Introduction to Spectral Theory of Linear Operators

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

D Unbounded Linear Operators in Hilbert Space

- Unbounded Operators and their Hilbert-Adjoint Operators
- Hilbert-Adjoint, Symmetric and Self-Adjoint Operators
- Closed Linear Operators and Closures
- Spectral Properties of Self-Adjoint Operators
- Spectral Representation of Unitary Operators
- Spectral Representation of Self-Adjoint Linear Operators
- Multiplication Operator and Differentiation Operator

Subsection 1

Unbounded Operators and their Hilbert-Adjoint Operators

Unbounded Operators

- Let *H* be a complex Hilbert space.
- We consider linear operators $T : \mathcal{D}(T) \to H$, with $\mathcal{D}(T) \subseteq H$.
- T is bounded if and only if there is a real number c, such that

 $||Tx|| \le c ||x||$, for all $x \in \mathcal{D}(T)$.

- An important unbounded linear operator is the differentiation operator.
- Note that the operator T may be unbounded.
- In the case of a bounded linear operator T on a Hilbert space H, self-adjointness of T was defined by (Tx, y) = (x, Ty).
- The following theorem shows that an unbounded linear operator *T* satisfying this relationship cannot be defined on all of *H*.

The Hellinger-Toeplitz Boundedness Theorem

Hellinger-Toeplitz Theorem (Boundedness)

If a linear operator T is defined on all of a complex Hilbert space H and satisfies $\langle Tx, y \rangle = \langle x, Ty \rangle$, for all $x, y \in H$, then T is bounded.

Suppose, to the contrary, that T is not bounded.
 Then H contains a sequence (y_n) such that ||y_n|| = 1 and ||Ty_n|| → ∞.
 We consider, for n = 1,2,..., the functional f_n defined by

$$f_n(x) = \langle Tx, y_n \rangle = \langle x, Ty_n \rangle.$$

Each f_n is defined on all of H and is linear. For each n, f_n is bounded, since, by the Schwarz inequality,

 $|f_n(x)| = |\langle x, Ty_n \rangle| \le ||Ty_n|| ||x||.$

The Hellinger-Toeplitz Boundedness Theorem (Cont'd)

Moreover, for every fixed x ∈ H, the sequence (f_n(x)) is bounded.
 Indeed, using the Schwarz inequality and ||y_n|| = 1, we have

$$|f_n(x)| = |\langle Tx, y_n \rangle| \le ||Tx||.$$

By the Uniform Boundedness Theorem, $(||f_n||)$ is bounded, say, $||f_n|| \le k$, for all *n*. Thus, for every $x \in H$, we have

 $|f_n(x)| \le \|f_n\| \|x\| \le k \|x\|.$

Taking $x = Ty_n$, we get

$$\|Ty_n\|^2 = \langle Ty_n, Ty_n \rangle = |f_n(Ty_n)| \le k \|Ty_n\|.$$

Hence, $||Ty_n|| \le k$. But this contradicts $||Ty_n|| \to \infty$.

Extensions and Hilbert-Adjoints

- By the Hellinger-Toeplitz Boundedness Theorem, D(T) = H is impossible for unbounded linear operators satisfying (Tx, y) = (x, Ty).
- The problem is to determine suitable domains for extensions.
- The operator T is an extension of the operator S, written $S \subseteq T$, if $\mathscr{D}(S) \subseteq \mathscr{D}(T)$ and $S = T|_{\mathscr{D}(S)}$.
- An extension T of S is a proper extension if D(S) is a proper subset of D(T), i.e., D(T)-D(S) ≠ Ø.

The Role of Hilbert-Adjoint

- For bounded operators, the Hilbert-adjoint T* of an operator T plays a basic role and we want to generalize to the unbounded case.
- In the bounded case the operator \mathcal{T}^* is defined by

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

We can write this as

$$\langle Tx, y \rangle = \langle x, y^* \rangle, \qquad y^* = T^* y.$$

- T^* exists on H and is a bounded linear operator with norm $||T^*|| = ||T||$.
- In the general case, T* must be defined for those y ∈ H, for which there is a y*, such that, for all x ∈ D(T),

$$\langle Tx, y \rangle = \langle x, y^* \rangle, \qquad y^* = T^* y.$$

Conditions for Uniqueness of T^*y

 The operator T* will be defined by y* = T*y, for those y ∈ H for which there is a y*, such that, for all x ∈ D(T),

$$\langle Tx, y \rangle = \langle x, y^* \rangle.$$

 In order that T^{*} be an operator (a mapping), for each y that belongs to the domain D(T^{*}) of T^{*}, the value

$$y^* = T^* y$$

must be unique.

Conditions for Uniqueness of T^*y (Cont'd)

Claim: Uniqueness of y^* holds if and only if T is densely defined in H, i.e., $\mathscr{D}(T)$ is dense in H. Suppose $\mathscr{D}(T)$ is not dense in H. Then $\overline{\mathscr{D}(T)} \neq H$. The orthogonal complement of $\overline{\mathscr{D}(T)}$ in H contains a nonzero y_1 . So $y_1 \perp x$, for every $x \in \mathscr{D}(T)$, i.e., $\langle x, y_1 \rangle = 0$. Then in $\langle Tx, y \rangle = \langle x, y^* \rangle$, we obtain

$$\langle x, y^* \rangle = \langle x, y^* \rangle + \langle x, y_1 \rangle = \langle x, y^* + y_1 \rangle.$$

This shows non-uniqueness.

Suppose, conversely, $\mathscr{D}(T)$ is dense in H. Then $\mathscr{D}(T)^{\perp} = \{0\}$. Hence, $\langle x, y_1 \rangle = 0$, for all $x \in \mathscr{D}(T)$, implies $y_1 = 0$. So $y^* + y_1 = y^*$. This proves uniqueness.

Hilbert-Adjoint Operator

- We use the following terminology:
 - T is an operator **on** H if $\mathcal{D}(T)$ is all of H;
 - T is an operator in H if $\mathcal{D}(T)$ lies in H but may not be all of H.

Definition (Hilbert-Adjoint Operator)

Let $T : \mathcal{D}(T) \to H$ be a (possibly unbounded) densely defined linear operator in a complex Hilbert space H. Then the **Hilbert-adjoint operator** $T^* : \mathcal{D}(T^*) \to H$ of T is defined as follows. The domain $\mathcal{D}(T^*)$ of T^* consists of all $y \in H$, such that, there is a $y^* \in H$ satisfying

$$\langle Tx, y \rangle = \langle x, y^* \rangle$$
, for all $x \in \mathcal{D}(T)$.

For each such $y \in \mathcal{D}(T^*)$, the **Hilbert-adjoint operator** T^* is then defined in terms of that y^* by $y^* = T^*y$.

Remarks on Hilbert-Adjoint Operators

An element y ∈ H is in D(T*) if for that y, (Tx, y), considered as a function of x, can be represented as

$$\langle Tx, y \rangle = \langle x, y^* \rangle$$
, for all $x \in \mathcal{D}(T)$.

• For that y, the formula

$$\langle Tx, y \rangle = \langle x, y^* \rangle$$
, for all $x \in \mathcal{D}(T)$,

determines y* uniquely by density.
Finally, T* is a linear operator.

Sum of Operators

- Let *H* be a complex Hilbert space.
- Let $S: \mathcal{D}(S) \to H$ and $T: \mathcal{D}(T) \to H$ be linear operators, where $\mathcal{D}(S) \subseteq H$ and $\mathcal{D}(T) \subseteq H$.
- Then the sum S + T of S and T is the linear operator with:

• Domain
$$\mathcal{D}(S+T) = \mathcal{D}(S) \cap \mathcal{D}(T);$$

• For every $x \in \mathcal{D}(S+T)$,

$$(S+T)x = Sx + Tx.$$

- $\mathcal{D}(S+T)$ is the largest set on which both S and T make sense.
- $\mathcal{D}(S+T)$ is a vector space.
- Always $0 \in \mathcal{D}(S + T)$, so that $\mathcal{D}(S + T)$ is never empty.
- Nontrivial results can be expected only if $\mathcal{D}(S + T)$ also contains nonzero elements.

Product of Operators

- Let M be the largest subset of D(S) whose image S(M) under S lies in D(T).
- Then $S(M) = \mathscr{R}(S) \cap \mathscr{D}(T)$, where $\mathscr{R}(S)$ is the range of S.
- Then the **product** *TS* is defined to be the operator with domain $\mathcal{D}(TS) = M$, such that for all $x \in \mathcal{D}(TS)$,

$$(TS)x = T(Sx).$$

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

Product of Operators (Cont'd)

- Similarly, let *M* be the largest subset of *D*(*T*) whose image *T*(*M*) under *T* lies in *D*(*S*).
- Then $T(\widetilde{M}) = \mathscr{R}(T) \cap \mathscr{D}(S)$, where $\mathscr{R}(T)$ is the range of T.
- Then the **product** ST is defined to be the operator with domain $\mathscr{D}(ST) = \widetilde{M}$, such that for all $x \in \mathscr{D}(ST)$,

$$(ST)x = S(Tx).$$

Both TS and ST are linear operators.

Subsection 2

Hilbert-Adjoint, Symmetric and Self-Adjoint Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

Hilbert-Adjoint Operators

• By definition,
$$T^{**} = (T^*)^*$$
.

Theorem (Hilbert-Adjoint Operator)

Let $S : \mathcal{D}(S) \to H$ and $T : \mathcal{D}(T) \to H$ be linear operators which are densely defined in a complex Hilbert space H. Then:

(a) If $S \subseteq T$, then $T^* \subseteq S^*$.

b) If
$$\mathcal{D}(T^*)$$
 is dense in H , then $T \subseteq T^{**}$

(a) By definition, (Tx, y) = (x, T*y), for all x ∈ D(T) and all y ∈ D(T*). Since S ⊆ T, (Sx, y) = (x, T*y), for all x ∈ D(S) and y as before. By the definition of S*, (Sx, y) = (x, S*y), for all x ∈ D(S), y ∈ D(S*).
Claim: The last two equations imply D(T*) ⊆ D(S*).

Proof of the Claim

Claim: The last two equations imply $\mathcal{D}(\mathcal{T}^*) \subseteq \mathcal{D}(S^*)$. By the definition of the Hilbert-adjoint operator S^* , the domain $\mathcal{D}(S^*)$ includes all y for which one has a representation

$$\langle Sx, y \rangle = \langle x, S^*y \rangle$$
, for all x in $\mathcal{D}(S)$.

But $(Sx, y) = \langle x, T^*y \rangle$ also represents (Sx, y) in the same form, for x in $\mathcal{D}(S)$.

So the set of y's for which this is valid must be a (proper or improper) subset of the set of y's for which the previous equation holds.

I.e., we must have $\mathscr{D}(T^*) \subseteq \mathscr{D}(S^*)$.

Taking into account both equations, we conclude that

$$S^*y = T^*y$$
, for all $y \in \mathcal{D}(T^*)$.

So, by definition, $T^* \subseteq S^*$.

Hilbert-Adjoint Operators (Part (b))

(b) Taking complex conjugates in $\langle Tx, y \rangle = \langle x, T^*y \rangle$, we have

$$\langle T^*y, x \rangle = \langle y, Tx \rangle$$
, for all $y \in \mathcal{D}(T^*)$, $x \in \mathcal{D}(T)$.

Since $\mathcal{D}(T^*)$ is dense in H, the operator T^{**} exists. By definition,

 $\langle T^*y, x \rangle = \langle y, T^{**}x \rangle$, for all $y \in \mathcal{D}(T^*)$, $x \in \mathcal{D}(T^{**})$.

From these equations, reasoning as in Part (a), we see that:

• An $x \in \mathcal{D}(T)$ also belongs to $\mathcal{D}(T^{**})$;

•
$$T^{**}x = Tx$$
, for all $x \in \mathcal{D}(T)$.

This means that $T \subseteq T^{**}$.

Inverse of the Hilbert-Adjoint Operator

Theorem (Inverse of the Hilbert-Adjoint Operator)

Let $T : \mathscr{D}(T) \to H$ be a linear operator densely defined in a complex Hilbert space H. Suppose that T is injective and its range $\mathscr{R}(T)$ is dense in H. Then T^* is injective and

$$(T^*)^{-1} = (T^{-1})^*.$$

•
$$T^*$$
 exists, since T is densely defined in H .
Also T^{-1} exists, since T is injective.
 $(T^{-1})^*$ exists, since $\mathcal{D}(T^{-1}) = \mathcal{R}(T)$ is dense in H .
We must show that $(T^*)^{-1}$ exists and satisfies $(T^*)^{-1} = (T^{-1})^*$.
Let $y \in \mathcal{D}(T^*)$. Then, for all $x \in \mathcal{D}(T^{-1})$, $T^{-1}x \in \mathcal{D}(T)$ and

$$\langle T^{-1}x, T^*y \rangle = \langle TT^{-1}x, y \rangle = \langle x, y \rangle.$$

Inverse of the Hilbert-Adjoint Operator (Cont'd)

• By the definition of the Hilbert-adjoint operator of T^{-1} ,

$$\langle T^{-1}x, T^*y \rangle = \langle x, (T^{-1})^*T^*y \rangle$$
, for all $x \in \mathcal{D}(T^{-1})$.

This shows that $T^*y \in \mathcal{D}((T^{-1})^*)$.

Comparing with the preceding equation, we conclude that

$$(T^{-1})^* T^* y = y, \quad y \in \mathcal{D}(T^*).$$

So $T^*y = 0$ implies y = 0. Hence, $(T^*)^{-1} : \mathscr{R}(T^*) \to \mathscr{D}(T^*)$ exists. Since $(T^*)^{-1}T^*$ is the identity operator on $\mathscr{D}(T^*)$, a comparison with the preceding equation shows that $(T^*)^{-1} \subseteq (T^{-1})^*$. It suffices now to show that $(T^*)^{-1} \supseteq (T^{-1})^*$.

Inverse of the Hilbert-Adjoint Operator (Cont'd)

• Consider any $x \in \mathcal{D}(T)$ and $y \in \mathcal{D}((T^{-1})^*)$. Then $Tx \in \mathcal{R}(T) = \mathcal{D}(T^{-1})$. Moreover,

$$\langle Tx, (T^{-1})^* y \rangle = \langle T^{-1} Tx, y \rangle = \langle x, y \rangle.$$

By the definition of the Hilbert-adjoint operator of T, we have

$$\langle Tx, (T^{-1})^* y \rangle = \langle x, T^* (T^{-1})^* y \rangle, \text{ for all } x \in \mathcal{D}(T).$$

From this and the last equation, $(T^{-1})^* y \in \mathcal{D}(T^*)$ and

$$T^*(T^{-1})^*y = y$$
, for all $y \in \mathcal{D}((T^{-1})^*)$.

By the definition of an inverse:

• $T^*(T^*)^{-1}$ is the identity operator on $\mathcal{D}((T^*)^{-1}) = \mathscr{R}(T^*)$; • $(T^*)^{-1} : \mathscr{R}(T^*) \to \mathcal{D}(T^*)$ is surjective.

Comparing with the preceding, we get $\mathscr{D}((T^*)^{-1}) \supseteq \mathscr{D}((T^{-1})^*)$. So $(T^*)^{-1} \supseteq (T^{-1})^*$.

Symmetric Linear Operators

Definition (Symmetric Linear Operator)

Let $T : \mathcal{D}(T) \to H$ be a linear operator which is densely defined in a complex Hilbert space H. T is called a **symmetric linear operator** if

$$\langle Tx, y \rangle = \langle x, Ty \rangle$$
, for all $x, y \in \mathcal{D}(T)$.

Lemma (Symmetric Operator)

A densely defined linear operator T in a complex Hilbert space H is symmetric if and only if

$$T \subseteq T^*$$
.

By the definition of T*,

 $\langle Tx, y \rangle = \langle x, T^*y \rangle$, for all $x \in \mathcal{D}(T)$, $y \in \mathcal{D}(T^*)$.

Symmetric Linear Operators (Cont'd)

 Suppose, first, that T ⊆ T*. Then T*y = Ty, for all y ∈ D(T).
 So the preceding equation, for x, y ∈ D(T), becomes

$$\langle Tx, y \rangle = \langle x, Ty \rangle.$$

Hence, T is symmetric.

Suppose, next, that

$$\langle Tx, y \rangle = \langle x, Ty \rangle$$
, for all $x, y \in \mathcal{D}(T)$.

Then a comparison with $\langle Tx, y \rangle = \langle x, T^*y \rangle$ shows that:

•
$$\mathcal{D}(T) \subseteq \mathcal{D}(T^*);$$

• $T = T^* |_{\mathcal{D}(T)}.$
By definition, T^* is an extension of T .

Self-Adjoint Linear Operators

Definition (Self-Adjoint Linear Operator)

Let $T : \mathcal{D}(T) \to H$ be a linear operator which is densely defined in a complex Hilbert space H. T is called a **self-adjoint linear operator** if

$$T = T^*$$
.

- Every self-adjoint linear operator is symmetric.
- But a symmetric linear operator need not be self-adjoint.
- In fact, T^* may be a proper extension of T, i.e., $\mathcal{D}(T) \neq \mathcal{D}(T^*)$.

On Symmetry and Self-Adjointness

- Of course, D(T) ⊊ D(T*) cannot happen if D(T) is all of H.
 For a linear operator T: H→ H on a complex Hilbert space H, the concepts of symmetry and self-adjointness are identical.
- Note that in this case, *T* is bounded, and this explains why the concept of symmetry did not occur earlier.
- A densely defined linear operator T in a complex Hilbert space H is symmetric if and only if

 $\langle Tx, x \rangle$ is real, for all $x \in \mathcal{D}(T)$.

Subsection 3

Closed Linear Operators and Closures

Closed Linear Operators

Definition (Closed Linear Operator)

Let $T : \mathcal{D}(T) \to H$ be a linear operator, where $\mathcal{D}(T) \subseteq H$ and H is a complex Hilbert space. T is called a **closed linear operator** if its graph

$$\mathscr{G}(T) = \{(x, y) : x \in \mathscr{D}(T), y = Tx\}$$

is closed in $H \times H$, where the norm on $H \times H$ is defined by

$$||(x,y)|| = (||x||^2 + ||y||^2)^{1/2}.$$

This norm results from the inner product defined by

$$\langle (x_1, y_1), (x_2, y_2) \rangle = \langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle.$$

The Closed Linear Operator Theorem

• From the theory of closed linear operators, we get the following facts.

Theorem (Closed Linear Operator)

Let $T : \mathcal{D}(T) \to H$ be a linear operator, where $\mathcal{D}(T) \subseteq H$ and H is a complex Hilbert space. Then:

- (a) *T* is closed if and only if $x_n \to x$, $x_n \in \mathcal{D}(T)$ and $Tx_n \to y$ together imply that $x \in \mathcal{D}(T)$ and Tx = y.
- (b) If T is closed and $\mathcal{D}(T)$ is closed, then T is bounded.
 - c) For T be bounded, T is closed if and only if $\mathcal{D}(T)$ is closed.

The Hilbert-Adjoint Operator Theorem

Theorem (Hilbert-Adjoint Operator)

Let $T : \mathcal{D}(T) \to H$ be a linear operator, where $\mathcal{D}(T) \subseteq H$ and H is a complex Hilbert space. The Hilbert-adjoint operator T^* is closed.

• Consider any sequence (y_n) in $\mathcal{D}(\mathcal{T}^*)$, such that:

•
$$y_n \rightarrow y_0$$
;
• $T^*y_n \rightarrow z_0$.
We show that $y_0 \in \mathscr{D}(T^*)$ and $z_0 = T^*y_0$.
By the definition of T^* , for every $y \in \mathscr{D}(T)$,

$$\langle Ty, y_n \rangle = \langle y, T^*y_n \rangle.$$

By continuity of the inner product,

$$\langle Ty, y_0 \rangle = \langle y, z_0 \rangle$$
, for every $y \in \mathcal{D}(T)$.

By the definition of T^* , we get $y_0 \in \mathscr{D}(T^*)$ and $z_0 = T^* y_0$. Applying the preceding theorem, we conclude that T^* is closed.

Closable Operator and Closure

Definition (Closable Operator, Closure)

Let $T : \mathcal{D}(T) \to H$ be a linear operator, where $\mathcal{D}(T) \subseteq H$ and H is a complex Hilbert space.

- If T has an extension T₁ which is a closed linear operator, then T is said to be **closable**, and T₁ is called a **closed linear extension** of T.
- A closed linear extension T of a closable linear operator T is said to be minimal if every closed linear extension T₁ of T is a closed linear extension of T. This minimal extension T of T - if it exists - is called the closure of T.
- If \overline{T} exists, it is unique.
- If T is not closed, the problem arises whether T has closed extensions.

The Closure Theorem

Theorem (Closure)

Let $T : \mathcal{D}(T) \to H$ be a linear operator, where H is a complex Hilbert space and $\mathcal{D}(T)$ is dense in H. Then, if T is symmetric, its closure \overline{T} exists and is unique.

- We define \overline{T} by:
 - First defining the domain $M = \mathscr{D}(\overline{T})$;
 - Then defining \overline{T} itself.

Then we show that \overline{T} is indeed the closure of T.

Let *M* be the set of all $x \in H$ for which there is a sequence (x_n) in $\mathcal{D}(T)$ and a $y \in H$, such that

$$x_n \to x$$
 and $Tx_n \to y$.

We can show that M is a vector space. Clearly, $\mathcal{D}(T) \subseteq M$.

The Closure Theorem (Cont'd)

• On *M* we define \overline{T} by setting

$$y = \overline{T}x, \quad x \in M,$$

with y given by

$$x_n \to x, \quad Tx_n \to y.$$

To show that \overline{T} is the closure of T, we have to prove that \overline{T} has all the properties by which the closure is defined.

Obviously, T has the domain $\mathcal{D}(\overline{T}) = M$.

We shall prove:

(a) To each $x \in \mathcal{D}(\overline{T})$, there corresponds a unique y.

(b) \overline{T} is a symmetric linear extension of T.

(c) \overline{T} is closed and is the closure of T.

The Closure Theorem Property (a)

(a) Uniqueness of y, for every $x \in \mathcal{D}(\overline{T})$. In addition to (x_n) , let (\tilde{x}_n) be another sequence in $\mathcal{D}(T)$, such that

$$\widetilde{x}_n \to x$$
 and $T\widetilde{x}_n \to \widetilde{y}$.

Since T is linear, $Tx_n - T\tilde{x}_n = T(x_n - \tilde{x}_n)$. Since T is symmetric, for every $v \in \mathcal{D}(T)$,

$$\langle v, Tx_n - T\widetilde{x}_n \rangle = \langle v, T(x_n - \widetilde{x}_n) \rangle = \langle Tv, x_n - \widetilde{x}_n \rangle.$$

Letting $n \rightarrow \infty$ and using the continuity of the inner product,

$$\langle v, y - \widetilde{y} \rangle = \langle Tv, x - x \rangle = 0.$$

Therefore, $y - \tilde{y} \perp \mathcal{D}(T)$. Since $\mathcal{D}(T)$ is dense in H, $\mathcal{D}(T)^{\perp} = \{0\}$. Hence, $y - \tilde{y} = 0$. Thus, $y = \tilde{y}$.

The Closure Theorem Property (b)

(b) T is a symmetric linear extension of T: Since T is linear, so is T. This also shows that T is an extension of T. We show that the symmetry of T implies that of T. For all x, z ∈ D(T), there are sequences (x_n), (z_n) in D(T), such that

$$\begin{array}{ll} x_n \to x, & Tx_n \to \overline{T}x \\ z_n \to z, & Tz_n \to \overline{T}z \end{array}$$

Since *T* is symmetric, $\langle z_n, Tx_n \rangle = \langle Tz_n, x_n \rangle$.

Letting $n \rightarrow \infty$ and using the continuity of the inner product,

$$\langle z, \overline{T}x \rangle = \langle \overline{T}z, x \rangle.$$

Since $x, z \in \mathcal{D}(\overline{T})$ were arbitrary, this shows that \overline{T} is symmetric.

George Voutsadakis (LSSU)

The Closure Theorem Property (c)

(c) T is closed and is the closure of T:
We prove closedness of T by considering any sequence (w_m) in D(T), such that w_m → x and Tw_m → y and proving x ∈ D(T) and Tx = y. Every w_m (m fixed) is in D(T).
By the definition of D(T), there is a sequence in D(T) which converges to w_m and whose image under T converges to Tw_m. Hence, for every fixed m, there is a v_m ∈ D(T), such that

$$\|w_m - v_m\| < \frac{1}{m}$$
 and $\|\overline{T}w_m - Tv_m\| < \frac{1}{m}$.

From this, we conclude that $v_m \to x$ and $Tv_m \to y$. By the definitions of $\mathscr{D}(\overline{T})$ and \overline{T} , we get $x \in \mathscr{D}(\overline{T})$ and $y = \overline{T}x$. Hence, \overline{T} is closed.

By the Closed Linear Operator Theorem, every point of $\mathscr{D}(\overline{T})$ must also belong to the domain of every closed linear extension of T. So \overline{T} is the closure of T. We also get that the closure is unique.
The Hilbert-Adjoint of the Closure

Theorem (Hilbert-Adjoint of the Closure)

For a symmetric linear operator T, we have $(\overline{T})^* = T^*$.

 Since T ⊆ T, by a preceding theorem, (T)* ⊆ T*. Hence D((T)*) ⊆ D(T*). We show y ∈ D(T*) implies y ∈ D((T)*). Let y ∈ D(T*). By the definition of the Hilbert-adjoint operator, it suffices to prove that, for every x ∈ D(T),

$$\langle \overline{T}x, y \rangle = \langle x, (\overline{T})^* y \rangle = \langle x, T^* y \rangle,$$

where the second equality follows from $(\overline{T})^* \subseteq T^*$. By the definitions of $\mathscr{D}(\overline{T})$ and \overline{T} , for each $x \in \mathscr{D}(\overline{T})$, there is a sequence (x_n) in $\mathscr{D}(T)$, such that $x_n \to x$ and $Tx_n \to y_0 = \overline{T}x$. Since $y \in \mathscr{D}(T^*)$ and $x_n \in \mathscr{D}(T)$, by definition, $\langle Tx_n, y \rangle = \langle x_n, T^*y \rangle$. By continuity of the inner product, $\langle \overline{T}x, y \rangle = \langle x, T^*y \rangle$, $x \in \mathscr{D}(\overline{T})$.

Subsection 4

Spectral Properties of Self-Adjoint Operators

Regular Values

Theorem (Regular Values)

Let $T : \mathcal{D}(T) \to H$ be a self-adjoint linear operator which is densely defined in a complex Hilbert space H. Then a number λ belongs to the resolvent set $\rho(T)$ of T if and only if, there exists a c > 0, such that, for every $x \in \mathcal{D}(T)$,

 $\|T_{\lambda}x\| \ge c\|x\|,$

where $T_{\lambda} = T - \lambda I$.

(a) Let λ ∈ ρ(T). Then, the resolvent R_λ = (T − λI)⁻¹ exists and is bounded, say, ||R_λ|| = k > 0. Since R_λT_λx = x, for x ∈ D(T), we get ||x|| = ||R_λT_λx|| ≤ ||R_λ|||T_λx|| = k||T_λx||.

Division by k yields

 $\|T_{\lambda}x\| \ge c\|x\|,$

where $c = \frac{1}{k}$.

Regular Values (The Converse)

(b) Conversely, suppose $||T_{\lambda}x|| \ge c ||x||$, $x \in \mathcal{D}(T)$, holds for some c > 0. We consider the vector space

$$Y = \{y : y = T_{\lambda}x, x \in \mathcal{D}(T)\},\$$

- i.e., the range of T_{λ} . We show that:
 - (i) $T_{\lambda}: \mathscr{D}(T) \to Y$ is bijective;
 - (ii) Y is dense in H;
- (iii) Y is closed.

These imply that the resolvent $R_{\lambda} = T_{\lambda}^{-1}$ is defined on all of H. Boundedness of R_{λ} will then follow from hypothesis. So we will have $\lambda \in \rho(T)$.

Regular Values (The Converse Part (i))

(i) Consider any $x_1, x_2 \in \mathcal{D}(T)$, such that $T_{\lambda}x_1 = T_{\lambda}x_2$. Since T_{λ} is linear, the hypothesis yields

$$0 = ||T_{\lambda}x_1 - T_{\lambda}x_2|| = ||T_{\lambda}(x_1 - x_2)|| \ge c||x_1 - x_2||.$$

Since c > 0, this implies $||x_1 - x_2|| = 0$. Hence, $x_1 = x_2$. So the operator $T_{\lambda} : \mathcal{D}(T) \to Y$ is bijective.

Regular Values (The Converse Part (ii))

(ii) We prove that $\overline{Y} = H$ by showing that $x_0 \perp Y$ implies $x_0 = 0$. Let $x_0 \perp Y$. Then, for every $y = T_{\lambda} x \in Y$,

$$0 = \langle T_{\lambda} x, x_0 \rangle = \langle T x, x_0 \rangle - \lambda \langle x, x_0 \rangle.$$

Hence, for all $x \in \mathcal{D}(T)$,

$$\langle Tx, x_0 \rangle = \langle x, \overline{\lambda} x_0 \rangle.$$

By definition of the Hilbert-adjoint, $x_0 \in \mathcal{D}(T^*)$ and $T^* x_0 = \overline{\lambda} x_0$. Since T is self-adjoint, $\mathcal{D}(T^*) = \mathcal{D}(T)$ and $T^* = T$. So $Tx_0 = \overline{\lambda} x_0$. Suppose $x_0 \neq 0$. This implies that $\overline{\lambda}$ is an eigenvalue of T. Hence, $\overline{\lambda} = \lambda$ must be real. So $Tx_0 = \lambda x_0$. I.e., $T_{\lambda} x_0 = 0$. But now, the hypothesis yields a contradiction:

 $0 = \|T_{\lambda}x_0\| \ge c \|x_0\| \text{ implies } \|x_0\| = 0.$

It follows that $\overline{Y}^{\perp} = \{0\}$. So $\overline{Y} = H$.

Regular Values (The Converse Part (iii))

(iii) We prove that Y is closed. Let $y_0 \in \overline{Y}$.

Then there is a sequence (y_n) in Y, such that $y_n \to y_0$. Since $y_n \in Y$, we have $y_n = T_\lambda x_n$, for some $x_n \in \mathcal{D}(T_\lambda) = \mathcal{D}(T)$. By the hypothesis,

$$||x_n - x_m|| \le \frac{1}{c} ||T_{\lambda}(x_n - x_m)|| = \frac{1}{c} ||y_n - y_m||.$$

Since (y_n) converges, this shows that (x_n) is Cauchy. Since H is complete, (x_n) converges, say, $x_n \to x_0$. Since T is self-adjoint, by a previous theorem, it is closed. Thus, we have $x_0 \in \mathcal{D}(T)$ and $T_{\lambda}x_0 = y_0$. This shows that $y_0 \in Y$. Since $y_0 \in Y$ was arbitrary, Y is closed.

Regular Values (The Converse Part (iii) Cont'd)

Parts (ii) and (iii) imply that Y = H.
 From this and Part (i), the resolvent R_λ exists and is defined on H,

$$R_{\lambda} = T_{\lambda}^{-1} : H \to \mathscr{D}(T).$$

By a previous result, R_{λ} is linear.

For all $y \in H$ and corresponding $x = R_{\lambda}y$, we have $y = T_{\lambda}x$. Moreover, by hypothesis,

$$||R_{\lambda}y|| = ||x|| \le \frac{1}{c} ||T_{\lambda}x|| = \frac{1}{c} ||y||.$$

So $||R_{\lambda}|| \leq \frac{1}{c}$ and R_{λ} is bounded. By definition this proves that $\lambda \in \rho(T)$.

The Spectrum Theorem

Theorem (Spectrum)

Let *H* be a complex Hilbert space. Let $T : \mathscr{D}(T) \to H$ be a self-adjoint linear operator, with $\mathscr{D}(T)$ dense in *H*. The spectrum $\sigma(T)$ of *T* is real and closed.

(a) We first show that $\sigma(T)$ is real. For every $x \neq 0$ in $\mathcal{D}(T)$ we have

$$\langle T_{\lambda} x, x \rangle = \langle T x, x \rangle - \lambda \langle x, x \rangle.$$

Since $\langle x, x \rangle$ and $\langle Tx, x \rangle$ are real,

$$\overline{\langle T_{\lambda} x, x \rangle} = \langle T x, x \rangle - \overline{\lambda} \langle x, x \rangle.$$

We write $\lambda = \alpha + i\beta$, with real α and β . Then $\overline{\lambda} = \alpha - i\beta$.

The Spectrum Theorem (Cont'd)

Subtraction yields

$$\overline{\langle T_{\lambda}x,x\rangle} - \langle T_{\lambda}x,x\rangle = (\lambda - \overline{\lambda})\langle x,x\rangle = 2i\beta \|x\|^2.$$

The left side equals $-2i \text{Im} \langle T_{\lambda} x, x \rangle$.

Since the imaginary part of a complex number cannot exceed the absolute value, we have by the Schwarz inequality

$$|\beta| \|x\|^2 \le |\langle T_{\lambda} x, x \rangle| \le \|T_{\lambda} x\| \|x\|.$$

Division by $||x|| \neq 0$ gives $|\beta|||x|| \leq ||T_{\lambda}x||$. Note that this inequality holds for all $x \in \mathcal{D}(T)$. If λ is not real, $\beta \neq 0$. So, by the previous theorem, $\lambda \in \rho(T)$. Hence, $\sigma(T)$ must be real.

The Spectrum Theorem Part (b)

We now show that σ(T) is closed.
We do this by proving that the resolvent set ρ(T) is open.
We consider an arbitrary λ₀ ∈ ρ(T).
We show that every λ sufficiently close to λ₀ also belongs to ρ(T).
By the triangle inequality,

$$\|Tx - \lambda_0 x\| = \|Tx - \lambda x + (\lambda - \lambda_0)x\| \le \|Tx - \lambda x\| + |\lambda - \lambda_0| \|x\|.$$

So

$$\|Tx - \lambda x\| \ge \|Tx - \lambda_0 x\| - |\lambda - \lambda_0| \|x\|.$$

Since $\lambda_0 \in \rho(T)$, there is a c > 0, such that for all $x \in \mathcal{D}(T)$,

$$\|Tx - \lambda_0 x\| \ge c \|x\|.$$

The Spectrum Theorem Part (b) (Cont'd)

 Assume that λ is close to λ₀, say, |λ − λ₀| ≤ ^c/₂. Then previous inequalities imply, for all x ∈ D(T),

$$||Tx - \lambda x|| \ge c||x|| - \frac{1}{2}c||x|| = \frac{1}{2}c||x||.$$

By a previous theorem, $\lambda \in \rho(T)$. So λ_0 has a neighborhood lying entirely in $\rho(T)$. Since $\lambda_0 \in \rho(T)$ was arbitrary, we conclude that $\rho(T)$ is open. Hence, $\sigma(T) = \mathbb{C} - \rho(T)$ is closed.

Subsection 5

Spectral Representation of Unitary Operators

The Spectrum Theorem

Theorem (Spectrum)

If $U: H \to H$ is a unitary linear operator on a complex Hilbert space $H \neq \{0\}$, then the spectrum $\sigma(U)$ is a closed subset of the unit circle. Thus, $|\lambda| = 1$, for every $\lambda \in \sigma(U)$.

 We have ||U|| = 1, by a preceding theorem. Hence, |λ| ≤ 1, for all λ ∈ σ(U), also by a previous theorem. Also 0 ∈ ρ(U), since for λ = 0 the resolvent operator of U is U⁻¹ = U*. The operator U⁻¹ is unitary by a preceding theorem. Hence, ||U⁻¹|| = 1.

Also, a preceding theorem, with T = U and $\lambda_0 = 0$, now implies that every λ satisfying $|\lambda| < \frac{1}{\|U^{-1}\|} = 1$ belongs to $\rho(U)$. Hence, the spectrum of U must lie on the unit circle. It is closed, by another theorem.

The Power Series Lemma

Lemma (Power Series)

Let

$$h(\lambda) = \sum_{n=0}^{\infty} \alpha_n \lambda^n, \quad \alpha_n \text{ real,}$$

be absolutely convergent, for all λ , such that $|\lambda| \le k$. Suppose that $S \in B(H, H)$ is self-adjoint and has norm $||S|| \le k$, where H is a complex Hilbert space. Then

$$h(S) = \sum_{n=0}^{\infty} \alpha_n S^n$$

is a bounded self-adjoint linear operator and

$$\|h(S)\|\leq \sum_{n=0}^{\infty}|\alpha_n|k^n.$$

If a bounded linear operator commutes with S, it does so with h(S).

The Power Series Lemma

Let h_n(λ) denote the n-th partial sum of the λ-series.
 For |λ| ≤ k, the series converges absolutely (hence also uniformly).
 Since H is complete, absolute convergence implies convergence.
 Hence, convergence of the S-series follows from ||S|| ≤ k and

$$\left\|\sum \alpha_n S^n\right\| \leq \sum |\alpha_n| \|S\|^n \leq |\alpha_n| k^n.$$

We denote the sum of the series by h(S). This is in agreement with a preceding section, because $h(\lambda)$ is continuous and $h_n(\lambda) \rightarrow h(\lambda)$, uniformly for $|\lambda| \le k$.

The Power Series Lemma (Cont'd)

We show, next, that the operator h(S) is self-adjoint. Since the h_n(S) are self-adjoint, ⟨h_n(S)x,x⟩ is real. Hence, ⟨h(S)x,x⟩ is real by the continuity of the inner product. So that h(S) is self-adjoint, since H is complex. Finally, we prove the last inequality. Since ||S|| ≤ k, a preceding theorem gives [m, M] ⊆ [-k,k]. Another theorem yields, for J = [m, M],

$$\|h_n(S)\| \leq \max_{\lambda \in J} |h_n(\lambda)| \leq \sum_{j=0}^n |\alpha_j| k^j.$$

Letting $n \to \infty$, the conclusion follows.

Wecken's Lemma

Wecken's Lemma

Let W and A be bounded self-adjoint linear operators on a complex Hilbert space H. Suppose that WA = AW and $W^2 = A^2$. Let P be the projection of H onto the null space $\mathcal{N}(W - A)$. Then:

- (a) If a bounded linear operator commutes with W A, it also commutes with P.
- (b) Wx = 0 implies Px = x.
- (c) We have W = (2P I)A.

(a) Suppose that B commutes with W – A.
By hypothesis, Px ∈ N(W – A), for every x ∈ H.
Thus, (W – A)BPx = B(W – A)Px = 0. So BPx ∈ N(W – A).
This implies P(BPx) = BPx. I.e., PBP = BP.
It now suffices to show that PBP = PB.

Wecken's Lemma Parts (a) and (b)

We must show PBP = PB.
 Since W - A is self-adjoint,

$$(W-A)B^* = [B(W-A)]^* = [(W-A)B]^* = B^*(W-A).$$

This shows that W - A and B^* also commute. Hence, reasoning as before, we obtain $PB^*P = B^*P$. Since projections are self-adjoint,

$$PBP = (PB^*P)^* = (B^*P)^* = PB.$$

Together with PBP = BP, we have BP = PB.

(b) Let Wx = 0.

Since A and W are self-adjoint and $A^2 = W^2$,

$$\|Ax\|^2 = \langle Ax, Ax\rangle = \langle A^2x, x\rangle = \langle W^2x, x\rangle = \|Wx\|^2 = 0.$$

So Ax = 0. Hence, (W - A)x = 0. This shows that $x \in \mathcal{N}(W - A)$. But *P* is the projection of *H* onto $\mathcal{N}(W - A)$. So Px = x.

Wecken's Lemma Part (c)

(c) From the assumptions $W^2 = A^2$ and WA = AW, we have

$$(W - A)(W + A) = W^2 - A^2 = 0.$$

Hence, $(W + A)x \in \mathcal{N}(W - A)$, for every $x \in H$. Since *P* projects *H* onto $\mathcal{N}(W - A)$, we get P(W + A)x = (W + A)x, for every $x \in H$. Thus,

$$P(W+A)=W+A.$$

But note that:

$$P(W-A)=0.$$

Hence,

S

$$2PA = P(W + A) - P(W - A) = W + A.$$

Therefore, 2PA - A = W.

George Voutsadakis (LSSU)

Spectral Theorem for Unitary Operators

Spectral Theorem for Unitary Operators

Let $U: H \to H$ be a unitary operator on a complex Hilbert space $H \neq \{0\}$. Then, there exists a spectral family $\mathscr{E} = (E_{\theta})$ on $[-\pi, \pi]$, such that

$$U = \int_{-\pi}^{\pi} e^{i\theta} dE_{\theta} = \int_{-\pi}^{\pi} (\cos \theta + i \sin \theta) dE_{\theta}.$$

More generally, for every continuous function f defined on the unit circle,

$$f(U) = \int_{\pi}^{\pi} f(e^{i\theta}) dE_{\theta},$$

where the integral is to be understood in the sense of uniform operator convergence. Moreover, for all $x, y \in H$,

$$\langle f(U)x,y\rangle = \int_{-\pi}^{\pi} f(e^{i\theta})dw(\theta), \quad w(\theta) = \langle E_{\theta}x,y\rangle,$$

where the integral is an ordinary Riemann-Stieltjes integral.

Proof of the Spectral Theorem Plan

• We prove that, for a given unitary operator U, there is a bounded self-adjoint linear operator S, with $\sigma(S) \subseteq [-\pi, \pi]$, such that

$$U = e^{iS} = \cos S + i \sin S.$$

Then we use the spectral theorems of the preceding chapter. We proceed stepwise as follows:

- (a) We prove that U is unitary, provided S exists.
- (b) We write U = V + iW, where

$$V = \frac{1}{2}(U + U^*), \quad W = \frac{1}{2i}(U + U^*),$$

and prove that V and W are self-adjoint and $-I \le V \le I, -I \le W \le I$. (c) We investigate some properties of $g(V) = \arccos V$ and $A = \sin g(V)$. (d) We prove that the desired operator S is

$$S = (2P - I)(\arccos V),$$

where *P* is the projection of *H* onto $\mathcal{N}(W - A)$.

Proof of the Spectral Theorem Part (a)

(a) Suppose S is bounded and self-adjoint.
 By the Power Series Lemma, so are cos S and sin S.
 These operators commute by the same lemma.
 This implies that U is unitary since

$$UU^* = (\cos S + i \sin S)(\cos S - i \sin S)$$

= $(\cos S)^2 + (\sin S)^2$
= $(\cos^2 + \sin^2)(S)$
= $I.$

Similarly, $U^*U = I$.

Proof of the Spectral Theorem Part (b)

(b) Self-adjointness of V = ½(U + U*) and W = ½(U - U*) follows by a direct calculation using a previous result.
Since UU* = U*U (= I), we have VW = WV.
Also ||U|| = ||U*|| = 1 imply ||V|| ≤ 1, ||W|| ≤ 1.
Hence, the Schwarz inequality yields

$$|\langle Vx, x \rangle| \le ||Vx|| ||x|| \le ||V|| ||x||^2 \le \langle x, x \rangle.$$

So we have

$$-\langle x, x \rangle \leq \langle Vx, x \rangle \leq \langle x, x \rangle.$$

This proves the first formula.

The second follows by the same argument. Furthermore, by direct calculation,

$$V^{2} + W^{2} = \frac{1}{4} (U^{2} + 2UU^{*} + (U^{*})^{2}) - \frac{1}{4} (U^{2} - 2UU^{*} + (U^{*})^{2}) = UU^{*} = I.$$

Proof of the Spectral Theorem Part (c)

(c) We consider

$$g(\lambda) = \arccos \lambda = \frac{\pi}{2} - \arcsin \lambda = \frac{\pi}{2} - \lambda - \frac{1}{6}\lambda^3 - \cdots$$

The Maclaurin series on the right converges for $|\lambda| \leq 1$.

At λ = 1 the series of arcsin λ has positive coefficients.
 So it has a monotone sequence of partial sums s_n, when λ > 0.
 This sequence is bounded on (0,1), since s_n(λ) < arcsin λ < π/2.
 So, for every fixed n, we have s_n(λ) → s_n(1) ≤ π/2, as λ → 1.
 It follows that the series converges at λ = 1.

• Convergence at $\lambda = -1$ follows readily from that at $\lambda = 1$. Note that $||V|| \le 1$.

So, by a previous lemma, the operator

$$g(V) = \arccos V = \frac{\pi}{2}I - V - \frac{1}{6}V^3 - \cdots$$

exists and is self-adjoint.

Proof of the Spectral Theorem Part (c) (Cont'd)

Now define

$$A = \sin g(V).$$

This is a power series in V.

By a previous lemma, A is self-adjoint and commutes with V. Moreover, it also commutes with W.

By the power-series expression $\cos g(V) = V$.

So we have

$$V^{2} + A^{2} = (\cos^{2} + \sin^{2})(g(V)) = I.$$

A comparison with $V^2 + W^2 = I$ yields $W^2 = A^2$.

Hence, we can apply Wecken's lemma to conclude that:

•
$$W = (2P - I)A;$$

- Wx = 0 implies Px = x;
- P commutes with V and with g(V), since these operators commute with W A.

Proof of the Spectral Theorem Part (d)

(d) Define

$$S = (2P - I)g(V) = g(V)(2P - I).$$

Obviously, S is self-adjoint. Claim: S satisfies $U = e^{iS} = \cos S + i \sin S$. Set $\kappa = \lambda^2$. Define h_1 and h_2 by $h_1(\kappa) = \cos \lambda = 1 - \frac{1}{2!}\lambda^2 + \cdots$; $\lambda h_2(\kappa) = \sin \lambda = \lambda - \frac{1}{2!}\lambda^3 + \cdots$.

These functions exist for all κ .

Since *P* is a projection, $(2P - I)^2 = 4P^2 - 4P + I = 4P - 4P + I = I$. So we get

$$S^{2} = (2P - I)^{2}g(V)^{2} = g(V)^{2}.$$

Hence,

$$\cos S = h_1(S^2) = h_1(g(V)^2) = \cos g(V) = V.$$

s

Proof of the Spectral Theorem Part (d) (Cont'd)

• Next we show that $\sin S = W$.

Indeed, we have

in
$$S = Sh_2(S^2)$$

= $(2P-I)g(V)h_2(g(V)^2)$
= $(2P-I)\sin g(V)$
= $(2P-I)A$
= W .

We conclude that $e^{iS} = V + iW = U$. Claim: $\sigma(S) \subseteq [-\pi, \pi]$. Since $|\arccos \lambda| \le \pi$, we get that $||S|| \le \pi$. Since S is self-adjoint and bounded, $\sigma(S)$ is real. A preceding theorem yields the result.

Proof of the Spectral Theorem (Conclusion)

- Let (E_{θ}) be the spectral family of S.
 - Then the equations for U and f(U) follow from $U = e^{iS}$ and the spectral theorem for bounded self-adjoint linear operators.

Claim: We can take $-\pi$ (instead of $-\pi^{-}$) as the lower limit of integration without restricting generality.

If we had a spectral family, call it (\tilde{E}_{θ}) , such that $\tilde{E}_{-\pi} \neq 0$, we would have to take $-\pi^{-}$ as the lower limit of integration in those integrals. However, instead of \tilde{E}_{θ} we could then equally well use E_{θ} defined by

$$E_{\theta} = \begin{cases} 0, & \text{if } \theta = -\pi \\ \widetilde{E}_{\theta} - \widetilde{E}_{-\pi}, & \text{if } -\pi < \theta < \pi \\ I, & \text{if } \theta = \pi \end{cases}$$

 E_{θ} is continuous at $\theta = -\pi$. So the lower limit of integration $-\pi$ is in order.

Subsection 6

Spectral Representation of Self-Adjoint Linear Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

lanuary 2024 66 / 9

The Cayley Transform

- Let *H* be a complex Hilbert space.
- Consider a self-adjoint linear operator $T : \mathcal{D}(T) \to H$ on H, where $\mathcal{D}(T)$ is dense in H and T may be unbounded.
- We associate with T the operator

$$U = (T - iI)(T + iI)^{-1},$$

called the Cayley transform of T.

• We show that the operator U is unitary.

Cayley Transform and Spectra

- We defined the Cayley transform $U = (T iI)(T + iI)^{-1}$ of T, which is unitary.
- We obtain the spectral theorem for the (possibly unbounded) T from that for the bounded operator U.
- T has its spectrum $\sigma(T)$ on the real axis of the complex plane \mathbb{C} .
- \bullet On the other hand, the spectrum of a unitary operator lies on the unit circle of $\mathbb{C}.$
- ${\, \bullet \, }$ A mapping ${\mathbb C} \to {\mathbb C}$ which transforms the real axis into the unit circle is

$$u = \frac{t-i}{t+i}.$$

• This mapping suggests the Cayley transform.

First Cayley Transform Lemma

Lemma (Cayley Transform)

The Cayley transform of a self-adjoint linear operator $T : \mathcal{D}(T) \to H$ exists on H and is a unitary operator, where $H \neq \{0\}$ is a complex Hilbert space.

$$(T+iI)^{-1}(H) = \mathscr{D}(T+iI) = \mathscr{D}(T) = \mathscr{D}(T-iI).$$

We also have $(T - iI)(\mathcal{D}(T)) = H$. This shows that U is a bijection of H onto itself.

First Cayley Transform Lemma (Cont'd)

 By a previous theorem, it remains to prove that U is isometric. Take any x ∈ H, set y = (T + il)⁻¹x and use ⟨y, Ty⟩ = ⟨Ty, y⟩.
 We calculate

$$\|Ux\|^{2} = \|(T - iI)y\|^{2}$$

$$= \langle Ty - iy, Ty - iy \rangle$$

$$= \langle Ty, Ty \rangle + i \langle Ty, y \rangle - i \langle y, Ty \rangle + \langle iy, iy \rangle$$

$$= \langle Ty + iy, Ty + iy \rangle$$

$$= \|(T + iI)y\|^{2}$$

$$= \|(T + iI)(T + iI)^{-1}x\|^{2}$$

$$= \|x\|^{2}.$$

A previous theorem now implies that U is unitary.

Second Cayley Transform Lemma

Lemma (Cayley Transform)

Let $T : \mathcal{D}(T) \to H$ be a self-adjoint linear operator, where, $H \neq \{0\}$ is a complex Hilbert space, and let U be defined by $U = (T - iI)(T + iI)^{-1}$. Then

$$T = i(I + U)(I - U)^{-1}$$

Furthermore, 1 is not an eigenvalue of U.

• Let $x \in \mathcal{D}(T)$ and y = (T + iI)x. Then Uy = (T - iI)x, since $(T + iI)^{-1}(T + iI) = I$. By addition and subtraction, we get

$$(I+U)y = 2Tx$$
 and $(I-U)y = 2ix$.

We know $y \in \mathscr{R}(T + iI) = H$. Hence, I - U maps H onto $\mathscr{D}(T)$. We also see that, if (I - U)y = 0, then x = 0. So, by y = (T + iI)x, y = 0.

Second Cayley Transform Lemma (Cont'd)

Hence, (I − U)⁻¹ exists by a previous theorem.
 Moreover, it is defined on the range of I − U, which is D(T).
 Hence, since (I − U)y = 2ix,

$$y = 2i(I - U)^{-1}x$$
, for all $x \in \mathcal{D}(T)$.

By substitution into (I + U)y = 2Tx, for all $x \in \mathcal{D}(T)$,

$$Tx = \frac{1}{2}(I+U)y = i(I+U)(I-U)^{-1}x.$$

Since $(I - U)^{-1}$ exists, 1 cannot be an eigenvalue of the Cayley transform U.
Spectral Theorem for Self-Adjoint Linear Operators

Spectral Theorem for Self-Adjoint Linear Operators

Let $T : \mathcal{D}(T) \to H$ be a self-adjoint linear operator, where $H \neq \{0\}$ is a complex Hilbert space and $\mathcal{D}(T)$ is dense in H. Let U be the Cayley transform of T and (E_{θ}) the spectral family in the spectral representation

$$-U = \int_{-\pi}^{\pi} e^{i\theta} dE_{\theta} = \int_{-\pi}^{\pi} (\cos\theta + i\sin\theta) dE_{\theta}$$

of -U. Then, for all $x \in \mathcal{D}(T)$,

$$\begin{array}{ll} \langle Tx, x \rangle &=& \int_{-\pi}^{\pi} \tan \frac{\theta}{2} dw(\theta) & w(\theta) = \langle E_{\theta} x, x \rangle \\ &=& \int_{-\infty}^{\infty} \lambda dv(\lambda), & v(\lambda) = \langle F_{\lambda} x, x \rangle \end{array}$$

where $F_{\lambda} = E_{2 \arctan \lambda}$.

Spectral Theorem for Self-Adjoint Operators (Plan)

From a previous spectral theorem, we have

$$-U = \int_{-\pi}^{\pi} e^{i\theta} dE_{\theta} = \int_{-\pi}^{\pi} (\cos\theta + i\sin\theta) dE_{\theta}.$$

We prove the statement in two steps:

- a) We show that (E_{θ}) is continuous at $-\pi$ and π .
- b) We use Property (a) to establish the claimed equations.

Spectral Theorem for Self-Adjoint Operators Part (a)

(a) (E_{θ}) is the spectral family of a bounded self-adjoint linear operator which we call S. Then $-U = \cos S + i \sin S$.

From a previous theorem, we know that a θ_0 at which (E_{θ}) is discontinuous is an eigenvalue of *S*.

Then, there is an $x \neq 0$, such that $Sx = \theta_0 x$.

Hence, for any polynomial q, $q(S)x = q(\theta_0)x$.

Also, for any continuous function g on $[-\pi,\pi]$, $g(S)x = g(\theta_0)x$. Since $\sigma(S) \subseteq [-\pi,\pi]$, we have $E_{-\pi^-} = 0$.

Hence, if $E_{-\pi} \neq 0$, then $-\pi$ would be an eigenvalue of S.

By the preceding relations, the operator U would have the eigenvalue $-\cos(-\pi) - i\sin(-\pi) = 1$.

This contradicts a preceding lemma.

Similarly, $E_{\pi} = I$ and, if $E_{\pi^-} \neq I$, U would have an eigenvalue 1.

Spectral Theorem for Self-Adjoint Operators Part (b)

(b) Let x ∈ H and y = (I - U)x. In the proof of a previous lemma, it was shown that I - U : H → D(T). Hence, y ∈ D(T). Now, we have T = i(I + U)(I - U)⁻¹. So we get Ty = i(I + U)(I - U)⁻¹y = i(1 + U)x. Since ||Ux|| = ||x||, we obtain

$$Ty, y\rangle = \langle i(1+U)x, (1-U)x \rangle$$

= $i(\langle Ux, x \rangle - \langle x, Ux \rangle)$
= $i(\langle Ux, x \rangle - \overline{\langle Ux, x \rangle})$
= $-2 \ln \langle Ux, x \rangle$
= $2 \int_{-\pi}^{\pi} \sin \theta d \langle E_{\theta}x, x \rangle.$

Hence

$$\langle Ty, y \rangle = 4 \int_{-\pi}^{\pi} \sin \frac{\theta}{2} \cos \frac{\theta}{2} d \langle E_{\theta} x, x \rangle.$$

Spectral Theorem Part (b) (Cont'd)

Recall that (E_θ) is the spectral family of the bounded self-adjoint linear operator S in -U = cos S + i sin S.
 Hence E_θ and S commute. So E_θ and U commute.

Now, we obtain

$$\begin{aligned} \langle E_{\theta} y, y \rangle &= \langle E_{\theta} (I - U) x, (I - U) x \rangle \\ &= \langle (I - U)^* (I - U) E_{\theta} x, x \rangle \\ &= \int_{-\pi}^{\pi} (1 + e^{-i\varphi}) (1 + e^{i\varphi}) d \langle E_{\varphi} z, x \rangle, \quad \text{where } z = E_{\theta} x. \end{aligned}$$

We also have:

•
$$E_{\varphi}E_{\theta} = E_{\varphi}$$
, when $\varphi \le \theta$;
• $(1 + e^{-i\varphi})(1 + e^{i\varphi}) = (e^{i\varphi/2} + e^{-i\varphi/2})^2 = 4\cos^2\frac{\varphi}{2}$.

$$\langle E_{\theta} y, y \rangle = 4 \int_{-\pi}^{\theta} \cos^2 \frac{\varphi}{2} d \langle E_{\varphi} x, x \rangle.$$

George Voutsadakis (LSSU)

Spectral Theorem Part (b) (Cont'd)

We obtained

$$\langle E_{\theta} y, y \rangle = 4 \int_{-\pi}^{\theta} \cos^2 \frac{\varphi}{2} d \langle E_{\varphi} x, x \rangle.$$

Using this, the continuity of E_{θ} at $\pm \pi$ and the rule for transforming a Stieltjes integral, we finally have

$$\int_{-\pi}^{\pi} \tan \frac{\theta}{2} d\langle E_{\theta} y, y \rangle = \int_{-\pi}^{\pi} \tan \frac{\theta}{2} (4\cos^2 \frac{\theta}{2}) d\langle E_{\theta} x, x \rangle$$

$$= 4 \int_{-\pi}^{\pi} \sin \frac{\theta}{2} \cos \frac{\theta}{2} d\langle E_{\theta} x, x \rangle.$$

We now have the first formula with y instead of x.

The second follows by the indicated transformation $\theta = 2 \arctan \lambda$. Note that (F_{λ}) is indeed a spectral family. In particular:

•
$$F_{\lambda} \xrightarrow{\lambda \to -\infty} 0;$$

• $F_{\lambda} \xrightarrow{\lambda \to +\infty} I.$

Subsection 7

Multiplication Operator and Differentiation Operator

The Multiplication Operator

Consider the operator

$$T: \mathcal{D}(T) \to L^2(-\infty, +\infty);$$

$$x \mapsto tx$$

where $\mathscr{D}(T) \subseteq L^2(-\infty, +\infty)$.

D(T) consists of all x ∈ L²(-∞, +∞), such that Tx ∈ L²(-∞, +∞).
So x ∈ D(T) if and only if x ∈ L²(-∞, +∞) and

$$\int_{-\infty}^{+\infty} t^2 |x(t)|^2 dt < \infty.$$

The Domain of the Multiplication Operator

The definition implies that D(T) ≠ L²(-∞, +∞).
 An x ∈ L²(-∞, +∞) not satisfying finiteness is

$$x(t) = \begin{cases} \frac{1}{t}, & \text{if } t \ge 1\\ 0, & \text{if } t < 1 \end{cases}$$

Hence $x \notin \mathcal{D}(T)$.

- D(T) contains all functions x ∈ L²(-∞, +∞) which are zero outside a compact interval.
- It can be shown that this set of functions is dense in $L^2(-\infty, +\infty)$.
- Hence $\mathscr{D}(T)$ is dense in $L^2(-\infty, +\infty)$.

Unboundedness of the Multiplication Operator

Lemma (Multiplication Operator)

The multiplication operator T defined by $U = (T - iI)(T + iI)^{-1}$ is not bounded.

.

Consider

$$x_n(t) = \begin{cases} 1, & \text{if } n \le t < n+1 \\ 0, & \text{elsewhere} \end{cases}$$

We have

•
$$||x_n|| = 1;$$

• $||Tx_n||^2 = \int_n^{n+1} t^2 dt > n^2.$

So $\frac{\|T \times_n\|}{\|x_n\|} > n$, where $n \in \mathbb{N}$ can be chosen as large as desired.

Comparison with Finite Domains

- The unboundedness results from the fact that we are dealing with functions on an infinite interval.
- For comparison, in the case of a finite interval [a, b] the operator

$$\begin{array}{rcl} \widetilde{T}: & \mathscr{D}(\widetilde{T}) & \to & L^2[a,b]; \\ & & \times & tx, \end{array}$$

is bounded.

• If $|b| \ge |a|$, then

$$\|\widetilde{T}x\|^{2} = \int_{a}^{b} t^{2} |x(t)|^{2} dt \le b^{2} ||x||^{2};$$

• If |b| < |a|, the proof is similar. This also shows that $x \in L^2[a, b]$ implies $\widetilde{T}x \in L^2[a, b]$. Hence $\mathscr{D}(\widetilde{T}) = L^2[a, b]$, i.e., \widetilde{T} is defined on all of $L^2[a, b]$.

George Voutsadakis (LSSU)

Spectral Theory of Linear Operators

Self-Adjointness

Theorem (Self-Adjointness)

The multiplication operator T defined by $U = (T - iI)(T + iI)^{-1}$ is self-adjoint.

• T is densely defined in $L^2(-\infty, +\infty)$, as was mentioned before. T is symmetric because, using $t = \overline{t}$, we have

$$\langle Tx, y \rangle = \int_{-\infty}^{+\infty} tx(t)\overline{y(t)}dt = \int_{-\infty}^{+\infty} x(t)\overline{ty(t)}dt = \langle x, Ty \rangle.$$

Hence, $T \subseteq T^*$, by a preceding theorem. Thus, it suffices to show that $\mathcal{D}(T) \supseteq \mathcal{D}(T^*)$. This we do by proving that $y \in \mathcal{D}(T^*)$ implies $y \in \mathcal{D}(T)$. Let $y \in \mathcal{D}(T^*)$. Then, for all $x \in \mathcal{D}(T)$,

$$\langle Tx, y \rangle = \langle x, y^* \rangle, \quad y^* = T^* y.$$

Written out $\int_{-\infty}^{+\infty} tx(t)\overline{y(t)}dt = \int_{-\infty}^{+\infty} x(t)\overline{y^*(t)}dt$.

Self-Adjointness

Now we have

$$\int_{-\infty}^{+\infty} x(t) [\overline{ty(t)} - \overline{y^*(t)}] dt = 0.$$

In particular, this holds for every $x \in L^2(-\infty, +\infty)$ which is zero outside an arbitrary given bounded interval (a, b). Clearly, such an x is in $\mathcal{D}(T)$. Choose

$$x(t) = \begin{cases} ty(t) - y^*(t), & \text{if } t \in (a, b) \\ 0, & \text{elsewhere} \end{cases}$$

Then we have $\int_a^b |ty(t) - y^*(t)|^2 dt = 0$. It follows that $ty(t) - y^*(t) = 0$ almost everywhere on (a, b). Hence, $ty(t) = y^*(t)$ almost everywhere on (a, b). Since (a, b) was arbitrary, we have $ty = y^* \in L^2(-\infty, +\infty)$. So $y \in \mathcal{D}(T)$. We also have $T^*y = y^* = ty = Ty$. • Note that the theorem implies that T is closed, because $T = T^*$.

Spectral Properties

Theorem (Spectrum)

Let T be the multiplication operator and $\sigma(T)$ its spectrum. Then:

- a) T has no eigenvalues.
- (b) $\sigma(T)$ is all of \mathbb{R} .

(a) For any λ , let $x \in \mathcal{D}(T)$ be such that $Tx = \lambda x$. Then $(T - \lambda I)x = 0$. Hence, by the definition of T,

$$0 = \|(T - \lambda I)x\|^{2} = \int_{-\infty}^{+\infty} |t - \lambda|^{2} |x(t)|^{2} dt.$$

Since $|t - \lambda| > 0$, for all $t \neq \lambda$, we have x(t) = 0, for almost all $t \in \mathbb{R}$. Hence, x = 0. So x is not an eigenvector and λ not an eigenvalue of T. Since λ was arbitrary, T has no eigenvalues.

Spectral Properties Part (b)

(b) We have $\sigma(T) \subseteq \mathbb{R}$, by previous theorems.

Let $\lambda \in \mathbb{R}$. We define

$$v_n(t) = \begin{cases} 1, & \text{if } \lambda - \frac{1}{n} \le t \le \lambda + \frac{1}{n} \\ 0, & \text{elsewhere} \end{cases}$$

Consider
$$x_n = \frac{1}{\|v_n\|} v_n$$
. Then $\|x_n\| = 1$.
Write $T_{\lambda} = T - \lambda I$, as usual.
Note that $(t - \lambda)^2 \le \frac{1}{n^2}$ on the interval on which v_n is not zero.
So, by the definition of T ,

$$\|T_{\lambda}x_n\|^2 = \int_{-\infty}^{+\infty} (t-\lambda)^2 |x_n(t)|^2 dt \le \frac{1}{n^2} \int_{-\infty}^{+\infty} |x_n(t)|^2 dt = \frac{1}{n^2}.$$

Spectral Properties Part (b) (Cont'd)

Taking square roots, we have || T_λx_n|| ≤ 1/n.
 Since T has no eigenvalues, the resolvent R_λ = T_λ⁻¹ exists.
 Moreover, T_λx_n ≠ 0 because x_n ≠ 0, by a preceding result.
 Consider the vectors

$$y_n = \frac{1}{\|T_\lambda x_n\|} T_\lambda x_n.$$

- They are in the range of T_{λ} , which is the domain of R_{λ} ;
- They have norm 1.

Applying R_{λ} , we get

$$||R_{\lambda}y_n|| = \frac{1}{||T_{\lambda}x_n||} ||x_n|| \ge n.$$

This shows that the resolvent R_{λ} is unbounded. Hence, $\lambda \in \sigma(T)$. Since $\lambda \in \mathbb{R}$ was arbitrary, $\sigma(T) = \mathbb{R}$.

The Spectral Family of *T*

• The spectral family of T is (E_{λ}) , where $\lambda \in \mathbb{R}$ and

$$E_{\lambda}: L^2(-\infty, +\infty) \to L^2(-\infty, \lambda)$$

is the projection of $L^2(-\infty, +\infty)$ onto $L^2(-\infty, \lambda)$, considered as a subspace of $L^2(-\infty, +\infty)$.

Thus,

$$E_{\lambda}x(t) = \begin{cases} x(t), & \text{if } t < \lambda \\ 0, & \text{if } t \ge \lambda \end{cases}.$$

Absolute Continuity

- Let x(t) be a function in $L^2(-\infty,\infty)$.
- Recall that x is said to be absolutely continuous on an interval [a, b] if, given ε > 0, there is a δ > 0, such that:

For every finite set of disjoint open subintervals $(a_1, b_1), \ldots, (a_n, b_n)$ of [a, b] of total length less than δ , we have

$$\sum_{j=1}^n |x(b_j) - x(a_j)| < \varepsilon.$$

Recall, also, that, if x is absolutely continuous on [a, b], then:
It is differentiable almost everywhere on [a, b];
x' ∈ L[a, b].

The Differentiation Operator

Consider the differentiation operator

$$D: \mathcal{D}(D) \to L^2(-\infty, +\infty);$$

$$x \mapsto ix',$$

where $x' = \frac{dx}{dt}$ and *i* helps to make *D* self-adjoint.

- By definition, the domain $\mathcal{D}(D)$ of D consists of all $x \in L^2(-\infty, +\infty)$ which are:
 - Absolutely continuous on every compact interval on \mathbb{R} ;
 - Such that $x' \in L^2(-\infty, +\infty)$.
- $\mathcal{D}(D)$ contains the sequence (e_n) involving the Hermite polynomials.
- The sequence (e_n) is total (i.e., its span is dense) in $L^2(-\infty, +\infty)$.
- Hence, $\mathcal{D}(D)$ is dense in $L^2(-\infty, +\infty)$.

Unboundedness of the Differentiation Operator

Lemma (Differentiation Operator)

The differentiation operator D is unbounded.

D is an extension of D₀ = D |_Y, where Y = D(D) ∩ L²[0,1] and L²[0,1] is regarded as a subspace of L²(-∞, +∞). Hence, if D₀ is unbounded, so is D. We show that D₀ is unbounded.

Let

$$x_n(t) = \begin{cases} 1 - nt, & \text{if } 0 \le t \le \frac{1}{n} \\ 0, & \text{if } \frac{1}{n} < t \le 1 \end{cases}.$$

.

Unboundedness of the Differentiation Operator (Cont'd)

• We defined

$$x_n(t) = \begin{cases} 1 - nt, & \text{if } 0 \le t \le \frac{1}{n} \\ 0, & \text{if } \frac{1}{n} < t \le 1 \end{cases}$$

The derivative is

$$x'_{n}(t) = \begin{cases} -n, & \text{if } 0 < t < \frac{1}{n} \\ 0, & \text{if } \frac{1}{n} < t < 1 \end{cases}$$

We calculate

$$||x_n||^2 = \int_0^1 |x_n(t)|^2 dt = \frac{1}{3n}.$$

Moreover,

$$||D_0x_n||^2 = \int_0^1 |x'_n(t)|^2 dt = n.$$

The quotient
$$\frac{\|D_0 x_n\|}{\|x_n\|} = n\sqrt{3} > n$$
. So D_0 is unbounded.

George Voutsadakis (LSSU)

Spectral Theory of Linear Operators

Remarks on the Differentiation Operator

• The differentiation operator is unbounded, even if considered for $L^2[a, b]$, where [a, b] is a compact interval.

Theorem (Self-Adjointness)

The differentiation operator D is self-adjoint.

- A proof of this theorem requires some tools from the theory of Lebesgue integration.
- We finally mention the following properties:
 - D does not have eigenvalues;
 - The spectrum $\sigma(D)$ is all of \mathbb{R} .