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Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

Classical versus Quantum Mechanics

Consider a single particle, constrained to one dimension (i.e., R).

The system is fixed at an arbitrary instant, i.e., time is a parameter
which we keep fixed.

In classical mechanics, the state of the system at some instant is

described by specifying the position and velocity of the particle.

Hence, classically, the instantaneous state of the system is described by

a pair of numbers.

In quantum mechanics, the state of the system is described by a

function ψ.

ψ is complex-valued and is defined on R, i.e., it is a complex function

of a single real variable q.

We assume that ψ is an element of the Hilbert space L2(−∞,+∞).
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Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

The Physical Interpretation of ψ

ψ is related to the probability that the particle will be found in a given
subset J ⊆R, ∫

J
|ψ(q)|2dq.

To the whole one-dimensional space R, there should correspond the
probability 1, i.e., we want the particle to be somewhere on the real
line

‖ψ‖2 =
∫+∞

−∞
|ψ(q)|2dq = 1.

The integral
∫
J |ψ(q)|2dq remains unchanged if we multiply ψ by a

complex factor of absolute value 1.
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Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

States of the System

The deterministic description of a state in classical mechanics is
replaced by a probabilistic description of a state in quantum
mechanics.

Define a state (of our physical system at some instant) to be an
element ψ ∈ L2(−∞,+∞), with ‖ψ‖= 1.

More precisely, it is an equivalence class of such elements, where

ψ1 ∼ψ2 ⇔ ψ1 =αψ2, |α| = 1.

For the sake of simplicity, we denote these equivalence classes again by
letters such as ψ,ϕ, etc.

ψ generates a one-dimensional subspace of L2(−∞,+∞),

Y = {ϕ :ϕ=βψ,β ∈C}.

A state of the system is a one-dimensional subspace Y ⊆ L2(−∞,+∞);
A probability is computed using a ϕ ∈Y of norm 1.
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Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

Mean and Expected Value

|ψ(q)|2 plays the role of the density of a probability distribution on R.

By definition, the corresponding mean value or expected value is

µψ =
∫+∞

−∞
q|ψ(q)|2dq.

The variance of the distribution is

varψ =
∫+∞

−∞
(q−µψ)

2|ψ(q)|2dq.

The standard deviation is

sdψ =
√

varψ ≥ 0.
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Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

The Position Operator

We can write the mean in the form

µψ(Q)= 〈Qψ,ψ〉 =
∫+∞

−∞
Qψ(q)ψ(q)dq,

where the operator Q :D(Q)→ L2(−∞,+∞) is the multiplication by

the independent variable q, defined by

Qψ(q)= qψ(q).

Since µψ(Q) characterizes the average position of the particle, Q is
called the position operator.

By definition, D(Q) consists of all ψ ∈ L2(−∞,+∞), such that
Qψ ∈ L2(−∞,+∞).
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Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

Position Operator and Variance

By preceding work, Q is an unbounded self-adjoint linear operator
whose domain is dense in L2(−∞,+∞).

The variance can be written

varψ(Q) = 〈(Q −µI )2ψ,ψ〉 (µ=µψ(Q))

=
∫+∞
−∞ (Q −µI )2ψ(q)ψ(q)dq.
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Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

Need for Observables

A state ψ of a physical system contains our entire theoretical
knowledge about the system, but only implicitly.

The problem is how to obtain from a ψ some information about
quantities that express properties of the system which we can observe
experimentally, called observables.

Examples of observables are position, momentum and energy.

In the case of position, we have the self-adjoint linear operator Q.

This suggests that in the case of other observables, we proceed in a
similar fashion, that is, introduce suitable self-adjoint linear operators.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 10 / 43



Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

Observables

Define an observable (of our physical system at some instant) to be a
self-adjoint linear operator T :D(T )→ L2(−∞,+∞), where D(T ) is
dense in the space L2(−∞,+∞).

Define the mean value µψ(T ) by

µψ(T )= 〈Tψ,ψ〉 =
∫+∞

−∞
Tψ(q)ψ(q)dq.

Define the variance varψ(T ) by

varψ(T ) = 〈(T −µI )2ψ,ψ〉 (µ=µψ(T ))

=
∫+∞
−∞ (T −µI )2ψ(q)ψ(q)dq.
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Unbounded Linear Operators in Quantum Mechanics States, Observables, Position Operator

Observables (Cont’d)

Define the standard deviation by

sdψ(T )=
√

varψ(T ).

In an experiment, if the system is in state ψ:

µψ(T ) characterizes the average value of the observable T ;

The variance varψ(T ) characterizes the variability about the mean.
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

The Position and the Momentum Operators

Consider the same physical system with the position operator

Q : D(Q) → L2(−∞,+∞);
ψ 7→ qψ.

Another very important observable is the momentum p, given by the
momentum operator:

D : D(D) → L2(−∞,+∞);

ψ 7→ h
2πi

dψ
dq

,

where h is Planck’s constant.

The domain D(D)⊆ L2(−∞,+∞) consists of all functions
ψ ∈ L2(−∞,+∞), such that:

ψ is absolutely continuous on every compact interval on R;

Dψ ∈ L2(−∞,+∞).
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

Motivation for the Momentum Operator

By Einstein’s mass-energy relationship E =mc2 (c the speed of light),
an energy E has mass m= E

c2 .

Since a photon has speed c and energy E = hν (ν the frequency), it
has momentum

p = mc (mass × speed)

=
hν

c

=
h

Λ
(Λ the wavelength)

=
h

2π
k .

(
k =

2π

Λ

)

Adopting de Broglie’s concept of matter waves, satisfying
relationships that hold for light waves, we may use the displayed
equation also in connection with particles.
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

State and Fourier Transform

Assuming the state ψ of our physical system to be such that we can
apply the classical Fourier integral theorem, we have

ψ(q)=
1
p
h

∫+∞

−∞
ϕ(p)e(2πi/h)pqdp.

Here,

ϕ(p)=
1
p
h

∫+∞

−∞
ψ(q)e−(2πi/h)pqdq.

Physically this can be interpreted as a representation of ψ in terms of
functions of constant momentum p given by

ψp(q)=ϕ(p)e(2πi/h)pq =ϕ(p)e ikq ,

where k = 2πp
h

and ϕ(p) is the amplitude.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 16 / 43



Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

Fourier Transform and Momentum

The complex conjugate ψp has a minus sign in the exponent.

So, we have

|ψp(q)|2 =ψp(q)ψp(q)=ϕ(p)ϕ(p)= |ϕ(p)|2.

Thus, |ϕ(p)|2 must be proportional to the density of the momentum.

The constant of proportionality is 1, since we have defined ϕ(p) so
that the same constant 1p

h
is involved.
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

Mean Value of the Momentum

The mean value of the momentum, call it µ̃ψ, is

µ̃ψ =
∫+∞
−∞ p|ϕ(p)|2dp

=
∫+∞
−∞ pϕ(p)ϕ(p)dp

=
∫+∞
−∞ pϕ(p) 1p

h

∫+∞
−∞ ψ(q)e(2πi/h)pqdqdp.

Suppose that:

We may interchange the order of integration;

In the Fourier transform we may differentiate under the integral sign.

Then, we obtain

µ̃ψ =
∫+∞
−∞ ψ(q)

∫+∞
−∞ ϕ(p) 1p

h
pe(2πi/h)pqdpdq

=
∫+∞
−∞ ψ(q) h

2πi

dψ(q)
dq

dq.
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

Mean Value of the Momentum and the Momentum Operator

We obtained

µ̃ψ =
∫+∞

−∞
ψ(q)

h

2πi

dψ(q)

dq
dq.

Denoting µ̃ψ by µψ(D), we can write this in the form

µψ(D)= 〈Dψ,ψ〉 =
∫+∞

−∞
Dψ(q)ψ(q)dq.

This motivates the definition of the momentum operator

D : D(D) → L2(−∞,+∞);

ψ 7→ h
2πi

dψ
dq

.
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

The Commutator of Self-Adjoint Operators

Let S and T be any self-adjoint linear operators with domains in the
same complex Hilbert space.

Then the operator
C = ST −TS

is called the commutator of S and T .

The commutator C of S and T is defined on

D(C )=D(ST )∩D(TS).
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

The Commutator of the Position and the Momentum

By straightforward differentiation we have

DQψ(q)=D(qψ(q))=
h

2πi
[ψ(q)+qψ′(q)]=

h

2πi
ψ(q)+QDψ(q).

This gives the Heisenberg commutation relation

DQ−QD =
h

2πi
Ĩ ,

where Ĩ is the identity operator on the domain

D(DQ −QD)=D(DQ)∩D(QD).

The domain D(DQ −QD) is dense in the space L2(−∞,+∞).

It contains the sequence (en) of the Hermite polynomials, which is
total in L2(−∞,+∞).
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

The Commutator Theorem

Theorem (Commutator)

Let S and T be self-adjoint linear operators with domain and range in
L2(−∞,+∞). Then C = ST −TS satisfies

|µψ(C )| ≤ 2sdψ(S)sdψ(T ),

for every ψ in the domain of C .

Write µ1 =µψ(S), µ2 =µψ(T ), A= S −µ1I and B =T −µ2I .

We have

C = ST −TS = (A+µ1I )(B +µ2I )− (B +µ2I )(A+µ1I )
= AB +µ1B +µ2A+µ1µ2I −BA−µ1B −µ2A−µ1µ2I

= AB −BA.

By hypothesis, S and T are self-adjoint. Since µ1 and µ2 are inner
products, they are real. Hence A and B are self-adjoint.
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

The Commutator Theorem (Cont’d)

By definition,

µψ(C ) = 〈(AB −BA)ψ,ψ〉
= 〈ABψ,ψ〉−〈BAψ,ψ〉
= 〈Bψ,Aψ〉−〈Aψ,Bψ〉.

The last two products are equal in absolute value.

Hence, by the triangle and Schwarz inequalities, we have

|µψ(C )| ≤ |〈Bψ,Aψ〉|+ |〈Aψ,Bψ〉|≤ 2‖Bψ‖‖Aψ‖.

Since B is self-adjoint,

‖Bψ‖= 〈(T −µ2I )
2ψ,ψ〉1/2 =

√
varψ(T )= sdψ(T ).

Similarly for ‖Aψ‖.
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

Heisenberg Uncertainty Principle

Theorem (Heisenberg Uncertainty Principle)

For the position operator Q and the momentum operator D,

sdψ(D)sdψ(Q)≥
h

4π
.

By the Heisenberg Commutation Relation, C :=DQ−QD = h
2πi Ĩ .

Hence,

|µψ(C )| = |〈Cψ,ψ〉| =
〈

h

2πi
Ĩψ,ψ

〉
=

h

2π
.

By the Commutator Theorem, we get

h

4π
=

1

2
|µψ(C )| ≤ sdψ(D)sdψ(Q).
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Unbounded Linear Operators in Quantum Mechanics Momentum Operator. Heisenberg Uncertainty Principle

Interpretation of the Heisenberg Uncertainty Principle

The standard deviation sdψ(D) characterizes the precision of the
measurement of the momentum.

The standard deviation sdψ(Q) characterizes the precision of the
measurement of the position.

So the inequality

sdψ(D)sdψ(Q)≥
h

4π

means that we cannot make a simultaneous measurement of position
and momentum of a particle with an unlimited accuracy.
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Subsection 3

Time-Independent Schrodinger Equation
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Unbounded Linear Operators in Quantum Mechanics Time-Independent Schrodinger Equation

The Wave Equation

For investigating refraction, interference and other more subtle optical
phenomena one uses the wave equation

Ψtt = γ2
∆Ψ,

where:

Ψtt = ∂2
Ψ

∂t2
;

The constant γ2 is positive;

∆Ψ is the Laplacian of Ψ.

If q1,q2,q3 are Cartesian coordinates in space, then

∆Ψ=
∂2

Ψ

∂q2
1

+
∂2

Ψ

∂q2
2

+
∂2

Ψ

∂q2
3

.

In the system considered in the last section we have only one
coordinate, q, and ∆Ψ= ∂2

Ψ

∂q2 .
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Unbounded Linear Operators in Quantum Mechanics Time-Independent Schrodinger Equation

The Helmholtz Equation

Assume a simple and periodic time dependence, say,

Ψ(q1,q2,q3,t)=ψ(q1,q2,q3)e
−iωt

.

Substitute into Ψtt = γ2
∆Ψ,

−ψω2e−iωt =γ2
∆ψe−iωt .

Drop the exponential factor and rearrange

∆ψ+
ω2

γ2
ψ= 0.

This is the Helmholtz equation (time-independent wave equation)

∆ψ+k2ψ= 0,

where

k =
ω

γ
=

2πν

γ
=

2π

Λ
.
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Unbounded Linear Operators in Quantum Mechanics Time-Independent Schrodinger Equation

The Time-Independent Schrödinger Equation

For Λ we choose the de Broglie wave length of matter waves

Λ=
h

mv
.

Then we get k2 = 4π2m2v2

h2 and

∆ψ+
8π2m

h2
·
mv2

2
ψ= 0.

Let E = mv2

2
+V be the sum of the kinetic and the potential energy.

Then we can write

∆ψ+
8π2m

h2
(E −V )ψ= 0.

This is the famous time-independent Schrödinger equation.
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Unbounded Linear Operators in Quantum Mechanics Time-Independent Schrodinger Equation

Schrödinger Equation and Bohr’s Theory

Rewrite ∆ψ+ 8π2m
h2 (E −V )ψ= 0 in the form

(
−

h2

8π2m
∆+V

)
ψ=Eψ.

This form suggests that the possible energy levels of the system will
depend on the spectrum of the operator defined by the left-hand side.

Physically meaningful solutions of a differential equation should
remain finite and approach zero at infinity.

A potential field being given, Schrödinger’s equation has such
solutions only for certain values of the energy E .
They are related to Bohr’s theory of the atom in one of two ways:

They are in agreement with the “permissible” energy levels of Bohr’s

theory;

They disagree, but they are in better agreement with experimental

results than values predicted Bohr’s theory.

So Schrödinger’s equation both “explains” and improves Bohr’s theory.
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Subsection 4

Hamilton Operator
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Unbounded Linear Operators in Quantum Mechanics Hamilton Operator

Hamilton Function in Classical Mechanics

In classical mechanics, one can base the investigation of a conservative
system of particles on the Hamilton function of the system, i.e., the
total energy

H =Ekin +V

(Ekin = kinetic energy, V = potential energy) expressed in terms of
position coordinates and momentum coordinates.

Assuming that the system has n degrees of freedom, one has:

n position coordinates q1, . . . ,qn;

n momentum coordinates p1, . . . ,pn.
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Unbounded Linear Operators in Quantum Mechanics Hamilton Operator

Adaptation to Quantum Mechanics

In the quantum mechanical treatment of the system we also determine

H(p1, . . . ,pn;q1, . . . ,qn).

We then replace each pj by the momentum operator

Dj :D(Dj)→ L2(Rn); ψ 7→
h

2πi

∂ψ

∂qj
, where D(Dj)⊆ L2(Rn).

Furthermore, we replace each qj by the position operator

Qj :D(Qj)→ L2(Rn); ψ 7→ qjψ, where D(Qj )⊆ L2(Rn).
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Unbounded Linear Operators in Quantum Mechanics Hamilton Operator

Hamilton Operator in Quantum Mechanics

The Hamilton operator, denoted H , becomes

H (D1, . . . ,Dn;Q1, . . . ,Qn) :=H(p1, . . . ,pn;q1, . . . ,qn),

with:

pj replaced by Dj ;

qj replaced by Qj .

By definition, H is self-adjoint.

This process of replacement is called the quantization rule.

The process is not unique (multiplication not commutative).
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Unbounded Linear Operators in Quantum Mechanics Hamilton Operator

The Schrödinger Equation with the Hamilton Operator

The kinetic energy of a particle of mass m in space gives

m

2
|v |2 =

m

2
(v2

1 +v2
2 +v2

3 )=
1

2m
(p2

1 +p2
2 +p2

3).

By the quantization rule the expression on the right yields

1

2m

3∑

j=1

D2
j =

1

2m

(
h

2πi

)2 3∑

j=1

∂2

∂q2
j

= −
h2

8π2m
∆.

Now the equation (− h2

8π2m
∆+V )ψ=Eψ can be written

H ψ=λψ,

where λ=E is the energy.
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Unbounded Linear Operators in Quantum Mechanics Hamilton Operator

Eigenvalues of the Schrödinger Equation

We wrote H ψ=λψ, with H =− h2

8π2m
∆+V and λ=E .

If λ is in the resolvent set of H , then the resolvent of H exists and

the equation has only the trivial solution, considered in L2(Rn).
If λ is in the point spectrum σp(H ), then the equation has nontrivial

solutions ψ ∈ L2(Rn).
The residual spectrum σr (H ) is empty since H is self-adjoint.

If λ∈σc(H ), the continuous spectrum of H , then the equation has

no solution ψ ∈ L2(Rn), where ψ 6= 0.

However, in this case, it may have nonzero solutions which are not in

L2(Rn) and depend on a parameter with respect to which we can

perform integration to obtain a ψ ∈ L2(Rn).
In physics, we say that in this process of integration we form wave

packets.
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Unbounded Linear Operators in Quantum Mechanics Hamilton Operator

Free Particle of Mass m on (−∞,+∞)

We consider a free particle of mass m on (−∞,+∞).

The Hamilton function is H(p,q)= 1
2m

p2.

So the Hamilton operator is

H (D ,Q)=
1

2m
D2 = −

h2

8π2m

d2

dq2
.

Hence,

H ψ=−
h2

8π2m
ψ′′ =λψ, λ=E is the energy.

Solutions are given by
η(q)= e−ikq ,

where the parameter k is related to the energy by λ=E = h2k2

8π2m
.
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Unbounded Linear Operators in Quantum Mechanics Hamilton Operator

The Fourier-Plancherel Theorem

These functions η can now be used to represent any ψ ∈ L2(−∞,+∞)
as a wave packet in the form

ψ(q)=
1

p
2π

lim
a→−∞

∫a

−a
ϕ(k)e−ikqdk ,

where

ϕ(k)=
1

p
2π

lim
b→∞

∫b

−b
ψ(q)e ikqdq.

The limits are in the norm of L2(−∞,+∞) (with respect to q and k ,
respectively).

Such a limit is also called a limit in the mean.

The formulas together with the underlying assumptions are called the
Fourier-Plancherel Theorem.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 38 / 43



Unbounded Linear Operators in Quantum Mechanics Hamilton Operator

Free Particle of Mass m in Three Dimensions

We have

H ψ=−
h2

8π2m
∆ψ=λψ, ∆ the Laplacian.

Solutions are plane waves

η(q)= e−ik ·q ,

where q = (q1,q2,q3), k = (k1,k2,k3), and

k ·q = k1q1+k2q2+k3q3.

The energy is

λ=E =
h2

8π2m
k ·k .
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Free Particle of Mass m in Three Dimensions (Cont’d)

For a ψ ∈ L2(R3) the Fourier-Plancherel theorem gives

ψ(q)=
1

(2π)3/2

∫

R3
ϕ(k)e−ik ·qdk ,

where

ϕ(k)=
1

(2π)3/2

∫

R3
ψ(q)e ik ·qdq.

The integrals are again understood as limits in the mean of
corresponding integrals over finite regions in 3-space.
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Subsection 5

Time-Dependent Schrodinger Equation
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Unbounded Linear Operators in Quantum Mechanics Time-Dependent Schrodinger Equation

Nonstationary States

A stationary state of a physical system is a state which depends on
time only by an exponential factor, say, e−iωt .

Other states are called nonstationary states.

The differential equation that such a general function ϕ of the pj ’s,

qj ’s and t should satisfy cannot be of the form Ψtt = γ2
∆Ψ.

This is due to the requirement that the function ϕ be determined for

all t if it is given at some instant t.

The equation Ψtt = γ2
∆Ψ involves the second derivative with respect

to t, and so it leaves the first derivative undetermined.
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Unbounded Linear Operators in Quantum Mechanics Time-Dependent Schrodinger Equation

The Time-Dependent Schrödinger Equation

The time-dependent Schrödinger equation is

H ϕ=−
h

2πi

∂ϕ

∂t
.

Since it involves i , a nonzero solution ϕ must be complex.

|ϕ|2 is regarded as a measure of the intensity of the wave.

A stationary solution, whose intensity at a point is independent of t,
is obtained by setting

ϕ=ψe−iωt ,

where ψ does not depend on t, and ω= 2πν.

Substitution gives

H ψ= −
h

2πi
(−2πiν)ψ= hνψ.

Since E = hν, H ψ=λψ, where λ=E is the energy of the system.

This agrees with the preceding case.
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