothesis,

1 1
IXn = Xm |l < E” T/I(Xn_xm)” = Z“yn_ym”~

Since (y,) converges, this shows that (x,) is Cauchy.

Since H is complete, (x,) converges, say, x, — Xo.

Since T is self-adjoint, by a previous theorem, it is closed.
Thus, we have xg € 2(T) and Tyxo = yo.

This shows that yg € Y. Since yg € Y was arbitrary, Y is closed.
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Unbounded Linear Operators in Hilbert Space

o Parts (ii) and (i) imply that Y = H.
From this and Part (i), the resolvent R; exists and is defined on H,

Ri=T;':H—9(T).

By a previous result, Ry is linear.
For all y € H and corresponding x = Ry, we have y = T x.
Moreover, by hypothesis,

1 1
IRyl = lixll = = Taxll = =llyl.
c c

So Ryl S% and R} is bounded.
By definition this proves that A€ p(T).
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Unbounded Linear Operators in Hilbert Space

Theorem (Spectrum)

Let H be a complex Hilbert space. Let T:2(T)— H be a self-adjoint

linear operator, with 2(T) dense in H. The spectrum a(T) of T is real
and closed.

We first show that o(T) is real.
For every x#0 in 2(T) we have

(Tax,x) =(Tx,x) = A{x,x).
Since (x,x) and (Tx,x) are real,
(Tax,x) = (Tx, x) = A{x, X).

We write A = @+ i, with real @ and g.
Then A=a—iB.
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Unbounded Linear Operators in Hilbert Space

o Subtraction yields
(Tax, ) = (Tax,x) = (A= 1){x, x) = 2iBlixI12.

The left side equals —2/Im({ T x, x).

Since the imaginary part of a complex number cannot exceed the
absolute value, we have by the Schwarz inequality

1BIIxII% < K Tax, x)| < | TaxIlixl.

Division by [|x|l #0 gives |Bllx|l < | Tax|l.

Note that this inequality holds for all xe 2(T).

If A is not real, B#0. So, by the previous theorem, 1€ p(T).
Hence, o(T) must be real.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Unbounded Linear Operators in Hilbert Space

We now show that o(T) is closed.

We do this by proving that the resolvent set p(T) is open.

We consider an arbitrary A9 € p(T).

We show that every A sufficiently close to Ag also belongs to p(T).
By the triangle inequality,

| Tx = Aoxll = | Tx = Ax + (A = Ag)xIl < I| Tx — AxIl + A = Aol x|l

So
| Tx = Ax|l = [| Tx = Aox|l = 1A = AgllIxIl.

Since Ag € p(T), there is a ¢ >0, such that for all xe 2(T),

I'Tx = Aoxl = cllx|l.
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o Assume that 1 is close to Ao, say, [A—Agl < 5.
Then previous inequalities imply, for all xe 2(T),

1 1
I'Tx = Axll = clix]l - ECIIXII = 5CIIXII~

By a previous theorem, A€ p(T).

So A has a neighborhood lying entirely in p(T).

Since Ag € p(T) was arbitrary, we conclude that p(T) is open.
Hence, o(T)=C—p(T) is closed.
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Theorem (Spectrum)

If U:H — H is a unitary linear operator on a complex Hilbert space
H # {0}, then the spectrum o (U) is a closed subset of the unit circle.
Thus, [A| =1, for every Ae o (V).

o We have |U] =1, by a preceding theorem.
Hence, |A| <1, for all Ae o(U), also by a previous theorem.
Also 0€ p(U), since for A =0 the resolvent operator of U is U™t = U*.
The operator U~ is unitary by a preceding theorem.
Hence, UL =1.

Also, a preceding theorem, with T = U and Ag =0, now implies that

every A satisfying || < ||U—1*1|| =1 belongs to p(U).

Hence, the spectrum of U must lie on the unit circle.
It is closed, by another theorem.
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Lemma (Power Series)
Let -
h(A)=) anA”, an real,
n=0

be absolutely convergent, for all A, such that |A| < k. Suppose that
S e B(H, H) is self-adjoint and has norm ||S|| < k, where H is a complex
Hilbert space. Then

h(S)=) anS”
n=0

is a bounded self-adjoint linear operator and
Ih(S)Il< ) lanlk".
n=0
If a bounded linear operator commutes with S, it does so with h(S).
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o Let hy(A) denote the n-th partial sum of the A-series.
For |A| < k, the series converges absolutely (hence also uniformly).
Since H is complete, absolute convergence implies convergence.

Hence, convergence of the S-series follows from ||S| < k and
||Zan5n|| = Zlanlllslln <l|anlk".

We denote the sum of the series by h(S).

This is in agreement with a preceding section, because h(A) is
continuous and h,(A) — h(A), uniformly for |A| < k.
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o We show, next, that the operator h(S) is self-adjoint.
Since the h,(S) are self-adjoint, (h,(S)x,x) is real.
Hence, (h(S)x,x) is real by the continuity of the inner product.
So that h(S) is self-adjoint, since H is complex.
Finally, we prove the last inequality.
Since ||S| < k, a preceding theorem gives [m, M| < [—k, k].
Another theorem yields, for J=[m, M],

n .
Ihn(S)Il < max|ha(A) < ) lajlk’.
Aed J=0

Letting n — oo, the conclusion follows.
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Wecken's Lemma

Let W and A be bounded self-adjoint linear operators on a complex Hilbert
space H. Suppose that WA= AW and W? = A%, Let P be the projection
of H onto the null space A (W —A). Then:

If a bounded linear operator commutes with W — A, it also commutes
with P.

Wx =0 implies Px = x.
We have W = (2P -1)A.

Suppose that B commutes with W — A.

By hypothesis, Px e A (W — A), for every x€ H.

Thus, (W -A)BPx=B(W -A)Px=0.So BPxe N (W - A).
This implies P(BPx) = BPx. l.e., PBP = BP.

It now suffices to show that PBP = PB.
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o We must show PBP = PB.
Since W — A is self-adjoint,
(W-A)B*=[B(W-A)]*=[(W-A)B]* =B*(W-A).

This shows that W — A and B* also commute.
Hence, reasoning as before, we obtain PB*P = B*P.
Since projections are self-adjoint,

PBP =(PB*P)* =(B*P)* = PB.
Together with PBP = BP, we have BP = PB.

Let Wx=0.
Since A and W are self-adjoint and A% = W?,

IAX12 = (Ax, Ax) = (A%x, x) = (W?x,x) = | Wx||> = 0.

So Ax=0. Hence, (W —A)x =0. This shows that xe A (W —A).
But P is the projection of H onto A (W —A). So Px =x.
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From the assumptions W? = A? and WA = AW, we have
(W-A(W+A)=W?-A2=0.
Hence, (W +A)x e /(W —A), for every xe H.
Since P projects H onto A (W —A), we get P(W +A)x = (W + A)x,
for every xe H. Thus,
P(W+A)=W+A.

But note that:
o P(W-A)=(W-A)P, by Part (a);
o (W-A)P=0, since P projects H onto A (W — A).
So
P(W-A)=0.

Hence,
2PA=P(W+A) -P(W-A)=W+A.
Therefore, 2PA-A=W.
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Spectral Theorem for Unitary Operators

Let U: H— H be a unitary operator on a complex Hilbert space H # {0}.
Then, there exists a spectral family & = (Ep) on [-m, 7], such that

T 7
U:f e“"dEng (cos +isinf)dEy.
- -
More generally, for every continuous function f defined on the unit circle,
T
()= [ f(e")dEs,
/2

where the integral is to be understood in the sense of uniform operator
convergence. Moreover, for all x,y € H,

A= f F(e®)dw(8), w(8)=(Esx,y),

where the integral is an ordinary Riemann-Stieltjes integral.
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o We prove that, for a given unitary operator U, there is a bounded
self-adjoint linear operator S, with o(S) <[, 7], such that

U=e" =cosS+isinS.

Then we use the spectral theorems of the preceding chapter.
We proceed stepwise as follows:

We prove that U is unitary, provided S exists.

We write U=V + W, where

1 ) 1 .
V=Z(U+U"), W= (U+U°),

and prove that V and W are self-adjoint and —-/<=V </,—-I<W <.
We investigate some properties of g(V/) =arccosV and A=sing(V).
We prove that the desired operator S is

S=(2P-1I)(arccos V),

where P is the projection of H onto A (W —A).
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Suppose S is bounded and self-adjoint.
By the Power Series Lemma, so are cosS and sinS.
These operators commute by the same lemma.

This implies that U is unitary since

uu* cosS+15mS)(cosS—/smS)

(
(cosS) +(sm5)
(
l.

cos? +sin?)(S)

Similarly, U*U = 1.
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Self-adjointness of V =2(U+U*) and W =4 (U~ U*) follows by a
direct calculation using a previous result.

Since UU* =U*U (=1), we have VW =WV

Also U] =1U* =1 imply |V <1, W] <1.

Hence, the Schwarz inequality yields

(Va0 < I VxlxD < IV IEXP < G, ).

So we have
—{x, x) < {(Vx,x) < (x,x).

This proves the first formula.
The second follows by the same argument.
Furthermore, by direct calculation,

1 1
Vw2 = Z(U2+2uu* +(U*)2)—Z(U2—2UU* +(U"?)=UU* = 1.
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We consider

b4 b4 1
A)=arccosd == —arcsind==—-A—=A3—....
&) 2 2" "6
The Maclaurin series on the right converges for |A| < 1.
o At A =1 the series of arcsinA has positive coefficients.
So it has a monotone sequence of partial sums s,, when 1> 0.
This sequence is bounded on (0,1), since s,(1) <arcsinA < 3.
So, for every fixed n, we have s,(1) —s,(1)< 3, as A — 1.
It follows that the series converges at A =1.
o Convergence at A = —1 follows readily from that at A =1.
Note that || V| = 1.

So, by a previous lemma, the operator

g(V)=arccos V = T V—EV3—~~~
2 6
exists and is self-adjoint.
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o Now define
A=sing(V).
This is a power series in V.
By a previous lemma, A is self-adjoint and commutes with V.
Moreover, it also commutes with W.
By the power-series expression cosg(V)=V.

So we have
V2 + A? = (cos® +sin®)(g(V)) = 1.

A comparison with V2 + W? = yields W? = A?.
Hence, we can apply Wecken's lemma to conclude that:
o W=(2P-1)A;
o Wx =0 implies Px = x;
o P commutes with V' and with g(V/), since these operators commute
with W - A.
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Define
S=(2P-1)g(V)=g(V)(2P-1).
Obviously, S is self-adjoint.
. S satisfies U=e”® =cosS+isinS.
Set k = A%. Define h; and hy by
hi(x) = cosA=1-2A2+—---;
Ahp(x) = sind=A-HA3+—--

These functions exist for all k.
Since P is a projection, (2P —1)2=4P?— 4P+ =4P—4P +/=1.
So we get
§*=(2P-1)’g(V)* =g(V)>.
Hence,
cosS = hy(S?) = h1(g(V)?) = cosg(V) = V.
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o Next we show that sinS=W.

Indeed, we have

sinS 5/72(52)

(2P -1)g(V)h2(g(V)?)
(2P -1)sing(V)
(2P-1A

= W.

We conclude that e® = V +iW = U.
co(S)c[-n,n).

Since |arccosA| < 7, we get that ||S| <.

Since S is self-adjoint and bounded, o(S) is real.

A preceding theorem yields the result.
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o Let (Ep) be the spectral family of S.

Then the equations for U and f(U) follow from U =e™ and the
spectral theorem for bounded self-adjoint linear operators.

: We can take —x (instead of —n7) as the lower limit of
integration without restricting generality.

If we had a spectral family, call it (Ep), such that E_; #0, we would
have to take —z~ as the lower limit of integration in those integrals.

However, instead of By we could then equally well use £y defined by

0, if 0=—-n
E@Z E@-E_n, if —-m<O<m .
/, if0=n

Eg is continuous at 6 = —.
So the lower limit of integration — is in order.
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o Let H be a complex Hilbert space.

o Consider a self-adjoint linear operator T:2(T)— H on H, where
P(T) is dense in H and T may be unbounded.

o We associate with T the operator
U=(T-il(T+il)™,

called the Cayley transform of T.
o We show that the operator U is unitary.
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©

We defined the Cayley transform U= (T —il)(T +il)~! of T, which is
unitary.

©

We obtain the spectral theorem for the (possibly unbounded) T from
that for the bounded operator U.

©

T has its spectrum a(T) on the real axis of the complex plane C.

©

On the other hand, the spectrum of a unitary operator lies on the unit
circle of C.

©

A mapping C — C which transforms the real axis into the unit circle is

t—i

u= =
t+1

o This mapping suggests the Cayley transform.
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Lemma (Cayley Transform)

The Cayley transform of a self-adjoint linear operator T:2(T)— H exists
on H and is a unitary operator, where H # {0} is a complex Hilbert space.

o Since T is self-adjoint, (T) is real.
Hence, i and —i belong to the resolvent set p(T).
Consequently, by the definition of p(T), the inverses (T +il)~! and
(T —il)~! exist on a dense subset of H and are bounded operators.
A preceding theorem implies that T is closed because T = T*.
By a previous lemma, those inverses are defined on all of H.
Thatis, Z(T +il)=H and 2(T-il)=H.
We thus have, since / is defined on all of H,

(T+i)Y(H)=2(T+il)=2(T)=2(T -il).

We also have (T —il)(2(T))=H.
This shows that U is a bijection of H onto itself.
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o By a previous theorem, it remains to prove that U is isometric.
Take any x€ H, set y = (T +il)"1x and use (y, Ty) = (Ty, y).

We calculate

IUxI? = (T =il)yl?
= (Iy-iy,Ty—=iy)
= ATy, Ty)+iTy,y) =iy, Ty) + iy, iy)
= (Iy+iy, Ty +iy)
= (T +il)yl?
= (T +il)(T+il)"tx|?
=[xl

A previous theorem now implies that U is unitary.
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Lemma (Cayley Transform)

Let T:2(T)— H be a self-adjoint linear operator, where, H # {0} is a
complex Hilbert space, and let U be defined by U= (T —il)(T +il)~t. Then

T=i(l+U)(I-U)™
Furthermore, 1 is not an eigenvalue of U.

o Let xe9(T) and y=(T +il)x.
Then Uy = (T —il)x, since (T +il)™Y(T+il)=1.
By addition and subtraction, we get
(I+U)y=2Tx and (I-U)y=2ix.

We know y € Z(T +il) = H. Hence, | —U maps H onto 2(T).
We also see that, if (/- U)y =0, then x=0.
So, by y=(T +il)x, y=0.
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o Hence, (/- U)™! exists by a previous theorem.
Moreover, it is defined on the range of / — U, which is 2(T).
Hence, since (/- U)y =2ix,

y=2i(l-U)"tx, forall xe2(T).
By substitution into (/+ U)y =2Tx, for all xe 2(T),

_!
"2

Since (/ - U)™! exists, 1 cannot be an eigenvalue of the Cayley
transform U.

Tx=-(I+U)y=i(l+U)(I-U)"x.
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Spectral Theorem for Self-Adjoint Linear Operators

Let 7:2(T)— H be a self-adjoint linear operator, where H # {0} is a
complex Hilbert space and 2(T) is dense in H. Let U be the Cayley
transform of T and (Ep) the spectral family in the spectral representation

T b4
-U= e’adEg=f (cosO +isin@)dEy

=7 =7

of —U. Then, for all xe2(T),

(Tx, x) ffﬂ tan gdw(G) w(0) = (Egx, x)

Lo Adv(A),  v(A) = (Fax,x)

where F = Eparctana-
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o From a previous spectral theorem,we have
T /1
U= e’edEng (cosB +isin0)dEy.
=7 =7

We prove the statement in two steps:

We show that (Ep) is continuous at —x and 7.
We use Property (a) to establish the claimed equations.
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(Ep) is the spectral family of a bounded self-adjoint linear operator
which we call S. Then —U =cosS +isinS.

From a previous theorem, we know that a 8y at which (Ep) is
discontinuous is an eigenvalue of S.

Then, there is an x #0, such that Sx =6px.

Hence, for any polynomial g, q(S)x = q(6p)x.

Also, for any continuous function g on [-7, 7], g(5)x = g(6o)x.
Since 0(S) <[, 7], we have E_,- =0.

Hence, if E_; #0, then —7 would be an eigenvalue of S.

By the preceding relations, the operator U would have the eigenvalue
—cos(—m)—isin(-m)=1.

This contradicts a preceding lemma.

Similarly, E; =/ and, if E;- #/, U would have an eigenvalue 1.
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Let xe H and y = (/- U)x.
In the proof of a previous lemma, it was shown that /- U:H —2(T).
Hence, y € 2(T).
Now, we have T =i(/+U)(/-U)™1. So we get
Ty=i(l+U)(I-U)ty =i(1+ U)x.
Since ||Ux|| = |Ix|l, we obtain
(Ty,y) = <(i(I+U)x,(I-U)x)
= i((Ux,x) —(x, Ux))
= i((Ux,x) = (Ux, x))
= =2Im{Ux,x)
= 27 sin0d(Egx,x).

Hence
T

0 0
(Ty,y)=4 sinacosid(ng,x).

=7
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o Recall that (Ep) is the spectral family of the bounded self-adjoint

linear operator S in —U =cosS +isinS.
Hence Ey and S commute. So Ey and U commute.
Now, we obtain

(Egy,yy = <(Eg(I-U)x,(I-U)x
= ((I-0)*(1-U)Egx,x)

We also have:
o E,Eg=E,, when ¢ <0;
o (L+e7®)(1+e') = (/2 +e /22 = 4c0s? ¥.

So we obtain ;

(Egy,y) =4 cos2%d(E¢x,x>.

-7
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o We obtained )

(Eoy,y) = 4[

v/

cos? %d(E(px,x).

Using this, the continuity of Eg at +7 and the rule for transforming a
Stieltjes integral, we finally have

ffntangd(Egy,y) ffntang(4cos2g)d(ng,x)

4 [” sin§ cos S d(Eyx, x).

We now have the first formula with y instead of x.

The second follows by the indicated transformation 6 = 2arctanA.
Note that (Fj) is indeed a spectral family. In particular:

A——
9 FA —*OOO;

A—+00

o [ —1.
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o Consider the operator

T: 2(T) — L?(~o0,+0);

X — tx

where 2(T) < L?(—o00, +00).
o 9(T) consists of all x e L?(—o0,+00), such that Tx € L?(—o0, +00).
o So x€2(T) if and only if x € L?(~oc0, +o0) and

+00
f t2|x(t)I2dt < co.

(o]
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o The definition implies that 2(T) # L2(~oc0, +00).

An x € [?(—o0,+00) not satisfying finiteness is

1 ift=1
X(t):{ t, if t<1
Hence x¢2(T).

o 9(T) contains all functions x € L?(~o0, +00) which are zero outside a
compact interval.

o It can be shown that this set of functions is dense in L?(—o0,+00).
o Hence 9(T) is dense in L?(—o0,+00).
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Lemma (Multiplication Operator)

The multiplication operator T defined by U= (T —il)(T +il)™! is not
bounded.

o Consider
xolt) = 1, ifnst<n+1
M7 0, elsewhere ’ ,i ,,11 >
We have
9 [Ixall =1;

o I Txpll2 = [ 24t > n2,

So L |7>—<X'|7|" > n, where ne IN can be chosen as large as desired.
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o The unboundedness results from the fact that we are dealing with
functions on an infinite interval.

o For comparison, in the case of a finite interval [a, b] the operator
T: 2(T) — [?ab];
X — tx,

is bounded.
o If |b|=|al, then

_ b
ITx1% = f t2|x(t)[%dt < b?|Ix|I?;
a

o If |b] < |al, the proof is similar.
This also shows that x € L2[a, b] implies Tx € L?[a, b].
Hence 2(T) = L?[a,b], i.e., T is defined on all of L2[a,b].
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Theorem (Self-Adjointness)

The multiplication operator T defined by U= (T —il)(T +il)!is
self-adjoint.

o T is densely defined in L?(—oo0, +c0), as was mentioned before.
T is symmetric because, using t =, we have

+00 - +00
T = [ (@)= [ xowB)de= 00T,

(e.0] (e0]

Hence, T < T*, by a preceding theorem.

Thus, it suffices to show that 2(T)292(T*).

This we do by proving that y e 2(T*) implies y e 2(T).
Let ye2(T™*). Then, for all xe2(T),

(Tx,y)=(x,y™), y*"=T"y.
Written out [ tx(t)y(t)dt = [+ x(t)y*(t)dt.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Unbounded Linear Operators in Hilbert Space

o Now we have

[ <ol -y @ide=o.

(e.¢]

In particular, this holds for every x € L?(—o0,+00) which is zero
outside an arbitrary given bounded interval (a, b).
Clearly, such an x is in 2(T). Choose
ty(t)—y*(t), ifte(ab
X(t):{ 0,( ) 2 eIsewP(1ere) ’
Then we have fab Ity (t) —y*(t)[>dt =0.
It follows that ty(t)—y*(t) =0 almost everywhere on (a, b).
Hence, ty(t) = y*(t) almost everywhere on (a, b).
Since (a,b) was arbitrary, we have ty = y* € [?(~o0,+c0). So
yeD(T). We also have T*y =y* =ty =Ty.
o Note that the theorem implies that T is closed, because T = T*.
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Theorem (Spectrum)

Let T be the multiplication operator and o(T) its spectrum. Then:
T has no eigenvalues.
o(T) is all of R.

For any A, let x€2(T) be such that Tx=Ax. Then (T —A/)x =0.
Hence, by the definition of T,

+00
0=II(T-AxI? = f It — A12|x(t)I2dk.

Since [t—A| >0, for all t# A, we have x(t) =0, for almost all teR.
Hence, x =0. So x is not an eigenvector and A not an eigenvalue of T.

Since A was arbitrary, T has no eigenvalues.
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We have o(T) <R, by previous theorems.
Let A e R. We define

[,
V(t):{ 1, ifA-i<t<a+l ——1 —
n 0, elsewhere ’ " g

Consider x, = "V i Vn- Then |[x,ll = 1.

Write T, = T — Al, as usual.

Note that (t—1)? < 2 on the interval on which v, is not zero.

So, by the definition of T,

I Tal?= [ APt Pde = S [ " ()Pt =
n . n = n2 oo n n2

(e.¢]
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o Taking square roots, we have || Tyx,ll < %
Since T has no eigenvalues, the resolvent Ry = TA_:l exists.
Moreover, Tyx,#0 because x, #0, by a preceding result.
Consider the vectors ;

Yn=—=——T)xn.
" Taxall "

o They are in the range of T, which is the domain of Ry;
o They have norm 1.
Applying Ry, we get

IRAYall = ol =
Will = ———lIxnll = n.
Y Tl

This shows that the resolvent R) is unbounded. Hence, Aea(T).
Since A € R was arbitrary, o(T) =R.
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o The spectral family of T is (E;), where 1€ R and
Ejy : 1?(—00,+00) — [2(—00,A)

is the projection of L?(—oo,+00) onto L2(—o00,A), considered as a
subspace of L2(-o00,+00).
o Thus,
_ x(t), ift<a
Eﬂx(t)‘{ 0, ift=A"
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o Let x(t) be a function in L2(—o0,00).

o Recall that x is said to be absolutely continuous on an interval [a, b]
if, given € >0, there is a 6 >0, such that:

For every finite set of disjoint open subintervals (a1, b1),...,(an, bn) of
[a, b] of total length less than §, we have

:i x(aj)l<e.

o Recall, also, that, if x is absolutely continuous on [a, b], then:

o It is differentiable almost everywhere on [a, b];
o x'elL[ab].
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©

©

©

©

Consider the differentiation operator

D: 2(D) — L?(~o0,+);
x — ix,
where x' = % and i helps to make D self-adjoint.

By definition, the domain 2(D) of D consists of all x € L?(—00,+00)
which are:

o Absolutely continuous on every compact interval on R;
o Such that x’ € [?(—o0, +00).

2(D) contains the sequence (ep) involving the Hermite polynomials.
The sequence (e,) is total (i.e., its span is dense) in L2(—oco,+00).
Hence, 2(D) is dense in L?(—oco,+00).
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Lemma (Differentiation Operator)

The differentiation operator D is unbounded.

o D is an extension of Dy = D |y, where Y =2(D)n L2[0,1] and L2[0,1]
is regarded as a subspace of [?(—o0,+00).

Hence, if Dy is unbounded, so is D.
We show that Dy is unbounded.

Let 1

nt, i

x()={ o " |

Sk O
A A
A IA
=3

= ==
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o We defined

3l O

=
=

= 3=

The derivative is

v | -n if0<t<i

X(t)‘{o, iflct<1
We calculate )

||xn||2=f Ixn(t)12dt = —

0 n

Moreover,

1
| Doxnll? = fo (£t = .

The quotient "’f)‘jxﬁ’" =nv3>n. So Dy is unbounded.
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o The differentiation operator is unbounded, even if considered for
L?[a, b], where [a, b] is a compact interval.

Theorem (Self-Adjointness)

The differentiation operator D is self-adjoint.

o A proof of this theorem requires some tools from the theory of
Lebesgue integration.
o We finally mention the following properties:

o D does not have eigenvalues;
o The spectrum o(D) is all of R.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators
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