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Linear Operators On Normed Spaces

Let X be a finite dimensional normed space.

Let T :X →X be a linear operator.

We know that we can represent T by matrices (which depend on the
choice of bases for X ).

Then the spectral theory of T is essentially matrix eigenvalue theory.

For a given (real or complex) n-rowed square matrix A= (αjk), the
concepts of eigenvalues and eigenvectors are defined in terms of the
equation

Ax =λx .
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Eigenvalues, Eigenvectors, Eigenspaces and Spectrum

Definition (Eigenvalues, Eigenvectors, Eigenspaces, Spectrum, Resolvent
Set of a Matrix)

An eigenvalue of a square matrix A= (αjk) is a number λ, such that

Ax =λx

has a solution x 6= 0. This x is called an eigenvector of A corresponding to
that eigenvalue λ.

The eigenvectors corresponding to that eigenvalue λ and the zero
vector form a vector subspace of X which is called the eigenspace of
A corresponding to that eigenvalue λ.

The set σ(A) of all eigenvalues of A is called the spectrum of A.

The complement ρ(A)=C−σ(A) of the spectrum of A in the
complex plane is called the resolvent set of A.
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Characteristic Equation, Determinant and Polynomial

Let I be the n×n unit matrix.

Ax =λx can be written (A−λI )x = 0.

This is a homogeneous system of n linear equations in n unknowns
ξ1, . . . ,ξn, the components of x .

The determinant of the coefficients is det(A−λI ).

This determinant must be zero in order to have a solution x 6= 0.

This gives the characteristic equation of A:

det(A−λI )=

∣∣∣∣∣∣∣∣∣∣

α11−λ α12 · · · α1n

α21 α22−λ · · · α2n

...
...

...
αn1 αn2 · · · αnn−λ

∣∣∣∣∣∣∣∣∣∣

= 0.

det(A−λI ) is called the characteristic determinant of A.

By developing it we obtain a polynomial in λ of degree n, the
characteristic polynomial of A.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 6 / 81



Spectral Theory of Linear Operators in Normed Spaces Spectral Theory in Finite Dimensional Normed Spaces

The Eigenvalue Theorem

Theorem (The Eigenvalue Theorem)

The eigenvalues of an n×n square matrix A= (αjk) are given by the
solutions of the characteristic equation det(A−λI )= 0 of A. Hence A has
at least one eigenvalue (and at most n numerically different eigenvalues).

We have proven the first statement.

Recall that, by the Fundamental Theorem of Algebra and the
Factorization Theorem, a polynomial of degree n> 0, with coefficients
in C, has a root in C (and at most n numerically different roots).

This yields the second statement.

Note that roots may be complex even if A is real.
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Example

Consider the matrix A=

[
5 4
1 2

]
.

We find the eigenvalues of A by solving the characteristic equation
det(A−λI )= 0.

∣∣∣∣
5−λ 4

1 2−λ

∣∣∣∣= 0 ⇒ (5−λ)(2−λ)−4 = 0

⇒ λ2−7λ+6= 0
⇒ (λ−1)(λ−6)= 0
⇒ λ= 1 or λ= 6.

Thus, the spectrum is {1,6}.
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Example (Cont’d)

We found the eigenvalues of A=

[
5 4
1 2

]
.

The eigenvectors of A corresponding to 1 and 6 are obtained from

{
4ξ1+4ξ2 = 0

ξ1+ξ2 = 0
and

{
−ξ1+4ξ2 = 0
ξ1−4ξ2 = 0

,

respectively.

Observe that in each case we need only one of the two equations.

So x1 =

[
1

−1

]
and x2 =

[
4
1

]
are eigenvectors of A corresponding to

the eigenvalues 1 and 6, respectively.
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Eigenvalues and Spectrum of an Operator

Let X be a normed space of dimension n.

Consider again a linear operator T :X →X .

Let e = {e1, . . . ,en} be any basis for X .

Let Te = (αjk) be the matrix representing T with respect to the basis
e (whose elements are kept in the given order).

The eigenvalues of the matrix Te are called the eigenvalues of the

operator T .

The spectrum of the matrix Te is called the spectrum of T .

The resolvent set of Te is called the resolvent set of T .
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Eigenvalues of an Operator

Theorem (Eigenvalues of an Operator)

All matrices representing a given linear operator T :X →X on a finite
dimensional normed space X relative to various bases for X have the same
eigenvalues.

We examine the effect of the transition from one basis for X to
another.

Let e = (e1, . . . ,en) and ẽ = (ẽ1, . . . , ẽn) be any bases for X , written as
row vectors.

By the definition of a basis, each ej is a linear combination of the ẽk ’s
and conversely.

We can write this ẽ = eC or ẽ⊤ =C⊤e⊤, where C is a nonsingular
n×n square matrix.
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Eigenvalues of an Operator (Cont’d)

Every x ∈X has a unique representation with respect to each of the
two bases. Say,

x =
∑

ξjej = ex1 and x =
∑

ξ̃k ẽk = ẽx2,

where x1 = (ξj ) and x2 = (ξ̃k) are column vectors.

We get, ex1 = ẽx2 = eCx2. Hence x1 =Cx2.

Similarly, suppose Tx = y = ey1 = ẽy2. Then we have y1 =Cy2.

Now, if T1 and T2 denote the matrices which represent T with
respect to e and ẽ, respectively, then y1 =T1x1 and y2 =T2x2.

Therefore, we obtain

CT2x2 =Cy2 = y1 =T1x1 =T1Cx2.
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Eigenvalues of an Operator (Conclusion)

We obtained CT2x2 =T1Cx2.

Premultiplying by C−1, we obtain the transformation law

T2 =C−1T1C ,

with C determined by the bases and independent of T .

Using det(C−1)det(C )= 1, we can now show that the characteristic
determinants of T2 and T1 are equal.

det(T2−λI ) = det(C−1T1C −λC−1IC )
= det(C−1(T1−λI )C )
= det(C−1)det(T1−λI )detC
= det(T1−λI ).

Equality of the eigenvalues of T1 and T2 now follows from the
Eigenvalue Theorem.
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Similar Matrices

An n×n matrix T2 is said to be similar to an n×n matrix T1, if there
exists a nonsingular matrix C , such that

T2 =C−1T1C .

T1 and T2 are then called similar matrices.

In terms of this concept, our proof shows that:

(i) Two matrices representing the same linear operator T on a finite
dimensional normed space X relative to any two bases for X are similar.

(ii) Similar matrices have the same eigenvalues.
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Existence of Eigenvalues and Determinant of an Operator

Existence Theorem (Eigenvalues)

A linear operator on a finite dimensional complex normed space X 6= {0} has
at least one eigenvalue.

This follows from the Eigenvalue Theorem and the preceding theorem.

Note that, with λ= 0, det(T2−λI )= det(T1−λI ) gives

detT2 = detT1.

Hence, the value of the determinant is an intrinsic property of T .

We call it the determinant of the operator T and denote it by detT .
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Subsection 2

Basic Concepts
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The Operator Tλ Associated With An Operator T

We now consider normed spaces of any dimension.

Let X 6= {0} be a complex normed space.

Let T :D(T )→X be a linear operator with domain D(T )⊆X .

With T we associate the operator

Tλ =T −λI ,

where:

λ is a complex number;
I is the identity operator on D(T ).
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The Resolvent of an Operator T

If Tλ has an inverse, we denote it by Rλ(T ),

Rλ(T )=T−1
λ = (T −λI )−1

.

We call Rλ(T ) the resolvent operator of T or, simply, the resolvent

of T .

Instead of Rλ(T ) we also write simply Rλ if the operator T is clear
from context.

The name “resolvent” is appropriate, since Rλ(T ) helps to solve the
equation Tλx = y .

Indeed, suppose Rλ(T ) exists.

Then
x =T−1

λ y =Rλ(T )y .
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Regular Value, Resolvent Set and Spectrum

Definition (Regular Value, Resolvent Set, Spectrum)

Let X 6= {0} be a complex normed space and T :D(T )→X a linear
operator with domain D(T )⊆X .

A regular value λ of T is a complex number such that:

(R1) Rλ(T ) exists;
(R2) Rλ(T ) is bounded;
(R3) Rλ(T ) is defined on a set which is dense in X .

The resolvent set ρ(T ) of T is the set of all regular values λ of T .

Its complement σ(T )=C−ρ(T ) in the complex plane C is called the
spectrum of T .

A λ∈σ(T ) is called a spectral value of T .
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Partition of the Spectrum

Definition (Point, Continuous and Residual Spectrum)

Let X 6= {0} be a complex normed space and T :D(T )→X a linear
operator with domain D(T )⊆X .
The spectrum σ(T ) is partitioned into three disjoint sets as follows:

The point spectrum or discrete spectrum σp(T ) is the set such
that Rλ(T ) does not exist.

A λ∈σp(T ) is called an eigenvalue of T .

The continuous spectrum σc(T ) is the set such that Rλ(T ) exists
and satisfies (R3) but not (R2), that is, Rλ(T ) is unbounded.

The residual spectrum σr (T ) is the set such that Rλ(T ) exists
(bounded or not) but does not satisfy (R3), i.e., the domain of Rλ(T )
is not dense in X .
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Summary of the Defining Conditions

Some of the sets defined above may be empty.

For instance, σc(T )=σr (T )=; in the finite dimensional case.

Recall the conditions

(R1) Rλ(T ) exists;
(R2) Rλ(T ) is bounded;
(R3) Rλ(T ) is defined on a set which is dense in X .

The various cases can be summarized as follows:

Satisfied Not Satisfied λ Belongs to

(R1) (R2) (R3) ρ(T )

(R1) σp(T )
(R1) (R3) (R2) σc(T )
(R1) (R3) σr (T )
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Eigenvalues, Eigenvectors and Eigenspaces

The four sets in the table are disjoint and their union is the whole
complex plane:

C= ρ(T )∪σ(T )= ρ(T )∪σp(T )∪σc(T )∪σr (T ).

If the resolvent Rλ(T ) exists, it is linear.

Rλ(T ) :R(T )→D(T ) exists if and only if Tλx = 0 implies x = 0.

I.e., Rλ(T ) exists if and only if the null space of Tλ is {0}.

Hence, if Tλx = (T −λI )x = 0, for some x 6= 0, then λ∈σp(T ), by
definition. That is, λ is an eigenvalue of T .

The vector x is then called an eigenvector of T (or eigenfunction of
T if X is a function space) corresponding to the eigenvalue λ.

The subspace of D(T ) consisting of 0 and all eigenvectors of T
corresponding to an eigenvalue λ of T is called the eigenspace of T
corresponding to that eigenvalue λ.
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Operator with a Spectral Value not an Eigenvalue

If X is infinite dimensional, then T can have spectral values which are
not eigenvalues.

On the Hilbert sequence space X = ℓ2 we define a linear operator
T : ℓ2 → ℓ2 by

(ξ1,ξ2, . . .) 7→ (0,ξ1,ξ2, . . .),

where x = (ξj )∈ ℓ2. T is called the right-shift operator.

Note that T is bounded (with ‖T‖= 1).

‖Tx‖2
=

∞∑

j=1

|ξj |
2
= ‖x‖2

.

The operator R0(T )=T−1 :T (X )→X exists.

It is the left-shift operator, given by

(ξ1,ξ2, . . .) 7→ (ξ2,ξ3, . . .).
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The Right-Shift Operator (Cont’d)

To conclude, note that R0(T ) does not satisfy (R3).

Indeed, T (X ) is not dense in X .

T (X ) is the subspace Y consisting of all y = (ηj ), with η1 = 0.

By definition, λ= 0 is a spectral value of T .

However, λ= 0 is not an eigenvalue.

Tx = 0 implies x = 0 and 0 is not an eigenvector.
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Connection with Bounded Inverse Theorem

Recall the

Open Mapping Theorem, Bounded Inverse Theorem

A bounded linear operator T from a Banach space X onto a Banach space
Y is an open mapping. Hence, if T is bijective, T−1 is continuous and thus
bounded.

From this we derive that if:

X is complete;
T :X →X is bounded and linear;
For some λ the resolvent Rλ(T ) exists and is defined on X ;

then for that λ the resolvent is bounded.
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The Domain of Rλ

Lemma (Domain of Rλ)

Let X be a complex Banach space, T :X →X a linear operator, and
λ ∈ ρ(T ). Assume that:

(a) T is closed or

(b) T is bounded.

Then Rλ(T ) is defined on the whole space X and is bounded.

(a) Since T is closed, so is Tλ =T −λI . Hence Rλ =T−1
λ

is closed.

Rλ is bounded by (R2). Hence its domain D(Rλ) is closed.

Now (R3) implies D(Rλ)=D(Rλ)=X .

(b) Since D(T )=X is closed, T is closed.

So the statement follows from Part (a).
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Subsection 3

Spectral Properties of Bounded Linear Operators
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Invertibility of I −T

Theorem (Inverse)

Let T ∈B(X ,X ), where X is a Banach space. If ‖T‖< 1, then (I −T )−1

exists as a bounded linear operator on the whole space X and

(I −T )−1
=

∞∑

j=0

T j
= I +T +T 2

+·· · ,

where the series on the right is convergent in the norm on B(X ,X ).

We have ‖T j‖≤ ‖T‖j .

The geometric series
∑
‖T‖j converges for ‖T‖< 1.

Hence the series
∑∞

j=0
T j is absolutely convergent for ‖T‖< 1.

Since X is complete, so is B(X ,X ).

Absolute convergence, thus, implies convergence.
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Invertibility of I −T (Cont’d)

We denote by S the sum of the series

∞∑

j=0

T j
= I +T +T 2

+·· · .

It remains to show that S = (I −T )−1.

We calculate

(I −T )(I +T +·· ·+T n)= (I +T +·· ·+T n)(I −T )= I −T n+1
.

We now let n→∞.

Then T n+1 → 0, because ‖T‖ < 1.

We thus obtain (I −T )S = S(I −T )= I .

This shows that S = (I −T )−1.
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Closedness of the Spectrum

Theorem (The Spectrum is Closed)

The resolvent set ρ(T ) of a bounded linear operator T on a complex
Banach space X is open. Hence, the spectrum σ(T ) is closed.

If ρ(T )=;, it is open. Let ρ(T ) 6= ;.

For a fixed λ0 ∈ ρ(T ) and any λ∈C, we have

T −λI = T −λ0I − (λ−λ0)I
= (T −λ0I )[I − (λ−λ0)(T −λ0I )

−1].

Let V denote the operator in the brackets. Then

V = I − (λ−λ0)Rλ0
.

Moreover, we can write Tλ =Tλ0
V .
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Closedness of the Spectrum (Cont’d)

We obtained Tλ =Tλ0
V , where V = I − (λ−λ0)Rλ0

.

Now λ0 ∈ ρ(T ) and T is bounded.

By a previous lemma, Rλ0
=T−1

λ0
∈B(X ,X ).

The theorem shows that V has an inverse in B(X ,X ), for all λ, such
that ‖(λ−λ0)Rλ0

‖< 1, i.e., |λ−λ0| <
1

‖Rλ0
‖
, given by

V −1
=

∞∑

j=0

[(λ−λ0)Rλ0
]j =

∞∑

j=0

(λ−λ0)
jR

j

λ0
.

But T−1
λ0

=Rλ0
∈B(X ,X ). So, for |λ−λ0| <

1
‖Rλ0

‖
, Tλ has an inverse

Rλ =T−1
λ = (Tλ0

V )−1
=V −1Rλ0

.

Hence, |λ−λ0| <
1

‖Rλ0
‖

represents a neighborhood of λ0 consisting of

regular values λ of T . Since λ0 ∈ ρ(T ) was arbitrary, ρ(T ) is open.
So σ(T )=C−ρ(T ) is closed.
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Representation Theorem for the Resolvent

In the preceding proof we have also obtained a basic representation of
the resolvent by a power series in powers of λ.

Theorem (Representation for the Resolvent)

Let T be a bounded linear operator on a complex Banach space X . For
every λ0 ∈ ρ(T ), the resolvent Rλ(T ) has the representation

Rλ =

∞∑

j=0

(λ−λ0)
jR

j+1

λ0
,

the series being absolutely convergent for every λ in the open disk given by
|λ−λ0| <

1
‖Rλ0

‖
in the complex plane. This disk is a subset of ρ(T ).
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The Spectrum Theorem

Theorem (Spectrum)

The spectrum σ(T ) of a bounded linear operator T :X →X on a complex
Banach space X is compact and lies in the disk given by λ≤‖T‖. Hence,
the resolvent set ρ(T ) of T is not empty.

Let λ 6= 0 and κ=
1
λ
. By the theorem, we obtain the representation

Rλ = (T −λI )−1
= −

1

λ
(I −κT )−1

= −
1

λ

∞∑

j=0

(κT )j = −
1

λ

∞∑

j=0

(
1

λ
T

)j
.

The series converges for λ such that ‖ 1
λ
T‖=

‖T‖

λ
< 1 i.e., |λ| > ‖T‖.

The same theorem also shows that any such λ is in ρ(T ).

Hence the spectrum σ(T )=C−ρ(T ) must lie in the disk |λ| ≤ ‖T‖.

So σ(T ) is bounded. But σ(T ) is closed. Hence σ(T ) is compact.
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The Spectral Radius

Since for a bounded linear operator T on a complex Banach space the
spectrum is bounded, it seems natural to ask for the smallest disk
about the origin which contains the whole spectrum.

Definition (Spectral Radius)

The spectral radius rσ(T ) of an operator T ∈B(X ,X ) on a complex
Banach space X is the radius

rσ(T )= sup
λ∈σ(T )

|λ|

of the smallest closed disk centered at the origin of the complex λ-plane
and containing σ(T ).

It is obvious that for the spectral radius of a bounded linear operator
T on a complex Banach space we have rσ(T )≤‖T‖.

Moreover, we will prove that rσ(T )= limn→∞
n
√
‖T n‖.
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Subsection 4

Further Properties of Resolvent and Spectrum
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Resolvent Equations

Theorem (Resolvent Equation, Commutativity)

Let X be a complex Banach space, T ∈B(X ,X ) and λ,µ ∈ ρ(T ). Then:

(a) The resolvent Rλ of T satisfies the Hilbert relation or resolvent

equation

Rµ−Rλ = (µ−λ)RµRλ, λ,µ ∈ ρ(T ).

(b) Rλ commutes with any S ∈B(X ,X ) which commutes with T .

(c) We have RλRµ =RµRλ, λ,µ ∈ ρ(T ).

(a) We showed the range of T is all of X .

Hence, I =TλRλ, where I is the identity operator on X .

Also I =RµTµ.
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Resolvent Equations (Cont’d)

Consequently,

Rµ−Rλ = Rµ(TλRλ)− (RµTµ)Rλ

= Rµ(Tλ−Tµ)Rλ

= Rµ[T −λI − (T −µI )]Rλ

= (µ−λ)RµRλ.

(b) By assumption, ST =TS . Hence, STλ =TλS .

Using I =TλRλ =RλTλ, we thus obtain

RλS =RλSTλRλ =RλTλSRλ = SRλ.

(c) Rµ commutes with T by Part (b).

Hence, Rλ commutes with Rµ by Part (b).
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Eigenvalues of Matrices formed by Polynomials

If λ is an eigenvalue of a matrix A, then Ax =λx for some x 6= 0.

Application of A gives

A2x =Aλx =λAx =λ2x .

Continuing we get, for every positive integer m, Amx =λmx .

I.e., if λ is an eigenvalue of A, then λm is an eigenvalue of Am.

More generally, if λ is an eigenvalue of A,

p(λ)=αnλ
n
+αn−1λ

n−1
+·· ·+α0

is an eigenvalue of the matrix

p(A)=αnA
n
+αn−1A

n−1
+·· ·+α0I .

We will show that this property extends to complex Banach spaces of
any dimension, using the fact that a bounded linear operator has a
nonempty spectrum (shown later by methods of complex analysis).
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Notation

Consider a polynomial

p(λ)=αnλ
n
+αn−1λ

n−1
+·· ·+α0.

Define
p(σ(T ))= {µ ∈C :µ= p(λ),λ ∈σ(T )}.

Thus, p(σ(T )) is the set of all complex numbers µ, such that
µ= p(λ), for some λ ∈σ(T ).

The set p(ρ(T )) is defined similarly

p(ρ(T ))= {µ ∈C :µ= p(λ),λ ∈ ρ(T )}.
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Spectral Mapping Theorem for Polynomials

Spectral Mapping Theorem for Polynomials

Let X be a complex Banach space, T ∈B(X ,X ) and

p(λ)=αnλ
n
+αn−1λ

n−1
+·· ·+α0.

Then σ(p(T ))= p(σ(T )), i.e., the spectrum σ(p(T )) of the operator
p(T )=αnT

n+αn−1T
n−1+·· ·+α0I consists precisely of all those values

which the polynomial p assumes on the spectrum σ(T ) of T .

We assume that σ(T ) 6= ;.

The case n= 0 is trivial. Then p(σ(T ))= {α0} =σ(p(T )).
Let n> 0.

In Part (a), we prove σ(p(T ))⊆ p(σ(T )).
In Part (b), we prove p(σ(T ))⊆σ(p(T )).
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Spectral Mapping Theorem for Polynomials Part (a)

(a) For simplicity we write S = p(T ) and Sµ = p(T )−µI , µ ∈C.

If S−1
µ exists, the formula for Sµ shows that S−1

µ is the resolvent
operator of p(T ).

We keep µ fixed.

Since X is complex, the polynomial given by sµ(λ)= p(λ)−µ must
factor completely into linear terms. Suppose

sµ(λ)= p(λ)−µ=αn(λ−γ1)(λ−γ2) · · ·(λ−γn),

where γ1, . . . ,γn are the zeros of sµ.

Corresponding to this, we have

Sµ = p(T )−µI =αn(T −γ1I )(T −γ2I ) · · · (T −γnI ).
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Spectral Mapping Theorem for Polynomials Part (a Cont’d)

Suppose each γj is in ρ(T ).

Then each T −γj I has a bounded inverse which, by previous results, is
defined on all of X .

The same holds for Sµ and

S−1
µ =

1

αn
(T −γnI )

−1
· · ·(T −γ1I )

−1
.

Hence in this case, µ ∈ ρ(p(T )).

From this we conclude that µ ∈σ(p(T )) implies γj ∈σ(T ), for some j .

Now we get sµ(γj )= p(γj)−µ= 0.

Thus, µ= p(γj) ∈ p(σ(T )).

Since µ ∈σ(p(T )) was arbitrary, σ(p(T ))⊆ p(σ(T )).
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Spectral Mapping Theorem for Polynomials Part (b)

(b) Let κ ∈ p(σ(T )).

By definition, this means that κ= p(β), for some β ∈σ(T ).

There are now two possibilities:

(A) T −βI has no inverse;
(B) T −βI has an inverse.
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Spectral Mapping Theorem for Polynomials Part (b)(A)

(A) From κ= p(β) we have p(β)−κ= 0.

Hence, β is a zero of the polynomial given by sκ(λ)= p(λ)−κ.

So we can write

sκ(λ)= p(λ)−κ= (λ−β)g(λ),

where g(λ) is the product of the other n−1 linear factors and αn.

Corresponding to this representation we have

Sκ = p(T )−κI = (T −βI )g(T ).

The factors of g(T ) all commute with T −βI .

So we also have Sκ = g(T )(T −βI ).

If Sκ had an inverse, we would now get

I = (T −βI )g(T )S−1
κ = S−1

κ g(T )(T −βI ).

Then T −βI would have an inverse, contradicting our assumption.

So κ ∈σ(p(T )).
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Spectral Mapping Theorem for Polynomials Part (b)(B)

(B) Suppose that κ= p(β), for some β ∈σ(T ), but (T −βI )−1 exists.

Suppose that the range of T −βI was X .

Then, (T −βI )−1 would be bounded by the Bounded Inverse Theorem.

Thus, β ∈ ρ(T ), which would contradict β ∈σ(T ).

It follows that for the range of T −βI , we must have

R(T −βI ) 6=X .

Since Sκ = (T −βI )g(T ), we now get R(Sκ) 6=X .

This shows that κ ∈σ(p(T )), since κ ∈ ρ(p(T )) would imply that
R(Sκ)=X by a preceding lemma.
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Linear Independence of Eigenvectors

Theorem (Linear Independence)

Eigenvectors x1, . . . ,xn corresponding to different eigenvalues λ1, . . . ,λn of a
linear operator T on a vector space X constitute a linearly independent set.

Towards a contradiction, assume that {x1, . . . ,xn} is linearly dependent.

Let xm be the first of the vectors which is a linear combination of its
predecessors, say, xm =α1x1+·· ·+αm−1xm−1.

Then {x1, . . . ,xm−1} is linearly independent.

Apply T −λmI on both sides:

(T −λmI )xm =

m−1∑

j=1

αj(T −λmI )xj =
m−1∑

j=1

αj (λj −λm)xj .

Since xm is an eigenvector corresponding to λm, the left side is zero.

By the linear independence of {x1, . . . ,xm−1}, αj(λj −λm)= 0.

Hence, αj = 0, j = 1, . . . ,m−1. But then xm = 0, contradicting xm 6= 0,
xm being an eigenvector.
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Subsection 5

Use of Complex Analysis in Spectral Theory
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Domains in the Complex Plane

A metric space is said to be connected if it is not the union of two
disjoint nonempty open subsets.

A subset of a metric space is said to be connected if it is connected
regarded as a subspace.

By a domain G in the complex plane C we mean an open connected
subset G of C.

It can be shown that an open subset G of C is connected if and only if
every pair of points of G can be joined by a broken line consisting of
finitely many straight line segments all points of which belong to G .
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Holomorphic or Analytic Functions

A complex valued function h of a complex variable λ is said to be
holomorphic (or analytic) on a domain G of the complex λ-plane if
h is defined and differentiable on G , that is, the derivative h′ of h,
defined by

h′(λ)= lim
∆λ→0

h(λ+∆λ)−h(λ)

∆λ

exists for every λ∈G .

The function h is said to be holomorphic at a point λ0 ∈C if h is
holomorphic on some ε-neighborhood of λ0.

The function h is holomorphic on G if and only if, at every λ0 ∈G , it
has a power series representation

h(λ)=
∞∑

j=0

cj (λ−λ0)
j
,

with a nonzero radius of convergence.
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Operator Functions

By a vector valued function or operator function we mean a
mapping

S : Λ → B(X ,X )
λ 7→ Sλ

where Λ is any subset of the complex λ-plane.

We write Sλ instead of S(λ), to have a notation similar to Rλ.

S being given, we may choose any x ∈X , so that we get a mapping
Λ→X ; λ 7→ Sλx .

We may also choose x ∈X and any f ∈X ′ to get a mapping of Λ into
the complex plane, namely,

Λ → C

λ 7→ f (Sλx).
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Local Holomorphy and Holomorphy

Definition (Local Holomorphy, Holomorphy)

Let Λ be an open subset of C and X a complex Banach space. Then the
operator function S :Λ→B(X ,X ) is said to be:

locally holomorphic on Λ if, for every x ∈X and f ∈X ′, the function
h, defined by

h(λ)= f (Sλx)

is holomorphic at every λ0 ∈Λ in the usual sense;

holomorphic on Λ if S is locally holomorphic on Λ and Λ is a domain;

holomorphic at a point λ0 ∈C if S is holomorphic on some
ε-neighborhood of λ0.
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Holomorphy and the Resolvent

The resolvent set ρ(T ) of a bounded linear operator T is open but
may not always be a domain.

Thus, in general, it is the union of disjoint domains (disjoint connected
open sets).

We will see that the resolvent is holomorphic at every point of ρ(T ).

Hence in any case it is locally holomorphic on ρ(T );
It is holomorphic on ρ(T ) if and only if ρ(T ) is connected, so that
ρ(T ) is a single domain.
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Remarks on the Definition

Recall that we defined three kinds of convergence in connection with
bounded linear operators.

Accordingly, we can define three corresponding kinds of derivative S ′
λ

of Sλ with respect to λ by the formulas:

∥∥ 1
∆λ

[Sλ+∆λ−Sλ]−S ′
λ

∥∥ → 0∥∥ 1
∆λ [Sλ+∆λx −Sλx ]−S ′

λ
x
∥∥ → 0, x ∈X∣∣ 1

∆λ
[f (Sλ+∆λx)− f (Sλx)]− f (S ′

λ
x)

∣∣ → 0, x ∈X , f ∈X ′.

The existence of the derivative in the sense of the last formula for all λ
in a domain Λ means that h defined by h(λ)= f (Sλx) is a holomorphic
function on Λ in the usual sense, i.e., our definition of the derivative.

It can be shown that the existence of this derivative (for every x ∈X

and every f ∈X ′) implies the existence of the other two kinds of
derivative.
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Holomorphy of Rλ

Theorem (Holomorphy of Rλ)

The resolvent Rλ(T ) of a bounded linear operator T :X →X on a complex
Banach space X is holomorphic at every point λ0 of the resolvent set ρ(T )
of T . Hence, it is locally holomorphic on ρ(T ).

We proved that for every value λ0 ∈ ρ(T ) the resolvent Rλ(T ) of an
operator T ∈B(X ,X ) on a complex Banach space X has a power
series representation

Rλ(T )=
∞∑

j=0

Rλ0
(T )j+1(λ−λ0)

j
,

which converges absolutely for each λ in the disk |λ−λ0| <
1

‖Rλ0
‖
.
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Holomorphy of Rλ (Cont’d)

We have

Rλ(T )=
∞∑

j=0

Rλ0
(T )j+1(λ−λ0)

j
,

converging absolutely for each λ in the disk |λ−λ0| <
1

‖Rλ0
‖
.

Take any x ∈X and f ∈X ′ and define h by

h(λ)= f (Rλ(T )x).

We obtain the power series representation

h(λ)=
∞∑

j=0

cj(λ−λ0)
j
, cj = f (Rλ0

(T )j+1x).

This is absolutely convergent on the disk |λ−λ0| <
1

‖Rλ0
‖
.
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The Resolvent Theorem

ρ(T ) is the largest set on which the resolvent of T is locally
holomorphic.

Theorem (Resolvent)

If T ∈B(X ,X ), where X is a complex Banach space, and λ ∈ ρ(T ), then
‖Rλ(T )‖ ≥ 1

δ(λ) , where δ(λ)= inf
s∈σ(T )

|λ− s | is the distance from λ to the

spectrum σ(T ). Hence ‖Rλ(T )‖→∞ as δ(λ)→ 0.

For every λ0 ∈ ρ(T ), the disk |λ−λ0| <
1

‖Rλ0
‖

is a subset of ρ(T ).

Hence, assuming σ(T ) 6= ; (proof below), we see that the distance
from λ0 to the spectrum must at least equal the radius of the disk.

That is, δ(λ0)≥
1

‖Rλ0
‖
. This implies the conclusion.
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Nonemptiness of the Spectrum

Theorem (Spectrum)

If X 6= {0} is a complex Banach space and T ∈B(X ,X ), then σ(T ) 6= ;.

By assumption, X 6= {0}.

If T = 0, then σ(T )= {0} 6= ;.

Let T 6= 0. Then ‖T‖ 6= 0. We obtain the series

Rλ =−
1

λ

∞∑

j=0

(
1

λ
T

)j
, |λ| > ‖T‖.

This series converges for 1
|λ|

<
1

‖T‖
.

So it converges absolutely for 1
|λ|

<
1

2‖T‖
, i.e., for |λ| > 2‖T‖.

For these λ, by the formula for the sum of a geometric series,

‖Rλ‖≤
1

|λ|

∞∑

j=0

∥∥∥∥
1

λ
T

∥∥∥∥
j

=
1

|λ|−‖T‖
≤

1

‖T‖
.
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Nonemptiness of the Spectrum (Cont’d)

We show that the assumption σ(T )=; leads to a contradiction.

σ(T )=; implies ρ(T )=C. Hence, Rλ is holomorphic for all λ.
Consequently, for a fixed x ∈X and a fixed f ∈X ′, the function h

defined by h(λ)= f (Rλx) is holomorphic on C, i.e., h is an entire
function. Since holomorphy implies continuity, h is continuous.

Thus, h is bounded on the compact disk |λ| ≤ 2‖T‖. But h is also
bounded for |λ| ≥ 2‖T‖, since ‖Rλ‖ <

1
‖T‖

, by the preceding inequality.

|h(λ)| = |f (Rλx)| ≤ ‖f ‖‖Rλx‖≤ ‖f ‖‖Rλ‖‖x‖≤
‖f ‖‖x‖

‖T‖
.

Hence h is bounded on C. By Liouville’s Theorem, which states that
an entire function which is bounded on the whole complex plane is a
constant, h is constant. Since x ∈X and f ∈X ′ in h were arbitrary, h =

const implies that Rλ is independent of λ. The same holds for
R−1
λ

=T −λI . But this is impossible.
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The Spectral Radius Theorem

Theorem (Spectral Radius)

If T is a bounded linear operator on a complex Banach space, then for the
spectral radius rσ(T ) of T we have rσ(T )= lim

n→∞

n
√
‖T n‖.

We have σ(T n)= [σ(T )]n by the Spectral Mapping Theorem.

Thus, rσ(T
n)= [rσ(T )]n. By the Spectrum Theorem, rσ(T

n)≤ ‖T n‖.

Therefore, for every n,

rσ(T )= n

√
rσ(T n)≤ n

√
‖T n‖.

Hence,
rσ(T )≤ limn→∞

n
√

‖T n‖≤ limn→∞
n
√

‖T n‖.
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The Spectral Radius Theorem (Cont’d)

Claim: limn→∞
n
√

‖T n‖≤ rσ(T ).

A power series
∑
cnκ

n converges absolutely for |κ| < r with radius of
convergence r given by the well-known Hadamard formula

1

r
= limn→∞

n
√

|cn|.

Setting κ=
1
λ , we get

Rλ =−κ
∞∑

n=0

T nκn.

Then, writing |cn| = ‖T n‖, we obtain

∥∥∥∥
∞∑

n=0

T nκn
∥∥∥∥ ≤

∞∑

n=0

‖T n
‖|κ|n =

∞∑

n=0

|cn||κ|
n

.
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The Spectral Radius Theorem (Cont’d)

The Hadamard formula shows that we have absolute convergence for
|κ| < r , hence for |λ| = 1

|κ|
>

1
r
= limn→∞

n
√

‖T n‖.

We know that Rλ is locally holomorphic precisely on the resolvent set
ρ(T ) in the complex λ-plane.

To ρ(T ) there corresponds a set in the complex κ-plane, call it M.

Then it is known from complex analysis that the radius of convergence
r is the radius of the largest open circular disk about κ= 0 which lies
entirely in M.

Hence, 1
r

is the radius of the smallest circle about λ= 0 in the λ-plane
whose exterior lies entirely in ρ(T ).

By definition, this means that 1
r

is the spectral radius of T .

Hence, rσ(T )= 1
r
= limn→∞

n
√

‖T n‖.
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Subsection 6

Banach Algebras
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Algebras

An algebra A over a field K is a vector space A over K , such that for
each ordered pair of elements x ,y ∈A, a unique product

xy ∈A

is defined, satisfying, for all x ,y ,z ∈A and all scalars α:

(1) (xy)z = x(yz);
(2a) x(y +z)= xy +xz ;
(2b) (x +y)z = xz +yz ;
(3) α(xy)= (αx)y = x(αy).

If K =R or C, then A is said to be real or complex, respectively.
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Algebras With Additional Properties

A is said to be commutative (or abelian) if the multiplication is
commutative, that is, if for all x ,y ∈A,

(4) xy = yx .

A is called an algebra with identity if A contains an element e, such
that for all x ∈A,

(5) ex = xe = x .

The element e is called an identity of A.

If A has an identity, the identity is unique.
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Normed Algebra, Banach Algebra

Definition (Normed Algebra, Banach Algebra)

A normed algebra A is a normed space which is an algebra, such that for
all x ,y ∈A,

(6) ‖xy‖≤ ‖x‖‖y‖;

and if A has an identity e,

(7) ‖e‖= 1.

A Banach algebra is a normed algebra which is complete, considered as a
normed space.

Property (6) relates multiplication and norm.

We have

‖xy −x0y0‖ = ‖x(y −y0)+ (x −x0)y0‖

≤ ‖x‖‖y −y0‖+‖x −x0‖‖y0‖.

So the product is a jointly continuous function of its factors.
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Examples

Spaces R and C: The real line R and the complex plane C are
commutative Banach algebras with identity e = 1.

Space C [a,b]: The space C [a,b] is a commutative Banach algebra
with identity (e = 1), the product xy being defined as usual:

(xy)(t)= x(t)y(t), for all t ∈ [a,b].

The subspace of C [a,b] consisting of all polynomials is a commutative
normed algebra with identity (e = 1).

Matrices: The vector space X of all complex n×n matrices (n> 1,
fixed) is a non-commutative algebra with identity I (the n×n unit
matrix). By defining a norm on X , we obtain a Banach algebra.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 66 / 81



Spectral Theory of Linear Operators in Normed Spaces Banach Algebras

Bounded Linear Operators

Space B(X ,X ): The Banach space B(X ,X ) of all bounded linear
operators on a complex Banach space X 6= {0} is a Banach algebra.

The identity is I (the identity operator on X );
The multiplication is composition of operators, by definition.

Relation (6) is
‖T1T2‖ ≤ ‖T1‖‖T2‖,

verified previously.

B(X ,X ) is not commutative, unless dimX = 1.
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Invertibility

Let A be an algebra with identity.

An x ∈A is said to be invertible if it has an inverse in A, i.e., if A
contains an element, written x−1, such that

x−1x = xx−1
= e.

If x is invertible, the inverse is unique.

Suppose y and z are both inverses of x .

Then, by definition, yx = e = xz .

So we get
y = ye = y(xz)= (yx)z = ez = z .
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Resolvent Set and Spectrum

Definition (Resolvent Set, Spectrum)

Let A be a complex Banach algebra with identity.

The resolvent set ρ(x) of an x ∈A is the set of all λ in the complex
plane such that x −λe is invertible.

The spectrum σ(x) of x is the complement of ρ(x) in the complex
plane. Thus, σ(x)=C−ρ(x).

Any λ∈σ(x) is called a spectral value of x .

Hence, the spectral values of x ∈A are those λ for which x −λe is not
invertible.
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Resolvent Set and Spectrum

Proposition

If X is a complex Banach space, then B(X ,X ) is a Banach algebra. Then,
the resolvent set of the operator T ∈B(X ,X ) agrees with its resolvent set
as an element of the Banach algebra.

Let T ∈B(X ,X ) and λ in the resolvent set ρ(T ). Then, by the
present definition, Rλ(T )= (T −λI )−1 exists and is an element of
B(X ,X ). I.e., Rλ(T ) is a bounded linear operator defined on X .
Hence, λ ∈ ρ(T ), with ρ(T ) as defined previously.

Conversely, suppose that λ ∈ ρ(T ), with ρ(T ) defined as before. Then
Rλ(T ) exists and is linear, bounded and defined on a dense subset of
X . But, since T is bounded, we get that Rλ(T ) is defined on all of X .
Hence λ ∈ ρ(T ), with ρ(T ) as defined presently.
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Subsection 7

Further Properties of Banach Algebras
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The Inverse Theorem

Theorem (Inverse)

Let A be a complex Banach algebra with identity e. If x ∈A satisfies
‖x‖< 1, then e−x is invertible, and

(e−x)−1
= e+

∞∑

j=1

x j .

We have ‖x j‖≤ ‖x‖j . So
∑
‖x j‖ converges, since ‖x‖< 1.

Hence, the series in the formula converges absolutely.

Since A is complete, the series converges.

Let s denote its sum. We show that s = (e−x)−1.

(e−x)(e +x +·· ·+xn)= (e+x +·· ·+xn)(e −x)= e−xn+1
.

We now let n→∞. Since ‖x‖< 1, xn+1 → 0.

By continuity of multiplication, (e−x)s = s(e−x)= e.

Hence, s = (e−x)−1.
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The Group of Invertible Elements

Let A be a complex Banach algebra A with identity e

Consider the subset G of all invertible elements of A.

Claim: G is a group.

e ∈G .

Suppose x ∈G . Then x−1 exists and has an inverse (x−1)−1 = x . So
x−1 is in G .

Finally, suppose x ,y ∈G . Then y−1x−1 is the inverse of xy .

(xy)(y−1x−1)= x(yy−1)x−1
= xex−1

= e.

Similarly, (y−1x−1)(xy)= e.

So xy ∈G .
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The Invertible Elements Theorem

Theorem (Invertible Elements)

Let A be a complex Banach algebra with identity. Then the set G of all
invertible elements of A is an open subset of A. Hence, the subset
M =A−G of all non-invertible elements of A is closed.

Let x0 ∈G . We have to show that every x ∈A sufficiently close to x0,
say, ‖x −x0‖<

1

‖x−1
0 ‖

, belongs to G . Let y = x−1
0 x and z = e−y . Then,

we obtain

‖z‖ = ‖−z‖= ‖y −e‖ = ‖x−1
0 x −x−1

0 x0‖

= ‖x−1
0 (x −x0)‖ ≤ ‖x−1

0 ‖‖x −x0‖< 1.

Thus ‖z‖< 1. So e−z is invertible by the Inverse Theorem. Hence
e−z = y ∈G . But G is a group. So x = x0x

−1
0 x = x0y ∈G .

Since x0 ∈G was arbitrary, this proves that G is open.
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The Spectral Radius

Define the spectral radius rσ(x) of an x ∈A by

rσ(x)= sup
λ∈σ(x)

|λ|.

Theorem (Spectrum)

Let A be a complex Banach algebra with identity e. Then for any x ∈A,
the spectrum σ(x) is compact, and the spectral radius satisfies

rσ(x)≤ ‖x‖.

Suppose |λ| > ‖x‖. Then ‖λ−1x‖ < 1.

So e−λ−1x is invertible.

Hence, −λ(e −λ−1x)= x −λe is invertible also.

So we have λ∈ ρ(x). Hence σ(x) is bounded.
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The Spectral Radius (Cont’d)

Claim: σ(x) is closed, since ρ(x)=C−σ(x) is open.

If λ0 ∈ ρ(x), then x −λ0e is invertible. Thus, there is a neighborhood
N ⊆A of x −λ0e consisting wholly of invertible elements.

Now for a fixed x , the mapping λ 7→ x −λe is continuous.

Hence, all x −λe, with λ close to λ0, say,

|λ−λ0| < δ, with δ> 0,

lie in N. So these x −λe are invertible.

Thus, the corresponding λ belong to ρ(x).

But λ0 ∈ ρ(x) was arbitrary.

So ρ(x) is open. Hence, σ(x)=C−ρ(x) is closed.

The theorem shows that ρ(x) 6= ;.
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Nonemptiness of the Spectrum

Theorem (Spectrum)

Let A be a complex Banach algebra with identity e. Then σ(x) 6= ;.

Let λ,µ ∈ ρ(x). We write

v(λ) = (x −λe)−1;
w = (µ−λ)v(λ).

Then
x −µe = x −λe− (µ−λ)e

= (x −λe)e − (µ−λ)(x −λe)(x −λe)−1

= (x −λe)(e −w).

Taking inverses, we have v(µ)= (e−w)−1v(λ).
Suppose µ is so close to λ that ‖w‖< 1

2
. Then

‖(e−w)−1
−e−w‖ =

∥∥∥∥∥
∞∑

j=2

w j

∥∥∥∥∥ ≤

∞∑

j=2

‖w‖
j
=

‖w‖2

1−‖w‖
≤ 2‖w‖

2
.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 77 / 81



Spectral Theory of Linear Operators in Normed Spaces Further Properties of Banach Algebras

Nonemptiness of the Spectrum (Cont’d)

We showed v(µ)= (e−w)−1v(λ) and ‖(e−w)−1−e−w‖≤ 2‖w‖2.

From this, we get

‖v(µ)−v(λ)− (µ−λ)v(λ)2‖ = ‖(e−w)−1v(λ)− (e +w)v(λ)‖
≤ ‖v(λ)‖‖(e−w)−1− (e+w)‖
≤ 2‖w‖2‖v(λ)‖.

‖w‖2 contains a factor |µ−λ|2. Therefore,

‖w‖2

|µ−λ|

µ→λ
−→ 0.

Hence, dividing the inequality by |µ−λ| and letting µ→ λ,

1

µ−λ
[v(µ)−v(λ)]→ v(λ)2.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 78 / 81



Spectral Theory of Linear Operators in Normed Spaces Further Properties of Banach Algebras

Nonemptiness of the Spectrum (Cont’d)

Let f ∈A′, where A′ is the dual of A, considered as a Banach space.

We define h : ρ(x)→C by

h(λ)= f (v(λ)).

Since f is continuous, so is h.

Applying f to the previous limit, we obtain

lim
µ→λ

h(µ)−h(λ)

µ−λ
= f (v(λ)2).

This shows that h is holomorphic at every point of ρ(x).

If σ(x) were empty, then ρ(x)=C.

So h would be an entire function.
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Nonemptiness of the Spectrum (Cont’d)

Now we have
v(λ)=−λ−1(e−λ−1x)−1;

(e−λ−1x)−1 |λ|→∞
−→ e−1 = e.

So we obtain

|h(λ)| = |f (v(λ))| ≤ ‖f ‖‖v(λ)‖= ‖f ‖
1

|λ|

∥∥∥∥(e−
1

λ
x)−1

∥∥∥∥
|λ|→∞
−→ 0.

This shows that h would be bounded on C.

Hence, by Liouville’s Theorem, it is a constant.

So it is zero by the preceding relation.

Since f ∈A′ was arbitrary, h(λ)= f (v(λ))= 0 implies v(λ)= 0.

This is impossible since it gives

‖e‖ = ‖(x −λe)v(λ)‖ = ‖0‖= 0.

Hence, σ(x)=; cannot hold.
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Supplying an Algebra with an Identity

The existence of an identity e is necessary.

If A has no identity, we can supply A with an identity.

Let A be the set of all ordered pairs (x ,α), where x ∈A and α is a
scalar. Define

(x ,α)+ (y ,β) = (x +y ,α+β)
β(x ,α) = (βx ,βα)

(x ,α)(y ,β) = (xy +αy +βx ,αβ)
‖(x ,α)‖ = ‖x‖+|α|

ẽ = (0,1).

Then Ã is a Banach algebra with identity ẽ.

The mapping x 7→ (x ,0) is an isomorphism of A onto a subspace of Ã,
both regarded as normed spaces.

This subspace has codimension 1. Identifying x with (x ,0), then Ã is
A plus the one-dimensional space generated by ẽ.
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