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Compact Linear Operators

Definition (Compact Linear Operator)

Let X , Y be normed spaces. An operator T :X →Y is called a compact

linear operator (or completely continuous linear operator) if:

T is linear;

For every bounded subset M of X , the image T (M) is relatively

compact, i.e., the closure T (M) is compact.

The theory of compact linear operators emerged from the theory of
integral equations of the form

(T −λI )x(s)= y(s), where Tx(s)=
∫b
a k(s ,t)x(t)dt.

In this equation:
λ∈C is a parameter;
y and the kernel k are given functions (subject to certain conditions);
x is the unknown function.
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The Continuity Lemma

Lemma (Continuity)

Let X and Y be normed spaces. Then:

(a) Every compact linear operator T :X →Y is bounded, hence
continuous.

(b) If dimX =∞, the identity operator I :X →X (which is continuous) is
not compact.

(a) The unit sphere U = {x ∈X : ‖x‖ = 1} is bounded.

Since T is compact, T (U) is compact.

By the Compactness Lemma, T (U) is bounded.

So sup
‖x‖=1

‖Tx‖<∞. Hence, T is bounded and, so, continuous.

(b) Of course, the closed unit ball M = {x ∈X : ‖x‖≤ 1} is bounded.

If dimX =∞, then M cannot be compact.

Thus, I (M)=M =M is not relatively compact.
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Compactness Criterion

Theorem (Compactness Criterion)

Let X and Y be normed spaces and T :X →Y a linear operator.
Then T is compact if and only if it maps every bounded sequence (xn) in
X onto a sequence (Txn) in Y which has a convergent subsequence.

If T is compact and (xn) is bounded.

Then the closure of (Txn) in Y is compact.

Thus, (Txn) contains a convergent subsequence.

Conversely, assume that every bounded sequence (xn) contains a
subsequence (xnk ), such that (Txnk ) converges in Y .
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Compactness Criterion (Cont’d)

Consider any bounded subset B ⊆X .

Let (yn) be any sequence in T (B).

Then yn =Txn, for some xn ∈B .

Moreover, (xn) is bounded since B is bounded.

By assumption, (Txn) contains a convergent subsequence.

Hence, T (B) is compact because (yn) in T (B) was arbitrary.

By definition, this shows that T is compact.

By the Compactness Criterion, if T1,T2 :X →Y are two compact
linear operators:

The sum T1+T2 is compact;
The product αT1 is compact, α any scalar.

So the compact linear operators from X into Y form a vector space.
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Finite Dimensionality of Domain or Range

Theorem (Finite Dimensionality of Domain or Range)

Let X and Y be normed spaces and T :X →Y a linear operator. Then:

(a) If T is bounded and dimT (X )<∞, the operator T is compact.

(b) If dimX <∞, the operator T is compact.

(a) Let (xn) be any bounded sequence in X .

The inequality ‖Txn‖≤ ‖T‖‖xn‖ shows that (Txn) is bounded.

Since dimT (X )<∞, (Txn) is relatively compact.

It follows that (Txn) has a convergent subsequence.

By the Compactness Criterion, the operator T is compact.

(b) Follows from (a) by noting that dimX <∞ implies boundedness of T
and dimT (X )≤ dimX .

An operator T ∈B(X ,Y ), with dimT (X )<∞, is often called an
operator of finite rank.
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Sequence of Compact Linear Operators

Theorem (Sequence of Compact Linear Operators)

Let (Tn) be a sequence of compact linear operators from a normed space
X into a Banach space Y . If (Tn) is uniformly operator convergent, say,
‖Tn−T‖→ 0, then the limit operator T is compact.

Using a “diagonal method”, we show that, for any bounded sequence
(xm) in X , the image (Txm) has a convergent subsequence.
The conclusion then follows by the Compactness Criterion.

Since T1 is compact, (xm) has a subsequence (x1,m), such that
(T1x1,m) is Cauchy;
Since T2 is compact, (x1,m) has a subsequence (x2,m) such that
(T2x2,m) is Cauchy.
· · ·

The “diagonal sequence” (ym)= (xm,m) is a subsequence of (xm), such
that, for every fixed n, the sequence (Tnym)m∈N is Cauchy.

(xm) is bounded, say, ‖xm‖≤ c , for all m. Hence ‖ym‖≤ c , for all m.
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Sequence of Compact Linear Operators (Cont’d)

Let ε> 0. Since Tm →T , there is an n= p, such that

‖T −Tp‖<
ε

3c
.

Since (Tpym)m∈N is Cauchy, there is an N, such that

‖Tpyj −Tpyk‖<
ε

3
, for all j ,k >N.

Hence, we obtain for j ,k >N,

‖Tyj −Tyk‖ ≤ ‖Tyj −Tpyj‖+‖Tpyj −Tpyk‖+‖Tpyk −Tyk‖

≤ ‖T −Tp‖‖yj‖+
ε
3
+‖Tp −T‖‖yk‖

< ε
3c
c + ε

3
+ ε

3c
c = ε.

This shows that (Tym) is Cauchy. Since Y is complete, it converges.

But (ym) is a subsequence of the arbitrary bounded sequence (xm).

So, by the Compactness Criterion, T is compact.
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Necessity of Uniform Operator Convergence

The preceding theorem becomes false if we replace uniform operator
convergence by strong operator convergence ‖Tnx −Tx‖→ 0.

Consider Tn : ℓ
2 → ℓ2 defined, for all x = (ξj) ∈ ℓ2, by

Tnx = (ξ1, . . . ,ξn,0,0, . . .).

Since Tn is linear and bounded, Tn is compact.

Clearly, for all x = (ξj) ∈ ℓ2,

Tnx → x = Ix .

However, I is not compact, since dimℓ2 =∞.
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Example

Use the theorem to prove compactness of T : ℓ2 → ℓ2 defined by

y = (ηj)=Tx , where ηj =
ξj
j , for j = 1,2, . . ..

T is linear. If x = (ξj) ∈ ℓ2, then y = (ηj) ∈ ℓ2. Let Tn : ℓ
2 → ℓ2 be

defined by

Tnx =

(
ξ1,

ξ3

2
,
ξ3

3
, . . . ,

ξn

n
,0,0, . . .

)
.

Tn is linear and bounded, and is compact. Furthermore,

‖(T −Tn)x‖
2 =

∑
∞
j=n+1

|ηj |
2 =

∑
∞
j=n+1

1
j2
|ξj |

2

≤
1

(n+1)2
∑∞

j=n+1
|ξj |

2 ≤
‖x‖2

(n+1)2
.

Taking the supremum over all x of norm 1, we get ‖T −Tn‖≤
1

n+1
.

Hence, Tn →T . So T is compact by the theorem.
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The Weak Convergence Theorem

Theorem (Weak Convergence)

Let X and Y be normed spaces and T :X →Y a compact linear operator.
Suppose that (xn) in X is weakly convergent, say, xn

w
→ x . Then (Txn) is

strongly convergent in Y and has the limit y =Tx .

We write yn =Txn and y =Tx .

Claim: yn
w
→ y .

Let g be any bounded linear functional on Y . We define a functional f
on X by setting f (z)= g(Tz), for all z ∈X . f is linear. f is bounded.

Since T is compact, it is bounded. Moreover,

|f (z)| = |g(Tz)| ≤ ‖g‖‖Tz‖≤ ‖g‖‖T‖‖z‖.

By definition, xn
w
→ x implies f (xn)→ f (x).

Hence by definition, g(Txn)→ g(Tx). I.e., g(yn)→ g(y).
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The Weak Convergence Theorem (Cont’d)

Claim: yn → y .

Assume this does not hold.

Then (yn) has a subsequence (ynk ), such that, for some η> 0,

‖ynk −y‖≥ η.

Since (xn) is weakly convergent, (xn) is bounded.

So (xnk ) is also bounded.

Compactness of T implies that (Txnk ) has a convergent subsequence,
say, (ỹj). Let ỹj → ỹ .

A fortiori, ỹj
w
→ ỹ . Hence, ỹ = y .

Consequently, ‖ỹj −y‖→ 0.

But ‖ỹj −y‖≥ η> 0, a contradiction.
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Subsection 2

Further Properties of Compact Linear Operators
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Total Boundedness

Definition (ε-net, Total Boundedness)

Let B be a subset of a metric space X and let ε> 0 be given.

A set Mε ⊆X is called an ε-net for B if, for every point z ∈B , there is
a point of Mε at a distance from z less than ε.

The set B is said to be totally bounded if, for every ε> 0, there is a
finite ε-net Mε ⊆X for B , where “finite” means that Mε is a finite set
(that is, consists of finitely many points).

Consequently, total boundedness of B means that:

For every given ε> 0, the set B is contained in the union of finitely
many open balls of radius ε.
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The Total Boundedness Lemma

Lemma (Total Boundedness)

Let B be a subset of a metric space X . Then:

(a) If B is relatively compact, B is totally bounded.

(b) If B is totally bounded and X is complete, B is relatively compact.

(c) If B is totally bounded, for every ε> 0 it has a finite ε-net Mε ⊆B .

(d) If B is totally bounded, B is separable.

(a) Assume that B is relatively compact.

We show that, for any ε0 > 0, there exists a finite ε0-net for B .

If B =;, then ; is an ε0-net for B .

Suppose B 6= ;. Pick any x1 ∈B .

If d(x1,z)< ε0, for all z ∈B , then {x1} is an ε0-net for B .

Otherwise, let x2 ∈B be such that d(x1,x2)≥ ε0.

If, for all z ∈B , d(xj ,z)< ε0, j = 1 or 2, then {x1,x2} is an ε0-net for B .
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The Total Boundedness Lemma Part (a) (Cont’d)

Otherwise, let z = x3 ∈B be a point not satisfying the inequality.

If, for all z ∈B , d(xj ,z)< ε0, j = 1,2 or 3, then {x1,x2,x3} is an ε0-net
for B . Otherwise we continue by selecting an x4 ∈B , etc.

We assert the existence of a positive integer n, such that the set
{x1, . . . ,xn} obtained after n such steps is an ε0-net for B .

If there were no such n, our construction would yield a sequence (xj)
satisfying d(xj ,xk)≥ ε0, for j 6= k .

Obviously, (xj) could not have a subsequence which is Cauchy.

Hence, (xj) could not have a subsequence which converges in X .

Since, by construction, (xj) lies in B , this contradicts the relative
compactness of B .

Hence, there must be a finite ε0-net for B .

Since ε0 > 0 was arbitrary, B is totally bounded.
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The Total Boundedness Lemma Part (b)

(b) Let B be totally bounded and X complete.

Let (xn) be an arbitrary sequence in B .

We show that (xn) has a subsequence which converges in X .

By assumption, B has a finite ε-net for ε= 1.

Hence, B is contained in the union of finitely many open balls of
radius 1.

From these balls we can pick a ball B1 which contains infinitely many
terms of (xn) (counting repetitions).

Let (x1,n) be the subsequence of (xn) which lies in B1.

Similarly, by assumption, B is also contained in the union of finitely
many balls of radius ε= 1

2
.

From these balls, we can pick a ball B2 which contains a subsequence
(x2,n) of the subsequence (x1,n).

Inductively, choose ε= 1
3

,
1
4

, . . . and set yn = xn,n.
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The Total Boundedness Lemma Part (b) (Cont’d)

Now, for every given ε> 0, there is an N (depending on ε), such that
all yn with n>N lie in a ball of radius ε.

Hence (yn) is Cauchy.

Since X is complete, it converges in X , say, yn → y ∈X .

Also, yn ∈B implies y ∈B.

By the definition of the closure, for every sequence (zn) in B, there is
a sequence (xn) in B which satisfies d(xn,zn)≤

1
n , for every n.

Since (xn) is in B , it has a subsequence which converges in B, as we
have just shown.

Hence, since d(xn,zn)≤
1
n , (zn) also has a subsequence which

converges in B.

So B is compact and B is relatively compact.
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The Total Boundedness Lemma Part (c)

(c) If B is totally bounded, for every ε> 0, it has a finite ε-net Mε ⊆B .

The case B =; is obvious.

Let B 6= ;. By assumption, for given ε> 0, there is a finite ε1-net
Mε1 ⊆X for B , where ε1 =

ε
2
. Hence B is contained in the union of

finitely many balls of radius ε1 with the elements of Mε1 as centers.

Let B1, . . . ,Bn be those balls which inter-
sect B , and let x1, . . . ,xn be their centers.
We select a point zj ∈B ∩Bj .
We claim that

Mε = {z1, . . . ,zn} ⊆B

is an ε-net for B .
For every z ∈B , there is a Bj containing z . Moreover,

d(z ,zj)≤ d(z ,xj)+d(xj ,zj)< ε1+ε1 = ε.
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The Total Boundedness Lemma Part (d)

(d) If B is totally bounded, B is separable.

Suppose B is totally bounded.

Then, by Part (c), the set B contains a finite ε-net M1/n for itself,

where ε= εn =
1
n , n= 1,2, . . ..

The union M of all these nets is countable.

Moreover, M is dense in B .

In fact, for any given ε> 0, there is an n, such that 1
n
< ε.

Hence, for any z ∈B , there is an a ∈M1/n ⊆M, such that d(z ,a)< ε.

This proves that B is separable.
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Total Boundedness and Boundedness

Total boundedness implies boundedness.

The converse does not generally hold.

Consider the metric space ℓ2.

Let U be the closed unit ball

U = {x : ‖x‖≤ 1} ⊆ ℓ2
.

U is bounded.
U is not totally bounded.
ℓ2 is infinite dimensional and complete.
So U is not compact.
Hence, it is not totally bounded.
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Separability of Range

Theorem (Separability of Range)

The range R(T ) of a compact linear operator T :X →Y is separable,
where X and Y are normed spaces.

Consider the ball Bn =B(0;n)⊆X .

Since T is compact, the image Cn =T (Bn) is relatively compact.

By Parts (a) and (d) of the Lemma, Cn is separable.

The norm of any x ∈X is finite. So, for any x , there exists n

sufficiently large, such that ‖x‖< n. Hence, x ∈Bn.

Consequently, X =
⋃∞
n=1Bn and T (X )=

⋃∞
n=1T (Bn)=

⋃∞
n=1Cn.

Since Cn is separable, it has a countable dense subset Dn.

Moreover, the union D =
⋃

∞
n=1Dn is countable.

But T (X )=
⋃

∞
n=1Cn. So D is dense in the range R(T )=T (X ).
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Compact Extension

Theorem (Compact Extension)

A compact linear operator T :X →Y from a normed space X into a
Banach space Y has a compact linear extension T̃ : X̂ →Y , where X̂ is the
completion of X .

We may regard X as a subspace of X̂ .

Since T is bounded, it has a bounded linear extension T̃ : X̂ →Y .

We show that compactness of T implies T̃ is also compact.

Let (x̂n) be an arbitrary bounded sequence in X̂ .

We show that (T̃ x̂n) has a convergent subsequence.

X is dense in X̂ .

So there is a sequence (xn) in X , such that x̂n−xn → 0.

Clearly, (xn) is bounded, too.
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Compact Extension (Cont’d)

Since T is compact, (Txn) has a convergent subsequence (Txnk ).

Suppose Txnk → y0 ∈Y .

Now x̂n−xn → 0 implies x̂nk −xnk → 0.

Since T̂ is linear and bounded, it is continuous. Thus,

T̃ x̂nk −Txnk = T̃ (x̂nk −xnk )→ T̃0= 0.

Since Txnk → y0 ∈Y , T̃ x̂nk → y0.

We showed that the arbitrary bounded sequence (x̂n) has a
subsequence (x̂nk ), such that (T̃ x̂nk ) converges. So T̃ is compact.
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The Adjoint Operator Theorem

The adjoint operator of a compact linear operator is itself compact.

Theorem (Adjoint Operator)

Let T :X →Y be a linear operator. If T is compact, so is its adjoint
operator T× :Y ′ →X ′, where X and Y are normed spaces and X ′ and Y ′

the dual spaces of X and Y .

Let B be a subset of Y ′ which is bounded, say ‖g‖ ≤ c , for all g ∈B .

We show that the image T×(B)⊆X ′ is totally bounded.

Since X ′ is complete, by Part (b) of the Total Boundedness Lemma, it
will then follow that T×(B) is relatively compact.
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The Adjoint Operator Theorem (Cont’d)

We must show, for any fixed ε0 > 0, T×(B) has a finite ε0-net.

Since T is compact, the image T (U) of the unit ball
U = {x ∈X : ‖x‖ ≤ 1} is relatively compact.

Hence T (U) is totally bounded.

Thus, there is a finite ε1-net M ⊆T (U) for T (U), where ε1 =
ε0

4c
.

This means that U contains points x1, . . . ,xn, such that, for each
x ∈U , there exists some j , such that ‖Tx −Txj‖<

ε0

4c
.

We define a linear operator A :Y ′ →Rn by

Ag = (g(Tx1),g(Tx2), . . . ,g(Txn)).

g is bounded by assumption.

T is bounded by the Continuity Lemma.

Hence, A is compact by the Finite Dimensionality Lemma.

Since B is bounded, A(B) is relatively compact.

Hence, A(B) is totally bounded.
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The Adjoint Operator Theorem (Cont’d)

Thus, A(B) contains a finite ε2-net {Ag1, . . . ,Agm} for itself, where
ε2 =

ε0

4
. This means that, for each g ∈B , there exists k , such that

‖Ag −Agk‖0 <
ε0

4
,

where ‖·‖0 is the norm on Rn.

We show that {T×g1, . . . ,T×gm} is the desired ε0-net for T×(B).

Since ‖Ag −Agk‖0 <
ε0

4
, for all j and all g ∈B , there is a k , such that

|g(Txj )−gk (Txj)|
2
≤

n∑

j=1

|g(Txj )−gk(Txj )|
2
= ‖A(g −gk)‖

2
0 < (

ε0

4
)2.

Let x ∈U be arbitrary. Then, there is a j , for which ‖Tx −Txj‖ <
ε0
4c .

Let g ∈B . Then, there is a k , such that

‖Ag −Agk‖0 <
ε0

4
and |g(Txj)−gk (Txj)|

2
< (

ε0

4
)2.
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The Adjoint Operator Theorem (Conclusion)

Thus,

|g(Tx)−gk (Tx)| ≤ |g(Tx)−g(Txj )|+ |g(Txj )−gk (Txj)|
+ |gk (Txj)−gk (Tx)|

< ‖g‖‖Tx −Txj‖+
ε0

4
+‖gk‖‖Txj −Tx‖

≤ c ε0

4c
+

ε0

4
+c ε0

4c
< ε0.

Since this holds for every x ∈U and since by the definition of T× we
have g(Tx)= (T×g)(x), etc., we finally obtain

‖T×g −T×gk‖ = sup
‖x‖=1

|(T×(g −gk ))(x)|

= sup
‖x‖=1

|g(Tx)−gk (Tx)| < ε0.

This shows that {T×g1, . . . ,T×gm} is an ε0-net for T×(B).

Since ε0 > 0 was arbitrary, T×(B) is totally bounded.

Hence, by the Total Boundedness Lemma, it is relatively compact.

Since B was any bounded subset of Y ′, we get compactness of T×.
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Subsection 3

Spectral Properties of Compact Linear Operators
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The Eigenvalues Theorem

Theorem (Eigenvalues)

The set of eigenvalues of a compact linear operator T :X →X on a
normed space X is countable (perhaps finite or even empty), and the only
possible point of accumulation is λ= 0.

It suffices to show, for all real k > 0, the set of all λ ∈σp(T ), such
that |λ| ≥ k is finite. Suppose not for some k0 > 0.

Then there is a sequence (λn) of infinitely many distinct eigenvalues,
such that |λn| ≥ k0. Also Txn =λnxn, for some xn 6= 0.

The set of all the xn’s is linearly independent.

Let Mn = span{x1, . . . ,xn}.

Then, every x ∈Mn has a unique representation

x =α1x1+·· ·+αnxn.
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The Eigenvalues Theorem (Cont’d)

Apply T −λnI to get

(T −λnI )x =α1(T −λnI )x1 +·· ·+αn(T −λnI )xn.

Use Txj =λjxj to get

(T −λnI )x =α1(λ1−λn)x1+·· ·+αn−1(λn−1−λn)xn−1.

Note that xn no longer occurs.

So (T −λnI )x ∈Mn−1, for all x ∈Mn.

The Mn’s are closed.

By Riesz’s Lemma, there exists a sequence (yn), such that:

yn ∈Mn;
‖yn‖= 1;
‖yn−x‖≥ 1

2 , for all x ∈Mn−1.
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The Eigenvalues Theorem (Cont’d)

We show that

‖Tyn−Tym‖≥
1

2
k0, n>m.

So (Tyn) has no convergent subsequence because k0 > 0.

This contradicts the compactness of T since (yn) is bounded.

By adding and subtracting a term we can write Tyn−Tym =λnyn− x̃ ,
where x̃ =λnyn−Tyn+Tym.

Let m< n. We show that x̃ ∈Mn−1.

Since m≤ n−1, we have

ym ∈Mm ⊆Mn−1 = span{x1, . . . ,xn−1}.

Since Txj =λjxj , Tym ∈Mn−1.

Since (T −λnI )x ∈Mn−1,

λnyn−Tyn = − (T −λnI )yn ∈Mn−1.
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The Eigenvalues Theorem (Conclusion)

We have Tym ∈Mn−1 and λnyn−Tyn ∈Mn−1.

Together, x̃ =λnyn−Tyn+Tym ∈Mn−1.

Thus, also x =λ−1
n x̃ ∈Mn−1.

Hence, since |λn| ≥ k0,

‖λnyn− x̃‖= |λn|‖yn−x‖≥
1

2
|λn| ≥

1

2
k0.

We conclude ‖Tyn−Tym‖≥
1
2
k0.

Hence the assumption that there are infinitely many eigenvalues
satisfying ‖λn‖ ≥ k0, for some k0 > 0 must be false.

It follows that, if a compact linear operator on a normed space has
infinitely many eigenvalues, we can arrange these eigenvalues in a
sequence converging to zero.
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Compactness of Product

Lemma (Compactness of Product)

Let T :X →X be a compact linear operator and S :X →X a bounded
linear operator on a normed space X . Then TS and ST are compact.

Let B ⊆X be any bounded set.

Since S is a bounded operator, S(B) is a bounded set.

Since T is compact, the set TS(B)=T (S(B)) is relatively compact.

Hence TS is a compact linear operator.

We prove that ST is also compact.

Let (xn) be any bounded sequence in X .

By a previous result, (Txn) has a convergent subsequence (Txnk ).

Thus, since S is bounded, (STxn) converges.

Hence, ST is compact.
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Null Space Theorem

Theorem (Null Space)

Let T :X →X be a compact linear operator on a normed space X . Then,
for every λ 6= 0, the null space N (Tλ) of Tλ =T −λI is finite dimensional.

We know that, if the closed unit ball in a normed space X is compact,
then the space is finite dimensional.

So we show that the closed unit ball M in N (Tλ) is compact.

Let (xn) be in M. Then (xn) is bounded (‖xn‖ ≤ 1).

By a previous result, (Txn) has a convergent subsequence (Txn).

Now xn ∈M ⊆N (Tλ) implies Tλxn =Txn−λxn = 0.

So, since λ 6= 0, xn =λ−1Txn.

Consequently, (xnk )= (λ−1Txnk ) also converges.

The limit is in M, since M is closed.

Hence M is compact because (xn) was arbitrary in M.

This proves dimN (Tλ)<∞.
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Null Spaces Corollary

Corollary (Null Spaces)

Let T :X →X be a compact linear operator on a normed space X . Then,
for every λ 6= 0, dimN (T n

λ
)<∞, n= 1,2, . . ., and

{0} =N (T 0
λ )⊆N (Tλ)⊆N (T 2

λ )⊆ ·· · .

Since Tλ is linear, it maps 0 onto 0.

Hence, T n
λ
x = 0 implies T n+1

λ
x = 0.

This yields the second conclusion.
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Null Spaces Corollary (Cont’d)

We prove, next, dimN (T n
λ
)<∞.

By the binomial theorem,

T n
λ

= (T −λI )n

=

n∑

k=0

(n
k

)
T k(−λ)n−k

= (−λ)nI +T
n∑

k=1

(n
k

)
T k−1(−λ)n−k .

This can be written
T n
λ =W −µI ,

with:
µ=−(−λ)n;
W =TS = ST , where S denotes the sum on the right.

T is compact. Since T is bounded, S is bounded, by a previous result.
Hence, W is compact by a previous lemma.

Now we obtain the result by applying the preceding theorem.
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The Range Theorem

Recall that for a bounded linear operator, the null space is always
closed but the range need not be closed.

Theorem (Range)

Let T :X →X be a compact linear operator on a normed space X . Then,
for every λ 6= 0, the range of Tλ =T −λI is closed.

We assume that the range Tλ(X ) is not closed. We derive a
contradiction by proceeding as follows:

(a) We consider a y in the closure of Tλ(X ) but not in Tλ(X ).
We let (Tλxn) be a sequence converging to y .
We show that xn 6∈N (Tλ) but N (Tλ) contains a sequence (zn), such
that ‖xn−zn‖ < 2δn, where δn is the distance from xn to N (Tλ).

(b) We show that an →∞, where an = ‖xn−zn‖.
(c) We obtain the anticipated contradiction by considering the sequence

(wn), where wn = a−1
n (xn−zn).
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The Range Theorem Part (a)

(a) Suppose that Tλ(X ) is not closed. Then there is a y ∈Tλ(X ),
y 6∈Tλ(X ) and a sequence (xn) in X , such that yn =Tλxn → y .

Since Tλ(X ) is a vector space, 0∈Tλ(X ).

Since y 6∈Tλ(X ), y 6= 0.

This implies yn 6= 0 and xn 6∈N (Tλ), for all sufficiently large n.

Without loss of generality we may assume that this holds for all n.

Since N (Tλ) is closed, the distance δn from xn to N (Tλ) is positive,

δn = inf
z∈N (Tλ)

‖xn−z‖> 0.

By the definition of an infimum, there is a sequence (zn) in N (Tλ),
such that

an =‖xn−zn‖ < 2δn.
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The Range Theorem Part (b)

(b) We show that an = ‖xn−zn‖
n→∞
−→ ∞. Suppose this does not hold.

Then (xn−zn) has a bounded subsequence.

Since T is compact, (T (xn−zn)) has a convergent subsequence.

From Tλ =T −λI and λ 6= 0, we have I =λ−1(T −Tλ).

Since zn ∈N (Tλ), we have Tλzn = 0.

So we get

xn−zn =
1

λ
(T −Tλ)(xn−zn)=

1

λ
[T (xn−zn)−Tλxn].

(T (xn−zn)) has a convergent subsequence and (Tλxn) converges.

Hence, (xn−zn) has a convergent subsequence, say, xnk −znk → v .

Since T is compact, T is continuous. Thus, so is Tλ.

Hence, by a preceding theorem, Tλ(xnk −znk )→Tλv .

Since zn ∈N (Tλ), Tλznk = 0.

So, since yn =Tλxn → y , we have Tλ(xnk −znk )=Tλxnk → y .

Hence, Tλv = y . Thus y ∈Tλ(X ). This contradicts y 6∈Tλ(X ).
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The Range Theorem Part (c)

(c) In Part (b) it was shown that an = ‖xn−zn‖ is divergent.

Set wn =
1
an
(xn−zn). Then ‖wn‖= 1.

Since an →∞, whereas Tλzn = 0 and (Tλxn) converges, we get

Tλwn =
1

an
Tλxn → 0.

Using I =λ−1(T −Tλ), we obtain wn =
1
λ(Twn−Tλwn).

Now T is compact and (wn) is bounded.

So (Twn) has a convergent subsequence.

Furthermore, (Tλwn) converges.

So (wn) has a convergent subsequence, say wnj →w .

A comparison with Tλwn → 0 implies that Tλw = 0.

Hence, w ∈N (Tλ).

Since zn ∈N (Tλ), also un = zn+anw ∈N (Tλ).
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The Range Theorem Part (c) (Cont’d)

We showed that un ∈N (Tλ).

Hence, for the distance from xn to un, we must have ‖xn−un‖ ≥δn.

Now recall that:

an < 2δn;
wn =

1
an
(xn−zn);

un = zn+anw .

So we get

δn ≤ ‖xn−zn−anw‖ = ‖anwn−anw‖

= an‖wn−w‖ < 2δn‖wn−w‖.

Dividing by 2δn > 0, we have 1
2
< ‖wn−w‖.

This contradicts wnj →w .
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The Ranges Corollary

Coronary (Ranges)

Under the assumptions in the theorem, the range of T n
λ

is closed for every
n= 0,1,2, . . .. Furthermore,

X =T 0
λ(X )⊇Tλ(X )⊇T 2

λ(X )⊇ ·· · .

Note that W in the proof of the Null Space Theorem is compact.

So the first statement follows from the Range Theorem.

The second statement follows by induction.

We have
T 0
λ (X )= I (X )=X ⊇Tλ(X ).

Assume T n−1
λ

(X )⊇T n
λ
(X ).

Applying Tλ, we get T n
λ
(X )⊇T n+1

λ
(X ).
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Subsection 4

Further Spectral Properties of Compact Linear Operators
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Compact Linear Operators: Null Spaces and Ranges

For now, concerning a compact linear operator T on a normed space
X and λ 6= 0, we know the following facts:

The null spaces N (T n
λ
), n= 1,2, . . ., are finite dimensional and satisfy

N (T n
λ )⊆N (T n+1

λ );

The ranges T n
λ
(X ) are closed and satisfy

T n
λ (X )⊇T n+1

λ (X ).
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Null Spaces Lemma

Lemma (Null Spaces)

Let T :X →X be a compact linear operator on a normed space X , and let
λ 6= 0. Then there exists a smallest integer r (depending on λ) such that
from n= r on, the null spaces N (T n

λ
) are all equal, and if r > 0, the

inclusions N (T 0
λ
)⊆N (Tλ)⊆ ·· · ⊆N (T r

λ
) are all proper.

Let us write Nn =N (T n
λ
), for simplicity.

The idea of the proof is as follows.

(a) We assume that Nm =Nm+1, for no m and derive a contradiction,
using Riesz’s Lemma.

(b) We show that Nm =Nm+1 implies Nn =Nn+1, for all n>m.
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Null Spaces Lemma Part (a)

(a) We know that Nm ⊆Nm+1. Suppose that Nm =Nm+1, for no m.

Then Nn is a proper subspace of Nn+1, for every n.

Since these null spaces are closed, Riesz’s Lemma implies the existence
of a sequence (yn), such that:

yn ∈Nn;
‖yn‖= 1;
‖yn−x‖≥ 1

2 , for all x ∈Nn−1.

We show that

‖Tyn−Tym‖ ≥
1

2
|λ|, m< n.

Then (Tyn) has no convergent subsequence because |λ| > 0.

This contradicts the compactness of T since (yn) is bounded.
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Null Spaces Lemma Part (a) (Cont’d)

From Tλ =T −λI , we have:

T =Tλ+λI ;
Tyn−Tym =λyn− x̃ , where x̃ =Tλym+λym −Tλyn.

Let m< n. We show that x̃ ∈Nn−1.

Since m≤ n−1, we clearly have λym ∈Nm ⊆Nn−1.

Also ym ∈Nm implies 0=Tm
λ
ym =Tm−1

λ
(Tλym).

That is, Tλym ∈Nm−1 ⊆Nn−1.

Similarly, yn ∈Nn implies Tλyn ∈Nn−1.

Together, x̃ ∈Nn−1. Also x =λ−1x̃ ∈Nn−1.

Hence

‖Tyn−Tym‖= ‖λyn− x̃‖= |λ|‖yn−x‖ ≥
1

2
|λ|.

Our assumption that Nm =Nm+1, for no m is false.

We must have Nm =Nm+1, for some m.
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Null Spaces Lemma Part (b)

(b) We prove that Nm =Nm+1 implies Nn =Nn+1, for all n>m.

Suppose this does not hold.

Then Nn is a proper subspace of Nn+1, for some n>m.

Consider an x ∈Nn+1−Nn.

By definition, T n+1
λ

x = 0, but T n
λ
x 6= 0.

Since n>m, we have n−m> 0.

Set z =T n−m
λ

x . Then:

Tm+1
λ

z =T n+1
λ

x = 0;
Tm
λ
z =T n

λ
x 6= 0.

Hence, z ∈Nm+1, but z 6∈Nm.

So Nm is a proper subspace of Nm+1.

This contradicts Nm =Nm+1.

The first statement is proved, where r is the smallest n, such that
Nn =Nn+1. So, if r > 0, the inclusions in the lemma are proper.
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The Ranges Lemma

Lemma (Ranges)

Let T :X →X be a compact linear operator on a normed space X , and let
λ 6= 0. Then, there exists a smallest integer q (depending on λ) such that
from n= q on, the ranges T n

λ
(X ) are all equal and, if q > 0, the inclusions

T 0
λ
(X )⊇Tλ(X )⊇ ·· · ⊇T

q

λ
(X ) are all proper.

We write Rn =T n
λ
(X ). Suppose that Rs =Rs+1 for no s.

Then Rn+1 is a proper subspace of Rn, for every n.
Since these ranges are closed, by Riesz’s Lemma, there exists a
sequence (xn), such that:

xn ∈Rn;
‖xn‖= 1;
‖xn−x‖≥ 1

2 , for all x ∈Rn+1.

Let m< n. Since T =Tλ+λI , we can write

Txm−Txn =λxm− (−Tλxm+Tλxn+λxn).
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The Ranges Lemma (Cont’d)

We obtained Txm−Txn =λxm− (−Tλxm+Tλxn+λxn).

On the right side:

λxm ∈Rm;
Tλxm ∈Rm+1, since xm ∈Rm;
Tλxn+λxn ∈Rn ⊆Rm+1, since n>m.

Hence Txm−Txn =λ(xm−x), for all x ∈Rm+1.

Consequently, ‖Txm−Txn‖= |λ|‖xm−x‖ ≥ 1
2
|λ| > 0.

Since (xn) is bounded and T is compact, (Txn) has a convergent
subsequence. This contradicts the preceding inequality.

So we have Rs =Rs+1, for some s.

Let q be the smallest s such that Rs =Rs+1.

Then, if q > 0, the inclusions stated in the lemma are proper.

Furthermore, Rq+1 =Rq means that Tλ maps Rq onto itself.

Hence, repeated application of Tλ gives Rn+1 =Rn, for every n> q.
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Null Spaces and Ranges Theorem

Theorem (Null Spaces and Ranges)

Let T :X →X be a compact linear operator on a normed space X , and let
λ 6= 0. Then there exists a smallest integer n= r (depending on λ), such
that

N (T r
λ
)=N (T r+1

λ
)=N (T r+2

λ
)= ·· ·

T r
λ
(X )=T r+1

λ
(X )=T r+2

λ
(X )= ·· · .

If r > 0, the following inclusions are proper:

N (T 0
λ )⊆N (Tλ)⊆ ·· · ⊆N (T r

λ) and T 0
λ(X )⊇Tλ(X )⊇ ·· · ⊇T r

λ(X ).

A previous lemma gives the conclusions for the kernels.

The preceding lemma gives those for ranges with q instead of r .

All we have to show is that q = r .
Denoting, as before Nn =N (T n

λ
) and Rn =T n

λ
(X ), we show:

(a) q ≥ r ;
(b) r ≤ q.
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Null Spaces and Ranges Theorem Part (a)

(a) We have Rq+1 =Rq. This means that Tλ(Rq)=Rq.

Hence, if y ∈Rq, y =Tλx , for some x ∈Rq.

Claim: Tλx = 0, x ∈Rq implies x = 0.

Suppose not. Then Tλx1 = 0, for some nonzero x1 ∈Rq.

By hypothesis, x1 =Tλx2, for some x2 ∈Rq.

Similarly, x2 =Tλx3, for some x3 ∈Rq, etc.

For every n, we thus obtain by substitution:

0 6= x1 =Tλx2 = ·· · =T n−1
λ

xn;
0=Tλx1 =T n

λ
xn.

Hence, xn 6∈Nn−1, but xn ∈Nn.

We have Nn−1 ⊆Nn.

Our result shows that this inclusion is proper, for every n.

This is a contradiction.
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Null Spaces and Ranges Theorem Part (a) (Cont’d)

Recall that Rq+1 =Rq.

We prove that Nq+1 =Nq.

Then q ≥ r , since r is the smallest integer for which we have equality.

We have Nq+1 ⊇Nq.

We prove that Nq+1 ⊆Nq. Equivalently,

T
q+1

λ
x = 0 implies T

q

λ
x = 0.

Suppose not. Then, for some x0,

y =T
q

λ
x0 6= 0 but Tλy =T

q+1

λ
x0 = 0.

Hence y ∈Rq, y 6= 0, Tλy = 0.

This contradicts the Claim above.
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Null Spaces and Ranges Theorem Part (b)

(b) We prove that q ≤ r . If q = 0, this holds. Let q ≥ 1.

We prove q ≤ r by showing that Nq−1 is a proper subspace of Nq.

Then q ≤ r , since r is the smallest integer n, such that Nn =Nn+1.

By the definition of q, the inclusion Rq ⊆Rq−1 is proper.

Let y ∈Rq−1−Rq. Then y ∈Rq−1. So y =T
q−1

λ
x , for some x .

Also Tλy ∈Rq =Rq+1 implies that Tλy =T
q+1

λ
z , for some z .

But T q

λ
z ∈Rq, whereas y 6∈Rq.

So T
q−1

λ
(x −Tλz)= y −T

q

λ
z 6= 0.

Hence. x −Tλz 6∈Nq−1.

But x −Tλz ∈Nq because T
q

λ
(x −Tλz)=Tλy −Tλy = 0.

This proves that Nq−1 6=Nq.

Hence, Nq−1 is a proper subspace of Nq. So q ≤ r .
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Spectrum of a Compact Operator on a Banach Space

Theorem (Eigenvalues)

Let T :X →X be a compact linear operator on a Banach space X . Then
every spectral value λ 6= 0 of T (if it exists) is an eigenvalue of T .

If N (Tλ) 6= {0}, then λ is an eigenvalue of T .

Suppose that N (Tλ)= {0}, where λ 6= 0.

Then Tλx = 0 implies that x = 0 and T−1
λ

:Tλ(X )→X exists.

Since {0} =N (I )=N (T 0
λ
)=N (Tλ), we have r = 0.

Hence, X =T 0
λ
(X )=Tλ(X ).

It follows that Tλ is bijective.

Hence, since X is complete, by the Bounded Inverse Theorem, T−1
λ

is
bounded.

Therefore, by definition, λ ∈ ρ(T ).
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The Value λ= 0

Suppose T :X →X is a compact operator on a complex normed space
X .

If X is finite dimensional, then T has representations by matrices.

It is clear that 0 may or may not belong to σ(T )=σp(T ).

I.e., if dimX <∞, we may have 0 6∈σ(T ). Then 0 ∈ ρ(T ).

However, if dimX =∞, then we must have 0 ∈σ(T ).

In addition, all three cases

0 ∈σp(T ), 0 ∈σc(T ), 0 ∈σr (T )

are possible.
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Direct Sum Representation (Existence)

Theorem (Direct Sum)

Let T :X →X be a compact linear operator on a normed space X , and let
λ 6= 0. Let r be the smallest integer (depending on λ), such that

N (T r
λ)=N (T r+1

λ ) and T r
λ(X )=T r+1

λ (X ).

Then X can be represented in the form

X =N (T r
λ)⊕T r

λ(X ).

Consider any x ∈X . We must show that x has a unique representation
of the form

x = y +z , y ∈Nr , z ∈Rr ,

where Nn =N (T n
λ
) and Rn =T n

λ
(X ).
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Direct Sum Representation (Existence Cont’d)

Let z =T r
λ
x . Then z ∈Rr .

Now Rr =R2r by the previous theorem. Hence z ∈R2r .

So z =T 2r
λ
x1, for some x1 ∈X .

Let x0 =T r
λ
x1. Then x0 ∈Rr .

Moreover,
T r
λx0 =T 2r

λ x1 = z =T r
λx .

This shows that T r
λ
(x −x0)= 0. Hence, x −x0 ∈Nr .

So we get
x = (x −x0)+x0,

with x −x0 ∈Nr and x0 ∈Rr .
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Direct Sum Representation (Uniqueness)

We show uniqueness.

Assume, in addition to x = (x −x0)+x0,

there exists x̃0 ∈Rr , with x − x̃0 ∈Nr .

Let v0 = x0− x̃0.

Then v0 ∈Rr , since Rr is a vector space.

Hence v0 =T r
λ
v , for some v ∈X .

Also
v0 = x0− x̃0 = (x − x̃0)− (x −x0).

Hence, v0 ∈Nr and T r
λ
v0 = 0.

Together, T 2r
λ
v =T r

λ
v0 = 0. Thus, v ∈N2r =Nr .

This implies that v0 =T r
λ
v = 0. That is, v0 = x0− x̃0 = 0, or x0 = x̃0.

Therefore, the representation is unique, and the sum Nr +Rr is
indeed direct.
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Subsection 5

Operator Equations Involving Compact Linear Operators
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Fredholm Equations

Let X be a normed space.

Let T :X →X be a compact linear operator on X .

Let T× :X ′ →X ′ be the adjoint operator of T .

We will be dealing with the equations:

(1) Tx −λx = y , with y ∈X given and λ 6= 0;
(2) The corresponding homogeneous equation Tx −λx = 0, λ 6= 0;
(3) Equations similar to (1) involving the adjoint operator T×f −λf = g ,

where g ∈X ′ is given and λ 6= 0;
(4) The corresponding homogeneous equation T×f −λf = 0, λ 6= 0.

λ∈C is arbitrary and fixed, not zero, and we shall study the existence
of solutions x and f , respectively.
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On the Solvability of (1)

Theorem (Solutions of (1))

Let T :X →X be a compact linear operator on a normed space X and let
λ 6= 0. Then Tx −λx = y has a solution x if and only if y is such that
f (y)= 0, for all f ∈X ′ satisfying T×f −λf = 0. Hence, if the latter has only
the trivial solution f = 0, then the former is solvable for any given y ∈X .

(a) Suppose Tx −λx = y has a solution x = x0, i.e., y =Tx0−λx0 =Tλx0.
Let f be any solution of T×f −λf = 0. Then we have

f (y)= f (Tx0−λx0)= f (Tx0)−λf (x0).

Now, by the definition of the adjoint, f (Tx0)= (T×f )(x0).

Hence, by the adjoint equation, f (y)= (T×f )(x0)−λf (x0)= 0.
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On the Solvability of (1) Converse

(b) Conversely, assume that y in Tx −λx = y satisfies f (y)= 0, for all
f ∈X ′, such that T×f −λf = 0.

Suppose Tx −λx = y has no solution.

Then y =Tλx , for no x . Hence y 6∈Tλ(X ). We know Tλ(X ) is closed.

So the distance δ from y to Tλ(X ) is positive.

By a previous lemma, there exists an f̃ ∈X ′, such that:
f̃ (y)= δ;
f̃ (z)= 0, for every z ∈Tλ(X ).

Since z ∈Tλ(X ), we have z =Tλx , for some x ∈X . So we get

0= f̃ (z)= f̃ (Tλx)= f̃ (Tx)−λf̃ (x)= (T× f̃ )(x)−λf̃ (x).

This holds for every x ∈X , since z ∈Tλ(X ) was arbitrary.

Hence, f̃ is a solution of T×f −λf = 0.

By assumption, it satisfies f̃ (y)= 0. This contradicts f̃ (y)=δ> 0.

Consequently, Tx −λx = y must have a solution.

The second statement of the theorem follows from the first.
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Normal Solvability

Let A :X →X be a bounded linear operator on a normed space X .

Let A× be the adjoint operator of A.

Consider the equation

Ax = y , y given.

Suppose that it has a solution x ∈X if and only if y satisfies f (y)= 0,
for every solution f ∈X ′ of the equation

A×f = 0.

Then Ax = y is said to be normally solvable.

The preceding theorem shows that Tx −λx = y , with a compact linear
operator T and λ 6= 0, is normally solvable.
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Bound for Certain Solutions of (1)

Lemma (Bound for Certain Solutions of (1))

Let T :X →X be a compact linear operator on a normed space and let
λ 6= 0 be given. Then there exists a real number c > 0, which is independent
of y in Tx −λx = y , and such that, for every y for which the equation has a
solution, at least one of these solutions, call it x = x̃ , satisfies

‖x̃‖≤ c‖y‖, where y =Tλx̃ .

We subdivide the proof into two steps:

(a) We show that if the equation with a given y has solutions at all, the
set of these solutions contains a solution of minimum norm, call it x̃ .

(b) We show that there is a c > 0, such that the norm inequality holds for a
solution x̃ of minimum norm corresponding to any y =Tλx̃ , for which
the equation has solutions.
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Bound for Certain Solutions of (1) Part (a)

(a) Let x0 be a solution of Tx −λx = y .

If x is any other solution, then z = x −x0 satisfies Tx −λx = 0.

Hence, every solution can be written x = x0+z , where z ∈N (Tλ).

Conversely, for every z ∈N (Tλ), the sum x0+z is a solution.

For a fixed x0, the norm of x depends on z , p(z)= ‖x0+z‖. Let

k = inf
z∈N (Tλ)

p(z).

By the definition of an infimum, N (Tλ) contains a sequence (zn),
such that

p(zn)= ‖x0+zn‖
n→∞
−→ k .

Since (p(zn)) converges, it is bounded. Moreover,

‖zn‖ = ‖(x0+zn)−x0‖ ≤ ‖x0+zn‖+‖x0‖= p(zn)+‖x0‖.

So (zn) is bounded.
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Bound for Certain Solutions of (1) Part (a) (Cont’d)

Since T is compact, (Tzn) has a convergent subsequence.

But zn ∈N (Tλ) means that Tλzn = 0.

I.e., Tzn =λzn, where λ 6= 0.

Hence, (zn) has a convergent subsequence, say, znj → z0.

Since N (Tλ) is closed, z0 ∈N (Tλ).

Since p is continuous, p(znj )→ p(z0).

We thus obtain
p(z0)= ‖x0+z0‖= k .

Thus, if Tx −λx = y , with a given y , has solutions, the set of these
solutions contains a solution x̃ = x0+z0 of minimum norm.
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Bound for Certain Solutions of (1) Part (b)

(b) We show there is a c > 0 (independent of y) such that ‖x̃‖ ≤ c‖y‖

holds for a solution x̃ of minimum norm corresponding to any y =Tλx̃

for which Tx −λx = y is solvable.

Suppose not. Then there is a sequence (yn), such that

‖x̃n‖

‖yn‖

n→∞
−→ ∞,

where x̃n is of minimum norm and satisfies Tλx̃n = yn.

Multiplication by an α shows that to αyn, there corresponds αx̃n as a
solution of minimum norm.

Thus, without loss of generality, we assume ‖x̃n‖ = 1.

Then ‖yn‖→ 0.

Now T is compact and (x̃n) is bounded.

So (Tx̃n) has a convergent subsequence, say, Tx̃nj → v0.

If, for convenience, we write v0 =λx̃0, then Tx̃nj → λx̃0.
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Bound for Certain Solutions of (1) Part (b) (Cont’d)

Since yn =Tλx̃n =Tx̃n−λx̃n, we have λx̃n =Tx̃n−yn.

Using this and ‖yn‖→ 0, and noting λ 6= 0,

x̃nj =
1

λ
(Tx̃nj −ynj )→

1

λ
(λx̃0−0)= x̃0.

Since T is continuous, Tx̃nj →Tx̃0.

Hence Tx̃0 =λx̃0.

Since Tλx̃n = yn, we see that x = x̃n− x̃0 satisfies Tλx = yn.

Since x̃n is of minimum norm,

‖x‖= ‖x̃n− x̃0‖ ≥ ‖x̃n‖ = 1.

This contradicts x̃nj → x̃0.

Hence, c = supy∈Tλ(X )
‖x̃‖
‖y‖ <∞, where y =Tλx̃ .
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Solutions of (3)

Theorem (Solutions of (3))

Let T :X →X be a compact linear operator on a normed space X and let
λ 6= 0. Then T×f −λf = g has a solution f if and only if g is such that
g(x)= 0, for all x ∈X , which satisfy Tx −λx = 0. Hence, if the latter has
only the trivial solution x = 0, then the former is solvable, for any g ∈X ′.

(a) Suppose T×f −λf = g has a solution f .

Let x be such that Tx −λx = 0.

Then we have

g(x)= (T×f )(x)−λf (x)= f (Tx −λx)= f (0)= 0.

(b) Conversely, suppose g satisfies g(x)= 0, for all x , with Tx −λx = 0.

We show that T×f −λf = g has a solution f .
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Solutions of (3) (Cont’d)

Consider any x ∈X and set y =Tλx . Then y ∈Tλ(X ).

We may define a functional f0 on Tλ(X ) by

f0(y)= f0(Tλx)= g(x).

This definition is unambiguous.
If Tλx1 =Tλx2, then Tλ(x1−x2)= 0.
So x1−x2 is a solution of Tx −λx = 0.
Thus, g(x1−x2)= 0 by assumption.

f0 is linear since Tλ and g are linear.

We show that f0 is bounded.

By the preceding lemma, for every y ∈Tλ(X ), at least one of the
corresponding x ’s satisfies ‖x‖ ≤ c‖y‖, where c does not depend on y .

Boundedness of f0 can now be seen from

|f0(y)| = |g(x)| ≤ ‖g‖‖x‖ ≤ c‖g‖‖y‖= c̃‖y‖,

where c̃ = c‖g‖.
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Solutions of (3) (Conclusion)

By the Hahn-Banach Theorem, the functional f0 has an extension f on
X , which is a bounded linear functional defined on all of X .

By the definition of f0,

f (Tx −λx)= f (Tλx)= f0(Tλx)= g(x).

On the left, by the definition of adjoint, we have for all x ∈X ,

f (Tx −λx)= f (Tx)−λf (x)= (T×f )(x)−λf (x).

Together with the preceding formula this shows that f is a solution of

T×f −λf = g .

The second statement follows readily from the first one.
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Subsection 6

Further Theorems of Fredholm Type
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Review of Assumptions

Let X be a normed space.

We revisit compact linear operators T :X →X on X .

Let T× be the adjoint operator of T and λ 6= 0 be fixed.

We present further results about the solvability of the following
operator equations:

(1) Tx −λx = y , y given;
(2) Tx −λx = 0;
(3) T×f −λf = g , g given;
(4) T×f −λf = 0.
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Solutions of Tx −λx = y

Theorem (Solutions of (1))

Let T :X →X be a compact linear operator on a normed space X and let
λ 6= 0. Then:

(a) Tx −λx = y has a solution x , for every y ∈X , if and only if the
homogeneous equation Tx −λx = 0 has only the trivial solution x = 0.
In this case the solution is unique, and Tλ has a bounded inverse.

(b) T×f −λf = g has a solution f , for every g ∈X ′, if and only if
T×f −λf = 0 has only the trivial solution f = 0. In this case the
solution is unique.

(a) Suppose that for every y ∈X , Tx −λx = y is solvable.

Assume that x = 0 is not the only solution of Tx −λx = 0.

Then Tx −λx = 0 has a solution x1 6= 0.

For any y , Tx −λx = y is solvable. So Tλx = x1 has a solution x = x2.

For the same reason, there is an x3, such that Tλx3 = x2, etc.
George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 78 / 105



Compact Linear Operators on Normed Spaces Further Theorems of Fredholm Type

Solutions of Tx −λx = y (Cont’d)

By substitution, we thus have, for every k = 2,3, . . .,

0 6= x1 =Tλx2 =T 2
λx3 = ·· · =T k−1

λ xk .

Moreover, 0=Tλx1 =T k
λ
xk .

Hence, xk ∈N (T k
λ
) but xk 6∈N (T k−1

λ
).

This means that the null space N (T k−1
λ

) is a proper subspace of

N (T k
λ
), for all k .

But this contradicts a previous theorem.
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Solutions of Tx −λx = y (Converse)

Conversely, suppose that x = 0 is the only solution of Tx −λx = 0.

Then, by a preceding result, T×f −λf = g , with any g , is solvable.

We know that T× is compact.

So we can apply the first part of the proof to T× and conclude that
f = 0 must be the only solution of T×f −λf = 0.

Solvability of Tx −λx = y follows by a previous theorem.

Now note that the difference of two solutions of Tx −λx = y is a
solution of Tx −λx = 0. Clearly, such a unique solution x =T−1

λ
y is

the solution of minimum norm. Thus, the solution is unique.

By a previous lemma, boundedness of T−1
λ

follows:

‖x‖ = ‖T−1
λ y‖≤ c‖y‖.

(b) This is a consequence of (a) and the fact that T× is compact.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 80 / 105



Compact Linear Operators on Normed Spaces Further Theorems of Fredholm Type

The Biorthogonal System Lemma

Lemma (Biorthogonal System)

Given a linearly independent set {f1, . . . , fm} in the dual space X ′ of a
normed space X , there are elements z1, . . . ,zm in X , such that

fj(zk)= δjk =

{
0, if j 6= k

1, if j = k
, j ,k = 1, . . . ,m.

The order being immaterial, it suffices to prove that there exists a zm,
such that fm(zm)= 1, fj(zm)= 0, j = 1, . . . ,m−1.
If m= 1, by the linear independence, f1 6= 0.
So, f1(x0) 6= 0, for some x0. Set z1 =αx0, α=

1
f1(x0)

. Then f1(z1)= 1.

Let m> 1 and assume the lemma holds for m−1.
So X contains elements z1, . . . ,zm−1, such that

fk(zk)= 1, fn(zk)= 0, n 6= k , k ,n= 1, . . . ,m−1.
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The Biorthogonal System Lemma (Cont’d)

Consider the set M = {x ∈X : f1(x)= 0, . . . , fm−1(x)= 0}.

We show that M contains a z̃m, such that fm(z̃m)=β 6= 0.

This clearly yields the result, where zm =β−1z̃m.

Suppose, to the contrary, that fm(x)= 0, for all x ∈M.

We take any x ∈X and set

x̃ = x −
m−1∑

j=1

fj(x)zj .

Then, for k ≤m−1,

fk(x̃)= fk(x)−
m−1∑

j=1

fj(x)fk(zj)= fk(x)− fk (x)= 0.

This shows that x̃ ∈M.
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The Biorthogonal System Lemma (Conclusion)

So, by our assumption, fm(x̃)= 0.

By definition, we get

fm(x)= fm

(
x̃ +

m−1∑

j=1

fj(x)zj

)
= fm(x̃)+

m−1∑

j=1

fj(x)fm(zj)=
m−1∑

j=1

αj fj(x),

where αj = fm(zj). But x ∈X was arbitrary. So this is a representation
of fm as a linear combination of f1, . . . , fm−1. This contradicts the linear
independence of {f1, . . . , fm}.

Hence fm(x)= 0, for all x ∈M is impossible.

So M must contain a zm such that

fm(zm)= 1, fj(zm)= 0, j = 1, . . . ,m−1.
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Null Spaces of Tλ and T×

λ

Theorem (Null Spaces of Tλ and T×
λ

)

Let T :X →X be a compact linear operator on a normed space X , and let
λ 6= 0. Then, the equations Tx −λx = 0 and T×f −λf = 0 have the same
number of linearly independent solutions.

T and T× are compact.

So N (Tλ) and N (T×
λ
) are finite dimensional, say

dimN (Tλ)= n and dimN (T×
λ )=m.

We subdivide the proof into three parts:

(a) The case m= n= 0 and a preparation for m> 0,n> 0;
(b) The proof that n<m is impossible;
(c) The proof that n>m is impossible.
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Null Spaces of Tλ and T×

λ
Part (a)

(a) If n= 0, the only solution of Tx −λx = 0 is x = 0.

Then T×f −λf = g with any given g is solvable.

By a preceding result, this implies that f = 0 is the only solution of
T×f −λf = 0. Hence m= 0.

Similarly, from m= 0 it follows that n= 0.

Suppose m> 0 and n> 0.

Let {x1, . . . ,xn} be a basis for N (Tλ).

Clearly, x1 6∈Y1 = span{x2, . . . ,xn}.
By a previous lemma, there is a g̃1 ∈X

′, which is:
Zero everywhere on Y1;
g̃1(x1)= δ, where δ> 0 is the distance from x1 to Y1.

Hence g1 =δ−1g̃1 satisfies

g1(x1)= 1 and g1(x2)= 0, . . . ,g1(xn)= 0.
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Null Spaces of Tλ and T×

λ
Part (a) (Cont’d)

Similarly, there is a g2, such that

g2(x2)= 1 and g2(xj )= 0, for j 6= 2, etc..

Hence X ′ contains g1, . . . ,gn, such that

gk(xj )=δjk =

{
0, if j 6= k

1, if j = k
, j ,k = 1, . . . ,n.

Similarly, suppose {f1, . . . , fm} is a basis for N (T×
λ
).

Then by the lemma, there are elements z1, . . . ,zm of X , such that

fj(zk)=δjk , j ,k = 1, . . . ,m.
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Null Spaces of Tλ and T×

λ
Part (b) (Claim)

(b) We show that n<m is impossible. Let n<m.

Define S :X →X by

Sx =Tx +
n∑

j=1

gj(x)zj .

S is compact since, by a previous result, gj(x)zj represents a compact
linear operator, and a sum of compact operators is compact.

Claim: Sλx0 =Sx0−λx0 = 0 implies x0 = 0.

By the hypothesis, we have fk(Sλx0)= fk(0)= 0, for k = 1, , . . . ,m.

Hence, by the definition of S and of fj , we obtain

0 = fk(Sλx0)
= fk(Tλx0+

∑n
j=1

gj (x0)zj)

= fk(Tλx0)+
∑n

j=1
gj (x0)fk(zj)

= (T×
λ
fk)(x0)+gk (x0).
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Null Spaces of Tλ and T×

λ
Part (b) (Claim Cont’d)

Since fk ∈N (T×
λ
), we have T×

λ
fk = 0.

Hence, by the preceding equation, gk (x0)= 0, k = 1, . . . ,m.

This implies Sx0 =Tx0, by the definition of S .

So Tλx0 = Sλx0 = 0, by the hypothesis.

Hence x0 ∈N (Tλ).

Since {x1, . . . ,xn} is a basis for N (Tλ), x0 =
∑n

j=1
αjxj , where the αj ’s

are suitable scalars.

Applying gk , we have, for all k = 1, . . . ,n,

0= gk(x0)=
n∑

j=1

αjgk(xj)=αk .

Hence x0 = 0.
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Null Spaces of Tλ and T×

λ
Part (b) (Cont’d)

A preceding theorem now implies that Sλx = y , with any y , is solvable.

We choose y = zn+1.

Let x = v be a corresponding solution, i.e., Sλv = zn+1.

We calculate

1 = fn+1(zn+1)
= fn+1(Sλv)
= fn+1(Tλv +

∑n
j=1

gj (v)zj)

= (T×
λ
fn+1)(v)+

∑n
j=1

gj (v)fn+1(zj)

= (T×
λ
fn+1)(v).

Since we assumed n <m, we have n+1≤m and fn+1 ∈N (T×
λ
).

Hence T×
λ
fn+1 = 0. This contradicts the preceding equation.

Therefore, n<m is impossible.
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Null Spaces of Tλ and T×

λ
Part (c) (Claim)

(c) We show n>m is also impossible. Let n>m.

Define S̃ :X ′ →X ′ by

S̃f =T×f +
m∑

j=1

f (zj)gj .

By a previous theorem, T× is compact.

Moreover, S̃ is compact since f (zj)gj represents a compact linear
operator by a previous theorem.

Claim: S̃λf0 = S̃ f0−λf0 = 0 implies f0 = 0.

Using the hypothesis, the definition of S̃ , the definition of adjoint
operator and that of the gk ’s we obtain for each k = 1, . . . ,m,

0= (S̃λf0)(xk )= (T×
λ f0)(xk)+

m∑

j=1

f0(zj)gj (xk)= f0(Tλxk)+ f0(zk).
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Null Spaces of Tλ and T×

λ
Part (c) (Claim Cont’d)

Recall that {x1, . . . ,xn} is a basis for N (Tλ).

Now m< n implies that xk ∈N (Tλ), for k = 1, . . . ,m.

Hence, f0(Tλxk)= f0(0).

So f0(zk)= 0, k = 1, . . . ,m.

Consequently, S̃ f0 =T×f0, by the definition of S̃ .

By hypothesis, T×
λ
f0 = S̃λf0 = 0.

Hence, f0 ∈N (T×
λ
).

But {f1, . . . , fm} is a basis for N (T×
λ
).

So f0 =
∑m

j=1
βj fj , where the βj ’s are suitable scalars.

Thus, for each k = 1, . . . ,m,

0= f0(zk)=
m∑

j=1

βj fj(zk)=βk .

Hence f0 = 0.
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Null Spaces of Tλ and T×

λ
Part (c) (Cont’d)

A preceding theorem now implies that S̃λf = g , for any g , is solvable.

We choose g = gm+1.

Let f = h be a corresponding solution, i.e., S̃λh = gm+1.

Using the definition of the gk ’s and that of S̃ , we obtain

1 = gm+1(xm+1)

= (S̃λh)(xm+1)
= (T×

λ
h)(xm+1)+

∑m
j=1

h(zj)gj(xm+1)

= (T×
λ
h)(xm+1)

= h(Tλ(xm+1)).

The assumption m< n implies m+1≤ n.

So xm+1 ∈N (Tλ). Hence, h(Tλxm+1)= h(0)= 0.

This contradicts the previous equation and shows that m< n is
impossible.
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The Eigenvalue Theorem

Theorem (Eigenvalues)

Let T :X →X be a compact linear operator on a normed space X . Then,
if T has nonzero spectral values, every one of them must be an eigenvalue
of T .

If the resolvent Rλ =T−1
λ

does not exist, λ ∈σp(T ) by definition.

Let λ 6= 0 and assume that Rλ =T−1
λ

exists.

Then Tλx = 0 implies x = 0.

This means that Tx −λx = 0 has only the trivial solution.

By a preceding theorem, Tx −λx = y , with any y , is solvable.

That is, Rλ is defined on all of X and is bounded.

Hence, λ ∈ ρ(T ).
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Subsection 7

Fredholm Alternative

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 94 / 105



Compact Linear Operators on Normed Spaces Fredholm Alternative

Fredholm Alternative

Definition (Fredholm Alternative)

A bounded linear operator A :X →X on a normed space X is said to
satisfy the Fredholm alternative if A is such that either (I) or (II) holds:

(I) The nonhomogeneous equations Ax = y , A×f = g (A× :X ′ →X ′ the
adjoint operator of A) have solutions x and f , respectively, for every
given y ∈X and g ∈X ′, the solutions being unique.
The corresponding homogeneous equations Ax = 0, A×f = 0 have only
the trivial solutions x = 0 and f = 0, respectively.

(II) The homogeneous equations Ax = 0, A×f = 0 have the same number
of linearly independent solutions x1, . . . ,xn and f1, . . . , fn, n≥ 1,
respectively.
The nonhomogeneous equations Ax = y , A×f = g are not solvable for
all y and g , respectively; they have a solution if and only if y and g

are such that fk(y)= 0, g(xk)= 0, k = 1, . . . ,n, respectively.
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The Fredholm Alternative Theorem

Summarizing the results of the preceding two sections:

Theorem (Fredholm Alternative)

Let T :X →X be a compact linear operator on a normed space X , and let
λ 6= 0. Then Tλ =T −λI satisfies the Fredholm alternative.

In applications, instead of showing the existence of a solution directly,
it is often simpler to prove that the homogeneous equation has only
the trivial solution.

Riesz’s theory of compact linear operators was suggested by
Fredholm’s theory of integral equations of the second kind

x(s)−µ

∫b

a
k(s ,t)x(t)dt = ỹ(s)

In fact Riesz’s theory generalizes Fredholm’s results, which predate the
development of the theory of Hilbert and Banach spaces.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 96 / 105



Compact Linear Operators on Normed Spaces Fredholm Alternative

Fredholm Alternative for Integral Equations

Consider again the integral equation

x(s)−µ

∫b

a
k(s ,t)x(t)dt = ỹ(s).

Set µ=
1
λ and ỹ(s)=−

y (s)
λ , where λ 6= 0.

Then

x(s)−
1

λ

∫b

a
k(s ,t)x(t)dt =−

1

λ
y(s).

This gives ∫b

a
k(s ,t)x(t)dt −λx(s)= y(s).

So we get
Tx −λx = y , λ 6= 0,

with T defined by (Tx)(s)=
∫b
a k(s ,t)x(t)dt.
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Fredholm Alternative for Integral Equations (Cont’d)

We obtained
Tx −λx = y , λ 6= 0,

with T defined by

(Tx)(s)=

∫b

a
k(s ,t)x(t)dt .

Now, the general theory applied to this T gives

Theorem (Fredholm Alternative for Integral Equations)

If k in is such that T :X →X is a compact linear operator on a normed
space X , then the Fredholm alternative holds for Tλ. Thus, one of the two
alternatives hold:

The integral equation has a unique solution for all y ∈X ;

The homogeneous equation corresponding to the integral equation has
finitely many linearly independent nontrivial solutions x (i.e., x 6= 0).
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Alternative (I): Neumann Series

Suppose that T in Tx −λx = y is compact.

Suppose λ is in the resolvent set ρ(T ) of T .

Then the resolvent
Rλ(T )= (T −λI )−1

exists, is defined on all of X and is bounded.

So, for every y ∈X , we get the unique solution of Tx −λx = y

x =Rλ(T )y .

Since Rλ(T ) is linear, we get Rλ(T )0= 0.

This implies that the homogeneous equation Tx −λx = 0 has only the
trivial solution x = 0.

Hence, λ ∈ ρ(T ) yields Case (I) of the Fredholm alternative.
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Alternative (I): Neumann Series (Cont’d)

Let |λ| > ‖T‖.

Assume X is a complex Banach space.

Then we have λ ∈ ρ(T ).

Furthermore,

Rλ(T )=−
1

λ

(
I +

1

λ
T +

1

λ2
T 2

+·· ·

)
.

Consequently, for the solution x =Rλ(T )y , we have the representation

x =−
1

λ

(
y +

1

λ
Ty +

1

λ2
T 2y +·· ·

)
.

This series is called a Neumann series.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 100 / 105



Compact Linear Operators on Normed Spaces Fredholm Alternative

Alternative (II)

Case (II) of the Fredholm alternative is obtained if we take a nonzero
λ∈σ(T ) (if such a λ exists), where σ(T ) is the spectrum of T .

A previous theorem implies that λ is an eigenvalue.

The dimension of the corresponding eigenspace is finite.

It is equal to the dimension of the corresponding eigenspace of T×
λ

.
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Special Cases

Two spaces of particular interest are X = L2[a,b] and X =C [a,b].

To apply the theorem, one needs conditions for the kernel k which are
sufficient for T to be compact.

If X = L2[a,b], such a condition is that k be in L2(J ×J), where
J = [a,b]. (This is a measure theoretic result.)
In the case X =C [a,b], where [a,b] is compact, continuity of k will
imply compactness of T .
We will obtain this result by applying Ascoli’s Theorem.
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Equicontinuous Sequences and Ascoli’s Theorem

A sequence (xn) in C [a,b] is said to be equicontinuous if, for every
ε> 0, there is a δ> 0, depending only on ε, such that, for all xn and
all s1,s2 ∈ [a,b], satisfying |s1− s2| < δ, we have

|xn(s1)−xn(s2)| < ε.

Note that in equicontinuity:

δ does not depend on n;
Each xn is uniformly continuous on [a,b].

Ascoli’s Theorem (Equicontinuous Sequence)

A bounded equicontinuous sequence (xn) in C [a,b] has a subsequence
which converges (in the norm on C [a,b]).
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Compact Integral Operators

Theorem (Compact Integral Operator)

Let J = [a,b] be any compact interval and suppose that k is continuous on

J ×J. Then the operator T :X →X defined by (Tx)(s)=
∫b
a k(s ,t)x(t)dt,

where X =C [a,b], is a compact linear operator.

T is linear.

Boundedness of T follows from

‖Tx‖= max
s∈J

∣∣∣∣
∫b

a
k(s ,t)x(t)dt

∣∣∣∣≤ ‖x‖max
s∈J

∫b

a
|k(s ,t)|dt .

This is of the form ‖Tx‖≤ c̃‖x‖.

Let (xn) be any bounded sequence in X , say, ‖xn‖≤ c , for all n.

Let yn =Txn. Then ‖yn‖≤ ‖T‖‖xn‖. Hence, (yn) is also bounded.
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Compact Integral Operators (Cont’d)

Claim: (yn) is equicontinuous.

By hypothesis, the kernel k is continuous on J ×J.

Moreover, J ×J is compact. Thus, k is uniformly continuous on J ×J.

Hence, given ε> 0, there is a δ> 0, such that, for all t ∈ J and all
s1,s2 ∈ J, satisfying |s1− s2| < δ, we have |k(s1,t)−k(s2,t)| < ε

(b−a)c
.

Consequently, for s1,s2 as before and every n,

|yn(s1)−yn(s2)| =

∣∣∣∣
∫b

a
[k(s1,t)−k(s2,t)]xn(t)dt

∣∣∣∣

< (b−a) ε
(b−a)c c = ε.

This proves equicontinuity of (yn).

Ascoli’s Theorem implies that (yn) has a convergent subsequence.

Since (xn) was an arbitrary bounded sequence and yn =Txn,
compactness of T follows from a previous theorem.
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