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Subsection 1

Spectral Theory in Finite Dimensional Normed Spaces

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 3/81



Spectral Theory of Linear Operators in Normed Spaces

o Let X be a finite dimensional normed space.
o Let T:X — X be a linear operator.

o We know that we can represent T by matrices (which depend on the
choice of bases for X).

o Then the spectral theory of T is essentially matrix eigenvalue theory.

o For a given (real or complex) n-rowed square matrix A= (i), the
concepts of eigenvalues and eigenvectors are defined in terms of the

equation
Ax = Ax.
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Spectral Theory of Linear Operators in Normed Spaces

Definition (Eigenvalues, Eigenvectors, Eigenspaces, Spectrum, Resolvent

Set of a Matrix)

An eigenvalue of a square matrix A= (aji) is a number A, such that
Ax = Ax

has a solution x #0. This x is called an eigenvector of A corresponding to
that eigenvalue A.

o The eigenvectors corresponding to that eigenvalue A and the zero
vector form a vector subspace of X which is called the eigenspace of
A corresponding to that eigenvalue A.

o The set 0(A) of all eigenvalues of A is called the spectrum of A.

o The complement p(A) = C—0c(A) of the spectrum of A in the
complex plane is called the resolvent set of A.
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Spectral Theory of Linear Operators in Normed Spaces

Let / be the nx n unit matrix.

Ax = Ax can be written (A—A/)x =0.

This is a homogeneous system of n linear equations in n unknowns
&1,...,&n, the components of x.

The determinant of the coefficients is det(A—Al).

This determinant must be zero in order to have a solution x #0.
This gives the characteristic equation of A:
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det(A—Al) is called the characteristic determinant of A.
By developing it we obtain a polynomial in A of degree n, the
characteristic polynomial of A.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (The Eigenvalue Theorem)

The eigenvalues of an nx n square matrix A= (a) are given by the
solutions of the characteristic equation det(A—A/) =0 of A. Hence A has
at least one eigenvalue (and at most n numerically different eigenvalues).

o We have proven the first statement.

Recall that, by the Fundamental Theorem of Algebra and the
Factorization Theorem, a polynomial of degree n> 0, with coefficients
in C, has a root in C (and at most n numerically different roots).

This yields the second statement.
o Note that roots may be complex even if A is real.
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Spectral Theory of Linear Operators in Normed Spaces

o Consider the matrix A= i) ; ]
We find the eigenvalues of A by solving the characteristic equation
det(A-Al) =0.
5-1 4
' o ‘_o = (5-1)(2-1)-4=0

= A2-71+6=0
= (A-1)(1-6)=0
= A=1lor A=6.

Thus, the spectrum is {1,6}.
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Spectral Theory of Linear Operators in Normed Spaces

5 4
1 2

The eigenvectors of A corresponding to 1 and 6 are obtained from

o We found the eigenvalues of A= [

0
0 )

and { —&1+4&
0 §1— 462

{ 4&1 +48
§1+¢2

respectively.
Observe that in each case we need only one of the two equations.

So X1 =

] and xo =

1 ‘11 ] are eigenvectors of A corresponding to

the eigenvalues 1 and 6, respectively.
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Spectral Theory of Linear Operators in Normed Spaces

o Let X be a normed space of dimension n.
o Consider again a linear operator T: X — X.
o Let e={ey,...,e,} be any basis for X.

o Let Te=(ajk) be the matrix representing T with respect to the basis
e (whose elements are kept in the given order).

o The eigenvalues of the matrix T, are called the eigenvalues of the
operator T.

o The spectrum of the matrix T, is called the spectrum of T.

o The resolvent set of T, is called the resolvent set of T.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Eigenvalues of an Operator)

All matrices representing a given linear operator T : X — X on a finite
dimensional normed space X relative to various bases for X have the same
eigenvalues.

o We examine the effect of the transition from one basis for X to
another.

Let e=(ey,...,en) and €=(&,...,8,) be any bases for X, written as
row vectors.

By the definition of a basis, each e; is a linear combination of the &'s
and conversely.

We can write this &= eC or € = C'e', where C is a nonsingular
n x n square matrix.
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Spectral Theory of Linear Operators in Normed Spaces

o Every x € X has a unique representation with respect to each of the
two bases. Say,

x=Y &ej=exy and x=) &8 =Ex,

where x; = (¢;) and xo = (¢x) are column vectors.
We get, ex; = éxp = eCxa. Hence x3 = Cxo.
Similarly, suppose Tx =y =ey; = €y,. Then we have y; = Cy».

Now, if T; and T, denote the matrices which represent T with
respect to e and €, respectively, then y; = T1x; and y» = Toxo.

Therefore, we obtain

CToxy=Cyr=y1=Tixy = T1 Cxa.
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Spectral Theory of Linear Operators in Normed Spaces

o We obtained CTrxo = T1 Cxo.
Premultiplying by C~1, we obtain the transformation law

T,=C'T,C,

with C determined by the bases and independent of T.

Using det(C~1)det(C) =1, we can now show that the characteristic
determinants of T, and T; are equal.

ClTiC-ACLIC)
CYT1-AC)
C~Y)det(T; - Al)detC
Ti—Al).

det(To—Al) = det
= det
= det
= det

P~~~ A~

Equality of the eigenvalues of T; and T, now follows from the
Eigenvalue Theorem.
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Spectral Theory of Linear Operators in Normed Spaces

o An nxn matrix T, is said to be similar to an nx n matrix T, if there
exists a nonsingular matrix C, such that

T,=C'T,C.

o T; and T, are then called similar matrices.
o In terms of this concept, our proof shows that:

Two matrices representing the same linear operator T on a finite
dimensional normed space X relative to any two bases for X are similar.
Similar matrices have the same eigenvalues.
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Spectral Theory of Linear Operators in Normed Spaces

Existence Theorem (Eigenvalues)

A linear operator on a finite dimensional complex normed space X # {0} has
at least one eigenvalue.

o This follows from the Eigenvalue Theorem and the preceding theorem.
o Note that, with A =0, det(T2—Al) =det(T1 —Al) gives

det T, =detT;.

Hence, the value of the determinant is an intrinsic property of T.
We call it the determinant of the operator T and denote it by detT.
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Spectral Theory of Linear Operators in Normed Spaces Basic Concepts

Subsection 2

Basic Concepts

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024




Spectral Theory of Linear Operators in Normed Spaces

o We now consider normed spaces of any dimension.
o Let X # {0} be a complex normed space.
o Let T:92(T)— X be a linear operator with domain 2(T) c X.

o With T we associate the operator
TA=T-Al,

where:

o A is a complex number;
o [ is the identity operator on 2(T).
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Spectral Theory of Linear Operators in Normed Spaces

o If T) has an inverse, we denote it by Ry(T),
Ru(T)=T; =(T-A"

o We call Ry(T) the resolvent operator of T or, simply, the resolvent
of T.

o Instead of Ry(T) we also write simply Ry if the operator T is clear
from context.

o The name “resolvent” is appropriate, since Ry(T) helps to solve the
equation Tyx=y.
Indeed, suppose Ry(T) exists.

Then
X = T/l_ly= RA(T)y.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Spectral Theory of Linear Operators in Normed Spaces

Definition (Regular Value, Resolvent Set, Spectrum)

Let X # {0} be a complex normed space and T:2(T)— X a linear
operator with domain 2(T) < X.
o A regular value A of T is a complex number such that:
Ry(T) exists;
RA(T) is bounded;
RA(T) is defined on a set which is dense in X.

o The resolvent set p(T) of T is the set of all regular values A of T.

o Its complement o(T)=C-p(T) in the complex plane C is called the
spectrum of T.

o Adea(T) is called a spectral value of T.
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Spectral Theory of Linear Operators in Normed Spaces

Definition (Point, Continuous and Residual Spectrum)

Let X # {0} be a complex normed space and T:2(T)— X a linear
operator with domain 2(T) < X.
The spectrum o(T) is partitioned into three disjoint sets as follows:

o The point spectrum or discrete spectrum o,(T) is the set such
that Ry(T) does not exist.

A A€op(T) is called an eigenvalue of T.

o The continuous spectrum o.(T) is the set such that R;(T) exists
and satisfies (R3) but not (R2), that is, Ry(T) is unbounded.

o The residual spectrum o,(T) is the set such that Ry(T) exists
(bounded or not) but does not satisfy (R3), i.e., the domain of Ry(T)
is not dense in X.
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Spectral Theory of Linear Operators in Normed Spaces

o Some of the sets defined above may be empty.
For instance, 0.(T)=0,(T) =@ in the finite dimensional case.
o Recall the conditions
Ry (T) exists;
R(T) is bounded;
RA(T) is defined on a set which is dense in X.

o The various cases can be summarized as follows:

Satisfied Not Satisfied | A Belongs to
(R1) (R2) (R3) p(T)
(R1) op(T)
(R1) (R3) (R2) oc(T)
(R1) (R3)| a(T)
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Spectral Theory of Linear Operators in Normed Spaces

o The four sets in the table are disjoint and their union is the whole
complex plane:

C=p(T)ua(T)=p(T)uop(T)uo(T)uo,(T).

o If the resolvent Ry(T) exists, it is linear.

o Ry(T):%(T)—2(T) exists if and only if Tyx =0 implies x =0.
l.e., Ry(T) exists if and only if the null space of T} is {0}.

o Hence, if T)yx=(T -Al)x=0, for some x#0, then Aeo,(T), by
definition. That is, A is an eigenvalue of T.

o The vector x is then called an eigenvector of T (or eigenfunction of
T if X is a function space) corresponding to the eigenvalue A.

o The subspace of 2(T) consisting of 0 and all eigenvectors of T
corresponding to an eigenvalue A of T is called the eigenspace of T
corresponding to that eigenvalue A.
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Spectral Theory of Linear Operators in Normed Spaces

o If X is infinite dimensional, then T can have spectral values which are
not eigenvalues.
o On the Hilbert sequence space X = ¢? we define a linear operator
T:0%— 0% by
(¢1,62,...) =~ (0,61,¢2,...),

where x = (¢;) € ¢2. T is called the right-shift operator.
Note that T is bounded (with | T|| =1).

I1Tx1% = 3 1617 = 1.
j=1
The operator Ro(T)=T71: T(X) — X exists.
It is the left-shift operator, given by

(€1,¢2,...) = (&2,¢3,...).
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Spectral Theory of Linear Operators in Normed Spaces

o To conclude, note that Ry(T) does not satisfy (R3).
Indeed, T(X) is not dense in X.
T(X) is the subspace Y consisting of all y =(n;), with n; =0.
By definition, A =0 is a spectral value of T.
However, 1 =0 is not an eigenvalue.

Tx =0 implies x=0 and 0 is not an eigenvector.
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Spectral Theory of Linear Operators in Normed Spaces

o Recall the

Open Mapping Theorem, Bounded Inverse Theorem

A bounded linear operator T from a Banach space X onto a Banach space
Y is an open mapping. Hence, if T is bijective, T~! is continuous and thus
bounded.

o From this we derive that if:

o X is complete;
o T:X— X is bounded and linear;
o For some A the resolvent Ry (T) exists and is defined on X;

then for that A the resolvent is bounded.
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Spectral Theory of Linear Operators in Normed Spaces

Lemma (Domain of Ry)

Let X be a complex Banach space, T : X — X a linear operator, and
A€ p(T). Assume that:

T is closed or
T is bounded.
Then Ry(T) is defined on the whole space X and is bounded.

Since T is closed, sois Ty = T —Al. Hence Ry = T/l‘1 is closed.
Ry is bounded by (R2). Hence its domain 2(R}) is closed.
Now (R3) implies @2(Ry) = 2(Ry) = X.

Since 2(T) =X is closed, T is closed.

So the statement follows from Part (a).
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Subsection 3

Spectral Properties of Bounded Linear Operators
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Inverse)

Let T e B(X,X), where X is a Banach space. If | T|| <1, then (/- T)!
exists as a bounded linear operator on the whole space X and

(I-T) =Y T=I+T+T%+...,

Jj=0
where the series on the right is convergent in the norm on B(X, X).

o We have | T/ < || TIV.
The geometric series Y || T|/ converges for || T| < 1.
Hence the series ZJ?'ZO T/ is absolutely convergent for | T| < 1.
Since X is complete, so is B(X, X).

Absolute convergence, thus, implies convergence.
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Spectral Theory of Linear Operators in Normed Spaces

o We denote by S the sum of the series

T=l+T+T%+....

™3

0

J

It remains to show that S=(/-T)7 1.

We calculate

U-TY+ T+ 4+ T)=([+ T -+ T - T)=1- T
We now let n— co.
Then T"1 -0, because | T| <1.

We thus obtain (/- T)S=S(/-T)=1.
This shows that S= (/- T)™L.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (The Spectrum is Closed)

The resolvent set p(T) of a bounded linear operator T on a complex
Banach space X is open. Hence, the spectrum o(T) is closed.

o If p(T)=g, it is open. Let p(T)#®.
For a fixed Ag € p(T) and any A€ C, we have

T-Al

T Aol —(A=2o)!
(T=2aD)[I = (A=20)(T = A0/)7].

Let V denote the operator in the brackets. Then
V=1-(A-2)Ry,-

Moreover, we can write T) = T, V.
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Spectral Theory of Linear Operators in Normed Spaces

o We obtained T) =T,,V, where V =/—(A1—-2A0)Ry,.
Now Ag € p(T) and T is bounded.
By a previous lemma, Ry, = T/{Ol e B(X, X).
The theorem shows that V' has an inverse in B(X,X), for all A, such
that |(A=2A0)Ry,ll <1, i.e., A= Aol < W given by

vl= 2[(1—10)%]1 = i(A—Ao)fRﬁo.

But Tl_ol =Ry, € B(X,X). So, for |[A - Aol < IIR_iOII' T, has an inverse
Ri=Ty'=(T, V) =V Ry,

Hence, |1 —Ag| < ﬁ represents a neighborhood of Ag consisting of
regular values A of T. Since Ag € p(T) was arbitrary, p(T) is open.
So d(T)=C-p(T) is closed.



Spectral Theory of Linear Operators in Normed Spaces

o In the preceding proof we have also obtained a basic representation of
the resolvent by a power series in powers of A.

Theorem (Representation for the Resolvent)

Let T be a bounded linear operator on a complex Banach space X. For
every Ao € p(T), the resolvent Ry(T) has the representation

Ri=Y (A-Ao) R,

j=0

the series being absolutely convergent for every A in the open disk given by
A —Agl < IIR—iII in the complex plane. This disk is a subset of p(T).
0
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Spectrum)

The spectrum o(T) of a bounded linear operator T: X — X on a complex
Banach space X is compact and lies in the disk given by A < || T|. Hence,
the resolvent set p(T) of T is not empty.

o Let A#0 and x = % By the theorem, we obtain the representation

== emy= L Sery - 18 (L)

I <1ie, A>T
The same theorem also shows that any such A isin p(T).
Hence the spectrum o(T)=C—-p(T) must lie in the disk [A| <[ T].

So a(T) is bounded. But o(T) is closed. Hence o(T) is compact.

The series converges for A such that ||3 3 TI=



Spectral Theory of Linear Operators in Normed Spaces

o Since for a bounded linear operator T on a complex Banach space the
spectrum is bounded, it seems natural to ask for the smallest disk
about the origin which contains the whole spectrum.

Definition (Spectral Radius)
The spectral radius r,(T) of an operator T € B(X,X) on a complex
Banach space X is the radius

re(T)= sup |A]
Aea(T)

of the smallest closed disk centered at the origin of the complex A-plane

and containing o(T).

o It is obvious that for the spectral radius of a bounded linear operator
T on a complex Banach space we have ry(T) < T].

o Moreover, we will prove that ry(T) =limp_co VI T"I.
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Subsection 4

Further Properties of Resolvent and Spectrum
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Resolvent Equation, Commutativity)

Let X be a complex Banach space, T € B(X,X) and A,u€p(T). Then:

The resolvent Rj of T satisfies the Hilbert relation or resolvent

equation
Ri—Ry=(u—-A)RuRr, Apep(T).

R) commutes with any S € B(X, X) which commutes with T.
We have RyR, = R R, A, uep(T).

We showed the range of T is all of X.
Hence, I = Ty R), where [ is the identity operator on X.
Also I =R, T,.
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Spectral Theory of Linear Operators in Normed Spaces

o Consequently,

Ri—Ry = Ru(TiRa)—(RuTu)Ra
= Ru(T/l_ Tu)R/l
= Ru[T-M—(T-uhRx
= ([J—A)RuRA.

By assumption, ST = TS. Hence, ST, =T,S.
Using | = Ty Ry = Ry Ty, we thus obtain

RyS =Ry STAR1 = RiTASR) = SR).

R. commutes with T by Part (b).
Hence, Ry commutes with R, by Part (b).
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Spectral Theory of Linear Operators in Normed Spaces

o If A is an eigenvalue of a matrix A, then Ax = Ax for some x #0.
o Application of A gives

A?x = Adx = AAx = A°x.
o Continuing we get, for every positive integer m, A™x = A"x.

o le., if A is an eigenvalue of A, then A" is an eigenvalue of A™.
o More generally, if A is an eigenvalue of A,

p(A) =a,A" + apa A"+t ag
is an eigenvalue of the matrix
p(A)=ap A"+ Ap 1 A"+ agl.

o We will show that this property extends to complex Banach spaces of
any dimension, using the fact that a bounded linear operator has a
nonempty spectrum (shown later by methods of complex analysis).
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Spectral Theory of Linear Operators in Normed Spaces

©

Consider a polynomial
p(A)=anA" + Epg AT L+ oo+ ap.

Define

©

p(a(T))={ueC:p=p(A),Aea(T).

Thus, p(a(T)) is the set of all complex numbers g, such that
w=p(A), for some Lea(T).

The set p(p(T)) is defined similarly

p(p(T))={ueC:p=p(A),Aep(T)}

©

©
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Spectral Theory of Linear Operators in Normed Spaces

Spectral Mapping Theorem for Polynomials

Let X be a complex Banach space, T € B(X,X) and
p(A) =a,A" + Ap A"+t ap.

Then o(p(T))=p(a(T)), i.e., the spectrum o(p(T)) of the operator
p(T)=anT"+a, 1 T" 1 +---+agl consists precisely of all those values
which the polynomial p assumes on the spectrum o(T) of T.

o We assume that o(T) # @.
o The case n=0 is trivial. Then p(a(T))={ao}=0a(p(T)).
o Let n>0.
o In Part (a), we prove a(p(T))< p(a(T)).
o In Part (b), we prove p(a(T))<a(p(T)).
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Spectral Theory of Linear Operators in Normed Spaces

For simplicity we write S=p(T) and S, =p(T)—-pl, peC.

If 5;1 exists, the formula for S, shows that Sﬁl is the resolvent
operator of p(T).

We keep u fixed.

Since X is complex, the polynomial given by s;(A) = p(A) — 4 must
factor completely into linear terms. Suppose

su(A) = p(A) —p=an(A=y1)(A=72)---(A=7n),

where y1,...,y, are the zeros of s,.

Corresponding to this, we have

Su=p(T)=pl=an(T=y1)(T=y2l)---(T =yal).
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Spectral Theory of Linear Operators in Normed Spaces

o Suppose each y; is in p(T).

Then each T —v;/ has a bounded inverse which, by previous results, is
defined on all of X.

The same holds for S, and

1
-1 -1 -1
S ——n(l —ypl) " (T =y1l)"".

Hence in this case, pe p(p(T)).

From this we conclude that pe o(p(T)) implies y; € a(T), for some ;.
Now we get s,(y;) =p(y;)—p=0.

Thus, p=p(y;) € p(a(T)).

Since peo(p(T)) was arbitrary, a(p(T)) < p(o(T)).
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Spectral Theory of Linear Operators in Normed Spaces

Let x € p(o(T)).
By definition, this means that x = p(f8), for some feo(T).

There are now two possibilities:

T — B/ has no inverse;
T — Bl has an inverse.
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Spectral Theory of Linear Operators in Normed Spaces

From x = p(B) we have p(B) -« =0.
Hence, B is a zero of the polynomial given by s.(1) = p(1) —«.
So we can write
sc(A) = p(1) —x = (1~ P)g(2),
where g(A) is the product of the other n—1 linear factors and a,.
Corresponding to this representation we have

Sc=p(T)-xl=(T-pl)g(T).
The factors of g(T) all commute with T - /.
So we also have S, =g(T)(T -pl).
If Sx had an inverse, we would now get
I=(T~pNe(T)St =S g(T)(T - Bl).
Then T — B/ would have an inverse, contradicting our assumption.
So xea(p(T)).



Spectral Theory of Linear Operators in Normed Spaces

Suppose that x = p(B), for some Bea(T), but (T—pI)~! exists.
Suppose that the range of T -/ was X.

Then, (T - B1)~ would be bounded by the Bounded Inverse Theorem.
Thus, Be p(T), which would contradict fea(T).

It follows that for the range of T —f/, we must have

(T -pl)#X.

Since Sy =(T —p1)g(T), we now get Z(5«) # X.

This shows that k e o(p(T)), since x € p(p(T)) would imply that
%(S¢) = X by a preceding lemma.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Linear Independence)

Eigenvectors xi,...,x, corresponding to different eigenvalues 14,...,1, of a
linear operator T on a vector space X constitute a linearly independent set.

o Towards a contradiction, assume that {xq,...,x,} is linearly dependent.
Let x,, be the first of the vectors which is a linear combination of its
predecessors, say, X, = @1x1 + -+ + Am_1Xm—1.

Then {xi,...,xm-1} is linearly independent.
Apply T — A1 on both sides:

m-1

m—
(T—AmI)Xm= ZaJ(T Am Z x_
j:]_ =

Since xp, is an eigenvector corresponding to A, the left side is zero.
By the linear independence of {x1,...,xm-1}, @j(1;—Am)=0.

Hence, @j =0, j=1,...,m—1. But then x,, =0, contradicting x, #0,
Xm being an eigenvector.
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Subsection 5

Use of Complex Analysis in Spectral Theory
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Spectral Theory of Linear Operators in Normed Spaces

o A metric space is said to be connected if it is not the union of two
disjoint nonempty open subsets.

o A subset of a metric space is said to be connected if it is connected
regarded as a subspace.

o By a domain G in the complex plane C we mean an open connected
subset G of C.

o It can be shown that an open subset G of C is connected if and only if
every pair of points of G can be joined by a broken line consisting of
finitely many straight line segments all points of which belong to G.
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Spectral Theory of Linear Operators in Normed Spaces

o A complex valued function h of a complex variable A is said to be
holomorphic (or analytic) on a domain G of the complex A-plane if
h is defined and differentiable on G, that is, the derivative A’ of h,
defined by
el h(A+AA) - h(A)
AL—0 AL

exists for every 1€ G.

o The function h is said to be holomorphic at a point Age C if h is
holomorphic on some e-neighborhood of Ag.

o The function h is holomorphic on G if and only if, at every Ag € G, it
has a power series representation

o0

h(A) =Y (A - Aoy,

J=0

with a nonzero radius of convergence.



Spectral Theory of Linear Operators in Normed Spaces

By a vector valued function or operator function we mean a
mapping

©

S: A — B(X,X)
A — S

where A is any subset of the complex A-plane.
We write Sy instead of S(A), to have a notation similar to Rj.

©

S being given, we may choose any x € X, so that we get a mapping
A— X; A— 5,1X.

We may also choose x € X and any f € X’ to get a mapping of A into
the complex plane, namely,

©

©

A —
A — f(SAX)
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Spectral Theory of Linear Operators in Normed Spaces

Definition (Local Holomorphy, Holomorphy)

Let A be an open subset of C and X a complex Banach space. Then the
operator function S: A — B(X,X) is said to be:

o locally holomorphic on A if, for every x € X and f € X’, the function
h, defined by

h(A) = f(Sax)
is holomorphic at every Ag € A in the usual sense;

o holomorphic on A if S is locally holomorphic on A and A is a domain;

o holomorphic at a point Ag € C if S is holomorphic on some
e-neighborhood of Ag.
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Spectral Theory of Linear Operators in Normed Spaces

o The resolvent set p(T) of a bounded linear operator T is open but
may not always be a domain.

o Thus, in general, it is the union of disjoint domains (disjoint connected
open sets).

o We will see that the resolvent is holomorphic at every point of p(T).

o Hence in any case it is locally holomorphic on p(T);
o It is holomorphic on p(T) if and only if p(T) is connected, so that
o(T) is a single domain.
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Spectral Theory of Linear Operators in Normed Spaces

o Recall that we defined three kinds of convergence in connection with
bounded linear operators.

o Accordingly, we can define three corresponding kinds of derivative S}
of S, with respect to A by the formulas:

| &5[Saear=S21-S;]| — 0
| & [Saraax-Six]=Six| — 0, xeX
| 2 [F(Sasarx) — F(SIX)] - F(Six)] — 0, xeX,feX'.

o The existence of the derivative in the sense of the last formula for all A
in a domain A means that h defined by h(1) = f(Syx) is a holomorphic
function on A in the usual sense, i.e., our definition of the derivative.

o It can be shown that the existence of this derivative (for every x € X
and every f € X') implies the existence of the other two kinds of
derivative.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Holomorphy of Ry)

The resolvent Ry(T) of a bounded linear operator T : X — X on a complex
Banach space X is holomorphic at every point Ay of the resolvent set p(T)
of T. Hence, it is locally holomorphic on p(T).

o We proved that for every value Ag € p(T) the resolvent Ry(T) of an
operator T € B(X,X) on a complex Banach space X has a power
series representation

Ri(T) = i Rag(TY* (1= Aoy,
-

which converges absolutely for each A in the disk |1 —Ag| < m.
0
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Spectral Theory of Linear Operators in Normed Spaces

o We have

Ru(T) = i; Rio(TY*1 (A= 0,

converging absolutely for each A in the disk |1 —Ag| < m.
0
Take any x € X and f € X' and define h by

h(A) = F(Ra(T)x).

We obtain the power series representation
h(A) = Z A=Ay, ¢ =Ff(Ra(TY " x).

This is absolutely convergent on the disk |1 —Ag| < —”Ri T
(0]
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Spectral Theory of Linear Operators in Normed Spaces

o p(T) is the largest set on which the resolvent of T is locally
holomorphic.

Theorem (Resolvent)

If TeB(X, X) where X is a complex Banach space, and A€ p(T), then
IRA(T)Il = 5(/1) where (A1) = inf_|A—s]| is the distance from A to the
seo(T)

spectrum o(T). Hence [|[Ry(T)ll — oo as 6(1) — 0.
o For every Ao e p(T), the disk |1 —Agl < m is a subset of p(T).
0

Hence, assuming o(T) # @ (proof below), we see that the distance
from Ag to the spectrum must at least equal the radius of the disk.

That is, §(1o) = ||R 7. This implies the conclusion.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Spectrum)

If X #{0} is a complex Banach space and T € B(X, X), then o(T) # @.

o By assumption, X # {0}.
If T=0, then o(T)=1{0}# .
Let T#0. Then || T| #0. We obtain the series

R——lf(lr)j A>T
A= /lij /l ) .

This series converges for ﬁ < ”—%"
So it converges absolutely for |Tll < ﬁ i.e., for [A]>2|T].
For these A, by the formula for the sum of a geometric series,

1 &1 1 1
IRl = —Y | =T = =—.
! w; AL T =TT

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Spectral Theory of Linear Operators in Normed Spaces

o We show that the assumption o(T) = @ leads to a contradiction.
o(T) =@ implies p(T)=C. Hence, Ry is holomorphic for all A.
Consequently, for a fixed x € X and a fixed f € X’, the function h
defined by h(1A) = f(Ryx) is holomorphic on C, i.e., h is an entire
function. Since holomorphy implies continuity, h is continuous.

Thus, h is bounded on the compact disk |A]<2|| T|. But his also
bounded for |A| =2| T||, since [|Ryll < ﬁ by the preceding inequality.

N
Il

|A()I=1f(Rax)I < IFITRax] < IF I RAINIX I <

Hence h is bounded on C. By Liouville’'s Theorem, which states that
an entire function which is bounded on the whole complex plane is a
constant, h is constant. Since x € X and f € X’ in h were arbitrary, h=
const implies that R) is independent of A. The same holds for

Ry'= T —Al. But this is impossible.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Spectral Radius)

If T is a bounded linear operator on a complex Banach space, then for the
spectral radius ry(T) of T we have ry(T) = Jergo\”/ I7m.

o We have o(T")=[0(T)]"” by the Spectral Mapping Theorem.
Thus, rs(T") =[rs(T)]". By the Spectrum Theorem, rs(T") < T"|.

Therefore, for every n,

re(T)=1/ra(T") < VI T"].

Hence,

ro(T)<lim__ /1T <lim, o /I T"I.
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Spectral Theory of Linear Operators in Normed Spaces

o iMoo VI T < rp(T).

A power series Y. c,k" converges absolutely for |x| < r with radius of
convergence r given by the well-known Hadamard formula

1 a— 0
—=lim, . VIl

r

Setting x = % we get
[e.°]
Ry=-x) T"k"
n=0

Then, writing |c,| = T"|l, we obtain

(&)
Z TnKn
n=0

o0 o0
< 2 T K™= ) leqllx]™.
n=0 n=0
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Spectral Theory of Linear Operators in Normed Spaces

o The Hadamard formula shows that we have absolute convergence for
[kl <r, hence for |A| = g > ¢ _hmn_.oo VI,

We know that Ry is IocaIIy holomorphlc precisely on the resolvent set
p(T) in the complex A-plane.

To p(T) there corresponds a set in the complex x-plane, call it M.

Then it is known from complex analysis that the radius of convergence
r is the radius of the largest open circular disk about x =0 which lies
entirely in M.

Hence, % is the radius of the smallest circle about A =0 in the A-plane
whose exterior lies entirely in p(T).

By definition, this means that % is the spectral radius of T.

Hence, ry(T) = % =lim, oo /I T
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Spectral Theory of Linear Operators in Normed Spaces NBanachyAlgebras

Subsection 6

Banach Algebras
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Spectral Theory of Linear Operators in Normed Spaces

o An algebra A over a field K is a vector space A over K, such that for
each ordered pair of elements x,y € A, a unique product

xyeA

is defined, satisfying, for all x,y,z€ A and all scalars a:

(xy)z =x(yz);
x(y+2z)=xy +xz;
(x+y)z=xz+yz;
a(xy) = (ax)y = x(ay).
o If K=R or C, then A is said to be real or complex, respectively.
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Spectral Theory of Linear Operators in Normed Spaces

©

A is said to be commutative (or abelian) if the multiplication is
commutative, that is, if for all x,y € A,

Xy = yX.
o Ais called an algebra with identity if A contains an element e, such
that for all x€ A,

X = Xeé = X.
o The element e is called an identity of A.

o If A has an identity, the identity is unique.
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Spectral Theory of Linear Operators in Normed Spaces

Definition (Normed Algebra, Banach Algebra)

A normed algebra A is a normed space which is an algebra, such that for
all x,y €A,

Ixy Il < IIxIHyll;
and if A has an identity e,
lell=1.

A Banach algebra is a normed algebra which is complete, considered as a
normed space.

o Property (6) relates multiplication and norm.
o We have

Ix(y = yo) + (x = x0) yoll
IxIly = yoll + lIx = xoll I yoll-

lIxy = xoyoll

IA

o So the product is a jointly continuous function of its factors.
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Spectral Theory of Linear Operators in Normed Spaces

o Spaces R and C: The real line R and the complex plane C are
commutative Banach algebras with identity e =1.

o Space C[a,b]: The space C|a,b] is a commutative Banach algebra
with identity (e =1), the product xy being defined as usual:

(xy)(t) = x(t)y(t), for all te]ab].

The subspace of C[a, b] consisting of all polynomials is a commutative
normed algebra with identity (e =1).

o Matrices: The vector space X of all complex nx n matrices (n>1,
fixed) is a non-commutative algebra with identity / (the nx n unit
matrix). By defining a norm on X, we obtain a Banach algebra.
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Spectral Theory of Linear Operators in Normed Spaces

o Space B(X,X): The Banach space B(X, X) of all bounded linear
operators on a complex Banach space X # {0} is a Banach algebra.

o The identity is / (the identity operator on X);
o The multiplication is composition of operators, by definition.

o Relation (6) is
ITe T2l < 1Tl T2
verified previously.

o B(X,X) is not commutative, unless dimX =1.
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Spectral Theory of Linear Operators in Normed Spaces

o Let A be an algebra with identity.
o An x € A is said to be invertible if it has an inverse in A, i.e., if A
contains an element, written x !, such that

1 1

X "X=xx ~=e.

o If x is invertible, the inverse is unique.
Suppose y and z are both inverses of x.
Then, by definition, yx = e = xz.

So we get
y=ye=y(xz)=(yx)z=ez=z.
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Spectral Theory of Linear Operators in Normed Spaces

Definition (Resolvent Set, Spectrum)

Let A be a complex Banach algebra with identity.

o The resolvent set p(x) of an x € A is the set of all A in the complex
plane such that x — Ae is invertible.

o The spectrum o(x) of x is the complement of p(x) in the complex
plane. Thus, o(x) =C - p(x).

o Any Aeo(x) is called a spectral value of x.

o Hence, the spectral values of x € A are those A for which x—Ae is not
invertible.
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Spectral Theory of Linear Operators in Normed Spaces

Proposition
If X is a complex Banach space, then B(X, X) is a Banach algebra. Then,
the resolvent set of the operator T € B(X, X) agrees with its resolvent set
as an element of the Banach algebra.

o Let TeB(X,X) and A in the resolvent set p(T). Then, by the
present definition, Ry(T)=(T —A/)~! exists and is an element of
B(X,X). l.e., Ry(T) is a bounded linear operator defined on X.
Hence, A€ p(T), with p(T) as defined previously.

Conversely, suppose that A€ p(T), with p(T) defined as before. Then
R3(T) exists and is linear, bounded and defined on a dense subset of
X. But, since T is bounded, we get that Ry(T) is defined on all of X.
Hence A€ p(T), with p(T) as defined presently.
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Subsection 7

Further Properties of Banach Algebras
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Inverse)

Let A be a complex Banach algebra with identity e. If x € A satisfies
Ix]l <1, then e—x is invertible, and

(S .
(e-x)"t=e+) x.
=1

o We have |[x/|| < |IxF. So X lIx/| converges, since x| < 1.
Hence, the series in the formula converges absolutely.
Since A is complete, the series converges.

Let s denote its sum. We show that s =(e—x)™L.

(e—x)(e+x+-+x")=(e+x+--+x")(e—x)=e—x""1,

We now let n — oo. Since ||Ix|| <1, x"*1 = 0.
By continuity of multiplication, (e —x)s=s(e—x) =e.
Hence, s=(e—x)71.
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Spectral Theory of Linear Operators in Normed Spaces

o Let A be a complex Banach algebra A with identity e

o Consider the subset G of all invertible elements of A.

: G is a group.
eeG.
Suppose x € G. Then x~! exists and has an inverse (x1)™1=x. So
xLisin G.

Finally, suppose x,y € G. Then y~!x7! is the inverse of xy.

1 1

)X =x(yy x Tt =xex =

Similarly, (y~'x71)(xy) =e.
So xy€G.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Invertible Elements)

Let A be a complex Banach algebra with identity. Then the set G of all
invertible elements of A is an open subset of A. Hence, the subset
M = A—- G of all non-invertible elements of A is closed.

o Let xoe G. We have to show that every xe€ A sufficiently close to xq,

say, [|x—xgll < = ,1" belongs to G. Let y =x; lx and z=e—y. Then,

we obtain

Izl = l-zll=ly—el=lxyx—x3 ol
= lxgt(x=x0)ll = llxg Hlllx = xoll < 1.
0 0

Thus ||zl <1. So e—z is invertible by the Inverse Theorem. Hence
e—z=y€eG. But G is a group. So x:xoxo‘lx:xoye G.

Since xg € G was arbitrary, this proves that G is open.
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Spectral Theory of Linear Operators in Normed Spaces

o Define the spectral radius r;(x) of an x€ A by

ra(x): sup Al
Aeo(x)

Theorem (Spectrum)

Let A be a complex Banach algebra with identity e. Then for any x € A,
the spectrum o(x) is compact, and the spectral radius satisfies

re(x) < lIx|.

o Suppose |A| > [[x|l. Then A7 1x| < 1.
So e— A7 1x is invertible.
Hence, —A(e —A71x) = x— Ae is invertible also.

So we have 1€ p(x). Hence o(x) is bounded.
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Spectral Theory of Linear Operators in Normed Spaces

° : 0(x) is closed, since p(x)=C-0c(x) is open.
If Ao € p(x), then x—Age is invertible. Thus, there is a neighborhood
N < A of x— Age consisting wholly of invertible elements.
Now for a fixed x, the mapping A — x— Ae is continuous.

Hence, all x—Ae, with A close to Ag, say,
A=Al <8, with § >0,

lie in N. So these x — Ae are invertible.

Thus, the corresponding A belong to p(x).

But Ag € p(x) was arbitrary.

So p(x) is open. Hence, o(x)=C - p(x) is closed.
o The theorem shows that p(x) # @.
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Spectral Theory of Linear Operators in Normed Spaces

Theorem (Spectrum)

Let A be a complex Banach algebra with identity e. Then o(x) # @.

o Let A, e p(x). We write
v(4)

w

(x—Ae)™L;
(=2)v(A).
x—pe = x-dle—(u—-2A)e

(x—Ae)e—(u—A)(x—Ae)(x—Ae)?
(x—2e)(e—w).

Taking inverses, we have v(u)=(e—w)tv(1).
Suppose p is so close to A that ||w] < l. Then

i lwl? 2
wa <Z|| V= <2wl>.
j=2 || Il
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Spectral Theory of Linear Operators in Normed Spaces

o We showed v(u)=(e-w) tv(A) and l(e—w) ™t —e—wl < 2[wl|?.

From this, we get

Iv(s) = v(A) = (n=A)v(2)?] I(e=w)~tv(A) = (e+w)v(A)I

Iv(A)llll(e—w)t = (e+w)l
2[wl2lv(A)l.

IACIA I

wll? contains a factor [ —Al?. Therefore,

Iwl? p—a

— 0.
lu—Al

Hence, dividing the inequality by |z —A| and letting u— A,
1

m[V(u) —v(A)] = v(1)*
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Spectral Theory of Linear Operators in Normed Spaces

o Let fe A, where A’ is the dual of A, considered as a Banach space.
We define h: p(x) — C by

h(A) = f(v(1)).
Since f is continuous, so is h.
Applying f to the previous limit, we obtain

i B =h()

lim TE = F(v(A)?),

This shows that h is holomorphic at every point of p(x).
If o(x) were empty, then p(x) = C.

So h would be an entire function.
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Spectral Theory of Linear Operators in Normed Spaces

o Now we have
o v(A)=-A"1(e-2A"1x)1;
o (e—A71x)1 M=o -1

So we obtain

=e.

1

(e= )71 =0,

A =1f(v(A) = Ifllv(A)I = Ilflll%|

This shows that h would be bounded on C.

Hence, by Liouville's Theorem, it is a constant.

So it is zero by the preceding relation.

Since f € A" was arbitrary, h(1) = f(v(1)) =0 implies v(1) =0.
This is impossible since it gives

lell =1I(x—Ae)v(A)Il = 01l = 0.

Hence, o(x) = @ cannot hold.
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Spectral Theory of Linear Operators in Normed Spaces

o The existence of an identity e is necessary.
o If A has no identity, we can supply A with an identity.

Let A be the set of all ordered pairs (x,a), where xe A and a is a
scalar. Define

(x,a)+(y,p) = (x+y,a+p)
B(x,a) = (Bx,Ba)
(xa)(y,B) = (xy+ay+pxap)
o)l = lxl+lal
& = (0,1).

Then A is a Banach algebra with identity &.

o The mapping x — (x,0) is an isomorphism of A onto a subspace of A,
both regarded as normed spaces.

o This subspace has codimension 1. Identifying x with (x,0), then Als
A plus the one-dimensional space generated by €.
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