Introduction to Spectral Theory of Linear Operators

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

1 Spectral Theory of Linear Operators in Normed Spaces

- Spectral Theory in Finite Dimensional Normed Spaces
- Basic Concepts
- Spectral Properties of Bounded Linear Operators
- Further Properties of Resolvent and Spectrum
- Use of Complex Analysis in Spectral Theory
- Banach Algebras
- Further Properties of Banach Algebras

Subsection 1

Spectral Theory in Finite Dimensional Normed Spaces

Linear Operators On Normed Spaces

- Let X be a finite dimensional normed space.
- Let $T: X \to X$ be a linear operator.
- We know that we can represent T by matrices (which depend on the choice of bases for X).
- Then the spectral theory of T is essentially matrix eigenvalue theory.
- For a given (real or complex) *n*-rowed square matrix $A = (\alpha_{jk})$, the concepts of *eigenvalues* and *eigenvectors* are defined in terms of the equation

$$Ax = \lambda x.$$

Eigenvalues, Eigenvectors, Eigenspaces and Spectrum

Definition (Eigenvalues, Eigenvectors, Eigenspaces, Spectrum, Resolvent Set of a Matrix)

An **eigenvalue** of a square matrix $A = (\alpha_{jk})$ is a number λ , such that

 $Ax = \lambda x$

has a solution $x \neq 0$. This x is called an **eigenvector** of A corresponding to that eigenvalue λ .

- The eigenvectors corresponding to that eigenvalue *λ* and the zero vector form a vector subspace of *X* which is called the **eigenspace** of *A* corresponding to that eigenvalue *λ*.
- The set $\sigma(A)$ of all eigenvalues of A is called the **spectrum** of A.
- The complement ρ(A) = C − σ(A) of the spectrum of A in the complex plane is called the resolvent set of A.

Characteristic Equation, Determinant and Polynomial

- Let I be the $n \times n$ unit matrix.
- $Ax = \lambda x$ can be written $(A \lambda I)x = 0$.
- This is a homogeneous system of *n* linear equations in *n* unknowns ξ_1, \ldots, ξ_n , the components of *x*.
- The determinant of the coefficients is $det(A \lambda I)$.
- This determinant must be zero in order to have a solution $x \neq 0$.
- This gives the characteristic equation of A:

$$det(A - \lambda I) = \begin{vmatrix} \alpha_{11} - \lambda & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} - \lambda & \cdots & \alpha_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} - \lambda \end{vmatrix} = 0.$$

• det $(A - \lambda I)$ is called the characteristic determinant of A.

• By developing it we obtain a polynomial in *λ* of degree *n*, the **characteristic polynomial** of *A*.

The Eigenvalue Theorem

Theorem (The Eigenvalue Theorem)

The eigenvalues of an $n \times n$ square matrix $A = (\alpha_{jk})$ are given by the solutions of the characteristic equation $det(A - \lambda I) = 0$ of A. Hence A has at least one eigenvalue (and at most n numerically different eigenvalues).

• We have proven the first statement.

Recall that, by the Fundamental Theorem of Algebra and the Factorization Theorem, a polynomial of degree n > 0, with coefficients in \mathbb{C} , has a root in \mathbb{C} (and at most *n* numerically different roots). This yields the second statement.

• Note that roots may be complex even if A is real.

Example

• Consider the matrix
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
.

We find the eigenvalues of A by solving the characteristic equation $det(A - \lambda I) = 0$.

$$\begin{vmatrix} 5-\lambda & 4\\ 1 & 2-\lambda \end{vmatrix} = 0 \implies (5-\lambda)(2-\lambda)-4 = 0$$
$$\implies \lambda^2 - 7\lambda + 6 = 0$$
$$\implies (\lambda - 1)(\lambda - 6) = 0$$
$$\implies \lambda = 1 \text{ or } \lambda = 6.$$

Thus, the spectrum is $\{1, 6\}$.

Example (Cont'd)

• We found the eigenvalues of $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

The eigenvectors of A corresponding to 1 and 6 are obtained from

$$\begin{cases} 4\xi_1 + 4\xi_2 &= 0\\ \xi_1 + \xi_2 &= 0 \end{cases} \text{ and } \begin{cases} -\xi_1 + 4\xi_2 &= 0\\ \xi_1 - 4\xi_2 &= 0 \end{cases}$$

respectively.

Observe that in each case we need only one of the two equations. So $x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ are eigenvectors of A corresponding to the eigenvalues 1 and 6, respectively.

Eigenvalues and Spectrum of an Operator

- Let X be a normed space of dimension n.
- Consider again a linear operator $T: X \rightarrow X$.
- Let $e = \{e_1, \ldots, e_n\}$ be any basis for X.
- Let $T_e = (\alpha_{jk})$ be the matrix representing T with respect to the basis e (whose elements are kept in the given order).
- The eigenvalues of the matrix T_e are called the eigenvalues of the operator T.
- The spectrum of the matrix T_e is called the **spectrum** of T.
- The resolvent set of T_e is called the **resolvent set** of T.

Eigenvalues of an Operator

Theorem (Eigenvalues of an Operator)

All matrices representing a given linear operator $T: X \to X$ on a finite dimensional normed space X relative to various bases for X have the same eigenvalues.

• We examine the effect of the transition from one basis for X to another.

Let $e = (e_1, ..., e_n)$ and $\tilde{e} = (\tilde{e}_1, ..., \tilde{e}_n)$ be any bases for X, written as row vectors.

By the definition of a basis, each e_j is a linear combination of the \tilde{e}_k 's and conversely.

We can write this $\tilde{e} = eC$ or $\tilde{e}^{\top} = C^{\top}e^{\top}$, where C is a nonsingular $n \times n$ square matrix.

Eigenvalues of an Operator (Cont'd)

 Every x ∈ X has a unique representation with respect to each of the two bases. Say,

$$x = \sum \xi_j e_j = ex_1$$
 and $x = \sum \tilde{\xi}_k \tilde{e}_k = \tilde{e}x_2$,

where $x_1 = (\xi_j)$ and $x_2 = (\tilde{\xi}_k)$ are column vectors. We get, $ex_1 = \tilde{e}x_2 = eCx_2$. Hence $x_1 = Cx_2$. Similarly, suppose $Tx = y = ey_1 = \tilde{e}y_2$. Then we have $y_1 = Cy_2$. Now, if T_1 and T_2 denote the matrices which represent T with respect to e and \tilde{e} , respectively, then $y_1 = T_1x_1$ and $y_2 = T_2x_2$. Therefore, we obtain

$$CT_2x_2 = Cy_2 = y_1 = T_1x_1 = T_1Cx_2.$$

Eigenvalues of an Operator (Conclusion)

• We obtained $CT_2x_2 = T_1Cx_2$. Premultiplying by C^{-1} , we obtain the transformation law

$$T_2 = C^{-1} T_1 C,$$

with C determined by the bases and independent of T.

Using $det(C^{-1})det(C) = 1$, we can now show that the characteristic determinants of T_2 and T_1 are equal.

$$det(T_2 - \lambda I) = det(C^{-1}T_1C - \lambda C^{-1}IC)$$

=
$$det(C^{-1}(T_1 - \lambda I)C)$$

=
$$det(C^{-1})det(T_1 - \lambda I)detC$$

=
$$det(T_1 - \lambda I).$$

Equality of the eigenvalues of T_1 and T_2 now follows from the Eigenvalue Theorem.

Similar Matrices

• An $n \times n$ matrix T_2 is said to be similar to an $n \times n$ matrix T_1 , if there exists a nonsingular matrix C, such that

$$T_2 = C^{-1} T_1 C.$$

- T_1 and T_2 are then called similar matrices.
- In terms of this concept, our proof shows that:
 - Two matrices representing the same linear operator T on a finite dimensional normed space X relative to any two bases for X are similar.
 - ii) Similar matrices have the same eigenvalues.

Existence of Eigenvalues and Determinant of an Operator

Existence Theorem (Eigenvalues)

A linear operator on a finite dimensional complex normed space $X \neq \{0\}$ has at least one eigenvalue.

- This follows from the Eigenvalue Theorem and the preceding theorem.
- Note that, with $\lambda = 0$, det $(T_2 \lambda I) = det(T_1 \lambda I)$ gives

$$\det T_2 = \det T_1.$$

Hence, the value of the determinant is an intrinsic property of T. We call it the **determinant** of the operator T and denote it by det T.

Subsection 2

Basic Concepts

The Operator \mathcal{T}_λ Associated With An Operator 7

- We now consider normed spaces of any dimension.
- Let $X \neq \{0\}$ be a complex normed space.
- Let $T: \mathcal{D}(T) \to X$ be a linear operator with domain $\mathcal{D}(T) \subseteq X$.
- With T we associate the operator

$$T_{\lambda}=T-\lambda I,$$

where:

- λ is a complex number;
- I is the identity operator on $\mathcal{D}(T)$.

The Resolvent of an Operator

• If T_{λ} has an inverse, we denote it by $R_{\lambda}(T)$,

$$R_{\lambda}(T) = T_{\lambda}^{-1} = (T - \lambda I)^{-1}.$$

- We call R_λ(T) the resolvent operator of T or, simply, the resolvent of T.
- Instead of R_λ(T) we also write simply R_λ if the operator T is clear from context.
- The name "resolvent" is appropriate, since $R_{\lambda}(T)$ helps to *solve* the equation $T_{\lambda}x = y$.

Indeed, suppose $R_{\lambda}(T)$ exists.

Then

$$x = T_{\lambda}^{-1} y = R_{\lambda}(T) y.$$

Regular Value, Resolvent Set and Spectrum

Definition (Regular Value, Resolvent Set, Spectrum)

Let $X \neq \{0\}$ be a complex normed space and $T : \mathcal{D}(T) \to X$ a linear operator with domain $\mathcal{D}(T) \subseteq X$.

- A regular value λ of T is a complex number such that:
 - (R1) $R_{\lambda}(T)$ exists;
 - (R2) $R_{\lambda}(T)$ is bounded;
 - (R3) $R_{\lambda}(T)$ is defined on a set which is dense in X.
- The resolvent set $\rho(T)$ of T is the set of all regular values λ of T.
- Its complement σ(T) = C − ρ(T) in the complex plane C is called the spectrum of T.
- A $\lambda \in \sigma(T)$ is called a spectral value of T.

Partition of the Spectrum

Definition (Point, Continuous and Residual Spectrum)

Let $X \neq \{0\}$ be a complex normed space and $T : \mathcal{D}(T) \to X$ a linear operator with domain $\mathcal{D}(T) \subseteq X$.

The spectrum $\sigma(T)$ is partitioned into three disjoint sets as follows:

The point spectrum or discrete spectrum σ_p(T) is the set such that R_λ(T) does not exist.

A $\lambda \in \sigma_p(T)$ is called an **eigenvalue** of T.

- The continuous spectrum $\sigma_c(T)$ is the set such that $R_{\lambda}(T)$ exists and satisfies (R3) but not (R2), that is, $R_{\lambda}(T)$ is unbounded.
- The residual spectrum $\sigma_r(T)$ is the set such that $R_{\lambda}(T)$ exists (bounded or not) but does not satisfy (R3), i.e., the domain of $R_{\lambda}(T)$ is not dense in X.

Summary of the Defining Conditions

• Some of the sets defined above may be empty.

For instance, $\sigma_c(T) = \sigma_r(T) = \emptyset$ in the finite dimensional case.

- Recall the conditions
 - (R1) $R_{\lambda}(T)$ exists;
 - (R2) $R_{\lambda}(T)$ is bounded;
 - (R3) $R_{\lambda}(T)$ is defined on a set which is dense in X.
- The various cases can be summarized as follows:

Satisfied		Not Satisfied	λ Belongs to
(<i>R</i> 1) (<i>R</i> 2) (<i>R</i> 3)			$\rho(T)$
		(<i>R</i> 1)	$\sigma_p(T)$
(R1)	(<i>R</i> 3)	(R2)	$\sigma_c(T)$
(R1)		(<i>R</i> 3)	$\sigma_r(T)$

Eigenvalues, Eigenvectors and Eigenspaces

• The four sets in the table are disjoint and their union is the whole complex plane:

$$\mathbb{C} = \rho(T) \cup \sigma(T) = \rho(T) \cup \sigma_{\rho}(T) \cup \sigma_{c}(T) \cup \sigma_{r}(T).$$

• If the resolvent $R_{\lambda}(T)$ exists, it is linear.

- $R_{\lambda}(T) : \mathscr{R}(T) \to \mathscr{D}(T)$ exists if and only if $T_{\lambda}x = 0$ implies x = 0. I.e., $R_{\lambda}(T)$ exists if and only if the null space of T_{λ} is $\{0\}$.
- Hence, if $T_{\lambda}x = (T \lambda I)x = 0$, for some $x \neq 0$, then $\lambda \in \sigma_p(T)$, by definition. That is, λ is an eigenvalue of T.
- The vector x is then called an eigenvector of T (or eigenfunction of T if X is a function space) corresponding to the eigenvalue λ.
- The subspace of 𝔅(𝔅) consisting of 0 and all eigenvectors of 𝔅 corresponding to an eigenvalue λ of 𝔅 is called the eigenspace of 𝔅 corresponding to that eigenvalue λ.

Operator with a Spectral Value not an Eigenvalue

- If X is infinite dimensional, then T can have spectral values which are not eigenvalues.
- On the Hilbert sequence space $X = \ell^2$ we define a linear operator $T : \ell^2 \to \ell^2$ by

$$(\xi_1,\xi_2,\ldots)\mapsto (0,\xi_1,\xi_2,\ldots),$$

where $x = (\xi_j) \in \ell^2$. *T* is called the **right-shift operator**. Note that *T* is bounded (with ||T|| = 1).

$$||Tx||^2 = \sum_{j=1}^{\infty} |\xi_j|^2 = ||x||^2.$$

The operator $R_0(T) = T^{-1}: T(X) \rightarrow X$ exists. It is the **left-shift operator**, given by

$$\bigl(\xi_1,\xi_2,\ldots\bigr)\mapsto \bigl(\xi_2,\xi_3,\ldots\bigr).$$

The Right-Shift Operator (Cont'd)

To conclude, note that R₀(T) does not satisfy (R3).
Indeed, T(X) is not dense in X.
T(X) is the subspace Y consisting of all y = (η_j), with η₁ = 0.
By definition, λ = 0 is a spectral value of T.
However, λ = 0 is not an eigenvalue.
Tx = 0 implies x = 0 and 0 is not an eigenvector.

Connection with Bounded Inverse Theorem

Recall the

Open Mapping Theorem, Bounded Inverse Theorem

A bounded linear operator T from a Banach space X onto a Banach space Y is an open mapping. Hence, if T is bijective, T^{-1} is continuous and thus bounded.

- From this we derive that if:
 - X is complete;
 - $T: X \rightarrow X$ is bounded and linear;
 - For some λ the resolvent $R_{\lambda}(T)$ exists and is defined on X;

then for that λ the resolvent is bounded.

The Domain of R_λ

Lemma (Domain of R_{λ})

Let X be a complex Banach space, $T : X \to X$ a linear operator, and $\lambda \in \rho(T)$. Assume that:

- (a) T is closed or
- (b) T is bounded.

Then $R_{\lambda}(T)$ is defined on the whole space X and is bounded.

(a) Since T is closed, so is T_λ = T - λI. Hence R_λ = T_λ⁻¹ is closed. R_λ is bounded by (R2). Hence its domain D(R_λ) is closed. Now (R3) implies D(R_λ) = D(R_λ) = X.
(b) Since D(T) = X is closed, T is closed. So the statement follows from Part (a).

Subsection 3

Spectral Properties of Bounded Linear Operators

Invertibility of *I* – 7

Theorem (Inverse)

Let $T \in B(X, X)$, where X is a Banach space. If ||T|| < 1, then $(I - T)^{-1}$ exists as a bounded linear operator on the whole space X and

$$(I-T)^{-1} = \sum_{j=0}^{\infty} T^j = I + T + T^2 + \cdots,$$

where the series on the right is convergent in the norm on B(X, X).

• We have $||T^j|| \le ||T||^j$.

The geometric series $\sum ||T||^j$ converges for ||T|| < 1.

Hence the series $\sum_{j=0}^{\infty} T^j$ is absolutely convergent for ||T|| < 1. Since X is complete, so is B(X, X).

Absolute convergence, thus, implies convergence.

Invertibility of I - T (Cont'd)

• We denote by S the sum of the series

$$\sum_{j=0}^{\infty} T^j = I + T + T^2 + \cdots.$$

It remains to show that $S = (I - T)^{-1}$. We calculate

$$(I - T)(I + T + \dots + T^{n}) = (I + T + \dots + T^{n})(I - T) = I - T^{n+1}.$$

We now let $n \to \infty$. Then $T^{n+1} \to 0$, because ||T|| < 1. We thus obtain (I - T)S = S(I - T) = I. This shows that $S = (I - T)^{-1}$.

January 20

Closedness of the Spectrum

Theorem (The Spectrum is Closed)

The resolvent set $\rho(T)$ of a bounded linear operator T on a complex Banach space X is open. Hence, the spectrum $\sigma(T)$ is closed.

• If
$$\rho(T) = \emptyset$$
, it is open. Let $\rho(T) \neq \emptyset$.
For a fixed $\lambda_0 \in \rho(T)$ and any $\lambda \in \mathbb{C}$, we have

$$T - \lambda I = T - \lambda_0 I - (\lambda - \lambda_0) I$$

= $(T - \lambda_0 I) [I - (\lambda - \lambda_0) (T - \lambda_0 I)^{-1}].$

Let V denote the operator in the brackets. Then

$$V=I-(\lambda-\lambda_0)R_{\lambda_0}.$$

Moreover, we can write $T_{\lambda} = T_{\lambda_0} V$.

January 202

• We obtained $T_{\lambda} = T_{\lambda_0} V$, where $V = I - (\lambda - \lambda_0) R_{\lambda_0}$. Now $\lambda_0 \in \rho(T)$ and T is bounded. By a previous lemma, $R_{\lambda_0} = T_{\lambda_0}^{-1} \in B(X, X)$. The theorem shows that V has an inverse in B(X,X), for all λ , such that $\|(\lambda - \lambda_0)R_{\lambda_0}\| < 1$, i.e., $|\lambda - \lambda_0| < \frac{1}{\|R_{\lambda_0}\|}$, given by

$$V^{-1} = \sum_{j=0}^{\infty} [(\lambda - \lambda_0) R_{\lambda_0}]^j = \sum_{j=0}^{\infty} (\lambda - \lambda_0)^j R_{\lambda_0}^j.$$

But $T_{\lambda_0}^{-1} = R_{\lambda_0} \in B(X, X)$. So, for $|\lambda - \lambda_0| < \frac{1}{\|R_{10}\|}$, T_{λ} has an inverse

$$R_{\lambda} = T_{\lambda}^{-1} = (T_{\lambda_0} V)^{-1} = V^{-1} R_{\lambda_0}.$$

Hence, $|\lambda - \lambda_0| < \frac{1}{\|R_{\lambda_0}\|}$ represents a neighborhood of λ_0 consisting of regular values λ of T. Since $\lambda_0 \in \rho(T)$ was arbitrary, $\rho(T)$ is open. So $\sigma(T) = \mathbb{C} - \rho(T)$ is closed.

George Voutsadakis (LSSU)

Representation Theorem for the Resolvent

• In the preceding proof we have also obtained a basic representation of the resolvent by a power series in powers of λ .

Theorem (Representation for the Resolvent)

Let T be a bounded linear operator on a complex Banach space X. For every $\lambda_0 \in \rho(T)$, the resolvent $R_{\lambda}(T)$ has the representation

$$R_{\lambda} = \sum_{j=0}^{\infty} (\lambda - \lambda_0)^j R_{\lambda_0}^{j+1},$$

the series being absolutely convergent for every λ in the open disk given by $|\lambda - \lambda_0| < \frac{1}{\|R_{\lambda_0}\|}$ in the complex plane. This disk is a subset of $\rho(T)$.

The Spectrum Theorem

Theorem (Spectrum)

The spectrum $\sigma(T)$ of a bounded linear operator $T: X \to X$ on a complex Banach space X is compact and lies in the disk given by $\lambda \leq ||T||$. Hence, the resolvent set $\rho(T)$ of T is not empty.

• Let $\lambda \neq 0$ and $\kappa = \frac{1}{\lambda}$. By the theorem, we obtain the representation

$$R_{\lambda} = (T - \lambda I)^{-1} = -\frac{1}{\lambda} (I - \kappa T)^{-1} = -\frac{1}{\lambda} \sum_{j=0}^{\infty} (\kappa T)^j = -\frac{1}{\lambda} \sum_{j=0}^{\infty} \left(\frac{1}{\lambda} T\right)^j$$

The series converges for λ such that $\|\frac{1}{\lambda}T\| = \frac{\|T\|}{\lambda} < 1$ i.e., $|\lambda| > \|T\|$. The same theorem also shows that any such λ is in $\rho(T)$. Hence the spectrum $\sigma(T) = \mathbb{C} - \rho(T)$ must lie in the disk $|\lambda| \le \|T\|$. So $\sigma(T)$ is bounded. But $\sigma(T)$ is closed. Hence $\sigma(T)$ is compact.

The Spectral Radius

• Since for a bounded linear operator T on a complex Banach space the spectrum is bounded, it seems natural to ask for the smallest disk about the origin which contains the whole spectrum.

Definition (Spectral Radius)

The spectral radius $r_{\sigma}(T)$ of an operator $T \in B(X,X)$ on a complex Banach space X is the radius

$$r_{\sigma}(T) = \sup_{\lambda \in \sigma(T)} |\lambda|$$

of the smallest closed disk centered at the origin of the complex λ -plane and containing $\sigma(T)$.

- It is obvious that for the spectral radius of a bounded linear operator T on a complex Banach space we have $r_{\sigma}(T) \leq ||T||$.
- Moreover, we will prove that $r_{\sigma}(T) = \lim_{n \to \infty} \sqrt[n]{\|T^n\|}$.

Subsection 4

Further Properties of Resolvent and Spectrum

Resolvent Equations

Theorem (Resolvent Equation, Commutativity)

Let X be a complex Banach space, $T \in B(X, X)$ and $\lambda, \mu \in \rho(T)$. Then:

(a) The resolvent R_{λ} of T satisfies the Hilbert relation or resolvent equation

$$R_{\mu}-R_{\lambda}=(\mu-\lambda)R_{\mu}R_{\lambda}, \quad \lambda,\mu\in\rho(T).$$

(b) R_{λ} commutes with any $S \in B(X, X)$ which commutes with T. (c) We have $R_{\lambda}R_{\mu} = R_{\mu}R_{\lambda}$, $\lambda, \mu \in \rho(T)$.

(a) We showed the range of T is all of X. Hence, $I = T_{\lambda}R_{\lambda}$, where I is the identity operator on X. Also $I = R_{\mu}T_{\mu}$.
Resolvent Equations (Cont'd)

R

• Consequently,

$$R_{\mu} - R_{\lambda} = R_{\mu}(T_{\lambda}R_{\lambda}) - (R_{\mu}T_{\mu})R_{\lambda}$$

$$= R_{\mu}(T_{\lambda} - T_{\mu})R_{\lambda}$$

$$= R_{\mu}[T - \lambda I - (T - \mu I)]R_{\lambda}$$

$$= (\mu - \lambda)R_{\mu}R_{\lambda}.$$

(b) By assumption, ST = TS. Hence, $ST_{\lambda} = T_{\lambda}S$. Using $I = T_{\lambda}R_{\lambda} = R_{\lambda}T_{\lambda}$, we thus obtain

$$R_{\lambda}S = R_{\lambda}ST_{\lambda}R_{\lambda} = R_{\lambda}T_{\lambda}SR_{\lambda} = SR_{\lambda}.$$

)
$$R_{\mu}$$
 commutes with T by Part (b).
Hence, R_{λ} commutes with R_{μ} by Part (b).

Eigenvalues of Matrices formed by Polynomials

- If λ is an eigenvalue of a matrix A, then $Ax = \lambda x$ for some $x \neq 0$.
- Application of A gives

$$A^2 x = A\lambda x = \lambda A x = \lambda^2 x.$$

- Continuing we get, for every positive integer m, $A^m x = \lambda^m x$.
- I.e., if λ is an eigenvalue of A, then λ^m is an eigenvalue of A^m .
- More generally, if λ is an eigenvalue of A,

$$p(\lambda) = \alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_0$$

is an eigenvalue of the matrix

$$p(A) = \alpha_n A^n + \alpha_{n-1} A^{n-1} + \dots + \alpha_0 I.$$

• We will show that this property extends to complex Banach spaces of any dimension, using the fact that a bounded linear operator has a nonempty spectrum (shown later by methods of complex analysis).

Notation

Consider a polynomial

$$p(\lambda) = \alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \cdots + \alpha_0.$$

Define

$$p(\sigma(T)) = \{\mu \in \mathbb{C} : \mu = p(\lambda), \lambda \in \sigma(T)\}.$$

- Thus, $p(\sigma(T))$ is the set of all complex numbers μ , such that $\mu = p(\lambda)$, for some $\lambda \in \sigma(T)$.
- The set $p(\rho(T))$ is defined similarly

$$p(\rho(T)) = \{\mu \in \mathbb{C} : \mu = p(\lambda), \lambda \in \rho(T)\}.$$

Spectral Mapping Theorem for Polynomials

Spectral Mapping Theorem for Polynomials

Let X be a complex Banach space, $T \in B(X, X)$ and

$$p(\lambda) = \alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_0.$$

Then $\sigma(p(T)) = p(\sigma(T))$, i.e., the spectrum $\sigma(p(T))$ of the operator $p(T) = \alpha_n T^n + \alpha_{n-1} T^{n-1} + \dots + \alpha_0 I$ consists precisely of all those values which the polynomial p assumes on the spectrum $\sigma(T)$ of T.

- We assume that $\sigma(T) \neq \phi$.
 - The case n = 0 is trivial. Then $p(\sigma(T)) = \{\alpha_0\} = \sigma(p(T))$.
 - Let n > 0.

• In Part (a), we prove $\sigma(p(T)) \subseteq p(\sigma(T))$.

• In Part (b), we prove $p(\sigma(T)) \subseteq \sigma(p(T))$.

Spectral Mapping Theorem for Polynomials Part (a)

(a) For simplicity we write S = p(T) and S_μ = p(T) − μI, μ ∈ C.
 If S_μ⁻¹ exists, the formula for S_μ shows that S_μ⁻¹ is the resolvent operator of p(T).

We keep μ fixed.

Since X is complex, the polynomial given by $s_{\mu}(\lambda) = p(\lambda) - \mu$ must factor completely into linear terms. Suppose

$$s_{\mu}(\lambda) = p(\lambda) - \mu = \alpha_n(\lambda - \gamma_1)(\lambda - \gamma_2)\cdots(\lambda - \gamma_n),$$

where $\gamma_1, \ldots, \gamma_n$ are the zeros of s_{μ} . Corresponding to this, we have

$$S_{\mu} = p(T) - \mu I = \alpha_n (T - \gamma_1 I) (T - \gamma_2 I) \cdots (T - \gamma_n I).$$

Spectral Mapping Theorem for Polynomials Part (a Cont'd)

• Suppose each γ_j is in $\rho(T)$.

Then each $T - \gamma_j I$ has a bounded inverse which, by previous results, is defined on all of X.

The same holds for S_{μ} and

$$S_{\mu}^{-1} = \frac{1}{\alpha_n} (T - \gamma_n I)^{-1} \cdots (T - \gamma_1 I)^{-1}.$$

Hence in this case, $\mu \in \rho(p(T))$. From this we conclude that $\mu \in \sigma(p(T))$ implies $\gamma_j \in \sigma(T)$, for some j. Now we get $s_{\mu}(\gamma_j) = p(\gamma_j) - \mu = 0$. Thus, $\mu = p(\gamma_j) \in p(\sigma(T))$. Since $\mu \in \sigma(p(T))$ was arbitrary, $\sigma(p(T)) \subseteq p(\sigma(T))$.

Spectral Mapping Theorem for Polynomials Part (b)

(b) Let $\kappa \in p(\sigma(T))$.

By definition, this means that $\kappa = p(\beta)$, for some $\beta \in \sigma(T)$. There are now two possibilities: (A) $T - \beta I$ has no inverse;

(B) $T - \beta I$ has an inverse.

Spectral Mapping Theorem for Polynomials Part (b)(A)

(A) From $\kappa = p(\beta)$ we have $p(\beta) - \kappa = 0$. Hence, β is a zero of the polynomial given by $s_{\kappa}(\lambda) = p(\lambda) - \kappa$. So we can write

$$s_{\kappa}(\lambda) = p(\lambda) - \kappa = (\lambda - \beta)g(\lambda),$$

where $g(\lambda)$ is the product of the other n-1 linear factors and α_n . Corresponding to this representation we have

$$S_{\kappa} = p(T) - \kappa I = (T - \beta I)g(T).$$

The factors of g(T) all commute with $T - \beta I$. So we also have $S_{\kappa} = g(T)(T - \beta I)$. If S_{κ} had an inverse, we would now get

$$I = (T - \beta I)g(T)S_{\kappa}^{-1} = S_{\kappa}^{-1}g(T)(T - \beta I).$$

Then $T - \beta I$ would have an inverse, contradicting our assumption. So $\kappa \in \sigma(p(T))$.

Spectral Mapping Theorem for Polynomials Part (b)(B)

(B) Suppose that κ = p(β), for some β∈ σ(T), but (T - βI)⁻¹ exists. Suppose that the range of T - βI was X. Then, (T - βI)⁻¹ would be bounded by the Bounded Inverse Theorem. Thus, β∈ ρ(T), which would contradict β∈ σ(T). It follows that for the range of T - βI, we must have

 $\mathscr{R}(T-\beta I)\neq X.$

Since $S_{\kappa} = (T - \beta I)g(T)$, we now get $\mathscr{R}(S_{\kappa}) \neq X$. This shows that $\kappa \in \sigma(p(T))$, since $\kappa \in \rho(p(T))$ would imply that $\mathscr{R}(S_{\kappa}) = X$ by a preceding lemma.

Linear Independence of Eigenvectors

Theorem (Linear Independence)

Eigenvectors x_1, \ldots, x_n corresponding to different eigenvalues $\lambda_1, \ldots, \lambda_n$ of a linear operator T on a vector space X constitute a linearly independent set.

 Towards a contradiction, assume that {x₁,...,x_n} is linearly dependent. Let x_m be the first of the vectors which is a linear combination of its predecessors, say, x_m = α₁x₁ + ··· + α_{m-1}x_{m-1}. Then {x₁,...,x_{m-1}} is linearly independent. Apply T - λ_mI on both sides:

$$(T-\lambda_m I)x_m = \sum_{j=1}^{m-1} \alpha_j (T-\lambda_m I)x_j = \sum_{j=1}^{m-1} \alpha_j (\lambda_j - \lambda_m)x_j.$$

Since x_m is an eigenvector corresponding to λ_m , the left side is zero. By the linear independence of $\{x_1, \ldots, x_{m-1}\}$, $\alpha_j(\lambda_j - \lambda_m) = 0$. Hence, $\alpha_j = 0$, $j = 1, \ldots, m-1$. But then $x_m = 0$, contradicting $x_m \neq 0$, x_m being an eigenvector.

Subsection 5

Use of Complex Analysis in Spectral Theory

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

Domains in the Complex Plane

- A metric space is said to be **connected** if it is not the union of two disjoint nonempty open subsets.
- A subset of a metric space is said to be **connected** if it is connected regarded as a subspace.
- By a **domain** G in the complex plane \mathbb{C} we mean an open connected subset G of \mathbb{C} .
- It can be shown that an open subset G of C is connected if and only if every pair of points of G can be joined by a broken line consisting of finitely many straight line segments all points of which belong to G.

Holomorphic or Analytic Functions

 A complex valued function h of a complex variable λ is said to be holomorphic (or analytic) on a domain G of the complex λ-plane if h is defined and differentiable on G, that is, the derivative h' of h, defined by

$$h'(\lambda) = \lim_{\Delta\lambda \to 0} \frac{h(\lambda + \Delta\lambda) - h(\lambda)}{\Delta\lambda}$$

exists for every $\lambda \in G$.

- The function h is said to be holomorphic at a point λ₀ ∈ C if h is holomorphic on some ε-neighborhood of λ₀.
- The function *h* is holomorphic on *G* if and only if, at every $\lambda_0 \in G$, it has a power series representation

$$h(\lambda) = \sum_{j=0}^{\infty} c_j (\lambda - \lambda_0)^j,$$

with a nonzero radius of convergence.

Operator Functions

 By a vector valued function or operator function we mean a mapping

$$\begin{array}{rcccc} S: & \Lambda & \to & B(X,X) \\ & \lambda & \mapsto & S_{\lambda} \end{array}$$

where Λ is any subset of the complex λ -plane.

- We write S_{λ} instead of $S(\lambda)$, to have a notation similar to R_{λ} .
- S being given, we may choose any $x \in X$, so that we get a mapping $\Lambda \to X$; $\lambda \mapsto S_{\lambda} x$.
- We may also choose x ∈ X and any f ∈ X' to get a mapping of Λ into the complex plane, namely,

$$\begin{array}{rcl} \Lambda & \to & \mathbb{C} \\ \lambda & \mapsto & f(S_{\lambda}x) \end{array}$$

Local Holomorphy and Holomorphy

Definition (Local Holomorphy, Holomorphy)

Let Λ be an open subset of \mathbb{C} and X a complex Banach space. Then the operator function $S : \Lambda \to B(X, X)$ is said to be:

locally holomorphic on Λ if, for every x ∈ X and f ∈ X', the function h, defined by

$$h(\lambda) = f(S_{\lambda}x)$$

is holomorphic at every $\lambda_0 \in \Lambda$ in the usual sense;

- holomorphic on Λ if S is locally holomorphic on Λ and Λ is a domain;
- holomorphic at a point $\lambda_0 \in \mathbb{C}$ if S is holomorphic on some ε -neighborhood of λ_0 .

Holomorphy and the Resolvent

- The resolvent set ρ(T) of a bounded linear operator T is open but may not always be a domain.
- Thus, in general, it is the union of disjoint domains (disjoint connected open sets).
- We will see that the resolvent is holomorphic at every point of $\rho(T)$.
 - Hence in any case it is locally holomorphic on $\rho(T)$;
 - It is holomorphic on $\rho(T)$ if and only if $\rho(T)$ is connected, so that $\rho(T)$ is a single domain.

Remarks on the Definition

- Recall that we defined three kinds of convergence in connection with bounded linear operators.
- Accordingly, we can define three corresponding kinds of derivative S'_{λ} of S_{λ} with respect to λ by the formulas:

$$\begin{aligned} \left\| \frac{1}{\Delta\lambda} [S_{\lambda+\Delta\lambda} - S_{\lambda}] - S'_{\lambda} \right\| &\to 0 \\ \left\| \frac{1}{\Delta\lambda} [S_{\lambda+\Delta\lambda} - S_{\lambda} X] - S'_{\lambda} X \right\| &\to 0, \quad x \in X \\ \left| \frac{1}{\Delta\lambda} [f(S_{\lambda+\Delta\lambda} X) - f(S_{\lambda} X)] - f(S'_{\lambda} X) \right\| &\to 0, \quad x \in X, f \in X'. \end{aligned}$$

- The existence of the derivative in the sense of the last formula for all λ in a domain Λ means that *h* defined by $h(\lambda) = f(S_{\lambda}x)$ is a holomorphic function on Λ in the usual sense, i.e., our definition of the derivative.
- It can be shown that the existence of this derivative (for every x ∈ X and every f ∈ X') implies the existence of the other two kinds of derivative.

Holomorphy of R_λ

Theorem (Holomorphy of R_{λ})

The resolvent $R_{\lambda}(T)$ of a bounded linear operator $T: X \to X$ on a complex Banach space X is holomorphic at every point λ_0 of the resolvent set $\rho(T)$ of T. Hence, it is locally holomorphic on $\rho(T)$.

We proved that for every value λ₀ ∈ ρ(T) the resolvent R_λ(T) of an operator T ∈ B(X,X) on a complex Banach space X has a power series representation

$$R_{\lambda}(T) = \sum_{j=0}^{\infty} R_{\lambda_0}(T)^{j+1} (\lambda - \lambda_0)^j,$$

which converges absolutely for each λ in the disk $|\lambda - \lambda_0| < \frac{1}{\|R_{\lambda_0}\|}$.

Holomorphy of R_{λ} (Cont'd)

We have

$$R_{\lambda}(T) = \sum_{j=0}^{\infty} R_{\lambda_0}(T)^{j+1} (\lambda - \lambda_0)^j,$$

converging absolutely for each λ in the disk $|\lambda - \lambda_0| < \frac{1}{\|R_{\lambda_0}\|}$. Take any $x \in X$ and $f \in X'$ and define h by

$$h(\lambda) = f(R_{\lambda}(T)x).$$

We obtain the power series representation

$$h(\lambda) = \sum_{j=0}^{\infty} c_j (\lambda - \lambda_0)^j, \quad c_j = f(R_{\lambda_0}(T)^{j+1}x).$$

This is absolutely convergent on the disk $|\lambda - \lambda_0| < \frac{1}{\|R_{\lambda_0}\|}$.

The Resolvent Theorem

 ρ(T) is the largest set on which the resolvent of T is locally holomorphic.

Theorem (Resolvent)

If $T \in B(X,X)$, where X is a complex Banach space, and $\lambda \in \rho(T)$, then $||R_{\lambda}(T)|| \ge \frac{1}{\delta(\lambda)}$, where $\delta(\lambda) = \inf_{s \in \sigma(T)} |\lambda - s|$ is the distance from λ to the spectrum $\sigma(T)$. Hence $||R_{\lambda}(T)|| \to \infty$ as $\delta(\lambda) \to 0$.

 For every λ₀ ∈ ρ(T), the disk |λ - λ₀| < ¹/_{||R_{λ0}||} is a subset of ρ(T). Hence, assuming σ(T) ≠ Ø (proof below), we see that the distance from λ₀ to the spectrum must at least equal the radius of the disk. That is, δ(λ₀) ≥ ¹/_{||R_{λ0}||}. This implies the conclusion.

Theorem (Spectrum)

If $X \neq \{0\}$ is a complex Banach space and $T \in B(X, X)$, then $\sigma(T) \neq \emptyset$.

• By assumption, $X \neq \{0\}$. If T = 0, then $\sigma(T) = \{0\} \neq \emptyset$. Let $T \neq 0$. Then $||T|| \neq 0$. We obtain the series

$$R_{\lambda} = -\frac{1}{\lambda} \sum_{j=0}^{\infty} \left(\frac{1}{\lambda} T\right)^{j}, \quad |\lambda| > ||T||.$$

This series converges for $\frac{1}{|\lambda|} < \frac{1}{|T||}$. So it converges absolutely for $\frac{1}{|\lambda|} < \frac{1}{2||T||}$, i.e., for $|\lambda| > 2||T||$. For these λ , by the formula for the sum of a geometric series,

$$\|R_{\lambda}\| \leq \frac{1}{|\lambda|} \sum_{j=0}^{\infty} \left\|\frac{1}{\lambda}T\right\|^{j} = \frac{1}{|\lambda| - \|T\|} \leq \frac{1}{\|T\|}.$$

Nonemptiness of the Spectrum (Cont'd)

• We show that the assumption $\sigma(T) = \emptyset$ leads to a contradiction. $\sigma(T) = \emptyset$ implies $\rho(T) = \mathbb{C}$. Hence, R_{λ} is holomorphic for all λ . Consequently, for a fixed $x \in X$ and a fixed $f \in X'$, the function hdefined by $h(\lambda) = f(R_{\lambda}x)$ is holomorphic on \mathbb{C} , i.e., h is an entire function. Since holomorphy implies continuity, h is continuous.

Thus, *h* is bounded on the compact disk $|\lambda| \le 2||T||$. But *h* is also bounded for $|\lambda| \ge 2||T||$, since $||R_{\lambda}|| < \frac{1}{||T||}$, by the preceding inequality.

$$|h(\lambda)| = |f(R_{\lambda}x)| \le ||f|| ||R_{\lambda}x|| \le ||f|| ||R_{\lambda}|| ||x|| \le \frac{||f|| ||x||}{||T||}$$

Hence *h* is bounded on \mathbb{C} . By Liouville's Theorem, which states that an entire function which is bounded on the whole complex plane is a constant, *h* is constant. Since $x \in X$ and $f \in X'$ in *h* were arbitrary, h =const implies that R_{λ} is independent of λ . The same holds for $R_{\lambda}^{-1} = T - \lambda I$. But this is impossible.

The Spectral Radius Theorem

Theorem (Spectral Radius)

If T is a bounded linear operator on a complex Banach space, then for the spectral radius $r_{\sigma}(T)$ of T we have $r_{\sigma}(T) = \lim_{n \to \infty} \sqrt[n]{\|T^n\|}$.

• We have $\sigma(T^n) = [\sigma(T)]^n$ by the Spectral Mapping Theorem. Thus, $r_{\sigma}(T^n) = [r_{\sigma}(T)]^n$. By the Spectrum Theorem, $r_{\sigma}(T^n) \le ||T^n||$. Therefore, for every n,

$$r_{\sigma}(T) = \sqrt[n]{r_{\sigma}(T^n)} \le \sqrt[n]{\|T^n\|}.$$

Hence,

$$r_{\sigma}(T) \leq \underline{\lim}_{n \to \infty} \sqrt[n]{\|T^n\|} \leq \overline{\lim}_{n \to \infty} \sqrt[n]{\|T^n\|}.$$

The Spectral Radius Theorem (Cont'd)

• Claim: $\overline{\lim}_{n\to\infty} \sqrt[n]{\|T^n\|} \le r_{\sigma}(T)$.

A power series $\sum c_n \kappa^n$ converges absolutely for $|\kappa| < r$ with radius of convergence r given by the well-known Hadamard formula

$$\frac{1}{r} = \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}.$$

Setting
$$\kappa = \frac{1}{\lambda}$$
, we get
$$R_{\lambda} = -\kappa \sum_{n=0}^{\infty} T^n \kappa^n$$

Then, writing $|c_n| = ||T^n||$, we obtain

$$\left\|\sum_{n=0}^{\infty} T^n \kappa^n\right\| \leq \sum_{n=0}^{\infty} \|T^n\| |\kappa|^n = \sum_{n=0}^{\infty} |c_n| |\kappa|^n.$$

The Spectral Radius Theorem (Cont'd)

• The Hadamard formula shows that we have absolute convergence for $|\kappa| < r$, hence for $|\lambda| = \frac{1}{|\kappa|} > \frac{1}{r} = \overline{\lim_{n \to \infty} \sqrt[n]{\|T^n\|}}$.

We know that R_{λ} is locally holomorphic precisely on the resolvent set $\rho(T)$ in the complex λ -plane.

To $\rho(T)$ there corresponds a set in the complex κ -plane, call it M.

Then it is known from complex analysis that the radius of convergence r is the radius of the largest open circular disk about $\kappa = 0$ which lies entirely in M.

- Hence, $\frac{1}{r}$ is the radius of the smallest circle about $\lambda = 0$ in the λ -plane whose exterior lies entirely in $\rho(T)$.
- By definition, this means that $\frac{1}{r}$ is the spectral radius of T.

Hence,
$$r_{\sigma}(T) = \frac{1}{r} = \overline{\lim}_{n \to \infty} \sqrt[n]{\|T^n\|}.$$

Subsection 6

Banach Algebras

Algebras

 An algebra A over a field K is a vector space A over K, such that for each ordered pair of elements x, y ∈ A, a unique product

$xy \in A$

is defined, satisfying, for all $x, y, z \in A$ and all scalars α :

(1)
$$(xy)z = x(yz);$$

(2a) $x(y+z) = xy + xz;$
(2b) $(x+y)z = xz + yz;$
(3) $\alpha(xy) = (\alpha x)y = x(\alpha y)$

• If $K = \mathbb{R}$ or \mathbb{C} , then A is said to be **real** or **complex**, respectively.

Algebras With Additional Properties

• A is said to be **commutative** (or **abelian**) if the multiplication is commutative, that is, if for all *x*, *y* ∈ *A*,

 $(4) \quad xy = yx.$

 A is called an algebra with identity if A contains an element e, such that for all x ∈ A,

(5) ex = xe = x.

- The element *e* is called an **identity** of *A*.
- If A has an identity, the identity is unique.

Normed Algebra, Banach Algebra

Definition (Normed Algebra, Banach Algebra)

A normed algebra A is a normed space which is an algebra, such that for all $x, y \in A$,

(6) $||xy|| \le ||x|| ||y||;$

and if A has an identity e,

(7) ||e|| = 1.

A **Banach algebra** is a normed algebra which is complete, considered as a normed space.

• Property (6) relates multiplication and norm.

We have

$$\begin{aligned} \|xy - x_0y_0\| &= \|x(y - y_0) + (x - x_0)y_0\| \\ &\leq \|x\|\|y - y_0\| + \|x - x_0\|\|y_0\|. \end{aligned}$$

• So the product is a jointly continuous function of its factors.

Examples

- **Spaces** \mathbb{R} and \mathbb{C} : The real line \mathbb{R} and the complex plane \mathbb{C} are commutative Banach algebras with identity e = 1.
- **Space** C[a, b]: The space C[a, b] is a commutative Banach algebra with identity (e = 1), the product *xy* being defined as usual:

(xy)(t) = x(t)y(t), for all $t \in [a, b]$.

The subspace of C[a, b] consisting of all polynomials is a commutative normed algebra with identity (e = 1).

• **Matrices**: The vector space X of all complex $n \times n$ matrices (n > 1, fixed) is a non-commutative algebra with identity I (the $n \times n$ unit matrix). By defining a norm on X, we obtain a Banach algebra.

Bounded Linear Operators

- Space B(X,X): The Banach space B(X,X) of all bounded linear operators on a complex Banach space X ≠ {0} is a Banach algebra.
 - The identity is *I* (the identity operator on *X*);
 - The multiplication is composition of operators, by definition.
- Relation (6) is

$$\|T_1T_2\| \le \|T_1\| \|T_2\|,$$

verified previously.

• B(X,X) is not commutative, unless dimX = 1.

Invertibility

- Let A be an algebra with identity.
- An x ∈ A is said to be invertible if it has an inverse in A, i.e., if A contains an element, written x⁻¹, such that

$$x^{-1}x = xx^{-1} = e.$$

If x is invertible, the inverse is unique.
Suppose y and z are both inverses of x.
Then, by definition, yx = e = xz.
So we get

$$y = ye = y(xz) = (yx)z = ez = z.$$

Resolvent Set and Spectrum

Definition (Resolvent Set, Spectrum)

Let A be a complex Banach algebra with identity.

- The resolvent set ρ(x) of an x ∈ A is the set of all λ in the complex plane such that x − λe is invertible.
- The spectrum $\sigma(x)$ of x is the complement of $\rho(x)$ in the complex plane. Thus, $\sigma(x) = \mathbb{C} \rho(x)$.
- Any $\lambda \in \sigma(x)$ is called a **spectral value** of *x*.
- Hence, the spectral values of x ∈ A are those λ for which x − λe is not invertible.

Resolvent Set and Spectrum

Proposition

If X is a complex Banach space, then B(X,X) is a Banach algebra. Then, the resolvent set of the operator $T \in B(X,X)$ agrees with its resolvent set as an element of the Banach algebra.

Let T ∈ B(X,X) and λ in the resolvent set ρ(T). Then, by the present definition, R_λ(T) = (T − λI)⁻¹ exists and is an element of B(X,X). I.e., R_λ(T) is a bounded linear operator defined on X. Hence, λ ∈ ρ(T), with ρ(T) as defined previously. Conversely, suppose that λ ∈ ρ(T), with ρ(T) defined as before. Then R_λ(T) exists and is linear, bounded and defined on a dense subset of X. But, since T is bounded, we get that R_λ(T) is defined on all of X. Hence λ ∈ ρ(T), with ρ(T) as defined presently.

Subsection 7

Further Properties of Banach Algebras

The Inverse Theorem

Theorem (Inverse)

Let A be a complex Banach algebra with identity e. If $x \in A$ satisfies ||x|| < 1, then e - x is invertible, and

$$(e-x)^{-1} = e + \sum_{j=1}^{\infty} x^j.$$

 We have ||x^j|| ≤ ||x||^j. So ∑ ||x^j|| converges, since ||x|| < 1. Hence, the series in the formula converges absolutely. Since A is complete, the series converges. Let s denote its sum. We show that s = (e-x)⁻¹.

$$(e-x)(e+x+\cdots+x^{n}) = (e+x+\cdots+x^{n})(e-x) = e-x^{n+1}.$$

We now let $n \to \infty$. Since ||x|| < 1, $x^{n+1} \to 0$. By continuity of multiplication, (e-x)s = s(e-x) = e. Hence, $s = (e-x)^{-1}$.
The Group of Invertible Elements

- Let A be a complex Banach algebra A with identity e
- Consider the subset G of all invertible elements of A.

Claim: G is a group.

 $e \in G$.

Suppose $x \in G$. Then x^{-1} exists and has an inverse $(x^{-1})^{-1} = x$. So x^{-1} is in G.

Finally, suppose $x, y \in G$. Then $y^{-1}x^{-1}$ is the inverse of xy.

$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xex^{-1} = e.$$

Similarly, $(y^{-1}x^{-1})(xy) = e$. So $xy \in G$.

January 20

The Invertible Elements Theorem

Theorem (Invertible Elements)

Let A be a complex Banach algebra with identity. Then the set G of all invertible elements of A is an open subset of A. Hence, the subset M = A - G of all non-invertible elements of A is closed.

• Let $x_0 \in G$. We have to show that every $x \in A$ sufficiently close to x_0 , say, $||x - x_0|| < \frac{1}{||x_0^{-1}||}$, belongs to G. Let $y = x_0^{-1}x$ and z = e - y. Then, we obtain

$$\begin{aligned} \|z\| &= \|-z\| = \|y - e\| = \|x_0^{-1}x - x_0^{-1}x_0\| \\ &= \|x_0^{-1}(x - x_0)\| \le \|x_0^{-1}\| \|x - x_0\| < 1. \end{aligned}$$

Thus ||z|| < 1. So e - z is invertible by the Inverse Theorem. Hence $e - z = y \in G$. But G is a group. So $x = x_0 x_0^{-1} x = x_0 y \in G$. Since $x_0 \in G$ was arbitrary, this proves that G is open.

The Spectral Radius

• Define the spectral radius $r_{\sigma}(x)$ of an $x \in A$ by

$$r_{\sigma}(x) = \sup_{\lambda \in \sigma(x)} |\lambda|.$$

Theorem (Spectrum)

Let A be a complex Banach algebra with identity e. Then for any $x \in A$, the spectrum $\sigma(x)$ is compact, and the spectral radius satisfies

 $r_{\sigma}(x) \leq \|x\|.$

Suppose |λ| > ||x||. Then ||λ⁻¹x|| < 1.
 So e - λ⁻¹x is invertible.
 Hence, -λ(e - λ⁻¹x) = x - λe is invertible also.
 So we have λ ∈ ρ(x). Hence σ(x) is bounded.

The Spectral Radius (Cont'd)

• Claim: $\sigma(x)$ is closed, since $\rho(x) = \mathbb{C} - \sigma(x)$ is open.

If $\lambda_0 \in \rho(x)$, then $x - \lambda_0 e$ is invertible. Thus, there is a neighborhood $N \subseteq A$ of $x - \lambda_0 e$ consisting wholly of invertible elements. Now for a fixed x, the mapping $\lambda \mapsto x - \lambda e$ is continuous. Hence, all $x - \lambda e$, with λ close to λ_0 , say,

$$|\lambda - \lambda_0| < \delta$$
, with $\delta > 0$,

lie in *N*. So these $x - \lambda e$ are invertible.

Thus, the corresponding λ belong to $\rho(x)$.

But $\lambda_0 \in \rho(x)$ was arbitrary.

So $\rho(x)$ is open. Hence, $\sigma(x) = \mathbb{C} - \rho(x)$ is closed.

• The theorem shows that $\rho(x) \neq \emptyset$.

Nonemptiness of the Spectrum

Theorem (Spectrum)

Let A be a complex Banach algebra with identity e. Then $\sigma(x) \neq \phi$.

• Let $\lambda, \mu \in \rho(x)$. We write

$$u(\lambda) = (x - \lambda e)^{-1};$$

 $w = (\mu - \lambda)v(\lambda).$

Then

$$\begin{aligned} x - \mu e &= x - \lambda e - (\mu - \lambda) e \\ &= (x - \lambda e) e - (\mu - \lambda)(x - \lambda e)(x - \lambda e)^{-1} \\ &= (x - \lambda e)(e - w). \end{aligned}$$

Taking inverses, we have $v(\mu) = (e - w)^{-1}v(\lambda)$. Suppose μ is so close to λ that $||w|| < \frac{1}{2}$. Then

$$\|(e-w)^{-1}-e-w\| = \left\|\sum_{j=2}^{\infty} w^{j}\right\| \le \sum_{j=2}^{\infty} \|w\|^{j} = \frac{\|w\|^{2}}{1-\|w\|} \le 2\|w\|^{2}.$$

Nonemptiness of the Spectrum (Cont'd)

• We showed $v(\mu) = (e - w)^{-1}v(\lambda)$ and $||(e - w)^{-1} - e - w|| \le 2||w||^2$. From this, we get

$$\begin{aligned} \|v(\mu) - v(\lambda) - (\mu - \lambda)v(\lambda)^2\| &= \|(e - w)^{-1}v(\lambda) - (e + w)v(\lambda)\| \\ &\leq \|v(\lambda)\|\|(e - w)^{-1} - (e + w)\| \\ &\leq 2\|w\|^2\|v(\lambda)\|. \end{aligned}$$

 $\|w\|^2$ contains a factor $|\mu - \lambda|^2$. Therefore,

$$\frac{\|w\|^2}{|\mu - \lambda|} \stackrel{\mu \to \lambda}{\longrightarrow} 0.$$

Hence, dividing the inequality by $|\mu - \lambda|$ and letting $\mu \rightarrow \lambda$,

$$\frac{1}{\mu-\lambda}[v(\mu)-v(\lambda)] \to v(\lambda)^2.$$

Nonemptiness of the Spectrum (Cont'd)

Let f ∈ A', where A' is the dual of A, considered as a Banach space.
 We define h: ρ(x) → C by

$$h(\lambda) = f(v(\lambda)).$$

Since f is continuous, so is h.

Applying f to the previous limit, we obtain

$$\lim_{\mu \to \lambda} \frac{h(\mu) - h(\lambda)}{\mu - \lambda} = f(v(\lambda)^2).$$

This shows that *h* is holomorphic at every point of $\rho(x)$. If $\sigma(x)$ were empty, then $\rho(x) = \mathbb{C}$. So *h* would be an entire function.

Nonemptiness of the Spectrum (Cont'd)

- Now we have
 - $v(\lambda) = -\lambda^{-1}(e \lambda^{-1}x)^{-1};$ • $(e - \lambda^{-1}x)^{-1} \xrightarrow{|\lambda| \to \infty} e^{-1} = e.$

So we obtain

$$|h(\lambda)| = |f(v(\lambda))| \le ||f|| ||v(\lambda)|| = ||f|| \frac{1}{|\lambda|} \left\| (e - \frac{1}{\lambda}x)^{-1} \right\| \stackrel{|\lambda| \to \infty}{\longrightarrow} 0.$$

This shows that h would be bounded on \mathbb{C} . Hence, by Liouville's Theorem, it is a constant. So it is zero by the preceding relation. Since $f \in A'$ was arbitrary, $h(\lambda) = f(v(\lambda)) = 0$ implies $v(\lambda) = 0$. This is impossible since it gives

$$||e|| = ||(x - \lambda e)v(\lambda)|| = ||0|| = 0.$$

Hence, $\sigma(x) = \emptyset$ cannot hold.

Supplying an Algebra with an Identity

- The existence of an identity *e* is necessary.
- If A has no identity, we can supply A with an identity.
 Let A be the set of all ordered pairs (x, α), where x ∈ A and α is a scalar. Define

$$\begin{array}{rcl} (x,\alpha) + (y,\beta) &=& (x+y,\alpha+\beta) \\ \beta(x,\alpha) &=& (\beta x,\beta\alpha) \\ (x,\alpha)(y,\beta) &=& (xy+\alpha y+\beta x,\alpha\beta) \\ \|(x,\alpha)\| &=& \|x\|+|\alpha| \\ \widetilde{e} &=& (0,1). \end{array}$$

Then \widetilde{A} is a Banach algebra with identity \widetilde{e} .

- The mapping x → (x,0) is an isomorphism of A onto a subspace of A
 both regarded as normed spaces.
- This subspace has codimension 1. Identifying x with (x,0), then \widetilde{A} is A plus the one-dimensional space generated by \widetilde{e} .