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Unbounded Operators

Let H be a complex Hilbert space.

We consider linear operators T :D(T )→H, with D(T )⊆H.

T is bounded if and only if there is a real number c , such that

‖Tx‖≤ c‖x‖, for all x ∈D(T ).

An important unbounded linear operator is the differentiation operator.

Note that the operator T may be unbounded.

In the case of a bounded linear operator T on a Hilbert space H,
self-adjointness of T was defined by 〈Tx ,y 〉 = 〈x ,Ty 〉.
The following theorem shows that an unbounded linear operator T
satisfying this relationship cannot be defined on all of H.
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The Hellinger-Toeplitz Boundedness Theorem

Hellinger-Toeplitz Theorem (Boundedness)

If a linear operator T is defined on all of a complex Hilbert space H and
satisfies 〈Tx ,y 〉 = 〈x ,Ty 〉, for all x ,y ∈H, then T is bounded.

Suppose, to the contrary, that T is not bounded.

Then H contains a sequence (yn) such that ‖yn‖= 1 and ‖Tyn‖→∞.

We consider, for n= 1,2, . . ., the functional fn defined by

fn(x)= 〈Tx ,yn〉 = 〈x ,Tyn〉.

Each fn is defined on all of H and is linear.

For each n, fn is bounded, since, by the Schwarz inequality,

|fn(x)| = |〈x ,Tyn〉| ≤ ‖Tyn‖‖x‖.
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The Hellinger-Toeplitz Boundedness Theorem (Cont’d)

Moreover, for every fixed x ∈H, the sequence (fn(x)) is bounded.

Indeed, using the Schwarz inequality and ‖yn‖ = 1, we have

|fn(x)| = |〈Tx ,yn〉| ≤ ‖Tx‖.

By the Uniform Boundedness Theorem, (‖fn‖) is bounded, say,
‖fn‖ ≤ k , for all n. Thus, for every x ∈H, we have

|fn(x)| ≤ ‖fn‖‖x‖ ≤ k‖x‖.

Taking x =Tyn, we get

‖Tyn‖2 = 〈Tyn,Tyn〉 = |fn(Tyn)| ≤ k‖Tyn‖.

Hence, ‖Tyn‖ ≤ k . But this contradicts ‖Tyn‖→∞.
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Extensions and Hilbert-Adjoints

By the Hellinger-Toeplitz Boundedness Theorem, D(T )=H is
impossible for unbounded linear operators satisfying 〈Tx ,y 〉 = 〈x ,Ty 〉.
The problem is to determine suitable domains for extensions.

The operator T is an extension of the operator S , written S ⊆T , if
D(S)⊆D(T ) and S =T |D(S).

An extension T of S is a proper extension if D(S) is a proper subset
of D(T ), i.e., D(T )−D(S) 6= ;.
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The Role of Hilbert-Adjoint

For bounded operators, the Hilbert-adjoint T ∗ of an operator T plays
a basic role and we want to generalize to the unbounded case.

In the bounded case the operator T ∗ is defined by

〈Tx ,y 〉 = 〈x ,T ∗y 〉.

We can write this as

〈Tx ,y 〉 = 〈x ,y∗〉, y∗ =T ∗y .

T ∗ exists on H and is a bounded linear operator with norm
‖T ∗‖= ‖T‖.
In the general case, T ∗ must be defined for those y ∈H, for which
there is a y∗, such that, for all x ∈D(T ),

〈Tx ,y 〉 = 〈x ,y∗〉, y∗ =T ∗y .
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Conditions for Uniqueness of T ∗y

The operator T ∗ will be defined by y∗ =T ∗y , for those y ∈H for
which there is a y∗, such that, for all x ∈D(T ),

〈Tx ,y 〉 = 〈x ,y∗〉.

In order that T ∗ be an operator (a mapping), for each y that belongs
to the domain D(T ∗) of T ∗, the value

y∗ =T ∗y

must be unique.
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Conditions for Uniqueness of T ∗y (Cont’d)

Claim: Uniqueness of y∗ holds if and only if T is densely defined in H,
i.e., D(T ) is dense in H.

Suppose D(T ) is not dense in H. Then D(T ) 6=H.

The orthogonal complement of D(T ) in H contains a nonzero y1.

So y1 ⊥ x , for every x ∈D(T ), i.e., 〈x ,y1〉 = 0.

Then in 〈Tx ,y 〉 = 〈x ,y∗〉, we obtain

〈x ,y∗〉 = 〈x ,y∗〉+〈x ,y1〉 = 〈x ,y∗+y1〉.

This shows non-uniqueness.

Suppose, conversely, D(T ) is dense in H.

Then D(T )⊥ = {0}.

Hence, 〈x ,y1〉 = 0, for all x ∈D(T ), implies y1 = 0.

So y∗+y1 = y∗. This proves uniqueness.
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Hilbert-Adjoint Operator

We use the following terminology:

T is an operator on H if D(T ) is all of H ;
T is an operator in H if D(T ) lies in H but may not be all of H .

Definition (Hilbert-Adjoint Operator)

Let T :D(T )→H be a (possibly unbounded) densely defined linear
operator in a complex Hilbert space H. Then the Hilbert-adjoint

operator T ∗ :D(T ∗)→H of T is defined as follows. The domain D(T ∗)
of T ∗ consists of all y ∈H, such that, there is a y∗ ∈H satisfying

〈Tx ,y 〉 = 〈x ,y∗〉, for all x ∈D(T ).

For each such y ∈D(T ∗), the Hilbert-adjoint operator T ∗ is then
defined in terms of that y∗ by y∗ =T ∗y .
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Remarks on Hilbert-Adjoint Operators

An element y ∈H is in D(T ∗) if for that y , 〈Tx ,y 〉, considered as a
function of x , can be represented as

〈Tx ,y 〉 = 〈x ,y∗〉, for all x ∈D(T ).

For that y , the formula

〈Tx ,y 〉 = 〈x ,y∗〉, for all x ∈D(T ),

determines y∗ uniquely by density.

Finally, T ∗ is a linear operator.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 12 / 94



Unbounded Linear Operators in Hilbert Space Unbounded Operators and their Hilbert-Adjoint Operators

Sum of Operators

Let H be a complex Hilbert space.

Let S :D(S)→H and T :D(T )→H be linear operators, where
D(S)⊆H and D(T )⊆H.

Then the sum S +T of S and T is the linear operator with:

Domain D(S +T )=D(S)∩D(T );
For every x ∈D(S +T ),

(S +T )x = Sx +Tx .

D(S +T ) is the largest set on which both S and T make sense.

D(S +T ) is a vector space.

Always 0 ∈D(S +T ), so that D(S +T ) is never empty.

Nontrivial results can be expected only if D(S +T ) also contains
nonzero elements.
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Product of Operators

Let M be the largest subset of D(S) whose image S(M) under S lies
in D(T ).

Then S(M)=R(S)∩D(T ), where R(S) is the range of S .

Then the product TS is defined to be the operator with domain
D(TS)=M, such that for all x ∈D(TS),

(TS)x =T (Sx).
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Product of Operators (Cont’d)

Similarly, let M̃ be the largest subset of D(T ) whose image T (M̃)
under T lies in D(S).

Then T (M̃)=R(T )∩D(S), where R(T ) is the range of T .

Then the product ST is defined to be the operator with domain
D(ST )= M̃, such that for all x ∈D(ST ),

(ST )x = S(Tx).

Both TS and ST are linear operators.
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Hilbert-Adjoint Operators

By definition, T ∗∗ = (T ∗)∗.

Theorem (Hilbert-Adjoint Operator)

Let S :D(S)→H and T :D(T )→H be linear operators which are densely
defined in a complex Hilbert space H. Then:

(a) If S ⊆T , then T ∗ ⊆ S∗.

(b) If D(T ∗) is dense in H , then T ⊆T ∗∗.

(a) By definition, 〈Tx ,y 〉 = 〈x ,T ∗y 〉, for all x ∈D(T ) and all y ∈D(T ∗).

Since S ⊆T , 〈Sx ,y 〉 = 〈x ,T ∗y 〉, for all x ∈D(S) and y as before.

By the definition of S∗, 〈Sx ,y 〉 = 〈x ,S∗y 〉, for all x ∈D(S), y ∈D(S∗).

Claim: The last two equations imply D(T ∗)⊆D(S∗).
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Proof of the Claim

Claim: The last two equations imply D(T ∗)⊆D(S∗).

By the definition of the Hilbert-adjoint operator S∗, the domain
D(S∗) includes all y for which one has a representation

〈Sx ,y 〉 = 〈x ,S∗y 〉, for all x in D(S).

But 〈Sx ,y 〉 = 〈x ,T ∗y 〉 also represents 〈Sx ,y 〉 in the same form, for x
in D(S).

So the set of y ’s for which this is valid must be a (proper or improper)
subset of the set of y ’s for which the previous equation holds.

I.e., we must have D(T ∗)⊆D(S∗).

Taking into account both equations, we conclude that

S∗y =T ∗y , for all y ∈D(T ∗).

So, by definition, T ∗ ⊆ S∗.
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Hilbert-Adjoint Operators (Part (b))

(b) Taking complex conjugates in 〈Tx ,y 〉 = 〈x ,T ∗y 〉, we have

〈T ∗y ,x〉 = 〈y ,Tx〉, for all y ∈D(T ∗), x ∈D(T ).

Since D(T ∗) is dense in H, the operator T ∗∗ exists.

By definition,

〈T ∗y ,x〉 = 〈y ,T ∗∗x〉, for all y ∈D(T ∗), x ∈D(T ∗∗).

From these equations, reasoning as in Part (a), we see that:

An x ∈D(T ) also belongs to D(T ∗∗);
T ∗∗x =Tx , for all x ∈D(T ).

This means that T ⊆T ∗∗.
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Inverse of the Hilbert-Adjoint Operator

Theorem (Inverse of the Hilbert-Adjoint Operator)

Let T :D(T )→H be a linear operator densely defined in a complex Hilbert
space H. Suppose that T is injective and its range R(T ) is dense in H.
Then T ∗ is injective and

(T ∗)−1 = (T−1)∗.

T ∗ exists, since T is densely defined in H.

Also T−1 exists, since T is injective.

(T−1)∗ exists, since D(T−1)=R(T ) is dense in H.

We must show that (T ∗)−1 exists and satisfies (T ∗)−1 = (T−1)∗.

Let y ∈D(T ∗). Then, for all x ∈D(T−1), T−1x ∈D(T ) and

〈T−1x ,T ∗y 〉 = 〈TT−1x ,y 〉 = 〈x ,y 〉.
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Inverse of the Hilbert-Adjoint Operator (Cont’d)

By the definition of the Hilbert-adjoint operator of T−1,

〈T−1x ,T ∗y 〉 = 〈x ,(T−1)∗T ∗y 〉, for all x ∈D(T−1).

This shows that T ∗y ∈D((T−1)∗).

Comparing with the preceding equation, we conclude that

(T−1)∗T ∗y = y , y ∈D(T ∗).

So T ∗y = 0 implies y = 0. Hence, (T ∗)−1 :R(T ∗)→D(T ∗) exists.

Since (T ∗)−1T ∗ is the identity operator on D(T ∗), a comparison with
the preceding equation shows that (T ∗)−1 ⊆ (T−1)∗.

It suffices now to show that (T ∗)−1 ⊇ (T−1)∗.
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Inverse of the Hilbert-Adjoint Operator (Cont’d)

Consider any x ∈D(T ) and y ∈D((T−1)∗).

Then Tx ∈R(T )=D(T−1). Moreover,

〈Tx ,(T−1)∗y 〉 = 〈T−1Tx ,y 〉 = 〈x ,y 〉.

By the definition of the Hilbert-adjoint operator of T , we have

〈Tx ,(T−1)∗y 〉 = 〈x ,T ∗(T−1)∗y 〉, for all x ∈D(T ).

From this and the last equation, (T−1)∗y ∈D(T ∗) and

T ∗(T−1)∗y = y , for all y ∈D((T−1)∗).

By the definition of an inverse:
T ∗(T ∗)−1 is the identity operator on D((T ∗)−1)=R(T ∗);
(T ∗)−1 :R(T ∗)→D(T ∗) is surjective.

Comparing with the preceding„ we get D((T ∗)−1)⊇D((T−1)∗).

So (T ∗)−1 ⊇ (T−1)∗.
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Symmetric Linear Operators

Definition (Symmetric Linear Operator)

Let T :D(T )→H be a linear operator which is densely defined in a
complex Hilbert space H. T is called a symmetric linear operator if

〈Tx ,y 〉 = 〈x ,Ty 〉, for all x ,y ∈D(T ).

Lemma (Symmetric Operator)

A densely defined linear operator T in a complex Hilbert space H is
symmetric if and only if

T ⊆T ∗
.

By the definition of T ∗,

〈Tx ,y 〉 = 〈x ,T ∗y 〉, for all x ∈D(T ), y ∈D(T ∗).
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Symmetric Linear Operators (Cont’d)

Suppose, first, that T ⊆T ∗.

Then T ∗y =Ty , for all y ∈D(T ).

So the preceding equation, for x ,y ∈D(T ), becomes

〈Tx ,y 〉 = 〈x ,Ty 〉.

Hence, T is symmetric.

Suppose, next, that

〈Tx ,y 〉 = 〈x ,Ty 〉, for all x ,y ∈D(T ).

Then a comparison with 〈Tx ,y 〉 = 〈x ,T ∗y 〉 shows that:

D(T )⊆D(T ∗);
T =T ∗ |D(T ).

By definition, T ∗ is an extension of T .
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Self-Adjoint Linear Operators

Definition (Self-Adjoint Linear Operator)

Let T :D(T )→H be a linear operator which is densely defined in a
complex Hilbert space H. T is called a self-adjoint linear operator if

T =T ∗
.

Every self-adjoint linear operator is symmetric.

But a symmetric linear operator need not be self-adjoint.

In fact, T ∗ may be a proper extension of T , i.e., D(T ) 6=D(T ∗).

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 25 / 94



Unbounded Linear Operators in Hilbert Space Hilbert-Adjoint, Symmetric and Self-Adjoint Operators

On Symmetry and Self-Adjointness

Of course, D(T )(D(T ∗) cannot happen if D(T ) is all of H.

For a linear operator T :H →H on a complex Hilbert space H , the
concepts of symmetry and self-adjointness are identical.

Note that in this case, T is bounded, and this explains why the
concept of symmetry did not occur earlier.

A densely defined linear operator T in a complex Hilbert space H is
symmetric if and only if

〈Tx ,x〉 is real, for all x ∈D(T ).
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Subsection 3

Closed Linear Operators and Closures
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Closed Linear Operators

Definition (Closed Linear Operator)

Let T :D(T )→H be a linear operator, where D(T )⊆H and H is a
complex Hilbert space. T is called a closed linear operator if its graph

G (T )=
{
(x ,y) : x ∈D(T ),y =Tx

}

is closed in H ×H, where the norm on H ×H is defined by

‖(x ,y)‖ = (‖x‖2+‖y‖2)1/2.

This norm results from the inner product defined by

〈(x1,y1),(x2,y2)〉 = 〈x1,x2〉+〈y1,y2〉.
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The Closed Linear Operator Theorem

From the theory of closed linear operators, we get the following facts.

Theorem (Closed Linear Operator)

Let T :D(T )→H be a linear operator, where D(T )⊆H and H is a
complex Hilbert space. Then:

(a) T is closed if and only if xn → x , xn ∈D(T ) and Txn → y together
imply that x ∈D(T ) and Tx = y .

(b) If T is closed and D(T ) is closed, then T is bounded.

(c) For T be bounded, T is closed if and only if D(T ) is closed.
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The Hilbert-Adjoint Operator Theorem

Theorem (Hilbert-Adjoint Operator)

Let T :D(T )→H be a linear operator, where D(T )⊆H and H is a
complex Hilbert space. The Hilbert-adjoint operator T ∗ is closed.

Consider any sequence (yn) in D(T ∗), such that:
yn → y0;
T ∗yn → z0.

We show that y0 ∈D(T ∗) and z0 =T ∗y0.

By the definition of T ∗, for every y ∈D(T ),

〈Ty ,yn〉 = 〈y ,T ∗yn〉.

By continuity of the inner product,

〈Ty ,y0〉 = 〈y ,z0〉, for every y ∈D(T ).

By the definition of T ∗, we get y0 ∈D(T ∗) and z0 =T ∗y0.

Applying the preceding theorem, we conclude that T ∗ is closed.
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Closable Operator and Closure

Definition (Closable Operator, Closure)

Let T :D(T )→H be a linear operator, where D(T )⊆H and H is a
complex Hilbert space.

If T has an extension T1 which is a closed linear operator, then T is
said to be closable, and T1 is called a closed linear extension of T .

A closed linear extension T of a closable linear operator T is said to
be minimal if every closed linear extension T1 of T is a closed linear
extension of T . This minimal extension T of T - if it exists - is called
the closure of T .

If T exists, it is unique.

If T is not closed, the problem arises whether T has closed extensions.
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The Closure Theorem

Theorem (Closure)

Let T :D(T )→H be a linear operator, where H is a complex Hilbert space
and D(T ) is dense in H. Then, if T is symmetric, its closure T exists and
is unique.

We define T by:

First defining the domain M =D(T );

Then defining T itself.

Then we show that T is indeed the closure of T .

Let M be the set of all x ∈H for which there is a sequence (xn) in
D(T ) and a y ∈H, such that

xn → x and Txn → y .

We can show that M is a vector space. Clearly, D(T )⊆M.
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The Closure Theorem (Cont’d)

On M we define T by setting

y =Tx , x ∈M ,

with y given by
xn → x , Txn → y .

To show that T is the closure of T , we have to prove that T has all
the properties by which the closure is defined.

Obviously, T has the domain D(T )=M.

We shall prove:

(a) To each x ∈D(T ), there corresponds a unique y .

(b) T is a symmetric linear extension of T .

(c) T is closed and is the closure of T .
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The Closure Theorem Property (a)

(a) Uniqueness of y , for every x ∈D(T ).

In addition to (xn), let (x̃n) be another sequence in D(T ), such that

x̃n → x and Tx̃n → ỹ .

Since T is linear, Txn−Tx̃n =T (xn− x̃n).

Since T is symmetric, for every v ∈D(T ),

〈v ,Txn−Tx̃n〉 = 〈v ,T (xn− x̃n)〉 = 〈Tv ,xn− x̃n〉.

Letting n→∞ and using the continuity of the inner product,

〈v ,y − ỹ 〉 = 〈Tv ,x −x〉 = 0.

Therefore, y − ỹ ⊥D(T ). Since D(T ) is dense in H, D(T )⊥ = {0}.

Hence, y − ỹ = 0. Thus, y = ỹ .
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The Closure Theorem Property (b)

(b) T is a symmetric linear extension of T :

Since T is linear, so is T .

This also shows that T is an extension of T .

We show that the symmetry of T implies that of T .

For all x ,z ∈D(T ), there are sequences (xn),(zn) in D(T ), such that

xn → x , Txn →Tx

zn → z , Tzn →Tz .

Since T is symmetric, 〈zn,Txn〉 = 〈Tzn,xn〉.
Letting n→∞ and using the continuity of the inner product,

〈z ,Tx〉 = 〈Tz ,x〉.

Since x ,z ∈D(T ) were arbitrary, this shows that T is symmetric.
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The Closure Theorem Property (c)

(c) T is closed and is the closure of T :

We prove closedness of T by considering any sequence (wm) in D(T ),
such that wm → x and Twm → y and proving x ∈D(T ) and Tx = y .

Every wm (m fixed) is in D(T ).

By the definition of D(T ), there is a sequence in D(T ) which
converges to wm and whose image under T converges to Twm.

Hence, for every fixed m, there is a vm ∈D(T ), such that

‖wm−vm‖ <
1

m
and ‖Twm−Tvm‖<

1

m
.

From this, we conclude that vm → x and Tvm → y .

By the definitions of D(T ) and T , we get x ∈D(T ) and y =Tx .

Hence, T is closed.

By the Closed Linear Operator Theorem, every point of D(T ) must
also belong to the domain of every closed linear extension of T .

So T is the closure of T . We also get that the closure is unique.
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Unbounded Linear Operators in Hilbert Space Closed Linear Operators and Closures

The Hilbert-Adjoint of the Closure

Theorem (Hilbert-Adjoint of the Closure)

For a symmetric linear operator T , we have (T )∗ =T ∗.

Since T ⊆T , by a preceding theorem, (T )∗ ⊆T ∗. Hence
D((T )∗)⊆D(T ∗). We show y ∈D(T ∗) implies y ∈D((T )∗).

Let y ∈D(T ∗). By the definition of the Hilbert-adjoint operator, it
suffices to prove that, for every x ∈D(T ),

〈Tx ,y 〉 = 〈x ,(T )∗y 〉 = 〈x ,T ∗y 〉,

where the second equality follows from (T )∗ ⊆T ∗.

By the definitions of D(T ) and T , for each x ∈D(T ), there is a
sequence (xn) in D(T ), such that xn → x and Txn → y0 =Tx .

Since y ∈D(T ∗) and xn ∈D(T ), by definition, 〈Txn,y 〉 = 〈xn,T ∗y 〉.
By continuity of the inner product, 〈Tx ,y 〉 = 〈x ,T ∗y 〉, x ∈D(T ).
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Subsection 4

Spectral Properties of Self-Adjoint Operators
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

Regular Values

Theorem (Regular Values)

Let T :D(T )→H be a self-adjoint linear operator which is densely defined
in a complex Hilbert space H. Then a number λ belongs to the resolvent
set ρ(T ) of T if and only if, there exists a c > 0, such that, for every
x ∈D(T ),

‖Tλx‖≥ c‖x‖,

where Tλ =T −λI .

(a) Let λ∈ ρ(T ). Then, the resolvent Rλ = (T −λI )−1 exists and is
bounded, say, ‖Rλ‖= k > 0. Since RλTλx = x , for x ∈D(T ), we get

‖x‖= ‖RλTλx‖≤ ‖Rλ‖‖Tλx‖ = k‖Tλx‖.

Division by k yields
‖Tλx‖ ≥ c‖x‖,

where c = 1
k .
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

Regular Values (The Converse)

(b) Conversely, suppose ‖Tλx‖≥ c‖x‖, x ∈D(T ), holds for some c > 0.

We consider the vector space

Y = {y : y =Tλx ,x ∈D(T )},

i.e., the range of Tλ. We show that:

(i) Tλ :D(T )→Y is bijective;
(ii) Y is dense in H ;
(iii) Y is closed.

These imply that the resolvent Rλ =T−1
λ

is defined on all of H.

Boundedness of Rλ will then follow from hypothesis.

So we will have λ ∈ ρ(T ).
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

Regular Values (The Converse Part (i))

(i) Consider any x1,x2 ∈D(T ), such that Tλx1 =Tλx2.

Since Tλ is linear, the hypothesis yields

0= ‖Tλx1−Tλx2‖= ‖Tλ(x1−x2)‖ ≥ c‖x1−x2‖.

Since c > 0, this implies ‖x1−x2‖ = 0.

Hence, x1 = x2.

So the operator Tλ :D(T )→Y is bijective.
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

Regular Values (The Converse Part (ii))

(ii) We prove that Y =H by showing that x0 ⊥Y implies x0 = 0.

Let x0 ⊥Y . Then, for every y =Tλx ∈Y ,

0= 〈Tλx ,x0〉 = 〈Tx ,x0〉−λ〈x ,x0〉.

Hence, for all x ∈D(T ),

〈Tx ,x0〉 = 〈x ,λx0〉.

By definition of the Hilbert-adjoint, x0 ∈D(T ∗) and T ∗x0 =λx0.

Since T is self-adjoint, D(T ∗)=D(T ) and T ∗ =T . So Tx0 =λx0.

Suppose x0 6= 0. This implies that λ is an eigenvalue of T .

Hence, λ=λ must be real. So Tx0 =λx0. I.e., Tλx0 = 0.

But now, the hypothesis yields a contradiction:

0=‖Tλx0‖≥ c‖x0‖ implies ‖x0‖= 0.

It follows that Y
⊥
= {0}. So Y =H.
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

Regular Values (The Converse Part (iii))

(iii) We prove that Y is closed. Let y0 ∈Y .

Then there is a sequence (yn) in Y , such that yn → y0.

Since yn ∈Y , we have yn =Tλxn, for some xn ∈D(Tλ)=D(T ).

By the hypothesis,

‖xn−xm‖≤
1

c
‖Tλ(xn−xm)‖=

1

c
‖yn−ym‖.

Since (yn) converges, this shows that (xn) is Cauchy.

Since H is complete, (xn) converges, say, xn → x0.

Since T is self-adjoint, by a previous theorem, it is closed.

Thus, we have x0 ∈D(T ) and Tλx0 = y0.

This shows that y0 ∈Y . Since y0 ∈Y was arbitrary, Y is closed.
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

Regular Values (The Converse Part (iii) Cont’d)

Parts (ii) and (iii) imply that Y =H.

From this and Part (i), the resolvent Rλ exists and is defined on H,

Rλ =T−1
λ :H →D(T ).

By a previous result, Rλ is linear.

For all y ∈H and corresponding x =Rλy , we have y =Tλx .

Moreover, by hypothesis,

‖Rλy‖= ‖x‖≤
1

c
‖Tλx‖=

1

c
‖y‖.

So ‖Rλ‖≤ 1
c

and Rλ is bounded.

By definition this proves that λ∈ ρ(T ).
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

The Spectrum Theorem

Theorem (Spectrum)

Let H be a complex Hilbert space. Let T :D(T )→H be a self-adjoint
linear operator, with D(T ) dense in H. The spectrum σ(T ) of T is real
and closed.

(a) We first show that σ(T ) is real.

For every x 6= 0 in D(T ) we have

〈Tλx ,x〉 = 〈Tx ,x〉−λ〈x ,x〉.

Since 〈x ,x〉 and 〈Tx ,x〉 are real,

〈Tλx ,x〉 = 〈Tx ,x〉−λ〈x ,x〉.

We write λ=α+ iβ, with real α and β.

Then λ=α− iβ.
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

The Spectrum Theorem (Cont’d)

Subtraction yields

〈Tλx ,x〉−〈Tλx ,x〉 = (λ−λ)〈x ,x〉 = 2iβ‖x‖2
.

The left side equals −2i Im〈Tλx ,x〉.
Since the imaginary part of a complex number cannot exceed the
absolute value, we have by the Schwarz inequality

|β|‖x‖2 ≤ |〈Tλx ,x〉| ≤ ‖Tλx‖‖x‖.

Division by ‖x‖ 6= 0 gives |β|‖x‖ ≤ ‖Tλx‖.
Note that this inequality holds for all x ∈D(T ).

If λ is not real, β 6= 0. So, by the previous theorem, λ∈ ρ(T ).

Hence, σ(T ) must be real.
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

The Spectrum Theorem Part (b)

(b) We now show that σ(T ) is closed.

We do this by proving that the resolvent set ρ(T ) is open.

We consider an arbitrary λ0 ∈ ρ(T ).

We show that every λ sufficiently close to λ0 also belongs to ρ(T ).

By the triangle inequality,

‖Tx −λ0x‖= ‖Tx −λx + (λ−λ0)x‖ ≤ ‖Tx −λx‖+|λ−λ0|‖x‖.

So
‖Tx −λx‖ ≥ ‖Tx −λ0x‖−|λ−λ0|‖x‖.

Since λ0 ∈ ρ(T ), there is a c > 0, such that for all x ∈D(T ),

‖Tx −λ0x‖ ≥ c‖x‖.
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Unbounded Linear Operators in Hilbert Space Spectral Properties of Self-Adjoint Operators

The Spectrum Theorem Part (b) (Cont’d)

Assume that λ is close to λ0, say, |λ−λ0| ≤ c
2
.

Then previous inequalities imply, for all x ∈D(T ),

‖Tx −λx‖ ≥ c‖x‖−
1

2
c‖x‖ =

1

2
c‖x‖.

By a previous theorem, λ ∈ ρ(T ).

So λ0 has a neighborhood lying entirely in ρ(T ).

Since λ0 ∈ ρ(T ) was arbitrary, we conclude that ρ(T ) is open.

Hence, σ(T )=C−ρ(T ) is closed.
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Subsection 5

Spectral Representation of Unitary Operators
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

The Spectrum Theorem

Theorem (Spectrum)

If U :H →H is a unitary linear operator on a complex Hilbert space
H 6= {0}, then the spectrum σ(U) is a closed subset of the unit circle.
Thus, |λ| = 1, for every λ∈σ(U).

We have ‖U‖= 1, by a preceding theorem.

Hence, |λ| ≤ 1, for all λ∈σ(U), also by a previous theorem.

Also 0∈ ρ(U), since for λ= 0 the resolvent operator of U is U−1 =U∗.

The operator U−1 is unitary by a preceding theorem.

Hence, ‖U−1‖= 1.

Also, a preceding theorem, with T =U and λ0 = 0, now implies that
every λ satisfying |λ| < 1

‖U−1‖ = 1 belongs to ρ(U).

Hence, the spectrum of U must lie on the unit circle.

It is closed, by another theorem.
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

The Power Series Lemma

Lemma (Power Series)

Let

h(λ)=
∞∑

n=0

αnλ
n

, αn real,

be absolutely convergent, for all λ, such that |λ| ≤ k . Suppose that
S ∈B(H,H) is self-adjoint and has norm ‖S‖≤ k , where H is a complex
Hilbert space. Then

h(S)=
∞∑

n=0

αnS
n

is a bounded self-adjoint linear operator and

‖h(S)‖ ≤
∞∑

n=0

|αn|kn.

If a bounded linear operator commutes with S , it does so with h(S).
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

The Power Series Lemma

Let hn(λ) denote the n-th partial sum of the λ-series.

For |λ| ≤ k , the series converges absolutely (hence also uniformly).

Since H is complete, absolute convergence implies convergence.

Hence, convergence of the S-series follows from ‖S‖≤ k and

∥∥∑
αnS

n
∥∥ ≤

∑
|αn|‖S‖n ≤ |αn|kn.

We denote the sum of the series by h(S).

This is in agreement with a preceding section, because h(λ) is
continuous and hn(λ)→ h(λ), uniformly for |λ| ≤ k .
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

The Power Series Lemma (Cont’d)

We show, next, that the operator h(S) is self-adjoint.

Since the hn(S) are self-adjoint, 〈hn(S)x ,x〉 is real.

Hence, 〈h(S)x ,x〉 is real by the continuity of the inner product.

So that h(S) is self-adjoint, since H is complex.

Finally, we prove the last inequality.

Since ‖S‖≤ k , a preceding theorem gives [m,M]⊆ [−k ,k].

Another theorem yields, for J = [m,M],

‖hn(S)‖ ≤max
λ∈J

|hn(λ)| ≤
n∑

j=0

|αj |k j .

Letting n→∞, the conclusion follows.
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Wecken’s Lemma

Wecken’s Lemma

Let W and A be bounded self-adjoint linear operators on a complex Hilbert
space H. Suppose that WA=AW and W 2 =A2. Let P be the projection
of H onto the null space N (W −A). Then:

(a) If a bounded linear operator commutes with W −A, it also commutes
with P .

(b) Wx = 0 implies Px = x .

(c) We have W = (2P − I )A.

(a) Suppose that B commutes with W −A.

By hypothesis, Px ∈N (W −A), for every x ∈H.

Thus, (W −A)BPx =B(W −A)Px = 0. So BPx ∈N (W −A).

This implies P(BPx)=BPx . I.e., PBP =BP .

It now suffices to show that PBP =PB .
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Wecken’s Lemma Parts (a) and (b)

We must show PBP =PB .

Since W −A is self-adjoint,

(W −A)B∗ = [B(W −A)]∗ = [(W −A)B ]∗ =B∗(W −A).

This shows that W −A and B∗ also commute.

Hence, reasoning as before, we obtain PB∗P =B∗P .

Since projections are self-adjoint,

PBP = (PB∗P)∗ = (B∗P)∗ =PB .

Together with PBP =BP , we have BP =PB .

(b) Let Wx = 0.

Since A and W are self-adjoint and A2 =W 2,

‖Ax‖2 = 〈Ax ,Ax〉 = 〈A2x ,x〉 = 〈W 2x ,x〉 = ‖Wx‖2 = 0.

So Ax = 0. Hence, (W −A)x = 0. This shows that x ∈N (W −A).

But P is the projection of H onto N (W −A). So Px = x .
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Wecken’s Lemma Part (c)

(c) From the assumptions W 2 =A2 and WA=AW , we have

(W −A)(W +A)=W 2−A2 = 0.

Hence, (W +A)x ∈N (W −A), for every x ∈H.

Since P projects H onto N (W −A), we get P(W +A)x = (W +A)x ,
for every x ∈H. Thus,

P(W +A)=W +A.

But note that:
P(W −A)= (W −A)P , by Part (a);
(W −A)P = 0, since P projects H onto N (W −A).

So
P(W −A)= 0.

Hence,
2PA=P(W +A)−P(W −A)=W +A.

Therefore, 2PA−A=W .
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Spectral Theorem for Unitary Operators

Spectral Theorem for Unitary Operators

Let U :H →H be a unitary operator on a complex Hilbert space H 6= {0}.
Then, there exists a spectral family E = (Eθ) on [−π,π], such that

U =
∫π

−π
e iθdEθ =

∫π

−π
(cosθ+ i sinθ)dEθ .

More generally, for every continuous function f defined on the unit circle,

f (U)=
∫π

π
f (e iθ)dEθ ,

where the integral is to be understood in the sense of uniform operator
convergence. Moreover, for all x ,y ∈H,

〈f (U)x ,y 〉 =
∫π

−π
f (e iθ)dw(θ), w(θ)= 〈Eθx ,y 〉,

where the integral is an ordinary Riemann-Stieltjes integral.
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Proof of the Spectral Theorem Plan

We prove that, for a given unitary operator U , there is a bounded
self-adjoint linear operator S , with σ(S)⊆ [−π,π], such that

U = e iS = cosS + i sinS .

Then we use the spectral theorems of the preceding chapter.
We proceed stepwise as follows:
(a) We prove that U is unitary, provided S exists.
(b) We write U =V + iW , where

V =
1

2
(U +U∗), W =

1

2i
(U +U∗),

and prove that V and W are self-adjoint and −I ≤V ≤ I ,−I ≤W ≤ I .
(c) We investigate some properties of g(V )= arccosV and A= sing(V ).
(d) We prove that the desired operator S is

S = (2P − I )(arccosV ),

where P is the projection of H onto N (W −A).
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Proof of the Spectral Theorem Part (a)

(a) Suppose S is bounded and self-adjoint.

By the Power Series Lemma, so are cosS and sinS .

These operators commute by the same lemma.

This implies that U is unitary since

UU∗ = (cosS + i sinS)(cosS − i sinS)
= (cosS)2+ (sinS)2

= (cos2+sin2)(S)
= I .

Similarly, U∗U = I .
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Proof of the Spectral Theorem Part (b)

(b) Self-adjointness of V = 1
2
(U +U∗) and W = 1

2i (U −U∗) follows by a
direct calculation using a previous result.

Since UU∗ =U∗U (= I ), we have VW =WV .

Also ‖U‖= ‖U∗‖= 1 imply ‖V ‖≤ 1, ‖W ‖≤ 1.

Hence, the Schwarz inequality yields

|〈Vx ,x〉| ≤ ‖Vx‖‖x‖≤ ‖V ‖‖x‖2 ≤ 〈x ,x〉.

So we have
−〈x ,x〉 ≤ 〈Vx ,x〉 ≤ 〈x ,x〉.

This proves the first formula.

The second follows by the same argument.

Furthermore, by direct calculation,

V 2+W 2 =
1

4
(U2+2UU∗+ (U∗)2)−

1

4
(U2−2UU∗+ (U∗)2)=UU∗ = I .
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Proof of the Spectral Theorem Part (c)

(c) We consider

g(λ)= arccosλ=
π

2
−arcsinλ=

π

2
−λ−

1

6
λ3−·· · .

The Maclaurin series on the right converges for |λ| ≤ 1.
At λ= 1 the series of arcsinλ has positive coefficients.
So it has a monotone sequence of partial sums sn, when λ> 0.
This sequence is bounded on (0,1), since sn(λ)< arcsinλ< π

2 .
So, for every fixed n, we have sn(λ)→ sn(1)≤ π

2 , as λ→ 1.
It follows that the series converges at λ= 1.
Convergence at λ=−1 follows readily from that at λ= 1.

Note that ‖V ‖≤ 1.

So, by a previous lemma, the operator

g(V )= arccosV =
π

2
I −V −

1

6
V 3−·· ·

exists and is self-adjoint.
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Proof of the Spectral Theorem Part (c) (Cont’d)

Now define
A= sing(V ).

This is a power series in V .

By a previous lemma, A is self-adjoint and commutes with V .

Moreover, it also commutes with W .

By the power-series expression cosg(V )=V .

So we have
V 2+A2 = (cos2+sin2)(g(V ))= I .

A comparison with V 2+W 2 = I yields W 2 =A2.

Hence, we can apply Wecken’s lemma to conclude that:

W = (2P − I )A;
Wx = 0 implies Px = x ;
P commutes with V and with g(V ), since these operators commute
with W −A.
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Proof of the Spectral Theorem Part (d)

(d) Define
S = (2P − I )g(V )= g(V )(2P − I ).

Obviously, S is self-adjoint.

Claim: S satisfies U = e iS = cosS + i sinS .

Set κ=λ2. Define h1 and h2 by

h1(κ) = cosλ= 1− 1
2!λ

2+−·· · ;
λh2(κ) = sinλ=λ− 1

3!λ
3+−·· · .

These functions exist for all κ.

Since P is a projection, (2P − I )2 = 4P2−4P + I = 4P −4P + I = I .

So we get
S2 = (2P − I )2g(V )2 = g(V )2.

Hence,
cosS = h1(S

2)= h1(g(V )2)= cosg(V )=V .
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Proof of the Spectral Theorem Part (d) (Cont’d)

Next we show that sinS =W .

Indeed, we have

sinS = Sh2(S
2)

= (2P − I )g(V )h2(g(V )2)
= (2P − I )sing(V )
= (2P − I )A
= W .

We conclude that e iS =V + iW =U .

Claim: σ(S)⊆ [−π,π].

Since |arccosλ| ≤π, we get that ‖S‖≤π.

Since S is self-adjoint and bounded, σ(S) is real.

A preceding theorem yields the result.
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Unitary Operators

Proof of the Spectral Theorem (Conclusion)

Let (Eθ) be the spectral family of S .

Then the equations for U and f (U) follow from U = e iS and the
spectral theorem for bounded self-adjoint linear operators.

Claim: We can take −π (instead of −π−) as the lower limit of
integration without restricting generality.

If we had a spectral family, call it (Ẽθ), such that Ẽ−π 6= 0, we would
have to take −π− as the lower limit of integration in those integrals.

However, instead of Ẽθ we could then equally well use Eθ defined by

Eθ =





0, if θ =−π
Ẽθ− Ẽ−π, if −π< θ <π

I , if θ =π

.

Eθ is continuous at θ =−π.

So the lower limit of integration −π is in order.
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Subsection 6

Spectral Representation of Self-Adjoint Linear Operators
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Unbounded Linear Operators in Hilbert Space Spectral Representation of Self-Adjoint Linear Operators

The Cayley Transform

Let H be a complex Hilbert space.

Consider a self-adjoint linear operator T :D(T )→H on H, where
D(T ) is dense in H and T may be unbounded.

We associate with T the operator

U = (T − iI )(T + iI )−1
,

called the Cayley transform of T .

We show that the operator U is unitary.
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Cayley Transform and Spectra

We defined the Cayley transform U = (T − iI )(T + iI )−1 of T , which is
unitary.

We obtain the spectral theorem for the (possibly unbounded) T from
that for the bounded operator U .

T has its spectrum σ(T ) on the real axis of the complex plane C.

On the other hand, the spectrum of a unitary operator lies on the unit
circle of C.

A mapping C→C which transforms the real axis into the unit circle is

u =
t − i

t + i
.

This mapping suggests the Cayley transform.
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First Cayley Transform Lemma

Lemma (Cayley Transform)

The Cayley transform of a self-adjoint linear operator T :D(T )→H exists
on H and is a unitary operator, where H 6= {0} is a complex Hilbert space.

Since T is self-adjoint, σ(T ) is real.

Hence, i and −i belong to the resolvent set ρ(T ).

Consequently, by the definition of ρ(T ), the inverses (T + iI )−1 and
(T − iI )−1 exist on a dense subset of H and are bounded operators.

A preceding theorem implies that T is closed because T =T ∗.

By a previous lemma, those inverses are defined on all of H.

That is, R(T + iI )=H and R(T − iI )=H.

We thus have, since I is defined on all of H,

(T + iI )−1(H)=D(T + iI )=D(T )=D(T − iI ).

We also have (T − iI )(D(T ))=H.

This shows that U is a bijection of H onto itself.
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First Cayley Transform Lemma (Cont’d)

By a previous theorem, it remains to prove that U is isometric.

Take any x ∈H, set y = (T + iI )−1x and use 〈y ,Ty 〉 = 〈Ty ,y 〉.
We calculate

‖Ux‖2 = ‖(T − iI )y‖2

= 〈Ty − iy ,Ty − iy 〉
= 〈Ty ,Ty 〉+ i〈Ty ,y 〉− i〈y ,Ty 〉+〈iy , iy 〉
= 〈Ty + iy ,Ty + iy 〉
= ‖(T + iI )y‖2

= ‖(T + iI )(T + iI )−1x‖2

= ‖x‖2.

A previous theorem now implies that U is unitary.
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Second Cayley Transform Lemma

Lemma (Cayley Transform)

Let T :D(T )→H be a self-adjoint linear operator, where, H 6= {0} is a
complex Hilbert space, and let U be defined by U = (T − iI )(T + iI )−1. Then

T = i(I +U)(I −U)−1
.

Furthermore, 1 is not an eigenvalue of U .

Let x ∈D(T ) and y = (T + iI )x .

Then Uy = (T − iI )x , since (T + iI )−1(T + iI )= I .

By addition and subtraction, we get

(I +U)y = 2Tx and (I −U)y = 2ix .

We know y ∈R(T + iI )=H. Hence, I −U maps H onto D(T ).

We also see that, if (I −U)y = 0, then x = 0.

So, by y = (T + iI )x , y = 0.
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Second Cayley Transform Lemma (Cont’d)

Hence, (I −U)−1 exists by a previous theorem.

Moreover, it is defined on the range of I −U , which is D(T ).

Hence, since (I −U)y = 2ix ,

y = 2i(I −U)−1x , for all x ∈D(T ).

By substitution into (I +U)y = 2Tx , for all x ∈D(T ),

Tx =
1

2
(I +U)y = i(I +U)(I −U)−1x .

Since (I −U)−1 exists, 1 cannot be an eigenvalue of the Cayley
transform U .
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Spectral Theorem for Self-Adjoint Linear Operators

Spectral Theorem for Self-Adjoint Linear Operators

Let T :D(T )→H be a self-adjoint linear operator, where H 6= {0} is a
complex Hilbert space and D(T ) is dense in H. Let U be the Cayley
transform of T and (Eθ) the spectral family in the spectral representation

−U =
∫π

−π
e iθdEθ =

∫π

−π
(cosθ+ i sinθ)dEθ

of −U . Then, for all x ∈D(T ),

〈Tx ,x〉 =
∫π
−π tan

θ
2
dw(θ) w(θ)= 〈Eθx ,x〉

=
∫∞
−∞λdv(λ), v(λ)= 〈Fλx ,x〉

where Fλ =E2arctanλ.
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Spectral Theorem for Self-Adjoint Operators (Plan)

From a previous spectral theorem,we have

−U =
∫π

−π
e iθdEθ =

∫π

−π
(cosθ+ i sinθ)dEθ .

We prove the statement in two steps:

(a) We show that (Eθ) is continuous at −π and π.
(b) We use Property (a) to establish the claimed equations.
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Spectral Theorem for Self-Adjoint Operators Part (a)

(a) (Eθ) is the spectral family of a bounded self-adjoint linear operator
which we call S . Then −U = cosS + i sinS .

From a previous theorem, we know that a θ0 at which (Eθ) is
discontinuous is an eigenvalue of S .

Then, there is an x 6= 0, such that Sx = θ0x .

Hence, for any polynomial q, q(S)x = q(θ0)x .

Also, for any continuous function g on [−π,π], g(S)x = g(θ0)x .

Since σ(S)⊆ [−π,π], we have E−π− = 0.

Hence, if E−π 6= 0, then −π would be an eigenvalue of S .

By the preceding relations, the operator U would have the eigenvalue
−cos(−π)− i sin(−π)= 1.

This contradicts a preceding lemma.

Similarly, Eπ = I and, if Eπ− 6= I , U would have an eigenvalue 1.
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Spectral Theorem for Self-Adjoint Operators Part (b)

(b) Let x ∈H and y = (I −U)x .

In the proof of a previous lemma, it was shown that I −U :H →D(T ).

Hence, y ∈D(T ).

Now, we have T = i(I +U)(I −U)−1. So we get

Ty = i(I +U)(I −U)−1y = i(1+U)x .

Since ‖Ux‖= ‖x‖, we obtain

〈Ty ,y 〉 = 〈i(I +U)x ,(I −U)x〉
= i(〈Ux ,x〉−〈x ,Ux〉)
= i(〈Ux ,x〉−〈Ux ,x〉)
= −2Im〈Ux ,x〉
= 2

∫π
−π sinθd〈Eθx ,x〉.

Hence

〈Ty ,y 〉 = 4

∫π

−π
sin

θ

2
cos

θ

2
d〈Eθx ,x〉.
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Spectral Theorem Part (b) (Cont’d)

Recall that (Eθ) is the spectral family of the bounded self-adjoint
linear operator S in −U = cosS + i sinS .

Hence Eθ and S commute. So Eθ and U commute.

Now, we obtain

〈Eθy ,y 〉 = 〈Eθ(I −U)x ,(I −U)x〉
= 〈(I −U)∗(I −U)Eθx ,x〉
=

∫π
−π (1+e−iϕ)(1+e iϕ)d〈Eϕz ,x〉, where z =Eθx .

We also have:

EϕEθ =Eϕ, when ϕ≤ θ;

(1+e−iϕ)(1+e iϕ)= (e iϕ/2+e−iϕ/2)2 = 4cos2
ϕ
2 .

So we obtain

〈Eθy ,y 〉 = 4

∫θ

−π
cos2

ϕ

2
d〈Eϕx ,x〉.
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Spectral Theorem Part (b) (Cont’d)

We obtained

〈Eθy ,y 〉 = 4

∫θ

−π
cos2

ϕ

2
d〈Eϕx ,x〉.

Using this, the continuity of Eθ at ±π and the rule for transforming a
Stieltjes integral, we finally have

∫π
−π tan

θ
2
d〈Eθy ,y 〉 =

∫π
−π tan

θ
2
(4cos2 θ

2
)d〈Eθx ,x〉

= 4
∫π
−π sin

θ
2
cos θ

2
d〈Eθx ,x〉.

We now have the first formula with y instead of x .

The second follows by the indicated transformation θ = 2arctanλ.

Note that (Fλ) is indeed a spectral family. In particular:

Fλ
λ→−∞−→ 0;

Fλ
λ→+∞−→ I .
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Subsection 7

Multiplication Operator and Differentiation Operator
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Unbounded Linear Operators in Hilbert Space Multiplication Operator and Differentiation Operator

The Multiplication Operator

Consider the operator

T : D(T ) → L2(−∞,+∞);
x 7→ tx

where D(T )⊆ L2(−∞,+∞).

D(T ) consists of all x ∈ L2(−∞,+∞), such that Tx ∈ L2(−∞,+∞).

So x ∈D(T ) if and only if x ∈ L2(−∞,+∞) and

∫+∞

−∞
t2|x(t)|2dt <∞.
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The Domain of the Multiplication Operator

The definition implies that D(T ) 6= L2(−∞,+∞).

An x ∈ L2(−∞,+∞) not satisfying finiteness is

x(t)=
{ 1

t , if t ≥ 1
0, if t < 1

Hence x 6∈D(T ).

D(T ) contains all functions x ∈ L2(−∞,+∞) which are zero outside a
compact interval.

It can be shown that this set of functions is dense in L2(−∞,+∞).

Hence D(T ) is dense in L2(−∞,+∞).
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Unboundedness of the Multiplication Operator

Lemma (Multiplication Operator)

The multiplication operator T defined by U = (T − iI )(T + iI )−1 is not
bounded.

Consider

xn(t)=
{

1, if n≤ t < n+1
0, elsewhere

.

We have

‖xn‖= 1;
‖Txn‖2 =

∫n+1
n t2dt > n2.

So ‖Txn‖
‖xn‖ > n, where n ∈N can be chosen as large as desired.
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Comparison with Finite Domains

The unboundedness results from the fact that we are dealing with
functions on an infinite interval.

For comparison, in the case of a finite interval [a,b] the operator

T̃ : D(T̃ ) → L2[a,b];
x 7→ tx ,

is bounded.

If |b| ≥ |a|, then

‖T̃ x‖2 =
∫b

a
t2|x(t)|2dt ≤ b2‖x‖2;

If |b| < |a|, the proof is similar.

This also shows that x ∈ L2[a,b] implies T̃ x ∈ L2[a,b].

Hence D(T̃ )= L2[a,b], i.e., T̃ is defined on all of L2[a,b].
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Self-Adjointness

Theorem (Self-Adjointness)

The multiplication operator T defined by U = (T − iI )(T + iI )−1 is
self-adjoint.

T is densely defined in L2(−∞,+∞), as was mentioned before.

T is symmetric because, using t = t, we have

〈Tx ,y 〉 =
∫+∞

−∞
tx(t)y(t)dt =

∫+∞

−∞
x(t)ty(t)dt = 〈x ,Ty 〉.

Hence, T ⊆T ∗, by a preceding theorem.

Thus, it suffices to show that D(T )⊇D(T ∗).

This we do by proving that y ∈D(T ∗) implies y ∈D(T ).

Let y ∈D(T ∗). Then, for all x ∈D(T ),

〈Tx ,y 〉 = 〈x ,y∗〉, y∗ =T ∗y .

Written out
∫+∞
−∞ tx(t)y(t)dt =

∫+∞
−∞ x(t)y∗(t)dt.
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Self-Adjointness

Now we have ∫+∞

−∞
x(t)[ty(t)−y∗(t)]dt = 0.

In particular, this holds for every x ∈ L2(−∞,+∞) which is zero
outside an arbitrary given bounded interval (a,b).

Clearly, such an x is in D(T ). Choose

x(t)=
{

ty(t)−y∗(t), if t ∈ (a,b)
0, elsewhere

.

Then we have
∫b
a |ty(t)−y∗(t)|2dt = 0.

It follows that ty(t)−y∗(t)= 0 almost everywhere on (a,b).

Hence, ty(t)= y∗(t) almost everywhere on (a,b).

Since (a,b) was arbitrary, we have ty = y∗ ∈ L2(−∞,+∞). So
y ∈D(T ). We also have T ∗y = y∗ = ty =Ty .

Note that the theorem implies that T is closed, because T =T ∗.
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Spectral Properties

Theorem (Spectrum)

Let T be the multiplication operator and σ(T ) its spectrum. Then:

(a) T has no eigenvalues.

(b) σ(T ) is all of R.

(a) For any λ, let x ∈D(T ) be such that Tx =λx . Then (T −λI )x = 0.

Hence, by the definition of T ,

0= ‖(T −λI )x‖2 =
∫+∞

−∞
|t −λ|2|x(t)|2dt.

Since |t −λ| > 0, for all t 6=λ, we have x(t)= 0, for almost all t ∈R.

Hence, x = 0. So x is not an eigenvector and λ not an eigenvalue of T .

Since λ was arbitrary, T has no eigenvalues.
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Spectral Properties Part (b)

(b) We have σ(T )⊆R, by previous theorems.

Let λ∈R. We define

vn(t)=
{

1, if λ− 1
n
≤ t ≤λ+ 1

n

0, elsewhere
.

Consider xn = 1
‖vn‖vn. Then ‖xn‖= 1.

Write Tλ =T −λI , as usual.

Note that (t −λ)2 ≤ 1
n2 on the interval on which vn is not zero.

So, by the definition of T ,

‖Tλxn‖2 =
∫+∞

−∞
(t −λ)2|xn(t)|2dt ≤

1

n2

∫+∞

−∞
|xn(t)|2dt =

1

n2
.
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Spectral Properties Part (b) (Cont’d)

Taking square roots, we have ‖Tλxn‖≤ 1
n .

Since T has no eigenvalues, the resolvent Rλ =T−1
λ

exists.

Moreover, Tλxn 6= 0 because xn 6= 0, by a preceding result.

Consider the vectors

yn =
1

‖Tλxn‖
Tλxn.

They are in the range of Tλ, which is the domain of Rλ;
They have norm 1.

Applying Rλ, we get

‖Rλyn‖ =
1

‖Tλxn‖
‖xn‖≥ n.

This shows that the resolvent Rλ is unbounded. Hence, λ ∈σ(T ).

Since λ ∈R was arbitrary, σ(T )=R.
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The Spectral Family of T

The spectral family of T is (Eλ), where λ ∈R and

Eλ : L
2(−∞,+∞)→ L2(−∞,λ)

is the projection of L2(−∞,+∞) onto L2(−∞,λ), considered as a
subspace of L2(−∞,+∞).

Thus,

Eλx(t)=
{

x(t), if t <λ

0, if t ≥λ
.
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Absolute Continuity

Let x(t) be a function in L2(−∞,∞).

Recall that x is said to be absolutely continuous on an interval [a,b]
if, given ε> 0, there is a δ> 0, such that:

For every finite set of disjoint open subintervals (a1,b1), . . . ,(an ,bn) of
[a,b] of total length less than δ, we have

n∑

j=1

|x(bj )−x(aj )| < ε.

Recall, also, that, if x is absolutely continuous on [a,b], then:

It is differentiable almost everywhere on [a,b];
x ′ ∈ L[a,b].
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The Differentiation Operator

Consider the differentiation operator

D : D(D) → L2(−∞,+∞);
x 7→ ix ′,

where x ′ = dx
dt

and i helps to make D self-adjoint.

By definition, the domain D(D) of D consists of all x ∈ L2(−∞,+∞)
which are:

Absolutely continuous on every compact interval on R;
Such that x ′ ∈ L2(−∞,+∞).

D(D) contains the sequence (en) involving the Hermite polynomials.

The sequence (en) is total (i.e., its span is dense) in L2(−∞,+∞).

Hence, D(D) is dense in L2(−∞,+∞).
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Unboundedness of the Differentiation Operator

Lemma (Differentiation Operator)

The differentiation operator D is unbounded.

D is an extension of D0 =D |Y , where Y =D(D)∩L2[0,1] and L2[0,1]
is regarded as a subspace of L2(−∞,+∞).

Hence, if D0 is unbounded, so is D.

We show that D0 is unbounded.

Let

xn(t)=
{

1−nt , if 0≤ t ≤ 1
n

0, if 1
n
< t ≤ 1

.
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Unboundedness of the Differentiation Operator (Cont’d)

We defined

xn(t)=
{

1−nt , if 0≤ t ≤ 1
n

0, if 1
n < t ≤ 1

.

The derivative is

x ′n(t)=
{

−n, if 0< t < 1
n

0, if 1
n < t < 1

.

We calculate

‖xn‖2 =
∫1

0
|xn(t)|2dt =

1

3n
.

Moreover,

‖D0xn‖2 =
∫1

0
|x ′n(t)|

2dt = n.

The quotient ‖D0xn‖
‖xn‖ = n

p
3> n. So D0 is unbounded.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 93 / 94



Unbounded Linear Operators in Hilbert Space Multiplication Operator and Differentiation Operator

Remarks on the Differentiation Operator

The differentiation operator is unbounded, even if considered for
L2[a,b], where [a,b] is a compact interval.

Theorem (Self-Adjointness)

The differentiation operator D is self-adjoint.

A proof of this theorem requires some tools from the theory of
Lebesgue integration.

We finally mention the following properties:

D does not have eigenvalues;
The spectrum σ(D) is all of R.
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