Introduction to Spectral Theory of Linear Operators

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

(1) Spectral Theory of Linear Operators in Normed Spaces

- Spectral Theory in Finite Dimensional Normed Spaces
- Basic Concepts
- Spectral Properties of Bounded Linear Operators
- Further Properties of Resolvent and Spectrum
- Use of Complex Analysis in Spectral Theory
- Banach Algebras
- Further Properties of Banach Algebras

Subsection 1

Spectral Theory in Finite Dimensional Normed Spaces

Linear Operators On Normed Spaces

- Let X be a finite dimensional normed space.
- Let $T: X \rightarrow X$ be a linear operator.
- We know that we can represent T by matrices (which depend on the choice of bases for X).
- Then the spectral theory of T is essentially matrix eigenvalue theory.
- For a given (real or complex) n-rowed square matrix $A=\left(\alpha_{j k}\right)$, the concepts of eigenvalues and eigenvectors are defined in terms of the equation

$$
A x=\lambda x
$$

Eigenvalues, Eigenvectors, Eigenspaces and Spectrum

Definition (Eigenvalues, Eigenvectors, Eigenspaces, Spectrum, Resolvent Set of a Matrix)

An eigenvalue of a square matrix $A=\left(\alpha_{j k}\right)$ is a number λ, such that

$$
A x=\lambda x
$$

has a solution $x \neq 0$. This x is called an eigenvector of A corresponding to that eigenvalue λ.

- The eigenvectors corresponding to that eigenvalue λ and the zero vector form a vector subspace of X which is called the eigenspace of A corresponding to that eigenvalue λ.
- The set $\sigma(A)$ of all eigenvalues of A is called the spectrum of A.
- The complement $\rho(A)=\mathbb{C}-\sigma(A)$ of the spectrum of A in the complex plane is called the resolvent set of A.

Characteristic Equation, Determinant and Polynomial

- Let I be the $n \times n$ unit matrix.
- $A x=\lambda x$ can be written $(A-\lambda I) x=0$.
- This is a homogeneous system of n linear equations in n unknowns ξ_{1}, \ldots, ξ_{n}, the components of x.
- The determinant of the coefficients is $\operatorname{det}(A-\lambda I)$.
- This determinant must be zero in order to have a solution $x \neq 0$.
- This gives the characteristic equation of A :

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cccc}
\alpha_{11}-\lambda & \alpha_{12} & \cdots & \alpha_{1 n} \\
\alpha_{21} & \alpha_{22}-\lambda & \cdots & \alpha_{2 n} \\
\vdots & \vdots & & \vdots \\
\alpha_{n 1} & \alpha_{n 2} & \cdots & \alpha_{n n}-\lambda
\end{array}\right|=0 .
$$

- $\operatorname{det}(A-\lambda I)$ is called the characteristic determinant of A.
- By developing it we obtain a polynomial in λ of degree n, the characteristic polynomial of A.

The Eigenvalue Theorem

Theorem (The Eigenvalue Theorem)

The eigenvalues of an $n \times n$ square matrix $A=\left(\alpha_{j k}\right)$ are given by the solutions of the characteristic equation $\operatorname{det}(A-\lambda I)=0$ of A. Hence A has at least one eigenvalue (and at most n numerically different eigenvalues).

- We have proven the first statement.

Recall that, by the Fundamental Theorem of Algebra and the Factorization Theorem, a polynomial of degree $n>0$, with coefficients in \mathbb{C}, has a root in \mathbb{C} (and at most n numerically different roots).
This yields the second statement.

- Note that roots may be complex even if A is real.

Example

- Consider the matrix $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.

We find the eigenvalues of A by solving the characteristic equation $\operatorname{det}(A-\lambda I)=0$.

$$
\left.\left.\begin{array}{cc}
5-\lambda & 4 \\
1 & 2-\lambda
\end{array} \right\rvert\,=0 \quad \Rightarrow \quad(5-\lambda)(2-\lambda)-4=0\right)
$$

Thus, the spectrum is $\{1,6\}$.

Example (Cont'd)

- We found the eigenvalues of $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.

The eigenvectors of A corresponding to 1 and 6 are obtained from

$$
\left\{\begin{array} { r }
{ 4 \xi _ { 1 } + 4 \xi _ { 2 } = 0 } \\
{ \xi _ { 1 } + \xi _ { 2 } = 0 }
\end{array} \text { and } \left\{\begin{array}{r}
-\xi_{1}+4 \xi_{2}=0 \\
\xi_{1}-4 \xi_{2}=0
\end{array}\right.\right.
$$

respectively.
Observe that in each case we need only one of the two equations.
So $x_{1}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ are eigenvectors of A corresponding to the eigenvalues 1 and 6 , respectively.

Eigenvalues and Spectrum of an Operator

- Let X be a normed space of dimension n.
- Consider again a linear operator $T: X \rightarrow X$.
- Let $e=\left\{e_{1}, \ldots, e_{n}\right\}$ be any basis for X.
- Let $T_{e}=\left(\alpha_{j k}\right)$ be the matrix representing T with respect to the basis e (whose elements are kept in the given order).
- The eigenvalues of the matrix T_{e} are called the eigenvalues of the operator T.
- The spectrum of the matrix T_{e} is called the spectrum of T.
- The resolvent set of T_{e} is called the resolvent set of T.

Eigenvalues of an Operator

Theorem (Eigenvalues of an Operator)

All matrices representing a given linear operator $T: X \rightarrow X$ on a finite dimensional normed space X relative to various bases for X have the same eigenvalues.

- We examine the effect of the transition from one basis for X to another.
Let $e=\left(e_{1}, \ldots, e_{n}\right)$ and $\widetilde{e}=\left(\widetilde{e}_{1}, \ldots, \widetilde{e}_{n}\right)$ be any bases for X, written as row vectors.
By the definition of a basis, each e_{j} is a linear combination of the \widetilde{e}_{k} 's and conversely.
We can write this $\widetilde{e}=e C$ or $\widetilde{e}^{\top}=C^{\top} e^{\top}$, where C is a nonsingular $n \times n$ square matrix.

Eigenvalues of an Operator (Cont'd)

- Every $x \in X$ has a unique representation with respect to each of the two bases. Say,

$$
x=\sum \xi_{j} e_{j}=e x_{1} \quad \text { and } \quad x=\sum \widetilde{\xi}_{k} \widetilde{e}_{k}=\widetilde{e} x_{2},
$$

where $x_{1}=\left(\xi_{j}\right)$ and $x_{2}=\left(\tilde{\xi}_{k}\right)$ are column vectors.
We get, $e x_{1}=\widetilde{e} x_{2}=e C x_{2}$. Hence $x_{1}=C x_{2}$.
Similarly, suppose $T x=y=e y_{1}=\widetilde{e} y_{2}$. Then we have $y_{1}=C y_{2}$.
Now, if T_{1} and T_{2} denote the matrices which represent T with respect to e and \widetilde{e}, respectively, then $y_{1}=T_{1} x_{1}$ and $y_{2}=T_{2} x_{2}$.
Therefore, we obtain

$$
C T_{2} x_{2}=C y_{2}=y_{1}=T_{1} x_{1}=T_{1} C x_{2} .
$$

Eigenvalues of an Operator (Conclusion)

- We obtained $C T_{2} x_{2}=T_{1} C x_{2}$.

Premultiplying by C^{-1}, we obtain the transformation law

$$
T_{2}=C^{-1} T_{1} C
$$

with C determined by the bases and independent of T. Using $\operatorname{det}\left(C^{-1}\right) \operatorname{det}(C)=1$, we can now show that the characteristic determinants of T_{2} and T_{1} are equal.

$$
\begin{aligned}
\operatorname{det}\left(T_{2}-\lambda I\right) & =\operatorname{det}\left(C^{-1} T_{1} C-\lambda C^{-1} I C\right) \\
& =\operatorname{det}\left(C^{-1}\left(T_{1}-\lambda I\right) C\right) \\
& =\operatorname{det}\left(C^{-1}\right) \operatorname{det}\left(T_{1}-\lambda I\right) \operatorname{det} C \\
& =\operatorname{det}\left(T_{1}-\lambda I\right) .
\end{aligned}
$$

Equality of the eigenvalues of T_{1} and T_{2} now follows from the Eigenvalue Theorem.

Similar Matrices

- An $n \times n$ matrix T_{2} is said to be similar to an $n \times n$ matrix T_{1}, if there exists a nonsingular matrix C, such that

$$
T_{2}=C^{-1} T_{1} C
$$

- T_{1} and T_{2} are then called similar matrices.
- In terms of this concept, our proof shows that:
(i) Two matrices representing the same linear operator T on a finite dimensional normed space X relative to any two bases for X are similar.
(ii) Similar matrices have the same eigenvalues.

Existence of Eigenvalues and Determinant of an Operator

Existence Theorem (Eigenvalues)

A linear operator on a finite dimensional complex normed space $X \neq\{0\}$ has at least one eigenvalue.

- This follows from the Eigenvalue Theorem and the preceding theorem.
- Note that, with $\lambda=0, \operatorname{det}\left(T_{2}-\lambda I\right)=\operatorname{det}\left(T_{1}-\lambda I\right)$ gives

$$
\operatorname{det} T_{2}=\operatorname{det} T_{1} .
$$

Hence, the value of the determinant is an intrinsic property of T.
We call it the determinant of the operator T and denote it by $\operatorname{det} T$.

Subsection 2

Basic Concepts

The Operator T_{λ} Associated With An Operator T

- We now consider normed spaces of any dimension.
- Let $X \neq\{0\}$ be a complex normed space.
- Let $T: \mathscr{D}(T) \rightarrow X$ be a linear operator with domain $\mathscr{D}(T) \subseteq X$.
- With T we associate the operator

$$
T_{\lambda}=T-\lambda I,
$$

where:

- λ is a complex number;
- I is the identity operator on $\mathscr{D}(T)$.

The Resolvent of an Operator T

- If T_{λ} has an inverse, we denote it by $R_{\lambda}(T)$,

$$
R_{\lambda}(T)=T_{\lambda}^{-1}=(T-\lambda I)^{-1}
$$

- We call $R_{\lambda}(T)$ the resolvent operator of T or, simply, the resolvent of T.
- Instead of $R_{\lambda}(T)$ we also write simply R_{λ} if the operator T is clear from context.
- The name "resolvent" is appropriate, since $R_{\lambda}(T)$ helps to solve the equation $T_{\lambda} x=y$.
Indeed, suppose $R_{\lambda}(T)$ exists.
Then

$$
x=T_{\lambda}^{-1} y=R_{\lambda}(T) y
$$

Regular Value, Resolvent Set and Spectrum

Definition (Regular Value, Resolvent Set, Spectrum)

Let $X \neq\{0\}$ be a complex normed space and $T: \mathscr{D}(T) \rightarrow X$ a linear operator with domain $\mathscr{D}(T) \subseteq X$.

- A regular value λ of T is a complex number such that:
(R1) $R_{\lambda}(T)$ exists;
(R2) $R_{\lambda}(T)$ is bounded;
(R3) $R_{\lambda}(T)$ is defined on a set which is dense in X.
- The resolvent set $\rho(T)$ of T is the set of all regular values λ of T.
- Its complement $\sigma(T)=\mathbb{C}-\rho(T)$ in the complex plane \mathbb{C} is called the spectrum of T.
- A $\lambda \in \sigma(T)$ is called a spectral value of T.

Partition of the Spectrum

Definition (Point, Continuous and Residual Spectrum)

Let $X \neq\{0\}$ be a complex normed space and $T: \mathscr{D}(T) \rightarrow X$ a linear operator with domain $\mathscr{D}(T) \subseteq X$.
The spectrum $\sigma(T)$ is partitioned into three disjoint sets as follows:

- The point spectrum or discrete spectrum $\sigma_{p}(T)$ is the set such that $R_{\lambda}(T)$ does not exist.
A $\lambda \in \sigma_{p}(T)$ is called an eigenvalue of T.
- The continuous spectrum $\sigma_{C}(T)$ is the set such that $R_{\lambda}(T)$ exists and satisfies (R3) but not (R2), that is, $R_{\lambda}(T)$ is unbounded.
- The residual spectrum $\sigma_{r}(T)$ is the set such that $R_{\lambda}(T)$ exists (bounded or not) but does not satisfy (R3), i.e., the domain of $R_{\lambda}(T)$ is not dense in X.

Summary of the Defining Conditions

- Some of the sets defined above may be empty.

For instance, $\sigma_{c}(T)=\sigma_{r}(T)=\varnothing$ in the finite dimensional case.

- Recall the conditions
(R1) $R_{\lambda}(T)$ exists;
(R2) $R_{\lambda}(T)$ is bounded;
(R3) $R_{\lambda}(T)$ is defined on a set which is dense in X.
- The various cases can be summarized as follows:

Satisfied		Not Satisfied	λ Belongs to
$(R 1)(R 2)(R 3)$		$\rho(T)$	
		$(R 1)$	$\sigma_{p}(T)$
$(R 1)$	$(R 3)$	$(R 2)$	$\sigma_{c}(T)$
$(R 1)$		$(R 3)$	$\sigma_{r}(T)$

Eigenvalues, Eigenvectors and Eigenspaces

- The four sets in the table are disjoint and their union is the whole complex plane:

$$
\mathbb{C}=\rho(T) \cup \sigma(T)=\rho(T) \cup \sigma_{p}(T) \cup \sigma_{c}(T) \cup \sigma_{r}(T)
$$

- If the resolvent $R_{\lambda}(T)$ exists, it is linear.
- $R_{\lambda}(T): \mathscr{R}(T) \rightarrow \mathscr{D}(T)$ exists if and only if $T_{\lambda} x=0$ implies $x=0$. I.e., $R_{\lambda}(T)$ exists if and only if the null space of T_{λ} is $\{0\}$.
- Hence, if $T_{\lambda} x=(T-\lambda I) x=0$, for some $x \neq 0$, then $\lambda \in \sigma_{p}(T)$, by definition. That is, λ is an eigenvalue of T.
- The vector x is then called an eigenvector of T (or eigenfunction of T if X is a function space) corresponding to the eigenvalue λ.
- The subspace of $\mathscr{D}(T)$ consisting of 0 and all eigenvectors of T corresponding to an eigenvalue λ of T is called the eigenspace of T corresponding to that eigenvalue λ.

Operator with a Spectral Value not an Eigenvalue

- If X is infinite dimensional, then T can have spectral values which are not eigenvalues.
- On the Hilbert sequence space $X=\ell^{2}$ we define a linear operator $T: \ell^{2} \rightarrow \ell^{2}$ by

$$
\left(\xi_{1}, \xi_{2}, \ldots\right) \mapsto\left(0, \xi_{1}, \xi_{2}, \ldots\right),
$$

where $x=\left(\xi_{j}\right) \in \ell^{2}$. T is called the right-shift operator. Note that T is bounded (with $\|T\|=1$).

$$
\|T x\|^{2}=\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{2}=\|x\|^{2}
$$

The operator $R_{0}(T)=T^{-1}: T(X) \rightarrow X$ exists. It is the left-shift operator, given by

$$
\left(\xi_{1}, \xi_{2}, \ldots\right) \mapsto\left(\xi_{2}, \xi_{3}, \ldots\right)
$$

The Right-Shift Operator (Cont'd)

- To conclude, note that $R_{0}(T)$ does not satisfy (R3). Indeed, $T(X)$ is not dense in X.
$T(X)$ is the subspace Y consisting of all $y=\left(\eta_{j}\right)$, with $\eta_{1}=0$.
By definition, $\lambda=0$ is a spectral value of T.
However, $\lambda=0$ is not an eigenvalue.
$T x=0$ implies $x=0$ and 0 is not an eigenvector.

Connection with Bounded Inverse Theorem

- Recall the

Open Mapping Theorem, Bounded Inverse Theorem

A bounded linear operator T from a Banach space X onto a Banach space Y is an open mapping. Hence, if T is bijective, T^{-1} is continuous and thus bounded.

- From this we derive that if:
- X is complete;
- $T: X \rightarrow X$ is bounded and linear;
- For some λ the resolvent $R_{\lambda}(T)$ exists and is defined on X;
then for that λ the resolvent is bounded.

The Domain of R_{λ}

Lemma (Domain of R_{λ})

Let X be a complex Banach space, $T: X \rightarrow X$ a linear operator, and $\lambda \in \rho(T)$. Assume that:
(a) T is closed or
(b) T is bounded.

Then $R_{\lambda}(T)$ is defined on the whole space X and is bounded.
(a) Since T is closed, so is $T_{\lambda}=T-\lambda I$. Hence $R_{\lambda}=T_{\lambda}^{-1}$ is closed.
R_{λ} is bounded by (R2). Hence its domain $\mathscr{D}\left(R_{\lambda}\right)$ is closed.
Now (R3) implies $\mathscr{D}\left(R_{\lambda}\right)=\overline{\mathscr{D}\left(R_{\lambda}\right)}=X$.
(b) Since $\mathscr{D}(T)=X$ is closed, T is closed.

So the statement follows from Part (a).

Subsection 3

Spectral Properties of Bounded Linear Operators

Invertibility of I-T

Theorem (Inverse)

Let $T \in B(X, X)$, where X is a Banach space. If $\|T\|<1$, then $(I-T)^{-1}$ exists as a bounded linear operator on the whole space X and

$$
(I-T)^{-1}=\sum_{j=0}^{\infty} T^{j}=I+T+T^{2}+\cdots,
$$

where the series on the right is convergent in the norm on $B(X, X)$.

- We have $\left\|T^{j}\right\| \leq\|T\|^{j}$.

The geometric series $\sum\|T\|^{j}$ converges for $\|T\|<1$.
Hence the series $\sum_{j=0}^{\infty} T^{j}$ is absolutely convergent for $\|T\|<1$.
Since X is complete, so is $B(X, X)$.
Absolute convergence, thus, implies convergence.

Invertibility of I-T(Cont'd)

- We denote by S the sum of the series

$$
\sum_{j=0}^{\infty} T^{j}=I+T+T^{2}+\cdots .
$$

It remains to show that $S=(I-T)^{-1}$.
We calculate

$$
(I-T)\left(I+T+\cdots+T^{n}\right)=\left(I+T+\cdots+T^{n}\right)(I-T)=I-T^{n+1} .
$$

We now let $n \rightarrow \infty$.
Then $T^{n+1} \rightarrow 0$, because $\|T\|<1$.
We thus obtain $(I-T) S=S(I-T)=I$.
This shows that $S=(I-T)^{-1}$.

Closedness of the Spectrum

Theorem (The Spectrum is Closed)

The resolvent set $\rho(T)$ of a bounded linear operator T on a complex Banach space X is open. Hence, the spectrum $\sigma(T)$ is closed.

- If $\rho(T)=\varnothing$, it is open. Let $\rho(T) \neq \varnothing$.

For a fixed $\lambda_{0} \in \rho(T)$ and any $\lambda \in \mathbb{C}$, we have

$$
\begin{aligned}
T-\lambda I & =T-\lambda_{0} I-\left(\lambda-\lambda_{0}\right) I \\
& =\left(T-\lambda_{0} I\right)\left[I-\left(\lambda-\lambda_{0}\right)\left(T-\lambda_{0} I\right)^{-1}\right] .
\end{aligned}
$$

Let V denote the operator in the brackets. Then

$$
V=I-\left(\lambda-\lambda_{0}\right) R_{\lambda_{0}} .
$$

Moreover, we can write $T_{\lambda}=T_{\lambda_{0}} V$.

Closedness of the Spectrum (Cont'd)

- We obtained $T_{\lambda}=T_{\lambda_{0}} V$, where $V=I-\left(\lambda-\lambda_{0}\right) R_{\lambda_{0}}$.

Now $\lambda_{0} \in \rho(T)$ and T is bounded.
By a previous lemma, $R_{\lambda_{0}}=T_{\lambda_{0}}^{-1} \in B(X, X)$.
The theorem shows that V has an inverse in $B(X, X)$, for all λ, such that $\left\|\left(\lambda-\lambda_{0}\right) R_{\lambda_{0}}\right\|<1$, i.e., $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}\right\|}$, given by

$$
V^{-1}=\sum_{j=0}^{\infty}\left[\left(\lambda-\lambda_{0}\right) R_{\lambda_{0}}\right]^{j}=\sum_{j=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{j} R_{\lambda_{0}}^{j} .
$$

But $T_{\lambda_{0}}^{-1}=R_{\lambda_{0}} \in B(X, X)$. So, for $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}\right\|}, T_{\lambda}$ has an inverse

$$
R_{\lambda}=T_{\lambda}^{-1}=\left(T_{\lambda_{0}} V\right)^{-1}=V^{-1} R_{\lambda_{0}}
$$

Hence, $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}\right\|}$ represents a neighborhood of λ_{0} consisting of regular values λ of T. Since $\lambda_{0} \in \rho(T)$ was arbitrary, $\rho(T)$ is open. So $\sigma(T)=\mathbb{C}-\rho(T)$ is closed.

Representation Theorem for the Resolvent

- In the preceding proof we have also obtained a basic representation of the resolvent by a power series in powers of λ.

Theorem (Representation for the Resolvent)

Let T be a bounded linear operator on a complex Banach space X. For every $\lambda_{0} \in \rho(T)$, the resolvent $R_{\lambda}(T)$ has the representation

$$
R_{\lambda}=\sum_{j=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{j} R_{\lambda_{0}}^{j+1}
$$

the series being absolutely convergent for every λ in the open disk given by $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}\right\|}$ in the complex plane. This disk is a subset of $\rho(T)$.

The Spectrum Theorem

Theorem (Spectrum)

The spectrum $\sigma(T)$ of a bounded linear operator $T: X \rightarrow X$ on a complex Banach space X is compact and lies in the disk given by $\lambda \leq\|T\|$. Hence, the resolvent set $\rho(T)$ of T is not empty.

- Let $\lambda \neq 0$ and $\kappa=\frac{1}{\lambda}$. By the theorem, we obtain the representation

$$
R_{\lambda}=(T-\lambda I)^{-1}=-\frac{1}{\lambda}(I-\kappa T)^{-1}=-\frac{1}{\lambda} \sum_{j=0}^{\infty}(\kappa T)^{j}=-\frac{1}{\lambda} \sum_{j=0}^{\infty}\left(\frac{1}{\lambda} T\right)^{j} .
$$

The series converges for λ such that $\left\|\frac{1}{\lambda} T\right\|=\frac{\|T\|}{\lambda}<1$ i.e., $|\lambda|>\|T\|$.
The same theorem also shows that any such λ is in $\rho(T)$. Hence the spectrum $\sigma(T)=\mathbb{C}-\rho(T)$ must lie in the disk $|\lambda| \leq\|T\|$. So $\sigma(T)$ is bounded. But $\sigma(T)$ is closed. Hence $\sigma(T)$ is compact.

The Spectral Radius

- Since for a bounded linear operator T on a complex Banach space the spectrum is bounded, it seems natural to ask for the smallest disk about the origin which contains the whole spectrum.

Definition (Spectral Radius)

The spectral radius $r_{\sigma}(T)$ of an operator $T \in B(X, X)$ on a complex Banach space X is the radius

$$
r_{\sigma}(T)=\sup _{\lambda \in \sigma(T)}|\lambda|
$$

of the smallest closed disk centered at the origin of the complex λ-plane and containing $\sigma(T)$.

- It is obvious that for the spectral radius of a bounded linear operator T on a complex Banach space we have $r_{\sigma}(T) \leq\|T\|$.
- Moreover, we will prove that $r_{\sigma}(T)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|}$.

Subsection 4

Further Properties of Resolvent and Spectrum

Resolvent Equations

Theorem (Resolvent Equation, Commutativity)

Let X be a complex Banach space, $T \in B(X, X)$ and $\lambda, \mu \in \rho(T)$. Then:
(a) The resolvent R_{λ} of T satisfies the Hilbert relation or resolvent equation

$$
R_{\mu}-R_{\lambda}=(\mu-\lambda) R_{\mu} R_{\lambda}, \quad \lambda, \mu \in \rho(T)
$$

(b) R_{λ} commutes with any $S \in B(X, X)$ which commutes with T.
(c) We have $R_{\lambda} R_{\mu}=R_{\mu} R_{\lambda}, \lambda, \mu \in \rho(T)$.
(a) We showed the range of T is all of X. Hence, $I=T_{\lambda} R_{\lambda}$, where I is the identity operator on X. Also $I=R_{\mu} T_{\mu}$.

Resolvent Equations (Cont'd)

- Consequently,

$$
\begin{aligned}
R_{\mu}-R_{\lambda} & =R_{\mu}\left(T_{\lambda} R_{\lambda}\right)-\left(R_{\mu} T_{\mu}\right) R_{\lambda} \\
& =R_{\mu}\left(T_{\lambda}-T_{\mu}\right) R_{\lambda} \\
& =R_{\mu}[T-\lambda I-(T-\mu I)] R_{\lambda} \\
& =(\mu-\lambda) R_{\mu} R_{\lambda} .
\end{aligned}
$$

(b) By assumption, $S T=T S$. Hence, $S T_{\lambda}=T_{\lambda} S$.

Using $I=T_{\lambda} R_{\lambda}=R_{\lambda} T_{\lambda}$, we thus obtain

$$
R_{\lambda} S=R_{\lambda} S T_{\lambda} R_{\lambda}=R_{\lambda} T_{\lambda} S R_{\lambda}=S R_{\lambda} .
$$

(c) R_{μ} commutes with T by Part (b).

Hence, R_{λ} commutes with R_{μ} by Part (b).

Eigenvalues of Matrices formed by Polynomials

- If λ is an eigenvalue of a matrix A, then $A x=\lambda x$ for some $x \neq 0$.
- Application of A gives

$$
A^{2} x=A \lambda x=\lambda A x=\lambda^{2} x
$$

- Continuing we get, for every positive integer $m, A^{m} x=\lambda^{m} x$.
- I.e., if λ is an eigenvalue of A, then λ^{m} is an eigenvalue of A^{m}.
- More generally, if λ is an eigenvalue of A,

$$
p(\lambda)=\alpha_{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{0}
$$

is an eigenvalue of the matrix

$$
p(A)=\alpha_{n} A^{n}+\alpha_{n-1} A^{n-1}+\cdots+\alpha_{0} I .
$$

- We will show that this property extends to complex Banach spaces of any dimension, using the fact that a bounded linear operator has a nonempty spectrum (shown later by methods of complex analysis).

Notation

- Consider a polynomial

$$
p(\lambda)=\alpha_{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{0} .
$$

- Define

$$
p(\sigma(T))=\{\mu \in \mathbb{C}: \mu=p(\lambda), \lambda \in \sigma(T)\} .
$$

- Thus, $p(\sigma(T))$ is the set of all complex numbers μ, such that $\mu=p(\lambda)$, for some $\lambda \in \sigma(T)$.
- The set $p(\rho(T))$ is defined similarly

$$
p(\rho(T))=\{\mu \in \mathbb{C}: \mu=p(\lambda), \lambda \in \rho(T)\} .
$$

Spectral Mapping Theorem for Polynomials

Spectral Mapping Theorem for Polynomials

Let X be a complex Banach space, $T \in B(X, X)$ and

$$
p(\lambda)=\alpha_{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{0}
$$

Then $\sigma(p(T))=p(\sigma(T))$, i.e., the spectrum $\sigma(p(T))$ of the operator $p(T)=\alpha_{n} T^{n}+\alpha_{n-1} T^{n-1}+\cdots+\alpha_{0} /$ consists precisely of all those values which the polynomial p assumes on the spectrum $\sigma(T)$ of T.

- We assume that $\sigma(T) \neq \varnothing$.
- The case $n=0$ is trivial. Then $p(\sigma(T))=\left\{\alpha_{0}\right\}=\sigma(p(T))$.
- Let $n>0$.
- In Part (a), we prove $\sigma(p(T)) \subseteq p(\sigma(T))$.
- In Part (b), we prove $p(\sigma(T)) \subseteq \sigma(p(T))$.

Spectral Mapping Theorem for Polynomials Part (a)

(a) For simplicity we write $S=p(T)$ and $S_{\mu}=p(T)-\mu I, \mu \in \mathbb{C}$.

If S_{μ}^{-1} exists, the formula for S_{μ} shows that S_{μ}^{-1} is the resolvent operator of $p(T)$.
We keep μ fixed.
Since X is complex, the polynomial given by $s_{\mu}(\lambda)=p(\lambda)-\mu$ must factor completely into linear terms. Suppose

$$
s_{\mu}(\lambda)=p(\lambda)-\mu=\alpha_{n}\left(\lambda-\gamma_{1}\right)\left(\lambda-\gamma_{2}\right) \cdots\left(\lambda-\gamma_{n}\right)
$$

where $\gamma_{1}, \ldots, \gamma_{n}$ are the zeros of s_{μ}.
Corresponding to this, we have

$$
S_{\mu}=p(T)-\mu I=\alpha_{n}\left(T-\gamma_{1} I\right)\left(T-\gamma_{2} I\right) \cdots\left(T-\gamma_{n} I\right)
$$

Spectral Mapping Theorem for Polynomials Part (a Cont'd)

- Suppose each γ_{j} is in $\rho(T)$.

Then each $T-\gamma_{j}$ I has a bounded inverse which, by previous results, is defined on all of X.
The same holds for S_{μ} and

$$
S_{\mu}^{-1}=\frac{1}{\alpha_{n}}\left(T-\gamma_{n} I\right)^{-1} \cdots\left(T-\gamma_{1} I\right)^{-1}
$$

Hence in this case, $\mu \in \rho(p(T))$.
From this we conclude that $\mu \in \sigma(p(T))$ implies $\gamma_{j} \in \sigma(T)$, for some j. Now we get $s_{\mu}\left(\gamma_{j}\right)=p\left(\gamma_{j}\right)-\mu=0$.
Thus, $\mu=p\left(\gamma_{j}\right) \in p(\sigma(T))$.
Since $\mu \in \sigma(p(T))$ was arbitrary, $\sigma(p(T)) \subseteq p(\sigma(T))$.

Spectral Mapping Theorem for Polynomials Part (b)

(b) Let $\kappa \in p(\sigma(T))$.

By definition, this means that $\kappa=p(\beta)$, for some $\beta \in \sigma(T)$.
There are now two possibilities:
(A) $T-\beta I$ has no inverse;
(B) $T-\beta I$ has an inverse.

Spectral Mapping Theorem for Polynomials Part (b)(A)

(A) From $\kappa=p(\beta)$ we have $p(\beta)-\kappa=0$.

Hence, β is a zero of the polynomial given by $s_{\kappa}(\lambda)=p(\lambda)-\kappa$.
So we can write

$$
s_{\kappa}(\lambda)=p(\lambda)-\kappa=(\lambda-\beta) g(\lambda)
$$

where $g(\lambda)$ is the product of the other $n-1$ linear factors and α_{n}.
Corresponding to this representation we have

$$
S_{\kappa}=p(T)-\kappa I=(T-\beta I) g(T) .
$$

The factors of $g(T)$ all commute with $T-\beta I$.
So we also have $S_{\kappa}=g(T)(T-\beta I)$.
If S_{κ} had an inverse, we would now get

$$
I=(T-\beta I) g(T) S_{\kappa}^{-1}=S_{\kappa}^{-1} g(T)(T-\beta I)
$$

Then $T-\beta /$ would have an inverse, contradicting our assumption.
So $k \in \sigma(p(T))$.

Spectral Mapping Theorem for Polynomials Part (b)(B)

(B) Suppose that $\kappa=p(\beta)$, for some $\beta \in \sigma(T)$, but $(T-\beta I)^{-1}$ exists.

Suppose that the range of $T-\beta I$ was X.
Then, $(T-\beta I)^{-1}$ would be bounded by the Bounded Inverse Theorem.
Thus, $\beta \in \rho(T)$, which would contradict $\beta \in \sigma(T)$.
It follows that for the range of $T-\beta$ I, we must have

$$
\mathscr{R}(T-\beta I) \neq X .
$$

Since $S_{\kappa}=(T-\beta I) g(T)$, we now get $\mathscr{R}\left(S_{\kappa}\right) \neq X$.
This shows that $\kappa \in \sigma(p(T))$, since $\kappa \in \rho(p(T))$ would imply that $\mathscr{R}\left(S_{K}\right)=X$ by a preceding lemma.

Linear Independence of Eigenvectors

Theorem (Linear Independence)

Eigenvectors x_{1}, \ldots, x_{n} corresponding to different eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of a linear operator T on a vector space X constitute a linearly independent set.

- Towards a contradiction, assume that $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly dependent. Let x_{m} be the first of the vectors which is a linear combination of its predecessors, say, $x_{m}=\alpha_{1} x_{1}+\cdots+\alpha_{m-1} x_{m-1}$.
Then $\left\{x_{1}, \ldots, x_{m-1}\right\}$ is linearly independent.
Apply $T-\lambda_{m} I$ on both sides:

$$
\left(T-\lambda_{m} I\right) x_{m}=\sum_{j=1}^{m-1} \alpha_{j}\left(T-\lambda_{m} I\right) x_{j}=\sum_{j=1}^{m-1} \alpha_{j}\left(\lambda_{j}-\lambda_{m}\right) x_{j} .
$$

Since x_{m} is an eigenvector corresponding to λ_{m}, the left side is zero. By the linear independence of $\left\{x_{1}, \ldots, x_{m-1}\right\}, \alpha_{j}\left(\lambda_{j}-\lambda_{m}\right)=0$. Hence, $\alpha_{j}=0, j=1, \ldots, m-1$. But then $x_{m}=0$, contradicting $x_{m} \neq 0$, x_{m} being an eigenvector.

Subsection 5

Use of Complex Analysis in Spectral Theory

Domains in the Complex Plane

- A metric space is said to be connected if it is not the union of two disjoint nonempty open subsets.
- A subset of a metric space is said to be connected if it is connected regarded as a subspace.
- By a domain G in the complex plane \mathbb{C} we mean an open connected subset G of \mathbb{C}.
- It can be shown that an open subset G of \mathbb{C} is connected if and only if every pair of points of G can be joined by a broken line consisting of finitely many straight line segments all points of which belong to G.

Holomorphic or Analytic Functions

- A complex valued function h of a complex variable λ is said to be holomorphic (or analytic) on a domain G of the complex λ-plane if h is defined and differentiable on G, that is, the derivative h^{\prime} of h, defined by

$$
h^{\prime}(\lambda)=\lim _{\Delta \lambda \rightarrow 0} \frac{h(\lambda+\Delta \lambda)-h(\lambda)}{\Delta \lambda}
$$

exists for every $\lambda \in G$.

- The function h is said to be holomorphic at a point $\lambda_{0} \in \mathbb{C}$ if h is holomorphic on some ε-neighborhood of λ_{0}.
- The function h is holomorphic on G if and only if, at every $\lambda_{0} \in G$, it has a power series representation

$$
h(\lambda)=\sum_{j=0}^{\infty} c_{j}\left(\lambda-\lambda_{0}\right)^{j}
$$

with a nonzero radius of convergence.

Operator Functions

- By a vector valued function or operator function we mean a mapping

$$
\begin{aligned}
S: & \Lambda \\
\lambda & \rightarrow B(X, X) \\
\lambda & S_{\lambda}
\end{aligned}
$$

where Λ is any subset of the complex λ-plane.

- We write S_{λ} instead of $S(\lambda)$, to have a notation similar to R_{λ}.
- S being given, we may choose any $x \in X$, so that we get a mapping $\Lambda \rightarrow X ; \lambda \mapsto S_{\lambda} x$.
- We may also choose $x \in X$ and any $f \in X^{\prime}$ to get a mapping of Λ into the complex plane, namely,

$$
\begin{array}{lll}
\Lambda & \rightarrow & \mathbb{C} \\
\lambda & \mapsto & f\left(S_{\lambda} x\right) .
\end{array}
$$

Local Holomorphy and Holomorphy

Definition (Local Holomorphy, Holomorphy)

Let Λ be an open subset of \mathbb{C} and X a complex Banach space. Then the operator function $S: \Lambda \rightarrow B(X, X)$ is said to be:

- locally holomorphic on Λ if, for every $x \in X$ and $f \in X^{\prime}$, the function h, defined by

$$
h(\lambda)=f\left(S_{\lambda} x\right)
$$

is holomorphic at every $\lambda_{0} \in \Lambda$ in the usual sense;

- holomorphic on Λ if S is locally holomorphic on Λ and Λ is a domain;
- holomorphic at a point $\lambda_{0} \in \mathbb{C}$ if S is holomorphic on some ε-neighborhood of λ_{0}.

Holomorphy and the Resolvent

- The resolvent set $\rho(T)$ of a bounded linear operator T is open but may not always be a domain.
- Thus, in general, it is the union of disjoint domains (disjoint connected open sets).
- We will see that the resolvent is holomorphic at every point of $\rho(T)$.
- Hence in any case it is locally holomorphic on $\rho(T)$;
- It is holomorphic on $\rho(T)$ if and only if $\rho(T)$ is connected, so that $\rho(T)$ is a single domain.

Remarks on the Definition

- Recall that we defined three kinds of convergence in connection with bounded linear operators.
- Accordingly, we can define three corresponding kinds of derivative S_{λ}^{\prime} of S_{λ} with respect to λ by the formulas:

$$
\begin{aligned}
\left\|\frac{1}{\Delta \lambda}\left[S_{\lambda+\Delta \lambda}-S_{\lambda}\right]-S_{\lambda}^{\prime}\right\| & \rightarrow 0 \\
\left\|\frac{1}{\Delta \lambda}\left[S_{\lambda+\Delta \lambda} x-S_{\lambda} x\right]-S_{\lambda}^{\prime} x\right\| & \rightarrow 0, \quad x \in X \\
\left|\frac{1}{\Delta \lambda}\left[f\left(S_{\lambda+\Delta \lambda} x\right)-f\left(S_{\lambda} x\right)\right]-f\left(S_{\lambda}^{\prime} x\right)\right| & \rightarrow 0, \quad x \in X, f \in X^{\prime} .
\end{aligned}
$$

- The existence of the derivative in the sense of the last formula for all λ in a domain Λ means that h defined by $h(\lambda)=f\left(S_{\lambda} x\right)$ is a holomorphic function on Λ in the usual sense, i.e., our definition of the derivative.
- It can be shown that the existence of this derivative (for every $x \in X$ and every $f \in X^{\prime}$) implies the existence of the other two kinds of derivative.

Holomorphy of R_{λ}

Theorem (Holomorphy of R_{λ})

The resolvent $R_{\lambda}(T)$ of a bounded linear operator $T: X \rightarrow X$ on a complex Banach space X is holomorphic at every point λ_{0} of the resolvent set $\rho(T)$ of T. Hence, it is locally holomorphic on $\rho(T)$.

- We proved that for every value $\lambda_{0} \in \rho(T)$ the resolvent $R_{\lambda}(T)$ of an operator $T \in B(X, X)$ on a complex Banach space X has a power series representation

$$
R_{\lambda}(T)=\sum_{j=0}^{\infty} R_{\lambda_{0}}(T)^{j+1}\left(\lambda-\lambda_{0}\right)^{j}
$$

which converges absolutely for each λ in the disk $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}\right\|}$.

Holomorphy of R_{λ} (Cont'd)

- We have

$$
R_{\lambda}(T)=\sum_{j=0}^{\infty} R_{\lambda_{0}}(T)^{j+1}\left(\lambda-\lambda_{0}\right)^{j}
$$

converging absolutely for each λ in the disk $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}\right\|}$.
Take any $x \in X$ and $f \in X^{\prime}$ and define h by

$$
h(\lambda)=f\left(R_{\lambda}(T) x\right)
$$

We obtain the power series representation

$$
h(\lambda)=\sum_{j=0}^{\infty} c_{j}\left(\lambda-\lambda_{0}\right)^{j}, \quad c_{j}=f\left(R_{\lambda_{0}}(T)^{j+1} x\right)
$$

This is absolutely convergent on the disk $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}\right\|}$.

The Resolvent Theorem

- $\rho(T)$ is the largest set on which the resolvent of T is locally holomorphic.

Theorem (Resolvent)

If $T \in B(X, X)$, where X is a complex Banach space, and $\lambda \in \rho(T)$, then $\left\|R_{\lambda}(T)\right\| \geq \frac{1}{\delta(\lambda)}$, where $\delta(\lambda)=\inf _{s \in \sigma(T)}|\lambda-s|$ is the distance from λ to the spectrum $\sigma(T)$. Hence $\left\|R_{\lambda}(T)\right\| \rightarrow \infty$ as $\delta(\lambda) \rightarrow 0$.

- For every $\lambda_{0} \in \rho(T)$, the disk $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}\right\|}$ is a subset of $\rho(T)$. Hence, assuming $\sigma(T) \neq \varnothing$ (proof below), we see that the distance from λ_{0} to the spectrum must at least equal the radius of the disk. That is, $\delta\left(\lambda_{0}\right) \geq \frac{1}{\left\|R_{\lambda_{0}}\right\|}$. This implies the conclusion.

Nonemptiness of the Spectrum

Theorem (Spectrum)

If $X \neq\{0\}$ is a complex Banach space and $T \in B(X, X)$, then $\sigma(T) \neq \varnothing$.

- By assumption, $X \neq\{0\}$.

If $T=0$, then $\sigma(T)=\{0\} \neq \varnothing$.
Let $T \neq 0$. Then $\|T\| \neq 0$. We obtain the series

$$
R_{\lambda}=-\frac{1}{\lambda} \sum_{j=0}^{\infty}\left(\frac{1}{\lambda} T\right)^{j}, \quad|\lambda|>\|T\| .
$$

This series converges for $\frac{1}{|\lambda|}<\frac{1}{\|T\|}$.
So it converges absolutely for $\frac{1}{|\lambda|}<\frac{1}{2\|T\|}$, i.e., for $|\lambda|>2\|T\|$.
For these λ, by the formula for the sum of a geometric series,

$$
\left\|R_{\lambda}\right\| \leq \frac{1}{|\lambda|} \sum_{j=0}^{\infty}\left\|\frac{1}{\lambda} T\right\|^{j}=\frac{1}{|\lambda|-\|T\|} \leq \frac{1}{\|T\|}
$$

Nonemptiness of the Spectrum (Cont'd)

- We show that the assumption $\sigma(T)=\varnothing$ leads to a contradiction. $\sigma(T)=\varnothing$ implies $\rho(T)=\mathbb{C}$. Hence, R_{λ} is holomorphic for all λ. Consequently, for a fixed $x \in X$ and a fixed $f \in X^{\prime}$, the function h defined by $h(\lambda)=f\left(R_{\lambda} x\right)$ is holomorphic on \mathbb{C}, i.e., h is an entire function. Since holomorphy implies continuity, h is continuous. Thus, h is bounded on the compact disk $|\lambda| \leq 2\|T\|$. But h is also bounded for $|\lambda| \geq 2\|T\|$, since $\left\|R_{\lambda}\right\|<\frac{1}{\|T\|}$, by the preceding inequality.

$$
|h(\lambda)|=\left|f\left(R_{\lambda} x\right)\right| \leq\|f\|\left\|R_{\lambda} x\right\| \leq\|f\|\left\|R_{\lambda}\right\|\|x\| \leq \frac{\|f\|\|x\|}{\|T\|} .
$$

Hence h is bounded on \mathbb{C}. By Liouville's Theorem, which states that an entire function which is bounded on the whole complex plane is a constant, h is constant. Since $x \in X$ and $f \in X^{\prime}$ in h were arbitrary, $h=$ const implies that R_{λ} is independent of λ. The same holds for $R_{\lambda}^{-1}=T-\lambda /$. But this is impossible.

The Spectral Radius Theorem

Theorem (Spectral Radius)

If T is a bounded linear operator on a complex Banach space, then for the spectral radius $r_{\sigma}(T)$ of T we have $r_{\sigma}(T)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|}$.

- We have $\sigma\left(T^{n}\right)=[\sigma(T)]^{n}$ by the Spectral Mapping Theorem. Thus, $r_{\sigma}\left(T^{n}\right)=\left[r_{\sigma}(T)\right]^{n}$. By the Spectrum Theorem, $r_{\sigma}\left(T^{n}\right) \leq\left\|T^{n}\right\|$. Therefore, for every n,

$$
r_{\sigma}(T)=\sqrt[n]{r_{\sigma}\left(T^{n}\right)} \leq \sqrt[n]{\left\|T^{n}\right\|}
$$

Hence,

$$
r_{\sigma}(T) \leq \underline{\lim }_{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|} \leq \overline{\lim }_{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|} .
$$

The Spectral Radius Theorem (Cont'd)

- Claim: $\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|} \leq r_{\sigma}(T)$.

A power series $\sum c_{n} \kappa^{n}$ converges absolutely for $|\kappa|<r$ with radius of convergence r given by the well-known Hadamard formula

$$
\frac{1}{r}=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}
$$

Setting $\kappa=\frac{1}{\lambda}$, we get

$$
R_{\lambda}=-\kappa \sum_{n=0}^{\infty} T^{n} \kappa^{n}
$$

Then, writing $\left|c_{n}\right|=\left\|T^{n}\right\|$, we obtain

$$
\left\|\sum_{n=0}^{\infty} T^{n} \kappa^{n}\right\| \leq \sum_{n=0}^{\infty}\left\|T^{n}\right\||\kappa|^{n}=\sum_{n=0}^{\infty}\left|c_{n} \| \kappa\right|^{n}
$$

The Spectral Radius Theorem (Cont'd)

- The Hadamard formula shows that we have absolute convergence for $|\kappa|<r$, hence for $|\lambda|=\frac{1}{|\kappa|}>\frac{1}{r}=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|}$.
We know that R_{λ} is locally holomorphic precisely on the resolvent set $\rho(T)$ in the complex λ-plane.
To $\rho(T)$ there corresponds a set in the complex κ-plane, call it M.
Then it is known from complex analysis that the radius of convergence r is the radius of the largest open circular disk about $\kappa=0$ which lies entirely in M.
Hence, $\frac{1}{r}$ is the radius of the smallest circle about $\lambda=0$ in the λ-plane whose exterior lies entirely in $\rho(T)$.
By definition, this means that $\frac{1}{r}$ is the spectral radius of T. Hence, $r_{\sigma}(T)=\frac{1}{r}=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|}$.

Subsection 6

Banach Algebras

Algebras

- An algebra A over a field K is a vector space A over K, such that for each ordered pair of elements $x, y \in A$, a unique product

$$
x y \in A
$$

is defined, satisfying, for all $x, y, z \in A$ and all scalars α :
(1) $(x y) z=x(y z)$;
(2a) $x(y+z)=x y+x z$;
(2b) $(x+y) z=x z+y z$;
(3) $\alpha(x y)=(\alpha x) y=x(\alpha y)$.

- If $K=\mathbb{R}$ or \mathbb{C}, then A is said to be real or complex, respectively.

Algebras With Additional Properties

- A is said to be commutative (or abelian) if the multiplication is commutative, that is, if for all $x, y \in A$,
(4) $x y=y x$.
- A is called an algebra with identity if A contains an element e, such that for all $x \in A$,
(5) $e x=x e=x$.
- The element e is called an identity of A.
- If A has an identity, the identity is unique.

Normed Algebra, Banach Algebra

Definition (Normed Algebra, Banach Algebra)

A normed algebra A is a normed space which is an algebra, such that for all $x, y \in A$,
(6) $\|x y\| \leq\|x\|\|y\|$;
and if A has an identity e,
(7) $\|e\|=1$.

A Banach algebra is a normed algebra which is complete, considered as a normed space.

- Property (6) relates multiplication and norm.
- We have

$$
\begin{aligned}
\left\|x y-x_{0} y_{0}\right\| & =\left\|x\left(y-y_{0}\right)+\left(x-x_{0}\right) y_{0}\right\| \\
& \leq\|x\|\left\|y-y_{0}\right\|+\left\|x-x_{0}\right\|\left\|y_{0}\right\| .
\end{aligned}
$$

- So the product is a jointly continuous function of its factors.

Examples

- Spaces \mathbb{R} and \mathbb{C} : The real line \mathbb{R} and the complex plane \mathbb{C} are commutative Banach algebras with identity $e=1$.
- Space $C[a, b]$: The space $C[a, b]$ is a commutative Banach algebra with identity $(e=1)$, the product $x y$ being defined as usual:

$$
(x y)(t)=x(t) y(t), \quad \text { for all } t \in[a, b] .
$$

The subspace of $C[a, b]$ consisting of all polynomials is a commutative normed algebra with identity $(e=1)$.

- Matrices: The vector space X of all complex $n \times n$ matrices ($n>1$, fixed) is a non-commutative algebra with identity I (the $n \times n$ unit matrix). By defining a norm on X, we obtain a Banach algebra.

Bounded Linear Operators

- Space $B(X, X)$: The Banach space $B(X, X)$ of all bounded linear operators on a complex Banach space $X \neq\{0\}$ is a Banach algebra.
- The identity is I (the identity operator on X);
- The multiplication is composition of operators, by definition.
- Relation (6) is

$$
\left\|T_{1} T_{2}\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|
$$

verified previously.

- $B(X, X)$ is not commutative, unless $\operatorname{dim} X=1$.

Invertibility

- Let A be an algebra with identity.
- An $x \in A$ is said to be invertible if it has an inverse in A, i.e., if A contains an element, written x^{-1}, such that

$$
x^{-1} x=x x^{-1}=e
$$

- If x is invertible, the inverse is unique.

Suppose y and z are both inverses of x.
Then, by definition, $y x=e=x z$.
So we get

$$
y=y e=y(x z)=(y x) z=e z=z
$$

Resolvent Set and Spectrum

Definition (Resolvent Set, Spectrum)

Let A be a complex Banach algebra with identity.

- The resolvent set $\rho(x)$ of an $x \in A$ is the set of all λ in the complex plane such that $x-\lambda e$ is invertible.
- The spectrum $\sigma(x)$ of x is the complement of $\rho(x)$ in the complex plane. Thus, $\sigma(x)=\mathbb{C}-\rho(x)$.
- Any $\lambda \in \sigma(x)$ is called a spectral value of x.
- Hence, the spectral values of $x \in A$ are those λ for which $x-\lambda e$ is not invertible.

Resolvent Set and Spectrum

Proposition

If X is a complex Banach space, then $B(X, X)$ is a Banach algebra. Then, the resolvent set of the operator $T \in B(X, X)$ agrees with its resolvent set as an element of the Banach algebra.

- Let $T \in B(X, X)$ and λ in the resolvent set $\rho(T)$. Then, by the present definition, $R_{\lambda}(T)=(T-\lambda I)^{-1}$ exists and is an element of $B(X, X)$. I.e., $R_{\lambda}(T)$ is a bounded linear operator defined on X. Hence, $\lambda \in \rho(T)$, with $\rho(T)$ as defined previously.
Conversely, suppose that $\lambda \in \rho(T)$, with $\rho(T)$ defined as before. Then $R_{\lambda}(T)$ exists and is linear, bounded and defined on a dense subset of X. But, since T is bounded, we get that $R_{\lambda}(T)$ is defined on all of X. Hence $\lambda \in \rho(T)$, with $\rho(T)$ as defined presently.

Subsection 7

Further Properties of Banach Algebras

The Inverse Theorem

Theorem (Inverse)

Let A be a complex Banach algebra with identity e. If $x \in A$ satisfies $\|x\|<1$, then $e-x$ is invertible, and

$$
(e-x)^{-1}=e+\sum_{j=1}^{\infty} x^{j}
$$

- We have $\left\|x^{j}\right\| \leq\|x\|^{j}$. So $\sum\left\|x^{j}\right\|$ converges, since $\|x\|<1$. Hence, the series in the formula converges absolutely.
Since A is complete, the series converges.
Let s denote its sum. We show that $s=(e-x)^{-1}$.

$$
(e-x)\left(e+x+\cdots+x^{n}\right)=\left(e+x+\cdots+x^{n}\right)(e-x)=e-x^{n+1} .
$$

We now let $n \rightarrow \infty$. Since $\|x\|<1, x^{n+1} \rightarrow 0$.
By continuity of multiplication, $(e-x) s=s(e-x)=e$. Hence, $s=(e-x)^{-1}$.

The Group of Invertible Elements

- Let A be a complex Banach algebra A with identity e
- Consider the subset G of all invertible elements of A.

Claim: G is a group.
$e \in G$.
Suppose $x \in G$. Then x^{-1} exists and has an inverse $\left(x^{-1}\right)^{-1}=x$. So x^{-1} is in G.
Finally, suppose $x, y \in G$. Then $y^{-1} x^{-1}$ is the inverse of $x y$.

$$
(x y)\left(y^{-1} x^{-1}\right)=x\left(y y^{-1}\right) x^{-1}=x e x^{-1}=e .
$$

Similarly, $\left(y^{-1} x^{-1}\right)(x y)=e$.
So $x y \in G$.

The Invertible Elements Theorem

Theorem (Invertible Elements)

Let A be a complex Banach algebra with identity. Then the set G of all invertible elements of A is an open subset of A. Hence, the subset $M=A-G$ of all non-invertible elements of A is closed.

- Let $x_{0} \in G$. We have to show that every $x \in A$ sufficiently close to x_{0}, say, $\left\|x-x_{0}\right\|<\frac{1}{\left\|x_{0}^{-1}\right\|}$, belongs to G. Let $y=x_{0}^{-1} x$ and $z=e-y$. Then, we obtain

$$
\begin{aligned}
\|z\| & =\|-z\|=\|y-e\|=\left\|x_{0}^{-1} x-x_{0}^{-1} x_{0}\right\| \\
& =\left\|x_{0}^{-1}\left(x-x_{0}\right)\right\| \leq\left\|x_{0}^{-1}\right\|\left\|x-x_{0}\right\|<1 .
\end{aligned}
$$

Thus $\|z\|<1$. So $e-z$ is invertible by the Inverse Theorem. Hence $e-z=y \in G$. But G is a group. So $x=x_{0} x_{0}^{-1} x=x_{0} y \in G$.
Since $x_{0} \in G$ was arbitrary, this proves that G is open.

The Spectral Radius

- Define the spectral radius $r_{\sigma}(x)$ of an $x \in A$ by

$$
r_{\sigma}(x)=\sup _{\lambda \in \sigma(x)}|\lambda|
$$

Theorem (Spectrum)

Let A be a complex Banach algebra with identity e. Then for any $x \in A$, the spectrum $\sigma(x)$ is compact, and the spectral radius satisfies

$$
r_{\sigma}(x) \leq\|x\|
$$

- Suppose $|\lambda|>\|x\|$. Then $\left\|\lambda^{-1} x\right\|<1$.

So $e-\lambda^{-1} x$ is invertible.
Hence, $-\lambda\left(e-\lambda^{-1} x\right)=x-\lambda e$ is invertible also.
So we have $\lambda \in \rho(x)$. Hence $\sigma(x)$ is bounded.

The Spectral Radius (Cont'd)

- Claim: $\sigma(x)$ is closed, since $\rho(x)=\mathbb{C}-\sigma(x)$ is open.

If $\lambda_{0} \in \rho(x)$, then $x-\lambda_{0} e$ is invertible. Thus, there is a neighborhood $N \subseteq A$ of $x-\lambda_{0} e$ consisting wholly of invertible elements.
Now for a fixed x, the mapping $\lambda \mapsto x-\lambda e$ is continuous.
Hence, all $x-\lambda e$, with λ close to λ_{0}, say,

$$
\left|\lambda-\lambda_{0}\right|<\delta, \text { with } \delta>0
$$

lie in N. So these $x-\lambda e$ are invertible.
Thus, the corresponding λ belong to $\rho(x)$.
But $\lambda_{0} \in \rho(x)$ was arbitrary.
So $\rho(x)$ is open. Hence, $\sigma(x)=\mathbb{C}-\rho(x)$ is closed.

- The theorem shows that $\rho(x) \neq \varnothing$.

Nonemptiness of the Spectrum

Theorem (Spectrum)

Let A be a complex Banach algebra with identity e. Then $\sigma(x) \neq \varnothing$.

- Let $\lambda, \mu \in \rho(x)$. We write

$$
\begin{aligned}
v(\lambda) & =(x-\lambda e)^{-1} \\
w & =(\mu-\lambda) v(\lambda) .
\end{aligned}
$$

Then

$$
\begin{aligned}
x-\mu e & =x-\lambda e-(\mu-\lambda) e \\
& =(x-\lambda e) e-(\mu-\lambda)(x-\lambda e)(x-\lambda e)^{-1} \\
& =(x-\lambda e)(e-w) .
\end{aligned}
$$

Taking inverses, we have $v(\mu)=(e-w)^{-1} v(\lambda)$.
Suppose μ is so close to λ that $\|w\|<\frac{1}{2}$. Then

$$
\left\|(e-w)^{-1}-e-w\right\|=\left\|\sum_{j=2}^{\infty} w^{j}\right\| \leq \sum_{j=2}^{\infty}\|w\|^{j}=\frac{\|w\|^{2}}{1-\|w\|} \leq 2\|w\|^{2} .
$$

Nonemptiness of the Spectrum (Cont'd)

- We showed $v(\mu)=(e-w)^{-1} v(\lambda)$ and $\left\|(e-w)^{-1}-e-w\right\| \leq 2\|w\|^{2}$.

From this, we get

$$
\begin{aligned}
\left\|v(\mu)-v(\lambda)-(\mu-\lambda) v(\lambda)^{2}\right\| & =\left\|(e-w)^{-1} v(\lambda)-(e+w) v(\lambda)\right\| \\
& \leq\|v(\lambda)\|\left\|(e-w)^{-1}-(e+w)\right\| \\
& \leq 2\|w\|^{2}\|v(\lambda)\|
\end{aligned}
$$

$\|w\|^{2}$ contains a factor $|\mu-\lambda|^{2}$. Therefore,

$$
\frac{\|w\|^{2}}{|\mu-\lambda|} \xrightarrow{\mu \rightarrow \lambda} 0 .
$$

Hence, dividing the inequality by $|\mu-\lambda|$ and letting $\mu \rightarrow \lambda$,

$$
\frac{1}{\mu-\lambda}[v(\mu)-v(\lambda)] \rightarrow v(\lambda)^{2}
$$

Nonemptiness of the Spectrum (Cont'd)

- Let $f \in A^{\prime}$, where A^{\prime} is the dual of A, considered as a Banach space.

We define $h: \rho(x) \rightarrow \mathbb{C}$ by

$$
h(\lambda)=f(v(\lambda)) .
$$

Since f is continuous, so is h.
Applying f to the previous limit, we obtain

$$
\lim _{\mu \rightarrow \lambda} \frac{h(\mu)-h(\lambda)}{\mu-\lambda}=f\left(v(\lambda)^{2}\right)
$$

This shows that h is holomorphic at every point of $\rho(x)$. If $\sigma(x)$ were empty, then $\rho(x)=\mathbb{C}$.
So h would be an entire function.

Nonemptiness of the Spectrum (Cont'd)

- Now we have

$$
\begin{aligned}
& v(\lambda)=-\lambda^{-1}\left(e-\lambda^{-1} x\right)^{-1} \\
& \left(e-\lambda^{-1} x\right)^{-1} \xrightarrow{|\lambda| \rightarrow \infty} e^{-1}=e
\end{aligned}
$$

So we obtain

$$
|h(\lambda)|=|f(v(\lambda))| \leq\|f\|\|v(\lambda)\|=\|f\| \frac{1}{|\lambda|}\left\|\left(e-\frac{1}{\lambda} x\right)^{-1}\right\| \xrightarrow{|\lambda| \rightarrow \infty} 0 .
$$

This shows that h would be bounded on \mathbb{C}. Hence, by Liouville's Theorem, it is a constant.
So it is zero by the preceding relation.
Since $f \in A^{\prime}$ was arbitrary, $h(\lambda)=f(v(\lambda))=0$ implies $v(\lambda)=0$.
This is impossible since it gives

$$
\|e\|=\|(x-\lambda e) v(\lambda)\|=\|0\|=0 .
$$

Hence, $\sigma(x)=\varnothing$ cannot hold.

Supplying an Algebra with an Identity

- The existence of an identity e is necessary.
- If A has no identity, we can supply A with an identity.

Let A be the set of all ordered pairs (x, α), where $x \in A$ and α is a scalar. Define

$$
\begin{aligned}
(x, \alpha)+(y, \beta) & =(x+y, \alpha+\beta) \\
\beta(x, \alpha) & =(\beta x, \beta \alpha) \\
(x, \alpha)(y, \beta) & =(x y+\alpha y+\beta x, \alpha \beta) \\
\|(x, \alpha)\| & =\|x\|+|\alpha| \\
\widetilde{e} & =(0,1) .
\end{aligned}
$$

Then \widetilde{A} is a Banach algebra with identity \widetilde{e}.

- The mapping $x \mapsto(x, 0)$ is an isomorphism of A onto a subspace of \widetilde{A}, both regarded as normed spaces.
- This subspace has codimension 1 . Identifying x with $(x, 0)$, then \widetilde{A} is A plus the one-dimensional space generated by $\widetilde{\text { e }}$.

