Introduction to Spectral Theory of Linear Operators

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

January 2024 1 j

D Compact Linear Operators on Normed Spaces

- Compact Linear Operators on Normed Spaces
- Further Properties of Compact Linear Operators
- Spectral Properties of Compact Linear Operators
- Further Spectral Properties of Compact Linear Operators
- Operator Equations Involving Compact Linear Operators
- Further Theorems of Fredholm Type
- Fredholm Alternative

Subsection 1

Compact Linear Operators on Normed Spaces

Compact Linear Operators

Definition (Compact Linear Operator)

Let X, Y be normed spaces. An operator $T: X \rightarrow Y$ is called a **compact** linear operator (or completely continuous linear operator) if:

- T is linear;
- For every bounded subset M of X, the image T(M) is relatively compact, i.e., the closure T(M) is compact.
- The theory of compact linear operators emerged from the theory of integral equations of the form

$$(T - \lambda I)x(s) = y(s)$$
, where $Tx(s) = \int_a^b k(s, t)x(t)dt$.

In this equation:

- $\lambda \in \mathbb{C}$ is a parameter;
- y and the **kernel** k are given functions (subject to certain conditions);
- x is the unknown function.

The Continuity Lemma

Lemma (Continuity)

Let X and Y be normed spaces. Then:

- (a) Every compact linear operator $T: X \to Y$ is bounded, hence continuous.
- (b) If dim $X = \infty$, the identity operator $I: X \to X$ (which is continuous) is not compact.

(a) The unit sphere U = {x ∈ X : ||x|| = 1} is bounded. Since T is compact, T(U) is compact. By the Compactness Lemma, T(U) is bounded. So sup ||Tx|| < ∞. Hence, T is bounded and, so, continuous. ||x||=1
(b) Of course, the closed unit ball M = {x ∈ X : ||x|| ≤ 1} is bounded. If dimX = ∞, then M cannot be compact.

Thus, $I(M) = M = \overline{M}$ is not relatively compact.

Compactness Criterion

Theorem (Compactness Criterion)

Let X and Y be normed spaces and $T: X \to Y$ a linear operator. Then T is compact if and only if it maps every bounded sequence (x_n) in X onto a sequence (Tx_n) in Y which has a convergent subsequence.

If T is compact and (x_n) is bounded.
Then the closure of (Tx_n) in Y is compact.
Thus, (Tx_n) contains a convergent subsequence.
Conversely, assume that every bounded sequence (x_n) contains a subsequence (x_{nk}), such that (Tx_{nk}) converges in Y.

Compactness Criterion (Cont'd)

- Consider any bounded subset B⊆X.
 Let (y_n) be any sequence in T(B).
 Then y_n = Tx_n, for some x_n ∈ B.
 Moreover, (x_n) is bounded since B is bounded.
 By assumption, (Tx_n) contains a convergent subsequence.
 Hence, T(B) is compact because (y_n) in T(B) was arbitrary.
 By definition, this shows that T is compact.
- By the Compactness Criterion, if T₁, T₂: X → Y are two compact linear operators:
 - The sum $T_1 + T_2$ is compact;
 - The product αT_1 is compact, α any scalar.

So the compact linear operators from X into Y form a vector space.

Finite Dimensionality of Domain or Range

Theorem (Finite Dimensionality of Domain or Range)

Let X and Y be normed spaces and $T: X \to Y$ a linear operator. Then:

- a) If T is bounded and dim $T(X) < \infty$, the operator T is compact.
- (b) If dim $X < \infty$, the operator T is compact.
- (a) Let (x_n) be any bounded sequence in X. The inequality || Tx_n|| ≤ || T || ||x_n|| shows that (Tx_n) is bounded. Since dim T(X) < ∞, (Tx_n) is relatively compact. It follows that (Tx_n) has a convergent subsequence. By the Compactness Criterion, the operator T is compact.
 (b) Follows from (a) by noting that dimX < ∞ implies boundedness of T and dim T(X) ≤ dimX.
 - An operator T∈ B(X, Y), with dim T(X) < ∞, is often called an operator of finite rank.

Sequence of Compact Linear Operators

Theorem (Sequence of Compact Linear Operators)

Let (T_n) be a sequence of compact linear operators from a normed space X into a Banach space Y. If (T_n) is uniformly operator convergent, say, $||T_n - T|| \rightarrow 0$, then the limit operator T is compact.

- Using a "diagonal method", we show that, for any bounded sequence (x_m) in X, the image (Tx_m) has a convergent subsequence. The conclusion then follows by the Compactness Criterion.
 - Since T_1 is compact, (x_m) has a subsequence $(x_{1,m})$, such that $(T_1x_{1,m})$ is Cauchy;
 - Since T₂ is compact, (x_{1,m}) has a subsequence (x_{2,m}) such that (T₂x_{2,m}) is Cauchy.

The "diagonal sequence" $(y_m) = (x_{m,m})$ is a subsequence of (x_m) , such that, for every fixed *n*, the sequence $(T_n y_m)_{m \in \mathbb{N}}$ is Cauchy. (x_m) is bounded, say, $||x_m|| \le c$, for all *m*. Hence $||y_m|| \le c$, for all *m*.

. . .

Sequence of Compact Linear Operators (Cont'd)

• Let $\varepsilon > 0$. Since $T_m \rightarrow T$, there is an n = p, such that

$$\|T - T_p\| < \frac{\varepsilon}{3c}$$

Since $(T_p y_m)_{m \in \mathbb{N}}$ is Cauchy, there is an N, such that

$$||T_p y_j - T_p y_k|| < \frac{\varepsilon}{3}$$
, for all $j, k > N$.

Hence, we obtain for j, k > N,

$$\begin{aligned} \|Ty_j - Ty_k\| &\leq \|Ty_j - T_p y_j\| + \|T_p y_j - T_p y_k\| + \|T_p y_k - Ty_k\| \\ &\leq \|T - T_p\| \|y_j\| + \frac{\varepsilon}{3} + \|T_p - T\| \|y_k\| \\ &< \frac{\varepsilon}{3c} c + \frac{\varepsilon}{3} + \frac{\varepsilon}{3c} c = \varepsilon. \end{aligned}$$

This shows that (Ty_m) is Cauchy. Since Y is complete, it converges. But (y_m) is a subsequence of the arbitrary bounded sequence (x_m) . So, by the Compactness Criterion, T is compact.

Necessity of Uniform Operator Convergence

The preceding theorem becomes false if we replace uniform operator convergence by strong operator convergence || T_nx − T_x || → 0.
 Consider T_n: ℓ² → ℓ² defined, for all x = (ξ_i) ∈ ℓ², by

$$T_n x = (\xi_1, \ldots, \xi_n, 0, 0, \ldots).$$

Since T_n is linear and bounded, T_n is compact. Clearly, for all $x = (\xi_j) \in \ell^2$,

$$T_n x \to x = lx.$$

However, I is not compact, since dim $\ell^2 = \infty$.

January 2024

Example

Use the theorem to prove compactness of T: ℓ² → ℓ² defined by y = (η_j) = Tx, where η_j = ξ_j/j, for j = 1,2,....
 T is linear. If x = (ξ_j) ∈ ℓ², then y = (η_j) ∈ ℓ². Let T_n: ℓ² → ℓ² be defined by

$$T_n x = \left(\xi_1, \frac{\xi_3}{2}, \frac{\xi_3}{3}, \dots, \frac{\xi_n}{n}, 0, 0, \dots\right).$$

 T_n is linear and bounded, and is compact. Furthermore,

$$\begin{split} \| \big(\, T - T_n \big) x \|^2 &= \sum_{j=n+1}^{\infty} |\eta_j|^2 = \sum_{j=n+1}^{\infty} \frac{1}{j^2} |\xi_j|^2 \\ &\leq \frac{1}{(n+1)^2} \sum_{j=n+1}^{\infty} |\xi_j|^2 \leq \frac{\|x\|^2}{(n+1)^2}. \end{split}$$

Taking the supremum over all x of norm 1, we get $||T - T_n|| \le \frac{1}{n+1}$. Hence, $T_n \to T$. So T is compact by the theorem.

The Weak Convergence Theorem

Theorem (Weak Convergence)

Let X and Y be normed spaces and $T: X \to Y$ a compact linear operator. Suppose that (x_n) in X is weakly convergent, say, $x_n \stackrel{\text{w}}{\to} x$. Then (Tx_n) is strongly convergent in Y and has the limit y = Tx.

• We write
$$y_n = Tx_n$$
 and $y = Tx$.
Claim: $y_n \stackrel{w}{\rightarrow} y$.

Let g be any bounded linear functional on Y. We define a functional f on X by setting f(z) = g(Tz), for all $z \in X$. f is linear. f is bounded. Since T is compact, it is bounded. Moreover,

 $|f(z)| = |g(Tz)| \le ||g|| ||Tz|| \le ||g|| ||T|| ||z||.$

By definition, $x_n \xrightarrow{w} x$ implies $f(x_n) \rightarrow f(x)$. Hence by definition, $g(Tx_n) \rightarrow g(Tx)$. I.e., $g(y_n) \rightarrow g(y)$.

George Voutsadakis (LSSU)

The Weak Convergence Theorem (Cont'd)

Claim: $y_n \rightarrow y$.

Assume this does not hold.

Then (y_n) has a subsequence (y_{n_k}) , such that, for some $\eta > 0$,

 $\|y_{n_k}-y\|\geq \eta.$

Since (x_n) is weakly convergent, (x_n) is bounded. So (x_{n_k}) is also bounded. Compactness of T implies that (Tx_{n_k}) has a convergent subsequence, say, (\tilde{y}_j) . Let $\tilde{y}_j \rightarrow \tilde{y}$. A fortiori, $\tilde{y}_j \stackrel{w}{\rightarrow} \tilde{y}$. Hence, $\tilde{y} = y$. Consequently, $\|\tilde{y}_j - y\| \rightarrow 0$. But $\|\tilde{y}_j - y\| \ge \eta > 0$, a contradiction.

Subsection 2

Further Properties of Compact Linear Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

Total Boundedness

Definition (ε -net, Total Boundedness)

Let B be a subset of a metric space X and let $\varepsilon > 0$ be given.

- A set M_ε ⊆ X is called an ε-net for B if, for every point z ∈ B, there is a point of M_ε at a distance from z less than ε.
- The set *B* is said to be **totally bounded** if, for every $\varepsilon > 0$, there is a *finite* ε -net $M_{\varepsilon} \subseteq X$ for *B*, where "finite" means that M_{ε} is a finite set (that is, consists of finitely many points).
- Consequently, total boundedness of B means that:
 For every given ε > 0, the set B is contained in the union of finitely many open balls of radius ε.

The Total Boundedness Lemma

Lemma (Total Boundedness)

Let B be a subset of a metric space X. Then:

- (a) If B is relatively compact, B is totally bounded.
- (b) If B is totally bounded and X is complete, B is relatively compact.
- (c) If B is totally bounded, for every $\varepsilon > 0$ it has a finite ε -net $M_{\varepsilon} \subseteq B$.
- d) If B is totally bounded, B is separable.
- (a) Assume that B is relatively compact.
 We show that, for any e₀ > 0, there exists a finite e₀-net for B.
 If B = Ø, then Ø is an e₀-net for B.
 Suppose B ≠ Ø. Pick any x₁ ∈ B.
 If d(x₁, z) < e₀, for all z ∈ B, then {x₁} is an e₀-net for B.
 Otherwise, let x₂ ∈ B be such that d(x₁, x₂) ≥ e₀.
 If, for all z ∈ B, d(x_j, z) < e₀, j = 1 or 2, then {x₁, x₂} is an e₀-net for B.

The Total Boundedness Lemma Part (a) (Cont'd)

- Otherwise, let $z = x_3 \in B$ be a point not satisfying the inequality.
 - If, for all $z \in B$, $d(x_j, z) < \varepsilon_0$, j = 1, 2 or 3, then $\{x_1, x_2, x_3\}$ is an ε_0 -net for *B*. Otherwise we continue by selecting an $x_4 \in B$, etc.
 - We assert the existence of a positive integer n, such that the set $\{x_1, \ldots, x_n\}$ obtained after n such steps is an ε_0 -net for B.
 - If there were no such *n*, our construction would yield a sequence (x_j) satisfying $d(x_j, x_k) \ge \varepsilon_0$, for $j \ne k$.
 - Obviously, (x_j) could not have a subsequence which is Cauchy.
 - Hence, (x_i) could not have a subsequence which converges in X.
 - Since, by construction, (x_j) lies in B, this contradicts the relative compactness of B.
 - Hence, there must be a finite ε_0 -net for B.
 - Since $\varepsilon_0 > 0$ was arbitrary, *B* is totally bounded.

The Total Boundedness Lemma Part (b)

- (b) Let B be totally bounded and X complete.
 - Let (x_n) be an arbitrary sequence in B.

We show that (x_n) has a subsequence which converges in X.

By assumption, *B* has a finite ε -net for $\varepsilon = 1$.

Hence, B is contained in the union of finitely many open balls of radius 1.

From these balls we can pick a ball B_1 which contains infinitely many terms of (x_n) (counting repetitions).

Let $(x_{1,n})$ be the subsequence of (x_n) which lies in B_1 .

Similarly, by assumption, *B* is also contained in the union of finitely many balls of radius $\varepsilon = \frac{1}{2}$.

From these balls, we can pick a ball B_2 which contains a subsequence $(x_{2,n})$ of the subsequence $(x_{1,n})$.

Inductively, choose $\varepsilon = \frac{1}{3}, \frac{1}{4}, \dots$ and set $y_n = x_{n,n}$.

The Total Boundedness Lemma Part (b) (Cont'd)

- Now, for every given $\varepsilon > 0$, there is an N (depending on ε), such that all y_n with n > N lie in a ball of radius ε .
 - Hence (y_n) is Cauchy.
 - Since X is complete, it converges in X, say, $y_n \rightarrow y \in X$.
 - Also, $y_n \in B$ implies $y \in \overline{B}$.
 - By the definition of the closure, for every sequence (z_n) in \overline{B} , there is a sequence (x_n) in B which satisfies $d(x_n, z_n) \leq \frac{1}{n}$, for every n.

Since (x_n) is in B, it has a subsequence which converges in \overline{B} , as we have just shown.

Hence, since $d(x_n, z_n) \leq \frac{1}{n}$, (z_n) also has a subsequence which converges in \overline{B} .

So \overline{B} is compact and B is relatively compact.

The Total Boundedness Lemma Part (c)

(c) If B is totally bounded, for every $\varepsilon > 0$, it has a finite ε -net $M_{\varepsilon} \subseteq B$. The case $B = \phi$ is obvious.

Let $B \neq \emptyset$. By assumption, for given $\varepsilon > 0$, there is a finite ε_1 -net $M_{\varepsilon_1} \subseteq X$ for B, where $\varepsilon_1 = \frac{\varepsilon}{2}$. Hence B is contained in the union of finitely many balls of radius ε_1 with the elements of M_{ε_1} as centers.

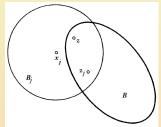
Let
$$B_1, \ldots, B_n$$
 be those balls which inter-
sect B , and let x_1, \ldots, x_n be their centers.
We select a point $z_j \in B \cap B_j$.
We claim that

$$M_{\varepsilon} = \{z_1, \ldots, z_n\} \subseteq B$$

is an ε -net for B.

For every $z \in B$, there is a B_i containing z. Moreover,

$$d\bigl(z,z_j\bigr) \leq d\bigl(z,x_j\bigr) + d\bigl(x_j,z_j\bigr) < \varepsilon_1 + \varepsilon_1 = \varepsilon.$$



The Total Boundedness Lemma Part (d)

(d) If B is totally bounded, B is separable.

Suppose *B* is totally bounded.

Then, by Part (c), the set *B* contains a finite ε -net $M_{1/n}$ for itself, where $\varepsilon = \varepsilon_n = \frac{1}{n}$, n = 1, 2, ...

The union M of all these nets is countable.

```
Moreover, M is dense in B.
```

In fact, for any given $\varepsilon > 0$, there is an *n*, such that $\frac{1}{n} < \varepsilon$.

Hence, for any $z \in B$, there is an $a \in M_{1/n} \subseteq M$, such that $d(z,a) < \varepsilon$. This proves that B is separable.

Total Boundedness and Boundedness

- Total boundedness implies boundedness.
- The converse does not generally hold. Consider the metric space ℓ^2 .
 - Let U be the closed unit ball

$$U = \{x : ||x|| \le 1\} \subseteq \ell^2.$$

- *U* is bounded.
- U is not totally bounded.

 ² is infinite dimensional and complete.
 So U is not compact.
 Hence, it is not totally bounded.

Separability of Range

Theorem (Separability of Range)

The range $\mathscr{R}(T)$ of a compact linear operator $T: X \to Y$ is separable, where X and Y are normed spaces.

• Consider the ball $B_n = B(0; n) \subseteq X$. Since T is compact, the image $C_n = T(B_n)$ is relatively compact. By Parts (a) and (d) of the Lemma, C_n is separable. The norm of any $x \in X$ is finite. So, for any x, there exists n sufficiently large, such that ||x|| < n. Hence, $x \in B_n$. Consequently, $X = \bigcup_{n=1}^{\infty} B_n$ and $T(X) = \bigcup_{n=1}^{\infty} T(B_n) = \bigcup_{n=1}^{\infty} C_n$. Since C_n is separable, it has a countable dense subset D_n . Moreover, the union $D = \bigcup_{n=1}^{\infty} D_n$ is countable. But $T(X) = \bigcup_{n=1}^{\infty} C_n$. So D is dense in the range $\mathscr{R}(T) = T(X)$.

Compact Extension

Theorem (Compact Extension)

A compact linear operator $T: X \to Y$ from a normed space X into a Banach space Y has a compact linear extension $\tilde{T}: \hat{X} \to Y$, where \hat{X} is the completion of X.

We may regard X as a subspace of X̂.
Since T is bounded, it has a bounded linear extension T̃: X̂ → Y.
We show that compactness of T implies T̃ is also compact.
Let (x̂_n) be an arbitrary bounded sequence in X̂.
We show that (T̃ x̂_n) has a convergent subsequence.
X is dense in X̂.
So there is a sequence (x_n) in X, such that x̂_n - x_n → 0.
Clearly, (x_n) is bounded, too.

Compact Extension (Cont'd)

 Since T is compact, (Tx_n) has a convergent subsequence (Tx_{nk}). Suppose Tx_{nk} → y₀ ∈ Y. Now x̂_n - x_n → 0 implies x̂_{nk} - x_{nk} → 0. Since T̂ is linear and bounded, it is continuous. Thus,

$$\widetilde{T}\widehat{x}_{n_k}-Tx_{n_k}=\widetilde{T}\big(\widehat{x}_{n_k}-x_{n_k}\big)\to \widetilde{T}0=0.$$

Since $Tx_{n_k} \to y_0 \in Y$, $\tilde{T}\hat{x}_{n_k} \to y_0$. We showed that the arbitrary bounded sequence (\hat{x}_n) has a subsequence (\hat{x}_{n_k}) , such that $(\tilde{T}\hat{x}_{n_k})$ converges. So \tilde{T} is compact.

The Adjoint Operator Theorem

• The adjoint operator of a compact linear operator is itself compact.

Theorem (Adjoint Operator)

Let $T: X \to Y$ be a linear operator. If T is compact, so is its adjoint operator $T^{\times}: Y' \to X'$, where X and Y are normed spaces and X' and Y' the dual spaces of X and Y.

Let B be a subset of Y' which is bounded, say ||g|| ≤ c, for all g ∈ B.
 We show that the image T[×](B) ⊆ X' is totally bounded.
 Since X' is complete, by Part (b) of the Total Boundedness Lemma, it will then follow that T[×](B) is relatively compact.

The Adjoint Operator Theorem (Cont'd)

We must show, for any fixed ε₀ > 0, T[×](B) has a finite ε₀-net. Since T is compact, the image T(U) of the unit ball U = {x ∈ X : ||x|| ≤ 1} is relatively compact. Hence T(U) is totally bounded. Thus, there is a finite ε₁-net M ⊆ T(U) for T(U), where ε₁ = ε₀/4c. This means that U contains points x₁,...,x_n, such that, for each x ∈ U, there exists some j, such that ||Tx - Tx_j|| < ε₀/4c. We define a linear operator A: Y' → ℝⁿ by

$$Ag = (g(Tx_1), g(Tx_2), \dots, g(Tx_n)).$$

g is bounded by assumption.

T is bounded by the Continuity Lemma. Hence, A is compact by the Finite Dimensionality Lemma.

Since B is bounded, A(B) is relatively compact.

Hence, A(B) is totally bounded.

The Adjoint Operator Theorem (Cont'd)

• Thus, A(B) contains a finite ε_2 -net $\{Ag_1, \dots, Ag_m\}$ for itself, where $\varepsilon_2 = \frac{\varepsilon_0}{4}$. This means that, for each $g \in B$, there exists k, such that

$$\|Ag-Ag_k\|_0<\frac{\varepsilon_0}{4},$$

where $\|\cdot\|_0$ is the norm on \mathbb{R}^n .

We show that $\{T^{\times}g_1, \dots, T^{\times}g_m\}$ is the desired ε_0 -net for $T^{\times}(B)$. Since $||Ag - Ag_k||_0 < \frac{\varepsilon_0}{4}$, for all j and all $g \in B$, there is a k, such that

$$|g(Tx_j)-g_k(Tx_j)|^2 \leq \sum_{j=1}^n |g(Tx_j)-g_k(Tx_j)|^2 = ||A(g-g_k)||_0^2 < (\frac{\varepsilon_0}{4})^2.$$

Let $x \in U$ be arbitrary. Then, there is a j, for which $||Tx - Tx_j|| < \frac{\varepsilon_0}{4c}$. Let $g \in B$. Then, there is a k, such that

$$\|Ag - Ag_k\|_0 < \frac{\varepsilon_0}{4}$$
 and $|g(Tx_j) - g_k(Tx_j)|^2 < (\frac{\varepsilon_0}{4})^2$.

The Adjoint Operator Theorem (Conclusion)

Thus,

$$\begin{split} g(Tx) - g_k(Tx)| &\leq |g(Tx) - g(Tx_j)| + |g(Tx_j) - g_k(Tx_j)| \\ &+ |g_k(Tx_j) - g_k(Tx)| \\ &< \|g\| \|Tx - Tx_j\| + \frac{\varepsilon_0}{4} + \|g_k\| \|Tx_j - Tx\| \\ &\leq c\frac{\varepsilon_0}{4c} + \frac{\varepsilon_0}{4} + c\frac{\varepsilon_0}{4c} < \varepsilon_0. \end{split}$$

Since this holds for every $x \in U$ and since by the definition of T^{\times} we have $g(Tx) = (T^{\times}g)(x)$, etc., we finally obtain

$$\|T^{\times}g - T^{\times}g_{k}\| = \sup_{\|x\|=1} |(T^{\times}(g - g_{k}))(x)|$$

=
$$\sup_{\|x\|=1} |g(Tx) - g_{k}(Tx)| < \varepsilon_{0}.$$

This shows that $\{T^{\times}g_1, \ldots, T^{\times}g_m\}$ is an ε_0 -net for $T^{\times}(B)$. Since $\varepsilon_0 > 0$ was arbitrary, $T^{\times}(B)$ is totally bounded. Hence, by the Total Boundedness Lemma, it is relatively compact. Since *B* was any bounded subset of *Y'*, we get compactness of T^{\times} .

Subsection 3

Spectral Properties of Compact Linear Operators

The Eigenvalues Theorem

Theorem (Eigenvalues)

The set of eigenvalues of a compact linear operator $T: X \to X$ on a normed space X is countable (perhaps finite or even empty), and the only possible point of accumulation is $\lambda = 0$.

It suffices to show, for all real k > 0, the set of all λ ∈ σ_p(T), such that |λ| ≥ k is finite. Suppose not for some k₀ > 0. Then there is a sequence (λ_n) of infinitely many distinct eigenvalues, such that |λ_n| ≥ k₀. Also Tx_n = λ_nx_n, for some x_n ≠ 0. The set of all the x_n's is linearly independent. Let M_n = span{x₁,...,x_n}. Then, every x ∈ M_n has a unique representation

$$x = \alpha_1 x_1 + \dots + \alpha_n x_n.$$

The Eigenvalues Theorem (Cont'd)

• Apply $T - \lambda_n I$ to get

$$(T - \lambda_n I)x = \alpha_1 (T - \lambda_n I)x_1 + \dots + \alpha_n (T - \lambda_n I)x_n.$$

Use $Tx_j = \lambda_j x_j$ to get

$$(T - \lambda_n I) x = \alpha_1 (\lambda_1 - \lambda_n) x_1 + \dots + \alpha_{n-1} (\lambda_{n-1} - \lambda_n) x_{n-1}.$$

Note that x_n no longer occurs.

So
$$(T - \lambda_n I) x \in M_{n-1}$$
, for all $x \in M_n$.

The M_n 's are closed.

By Riesz's Lemma, there exists a sequence (y_n) , such that:

•
$$y_n \in M_n$$
;
• $||y_n|| = 1$;
• $||y_n - x|| \ge \frac{1}{2}$, for all $x \in M_{n-1}$.

The Eigenvalues Theorem (Cont'd)

We show that

$$||Ty_n - Ty_m|| \ge \frac{1}{2}k_0, \quad n > m.$$

So (Ty_n) has no convergent subsequence because $k_0 > 0$. This contradicts the compactness of T since (y_n) is bounded. By adding and subtracting a term we can write $Ty_n - Ty_m = \lambda_n y_n - \tilde{x}$, where $\tilde{x} = \lambda_n y_n - Ty_n + Ty_m$. Let m < n. We show that $\tilde{x} \in M_{n-1}$. Since $m \le n-1$, we have

$$y_m \in M_m \subseteq M_{n-1} = \operatorname{span}\{x_1, \dots, x_{n-1}\}.$$

Since $Tx_j = \lambda_j x_j$, $Ty_m \in M_{n-1}$. Since $(T - \lambda_n I) x \in M_{n-1}$, $\lambda_n y_n - Ty_n = -(T - \lambda_n I) y_n \in M_{n-1}$.

The Eigenvalues Theorem (Conclusion)

• We have
$$Ty_m \in M_{n-1}$$
 and $\lambda_n y_n - Ty_n \in M_{n-1}$.
Together, $\tilde{x} = \lambda_n y_n - Ty_n + Ty_m \in M_{n-1}$.
Thus, also $x = \lambda_n^{-1} \tilde{x} \in M_{n-1}$.
Hence, since $|\lambda_n| \ge k_0$,

$$\|\lambda_n y_n - \widetilde{x}\| = |\lambda_n| \|y_n - x\| \ge \frac{1}{2} |\lambda_n| \ge \frac{1}{2} k_0.$$

We conclude $||Ty_n - Ty_m|| \ge \frac{1}{2}k_0$.

Hence the assumption that there are infinitely many eigenvalues satisfying $\|\lambda_n\| \ge k_0$, for some $k_0 > 0$ must be false.

 It follows that, if a compact linear operator on a normed space has infinitely many eigenvalues, we can arrange these eigenvalues in a sequence converging to zero.

Compactness of Product

Lemma (Compactness of Product)

Let $T: X \to X$ be a compact linear operator and $S: X \to X$ a bounded linear operator on a normed space X. Then TS and ST are compact.

• Let $B \subseteq X$ be any bounded set.

Since S is a bounded operator, S(B) is a bounded set.

Since T is compact, the set TS(B) = T(S(B)) is relatively compact.

Hence TS is a compact linear operator.

We prove that ST is also compact.

Let (x_n) be any bounded sequence in X.

By a previous result, (Tx_n) has a convergent subsequence (Tx_{n_k}) .

Thus, since S is bounded, (STx_n) converges.

Hence, ST is compact.

Null Space Theorem

Theorem (Null Space)

Let $T: X \to X$ be a compact linear operator on a normed space X. Then, for every $\lambda \neq 0$, the null space $\mathcal{N}(T_{\lambda})$ of $T_{\lambda} = T - \lambda I$ is finite dimensional.

• We know that, if the closed unit ball in a normed space X is compact, then the space is finite dimensional.

So we show that the closed unit ball M in $\mathcal{N}(T_{\lambda})$ is compact. Let (x_n) be in M. Then (x_n) is bounded $(||x_n|| \le 1)$. By a previous result, (Tx_n) has a convergent subsequence (Tx_n) . Now $x_n \in M \subseteq \mathcal{N}(T_{\lambda})$ implies $T_{\lambda}x_n = Tx_n - \lambda x_n = 0$. So, since $\lambda \ne 0$, $x_n = \lambda^{-1}Tx_n$. Consequently, $(x_{n_k}) = (\lambda^{-1}Tx_{n_k})$ also converges. The limit is in M, since M is closed. Hence M is compact because (x_n) was arbitrary in M. This proves dim $\mathcal{N}(T_{\lambda}) < \infty$.

Null Spaces Corollary

Corollary (Null Spaces)

Let $T: X \to X$ be a compact linear operator on a normed space X. Then, for every $\lambda \neq 0$, dim $\mathcal{N}(T_{\lambda}^{n}) < \infty$, n = 1, 2, ..., and

$$\{0\} = \mathcal{N}(T_{\lambda}^{0}) \subseteq \mathcal{N}(T_{\lambda}) \subseteq \mathcal{N}(T_{\lambda}^{2}) \subseteq \cdots$$

• Since T_{λ} is linear, it maps 0 onto 0. Hence, $T_{\lambda}^{n}x = 0$ implies $T_{\lambda}^{n+1}x = 0$. This yields the second conclusion.

Null Spaces Corollary (Cont'd)

We prove, next, dim 𝒩(Tⁿ_λ) < ∞.
 By the binomial theorem,

$$\begin{array}{lll} & n & = & (T - \lambda I)^n \\ & = & \sum_{k=0}^n \binom{n}{k} T^k (-\lambda)^{n-k} \\ & = & (-\lambda)^n I + T \sum_{k=1}^n \binom{n}{k} T^{k-1} (-\lambda)^{n-k}. \end{array}$$

This can be written

$$T_{\lambda}^{n}=W-\mu I,$$

with:

• $\mu = -(-\lambda)^n$;

• W = TS = ST, where S denotes the sum on the right.

T is compact. Since T is bounded, S is bounded, by a previous result. Hence, W is compact by a previous lemma. Now we obtain the result by applying the preceding theorem.

January 2024 39 / 10

The Range Theorem

• Recall that for a bounded linear operator, the null space is always closed but the range need not be closed.

Theorem (Range)

Let $T: X \to X$ be a compact linear operator on a normed space X. Then, for every $\lambda \neq 0$, the range of $T_{\lambda} = T - \lambda I$ is closed.

- We assume that the range $T_{\lambda}(X)$ is not closed. We derive a contradiction by proceeding as follows:
 - (a) We consider a y in the closure of T_λ(X) but not in T_λ(X). We let (T_λx_n) be a sequence converging to y. We show that x_n ∉ N(T_λ) but N(T_λ) contains a sequence (z_n), such that ||x_n-z_n|| < 2δ_n, where δ_n is the distance from x_n to N(T_λ).
 (b) We show that a_n → ∞, where a_n = ||x_n-z_n||.
 - (c) We obtain the anticipated contradiction by considering the sequence (w_n) , where $w_n = a_n^{-1}(x_n z_n)$.

The Range Theorem Part (a)

(a) Suppose that T_λ(X) is not closed. Then there is a y ∈ T_λ(X), y ∉ T_λ(X) and a sequence (x_n) in X, such that y_n = T_λx_n → y. Since T_λ(X) is a vector space, 0 ∈ T_λ(X). Since y ∉ T_λ(X), y ≠ 0. This implies y_n ≠ 0 and x_n ∉ N(T_λ), for all sufficiently large n. Without loss of generality we may assume that this holds for all n. Since N(T_λ) is closed, the distance δ_n from x_n to N(T_λ) is positive,

$$\delta_n = \inf_{z \in \mathcal{N}(T_\lambda)} \|x_n - z\| > 0.$$

By the definition of an infimum, there is a sequence (z_n) in $\mathcal{N}(T_{\lambda})$, such that

$$a_n = \|x_n - z_n\| < 2\delta_n.$$

The Range Theorem Part (b)

(b) We show that a_n = ||x_n - z_n|| ^{n→∞}→ ∞. Suppose this does not hold. Then (x_n - z_n) has a bounded subsequence. Since T is compact, (T(x_n - z_n)) has a convergent subsequence. From T_λ = T - λI and λ ≠ 0, we have I = λ⁻¹(T - T_λ). Since z_n ∈ N(T_λ), we have T_λz_n = 0. So we get

$$x_n-z_n=\frac{1}{\lambda}(T-T_{\lambda})(x_n-z_n)=\frac{1}{\lambda}[T(x_n-z_n)-T_{\lambda}x_n].$$

 $(T(x_n - z_n))$ has a convergent subsequence and $(T_\lambda x_n)$ converges. Hence, $(x_n - z_n)$ has a convergent subsequence, say, $x_{n_k} - z_{n_k} \rightarrow v$. Since T is compact, T is continuous. Thus, so is T_λ . Hence, by a preceding theorem, $T_\lambda(x_{n_k} - z_{n_k}) \rightarrow T_\lambda v$. Since $z_n \in \mathcal{N}(T_\lambda)$, $T_\lambda z_{n_k} = 0$. So, since $y_n = T_\lambda x_n \rightarrow y$, we have $T_\lambda(x_{n_k} - z_{n_k}) = T_\lambda x_{n_k} \rightarrow y$. Hence, $T_\lambda v = y$. Thus $y \in T_\lambda(X)$. This contradicts $y \notin T_\lambda(X)$.

The Range Theorem Part (c)

(c) In Part (b) it was shown that $a_n = ||x_n - z_n||$ is divergent. Set $w_n = \frac{1}{a_n}(x_n - z_n)$. Then $||w_n|| = 1$. Since $a_n \to \infty$, whereas $T_{\lambda}z_n = 0$ and $(T_{\lambda}x_n)$ converges, we get

$$T_{\lambda}w_n = \frac{1}{a_n} T_{\lambda} x_n \to 0.$$

Using $I = \lambda^{-1}(T - T_{\lambda})$, we obtain $w_n = \frac{1}{\lambda}(Tw_n - T_{\lambda}w_n)$. Now T is compact and (w_n) is bounded. So (Tw_n) has a convergent subsequence. Furthermore, $(T_{\lambda}w_n)$ converges. So (w_n) has a convergent subsequence, say $w_{n_j} \rightarrow w$. A comparison with $T_{\lambda}w_n \rightarrow 0$ implies that $T_{\lambda}w = 0$. Hence, $w \in \mathcal{N}(T_{\lambda})$. Since $z_n \in \mathcal{N}(T_{\lambda})$, also $u_n = z_n + a_n w \in \mathcal{N}(T_{\lambda})$.

The Range Theorem Part (c) (Cont'd)

• We showed that $u_n \in \mathcal{N}(T_{\lambda})$.

Hence, for the distance from x_n to u_n , we must have $||x_n - u_n|| \ge \delta_n$. Now recall that:

•
$$a_n < 2\delta_n;$$

• $w_n = \frac{1}{a_n}(x_n - z_n);$
• $u_n = z_n + a_n w.$

So we get

$$\delta_n \leq \|x_n - z_n - a_n w\| = \|a_n w_n - a_n w\|$$

= $a_n \|w_n - w\| < 2\delta_n \|w_n - w\|.$

Dividing by $2\delta_n > 0$, we have $\frac{1}{2} < ||w_n - w||$. This contradicts $w_{n_i} \rightarrow w$.

January 2024

The Ranges Corollary

Coronary (Ranges)

Under the assumptions in the theorem, the range of T_{λ}^{n} is closed for every $n = 0, 1, 2, \dots$ Furthermore,

$$X = T^0_{\lambda}(X) \supseteq T_{\lambda}(X) \supseteq T^2_{\lambda}(X) \supseteq \cdots.$$

- Note that W in the proof of the Null Space Theorem is compact.
 So the first statement follows from the Range Theorem.
 The second statement follows by induction.
 - We have

$$T^0_{\lambda}(X) = I(X) = X \supseteq T_{\lambda}(X).$$

• Assume
$$T_{\lambda}^{n-1}(X) \supseteq T_{\lambda}^{n}(X)$$
.
Applying T_{λ} , we get $T_{\lambda}^{n}(X) \supseteq T_{\lambda}^{n+1}(X)$.

Subsection 4

Further Spectral Properties of Compact Linear Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

January 2024

46 / 105

Compact Linear Operators: Null Spaces and Ranges

- For now, concerning a compact linear operator *T* on a normed space X and λ ≠ 0, we know the following facts:
 - The null spaces $\mathcal{N}(T^n_{\lambda})$, n = 1, 2, ..., are finite dimensional and satisfy

$$\mathcal{N}(T_{\lambda}^{n}) \subseteq \mathcal{N}(T_{\lambda}^{n+1});$$

• The ranges $T^n_{\lambda}(X)$ are closed and satisfy

$$T_{\lambda}^{n}(X) \supseteq T_{\lambda}^{n+1}(X).$$

Null Spaces Lemma

Lemma (Null Spaces)

Let $T: X \to X$ be a compact linear operator on a normed space X, and let $\lambda \neq 0$. Then there exists a smallest integer r (depending on λ) such that from n = r on, the null spaces $\mathcal{N}(T^n_{\lambda})$ are all equal, and if r > 0, the inclusions $\mathcal{N}(T^0_{\lambda}) \subseteq \mathcal{N}(T_{\lambda}) \subseteq \cdots \subseteq \mathcal{N}(T^r_{\lambda})$ are all proper.

• Let us write $\mathcal{N}_n = \mathcal{N}(T_{\lambda}^n)$, for simplicity.

The idea of the proof is as follows.

- (a) We assume that $\mathcal{N}_m = \mathcal{N}_{m+1}$, for no *m* and derive a contradiction, using Riesz's Lemma.
- (b) We show that $\mathcal{N}_m = \mathcal{N}_{m+1}$ implies $\mathcal{N}_n = \mathcal{N}_{n+1}$, for all n > m.

Null Spaces Lemma Part (a)

- (a) We know that N_m ⊆ N_{m+1}. Suppose that N_m = N_{m+1}, for no m. Then N_n is a proper subspace of N_{n+1}, for every n.
 Since these null spaces are closed, Riesz's Lemma implies the existence of a sequence (y_n), such that:
 - $y_n \in \mathcal{N}_n;$
 - $||y_n|| = 1;$
 - $||y_n x|| \ge \frac{1}{2}$, for all $x \in \mathcal{N}_{n-1}$.

We show that

$$||Ty_n - Ty_m|| \ge \frac{1}{2}|\lambda|, \quad m < n.$$

Then (Ty_n) has no convergent subsequence because $|\lambda| > 0$. This contradicts the compactness of T since (y_n) is bounded.

Null Spaces Lemma Part (a) (Cont'd)

• From
$$T_{\lambda} = T - \lambda I$$
, we have:
• $T = T_{\lambda} + \lambda I$;
• $Ty_n - Ty_m = \lambda y_n - \tilde{x}$, where $\tilde{x} = T_{\lambda}y_m + \lambda y_m - T_{\lambda}y_n$.
Let $m < n$. We show that $\tilde{x} \in \mathcal{N}_{n-1}$.
Since $m \le n-1$, we clearly have $\lambda y_m \in \mathcal{N}_m \subseteq \mathcal{N}_{n-1}$.
Also $y_m \in \mathcal{N}_m$ implies $0 = T_{\lambda}^m y_m = T_{\lambda}^{m-1}(T_{\lambda}y_m)$.
That is, $T_{\lambda}y_m \in \mathcal{N}_{m-1} \subseteq \mathcal{N}_{n-1}$.
Similarly, $y_n \in \mathcal{N}_n$ implies $T_{\lambda}y_n \in \mathcal{N}_{n-1}$.
Together, $\tilde{x} \in \mathcal{N}_{n-1}$. Also $x = \lambda^{-1} \tilde{x} \in \mathcal{N}_{n-1}$.
Hence

$$\|Ty_n - Ty_m\| = \|\lambda y_n - \widetilde{x}\| = |\lambda| \|y_n - x\| \ge \frac{1}{2} |\lambda|.$$

Our assumption that $\mathcal{N}_m = \mathcal{N}_{m+1}$, for no *m* is false. We must have $\mathcal{N}_m = \mathcal{N}_{m+1}$, for some *m*.

Null Spaces Lemma Part (b)

(b) We prove that $\mathcal{N}_m = \mathcal{N}_{m+1}$ implies $\mathcal{N}_n = \mathcal{N}_{n+1}$, for all n > m. Suppose this does not hold. Then \mathcal{N}_n is a proper subspace of \mathcal{N}_{n+1} , for some n > m. Consider an $x \in \mathcal{N}_{n+1} - \mathcal{N}_n$. By definition, $T_{\lambda}^{n+1}x = 0$, but $T_{\lambda}^{n}x \neq 0$. Since n > m, we have n - m > 0. Set $z = T_{\lambda}^{n-m} x$. Then: • $T_{1}^{m+1}z = T_{1}^{n+1}x = 0;$ • $T_1^m z = T_1^n x \neq 0.$ Hence, $z \in \mathcal{N}_{m+1}$, but $z \notin \mathcal{N}_m$. So \mathcal{N}_m is a proper subspace of \mathcal{N}_{m+1} . This contradicts $\mathcal{N}_m = \mathcal{N}_{m+1}$. The first statement is proved, where r is the smallest n, such that

 $\mathcal{N}_n = \mathcal{N}_{n+1}$. So, if r > 0, the inclusions in the lemma are proper.

The Ranges Lemma

Lemma (Ranges)

Let $T: X \to X$ be a compact linear operator on a normed space X, and let $\lambda \neq 0$. Then, there exists a smallest integer q (depending on λ) such that from n = q on, the ranges $T_{\lambda}^{n}(X)$ are all equal and, if q > 0, the inclusions $T_{\lambda}^{0}(X) \supseteq T_{\lambda}(X) \supseteq \cdots \supseteq T_{\lambda}^{q}(X)$ are all proper.

- We write R_n = Tⁿ_λ(X). Suppose that R_s = R_{s+1} for no s. Then R_{n+1} is a proper subspace of R_n, for every n. Since these ranges are closed, by Riesz's Lemma, there exists a sequence (x_n), such that:
 - $x_n \in \mathcal{R}_n$;
 - $||x_n|| = 1;$
 - $||x_n x|| \ge \frac{1}{2}$, for all $x \in \mathcal{R}_{n+1}$.

Let m < n. Since $T = T_{\lambda} + \lambda I$, we can write

$$Tx_m - Tx_n = \lambda x_m - \left(-T_\lambda x_m + T_\lambda x_n + \lambda x_n \right).$$

The Ranges Lemma (Cont'd)

- We obtained $Tx_m Tx_n = \lambda x_m (-T_\lambda x_m + T_\lambda x_n + \lambda x_n)$. On the right side:
 - $\lambda x_m \in \mathcal{R}_m;$
 - $T_{\lambda} x_m \in \mathcal{R}_{m+1}$, since $x_m \in \mathcal{R}_m$;
 - $T_{\lambda}x_n + \lambda x_n \in \mathcal{R}_n \subseteq \mathcal{R}_{m+1}$, since n > m.

Hence $Tx_m - Tx_n = \lambda(x_m - x)$, for all $x \in \mathcal{R}_{m+1}$.

Consequently, $||Tx_m - Tx_n|| = |\lambda| ||x_m - x|| \ge \frac{1}{2} |\lambda| > 0.$

Since (x_n) is bounded and T is compact, (Tx_n) has a convergent subsequence. This contradicts the preceding inequality.

So we have $\Re_s = \Re_{s+1}$, for some *s*.

Let q be the smallest s such that $\Re_s = \Re_{s+1}$.

Then, if q > 0, the inclusions stated in the lemma are proper. Furthermore, $\mathscr{R}_{q+1} = \mathscr{R}_q$ means that T_{λ} maps \mathscr{R}_q onto itself. Hence, repeated application of T_{λ} gives $\mathscr{R}_{n+1} = \mathscr{R}_n$, for every n > q.

Null Spaces and Ranges Theorem

Theorem (Null Spaces and Ranges)

Let $T: X \to X$ be a compact linear operator on a normed space X, and let $\lambda \neq 0$. Then there exists a smallest integer n = r (depending on λ), such that

$$\mathcal{N}(T_{\lambda}^{r}) = \mathcal{N}(T_{\lambda}^{r+1}) = \mathcal{N}(T_{\lambda}^{r+2}) = \cdots$$
$$T_{\lambda}^{r}(X) = T_{\lambda}^{r+1}(X) = T_{\lambda}^{r+2}(X) = \cdots$$

If r > 0, the following inclusions are proper:

 $\mathscr{N}(T^0_{\lambda}) \subseteq \mathscr{N}(T_{\lambda}) \subseteq \cdots \subseteq \mathscr{N}(T^r_{\lambda}) \text{ and } T^0_{\lambda}(X) \supseteq T_{\lambda}(X) \supseteq \cdots \supseteq T^r_{\lambda}(X).$

A previous lemma gives the conclusions for the kernels. The preceding lemma gives those for ranges with q instead of r. All we have to show is that q = r. Denoting, as before N_n = N(Tⁿ_λ) and R_n = Tⁿ_λ(X), we show:

(a) q≥r;
(b) r≤q.

Null Spaces and Ranges Theorem Part (a)

(a) We have $\mathscr{R}_{q+1} = \mathscr{R}_q$. This means that $T_{\lambda}(\mathscr{R}_q) = \mathscr{R}_q$. Hence, if $y \in \mathcal{R}_q$, $y = T_\lambda x$, for some $x \in \mathcal{R}_q$. Claim: $T_{\lambda}x = 0, x \in \mathcal{R}_{q}$ implies x = 0. Suppose not. Then $T_{\lambda}x_1 = 0$, for some nonzero $x_1 \in \mathcal{R}_q$. By hypothesis, $x_1 = T_{\lambda} x_2$, for some $x_2 \in \mathcal{R}_q$. Similarly, $x_2 = T_{\lambda} x_3$, for some $x_3 \in \mathcal{R}_q$, etc. For every *n*, we thus obtain by substitution: • $0 \neq x_1 = T_\lambda x_2 = \dots = T_1^{n-1} x_n;$ • $0 = T_{\lambda} x_1 = T_1^n x_n$. Hence, $x_n \notin \mathcal{N}_{n-1}$, but $x_n \in \mathcal{N}_n$. We have $\mathcal{N}_{n-1} \subseteq \mathcal{N}_n$. Our result shows that this inclusion is proper, for every n. This is a contradiction.

Null Spaces and Ranges Theorem Part (a) (Cont'd)

Recall that \$\mathcal{R}_{q+1} = \mathcal{R}_q\$.
 We prove that \$\mathcal{M}_{q+1} = \mathcal{M}_q\$.

Then $q \ge r$, since r is the smallest integer for which we have equality. We have $\mathcal{N}_{q+1} \supseteq \mathcal{N}_q$. We prove that $\mathcal{N}_{q+1} \subseteq \mathcal{N}_q$. Equivalently,

$$T_{\lambda}^{q+1}x = 0$$
 implies $T_{\lambda}^{q}x = 0$.

Suppose not. Then, for some x_0 ,

$$y = T_{\lambda}^{q} x_0 \neq 0$$
 but $T_{\lambda} y = T_{\lambda}^{q+1} x_0 = 0.$

Hence $y \in \Re_q$, $y \neq 0$, $T_{\lambda}y = 0$. This contradicts the Claim above.

Null Spaces and Ranges Theorem Part (b)

(b) We prove that $q \le r$. If q = 0, this holds. Let $q \ge 1$. We prove $q \leq r$ by showing that \mathcal{N}_{q-1} is a proper subspace of \mathcal{N}_q . Then $q \leq r$, since r is the smallest integer n, such that $\mathcal{N}_n = \mathcal{N}_{n+1}$. By the definition of q, the inclusion $\mathcal{R}_q \subseteq \mathcal{R}_{q-1}$ is proper. Let $y \in \mathscr{R}_{q-1} - \mathscr{R}_q$. Then $y \in \mathscr{R}_{q-1}$. So $y = T_1^{q-1} x$, for some x. Also $T_{\lambda}y \in \mathscr{R}_q = \mathscr{R}_{q+1}$ implies that $T_{\lambda}y = T_1^{q+1}z$, for some z. But $T_{\lambda}^{q} z \in \mathcal{R}_{q}$, whereas $y \notin \mathcal{R}_{q}$. So $T_{1}^{q-1}(x - T_{\lambda}z) = y - T_{1}^{q}z \neq 0.$ Hence. $x - T_{\lambda} z \notin \mathcal{N}_{q-1}$. But $x - T_{\lambda}z \in \mathcal{N}_q$ because $T_{\lambda}^q(x - T_{\lambda}z) = T_{\lambda}y - T_{\lambda}y = 0$. This proves that $\mathcal{N}_{q-1} \neq \mathcal{N}_q$. Hence, \mathcal{N}_{q-1} is a proper subspace of \mathcal{N}_q . So $q \leq r$.

Spectrum of a Compact Operator on a Banach Space

Theorem (Eigenvalues)

Let $T: X \to X$ be a compact linear operator on a Banach space X. Then every spectral value $\lambda \neq 0$ of T (if it exists) is an eigenvalue of T.

Hence, since X is complete, by the Bounded Inverse Theorem, T_{λ}^{-1} is bounded.

```
Therefore, by definition, \lambda \in \rho(T).
```

The Value $\lambda = 0$

- Suppose T: X → X is a compact operator on a complex normed space X.
- If X is finite dimensional, then T has representations by matrices.
 It is clear that 0 may or may not belong to σ(T) = σ_ρ(T).
 I.e., if dimX < ∞, we may have 0 ∉ σ(T). Then 0 ∈ ρ(T).
- However, if dim $X = \infty$, then we must have $0 \in \sigma(T)$. In addition, all three cases

$$0 \in \sigma_p(T), \quad 0 \in \sigma_c(T), \quad 0 \in \sigma_r(T)$$

are possible.

Theorem (Direct Sum)

Let $T: X \to X$ be a compact linear operator on a normed space X, and let $\lambda \neq 0$. Let r be the smallest integer (depending on λ), such that

$$\mathcal{N}(T_{\lambda}^{r}) = \mathcal{N}(T_{\lambda}^{r+1}) \text{ and } T_{\lambda}^{r}(X) = T_{\lambda}^{r+1}(X).$$

Then X can be represented in the form

$$X = \mathcal{N}(T_{\lambda}^{r}) \oplus T_{\lambda}^{r}(X).$$

• Consider any $x \in X$. We must show that x has a unique representation of the form

$$x = y + z$$
, $y \in \mathcal{N}_r$, $z \in \mathcal{R}_r$,

where $\mathcal{N}_n = \mathcal{N}(T_\lambda^n)$ and $\mathcal{R}_n = T_\lambda^n(X)$.

Direct Sum Representation (Existence Cont'd)

• Let
$$z = T_{\lambda}^{r}x$$
. Then $z \in \mathcal{R}_{r}$.
Now $\mathcal{R}_{r} = \mathcal{R}_{2r}$ by the previous theorem. Hence $z \in \mathcal{R}_{2r}$
So $z = T_{\lambda}^{2r}x_{1}$, for some $x_{1} \in X$.
Let $x_{0} = T_{\lambda}^{r}x_{1}$. Then $x_{0} \in \mathcal{R}_{r}$.
Moreover,

$$T_{\lambda}^r x_0 = T_{\lambda}^{2r} x_1 = z = T_{\lambda}^r x.$$

This shows that $T_{\lambda}^{r}(x-x_{0}) = 0$. Hence, $x - x_{0} \in \mathcal{N}_{r}$. So we get

$$x=(x-x_0)+x_0,$$

with $x - x_0 \in \mathcal{N}_r$ and $x_0 \in \mathcal{R}_r$.

Direct Sum Representation (Uniqueness)

• We show uniqueness.

Assume, in addition to $x = (x - x_0) + x_0$, there exists $\tilde{x}_0 \in \mathcal{R}_r$, with $x - \tilde{x}_0 \in \mathcal{N}_r$. Let $v_0 = x_0 - \tilde{x}_0$. Then $v_0 \in \mathcal{R}_r$, since \mathcal{R}_r is a vector space. Hence $v_0 = T_\lambda^r v$, for some $v \in X$. Also

$$v_0 = x_0 - \widetilde{x}_0 = (x - \widetilde{x}_0) - (x - x_0).$$

Hence, $v_0 \in \mathcal{N}_r$ and $T_\lambda^r v_0 = 0$. Together, $T_\lambda^{2r} v = T_\lambda^r v_0 = 0$. Thus, $v \in \mathcal{N}_{2r} = \mathcal{N}_r$. This implies that $v_0 = T_\lambda^r v = 0$. That is, $v_0 = x_0 - \tilde{x}_0 = 0$, or $x_0 = \tilde{x}_0$. Therefore, the representation is unique, and the sum $\mathcal{N}_r + \mathcal{R}_r$ is indeed direct.

Subsection 5

Operator Equations Involving Compact Linear Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

Fredholm Equations

- Let X be a normed space.
- Let $T: X \to X$ be a compact linear operator on X.
- Let $T^{\times}: X' \to X'$ be the adjoint operator of T.
- We will be dealing with the equations:
 - 1) $Tx \lambda x = y$, with $y \in X$ given and $\lambda \neq 0$;
 - 2) The corresponding homogeneous equation $Tx \lambda x = 0$, $\lambda \neq 0$;
 - 3) Equations similar to (1) involving the adjoint operator $T^*f \lambda f = g$, where $g \in X'$ is given and $\lambda \neq 0$;
 - (4) The corresponding homogeneous equation $T^*f \lambda f = 0$, $\lambda \neq 0$.
- λ ∈ C is arbitrary and fixed, not zero, and we shall study the existence of solutions x and f, respectively.

On the Solvability of (1)

Theorem (Solutions of (1))

Let $T: X \to X$ be a compact linear operator on a normed space X and let $\lambda \neq 0$. Then $Tx - \lambda x = y$ has a solution x if and only if y is such that f(y) = 0, for all $f \in X'$ satisfying $T^{\times}f - \lambda f = 0$. Hence, if the latter has only the trivial solution f = 0, then the former is solvable for any given $y \in X$.

(a) Suppose $Tx - \lambda x = y$ has a solution $x = x_0$, i.e., $y = Tx_0 - \lambda x_0 = T_\lambda x_0$. Let f be any solution of $T^*f - \lambda f = 0$. Then we have

$$f(y) = f(Tx_0 - \lambda x_0) = f(Tx_0) - \lambda f(x_0).$$

Now, by the definition of the adjoint, $f(Tx_0) = (T^{\times}f)(x_0)$. Hence, by the adjoint equation, $f(y) = (T^{\times}f)(x_0) - \lambda f(x_0) = 0$.

(b) Conversely, assume that y in $Tx - \lambda x = y$ satisfies f(y) = 0, for all $f \in X'$, such that $T^{\times}f - \lambda f = 0$. Suppose $Tx - \lambda x = y$ has no solution. Then $y = T_{\lambda}x$, for no x. Hence $y \notin T_{\lambda}(X)$. We know $T_{\lambda}(X)$ is closed. So the distance δ from y to $T_{\lambda}(X)$ is positive. By a previous lemma, there exists an $\tilde{f} \in X'$, such that: • $f(y) = \delta$; • $\tilde{f}(z) = 0$, for every $z \in T_{\lambda}(X)$. Since $z \in T_{\lambda}(X)$, we have $z = T_{\lambda}x$, for some $x \in X$. So we get $0 = \tilde{f}(z) = \tilde{f}(T_{\lambda}x) = \tilde{f}(Tx) - \lambda \tilde{f}(x) = (T^{\times}\tilde{f})(x) - \lambda \tilde{f}(x).$ This holds for every $x \in X$, since $z \in T_{\lambda}(X)$ was arbitrary. Hence, \tilde{f} is a solution of $T^{\times}f - \lambda f = 0$. By assumption, it satisfies $\tilde{f}(y) = 0$. This contradicts $\tilde{f}(y) = \delta > 0$. Consequently, $Tx - \lambda x = y$ must have a solution. The second statement of the theorem follows from the first.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

Normal Solvability

- Let $A: X \to X$ be a bounded linear operator on a normed space X.
- Let A^{\times} be the adjoint operator of A.
- Consider the equation

$$Ax = y$$
, y given.

 Suppose that it has a solution x ∈ X if and only if y satisfies f(y) = 0, for every solution f ∈ X' of the equation

$$A^{\times}f=0.$$

- Then Ax = y is said to be **normally solvable**.
- The preceding theorem shows that $Tx \lambda x = y$, with a compact linear operator T and $\lambda \neq 0$, is normally solvable.

Bound for Certain Solutions of (1)

Lemma (Bound for Certain Solutions of (1))

Let $T: X \to X$ be a compact linear operator on a normed space and let $\lambda \neq 0$ be given. Then there exists a real number c > 0, which is independent of y in $Tx - \lambda x = y$, and such that, for every y for which the equation has a solution, at least one of these solutions, call it $x = \tilde{x}$, satisfies

 $\|\widetilde{x}\| \le c \|y\|$, where $y = T_{\lambda}\widetilde{x}$.

• We subdivide the proof into two steps:

(a) We show that if the equation with a given y has solutions at all, the set of these solutions contains a solution of minimum norm, call it x̄.
(b) We show that there is a c > 0, such that the norm inequality holds for a solution x̄ of minimum norm corresponding to any y = T_λx̄, for which the equation has solutions.

Bound for Certain Solutions of (1) Part (a)

(a) Let x_0 be a solution of $Tx - \lambda x = y$. If x is any other solution, then $z = x - x_0$ satisfies $Tx - \lambda x = 0$. Hence, every solution can be written $x = x_0 + z$, where $z \in \mathcal{N}(T_{\lambda})$. Conversely, for every $z \in \mathcal{N}(T_{\lambda})$, the sum $x_0 + z$ is a solution. For a fixed x_0 , the norm of x depends on z, $p(z) = ||x_0 + z||$. Let

$$k = \inf_{z \in \mathcal{N}(T_{\lambda})} p(z).$$

By the definition of an infimum, $\mathcal{N}(T_{\lambda})$ contains a sequence (z_n) , such that

$$p(z_n) = \|x_0 + z_n\| \stackrel{n \to \infty}{\longrightarrow} k.$$

Since $(p(z_n))$ converges, it is bounded. Moreover,

$$||z_n|| = ||(x_0 + z_n) - x_0|| \le ||x_0 + z_n|| + ||x_0|| = p(z_n) + ||x_0||.$$

So (z_n) is bounded.

Bound for Certain Solutions of (1) Part (a) (Cont'd)

• Since T is compact, (Tz_n) has a convergent subsequence. But $z_n \in \mathcal{N}(T_\lambda)$ means that $T_\lambda z_n = 0$. I.e., $Tz_n = \lambda z_n$, where $\lambda \neq 0$. Hence, (z_n) has a convergent subsequence, say, $z_{n_j} \rightarrow z_0$. Since $\mathcal{N}(T_\lambda)$ is closed, $z_0 \in \mathcal{N}(T_\lambda)$. Since p is continuous, $p(z_{n_j}) \rightarrow p(z_0)$. We thus obtain

$$p(z_0) = ||x_0 + z_0|| = k.$$

Thus, if $Tx - \lambda x = y$, with a given y, has solutions, the set of these solutions contains a solution $\tilde{x} = x_0 + z_0$ of minimum norm.

Bound for Certain Solutions of (1) Part (b)

(b) We show there is a c > 0 (independent of y) such that $\|\tilde{x}\| \le c \|y\|$ holds for a solution \tilde{x} of minimum norm corresponding to any $y = T_{\lambda}\tilde{x}$ for which $Tx - \lambda x = y$ is solvable.

Suppose not. Then there is a sequence (y_n) , such that

$$\frac{\|\widetilde{x}_n\|}{\|y_n\|} \stackrel{n \to \infty}{\longrightarrow} \infty,$$

where \tilde{x}_n is of minimum norm and satisfies $T_{\lambda}\tilde{x}_n = y_n$.

Multiplication by an α shows that to αy_n , there corresponds $\alpha \tilde{x}_n$ as a solution of minimum norm.

Thus, without loss of generality, we assume $\|\widetilde{x}_n\| = 1$.

Then $||y_n|| \rightarrow 0$.

Now T is compact and (\tilde{x}_n) is bounded.

So $(T\tilde{x}_n)$ has a convergent subsequence, say, $T\tilde{x}_{n_i} \rightarrow v_0$.

If, for convenience, we write $v_0 = \lambda \widetilde{x}_0$, then $T \widetilde{x}_{n_i} \rightarrow \lambda \widetilde{x}_0$.

Bound for Certain Solutions of (1) Part (b) (Cont'd)

• Since $y_n = T_\lambda \widetilde{x}_n = T \widetilde{x}_n - \lambda \widetilde{x}_n$, we have $\lambda \widetilde{x}_n = T \widetilde{x}_n - y_n$. Using this and $||y_n|| \to 0$, and noting $\lambda \neq 0$,

$$\widetilde{x}_{n_j} = \frac{1}{\lambda} (T \widetilde{x}_{n_j} - y_{n_j}) \rightarrow \frac{1}{\lambda} (\lambda \widetilde{x}_0 - 0) = \widetilde{x}_0.$$

Since T is continuous, $T\widetilde{x}_{n_j} \to T\widetilde{x}_0$. Hence $T\widetilde{x}_0 = \lambda \widetilde{x}_0$. Since $T_\lambda \widetilde{x}_n = y_n$, we see that $x = \widetilde{x}_n - \widetilde{x}_0$ satisfies $T_\lambda x = y_n$. Since \widetilde{x}_n is of minimum norm,

$$\|x\| = \|\widetilde{x}_n - \widetilde{x}_0\| \ge \|\widetilde{x}_n\| = 1.$$

This contradicts $\widetilde{x}_{n_j} \to \widetilde{x}_0$. Hence, $c = \sup_{y \in T_{\lambda}(X)} \frac{\|\widetilde{x}\|}{\|y\|} < \infty$, where $y = T_{\lambda}\widetilde{x}$.

Solutions of (3)

Theorem (Solutions of (3))

Let $T: X \to X$ be a compact linear operator on a normed space X and let $\lambda \neq 0$. Then $T^*f - \lambda f = g$ has a solution f if and only if g is such that g(x) = 0, for all $x \in X$, which satisfy $Tx - \lambda x = 0$. Hence, if the latter has only the trivial solution x = 0, then the former is solvable, for any $g \in X'$.

(a) Suppose
$$T^{\times}f - \lambda f = g$$
 has a solution f .
Let x be such that $Tx - \lambda x = 0$.
Then we have

$$g(x) = (T^{\times}f)(x) - \lambda f(x) = f(Tx - \lambda x) = f(0) = 0.$$

(b) Conversely, suppose g satisfies g(x) = 0, for all x, with $Tx - \lambda x = 0$. We show that $T^*f - \lambda f = g$ has a solution f.

Solutions of (3) (Cont'd)

Consider any x ∈ X and set y = T_λx. Then y ∈ T_λ(X).
 We may define a functional f₀ on T_λ(X) by

 $f_0(y) = f_0(T_\lambda x) = g(x).$

This definition is unambiguous.

If $T_{\lambda}x_1 = T_{\lambda}x_2$, then $T_{\lambda}(x_1 - x_2) = 0$. So $x_1 - x_2$ is a solution of $Tx - \lambda x = 0$.

Thus, $g(x_1 - x_2) = 0$ by assumption.

 f_0 is linear since T_{λ} and g are linear.

We show that f_0 is bounded.

By the preceding lemma, for every $y \in T_{\lambda}(X)$, at least one of the corresponding x's satisfies $||x|| \le c ||y||$, where c does not depend on y. Boundedness of f_0 can now be seen from

 $|f_0(y)| = |g(x)| \le ||g|| ||x|| \le c ||g|| ||y|| = \tilde{c} ||y||,$

where $\tilde{c} = c \|g\|$.

Solutions of (3) (Conclusion)

By the Hahn-Banach Theorem, the functional f₀ has an extension f on X, which is a bounded linear functional defined on all of X.
 By the definition of f₀,

$$f(Tx - \lambda x) = f(T_{\lambda}x) = f_0(T_{\lambda}x) = g(x).$$

On the left, by the definition of adjoint, we have for all $x \in X$,

$$f(Tx - \lambda x) = f(Tx) - \lambda f(x) = (T^{\times}f)(x) - \lambda f(x).$$

Together with the preceding formula this shows that f is a solution of

$$T^{\times}f - \lambda f = g.$$

The second statement follows readily from the first one.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

Subsection 6

Further Theorems of Fredholm Type

Review of Assumptions

- Let X be a normed space.
- We revisit compact linear operators $T: X \to X$ on X.
- Let T^{\times} be the adjoint operator of T and $\lambda \neq 0$ be fixed.
- We present further results about the solvability of the following operator equations:

1)
$$Tx - \lambda x = y$$
, y given;

2)
$$Tx - \lambda x = 0;$$

3)
$$T^*f - \lambda f = g$$
, g given;

$$T^{\times}f - \lambda f = 0.$$

Solutions of $Tx - \lambda x = y$

Theorem (Solutions of (1))

Let $T: X \to X$ be a compact linear operator on a normed space X and let $\lambda \neq 0$. Then:

- (a) $Tx \lambda x = y$ has a solution x, for every $y \in X$, if and only if the homogeneous equation $Tx \lambda x = 0$ has only the trivial solution x = 0. In this case the solution is unique, and T_{λ} has a bounded inverse.
- (b) $T^{\times}f \lambda f = g$ has a solution f, for every $g \in X'$, if and only if $T^{\times}f \lambda f = 0$ has only the trivial solution f = 0. In this case the solution is unique.
- (a) Suppose that for every y ∈ X, Tx λx = y is solvable. Assume that x = 0 is not the only solution of Tx - λx = 0. Then Tx - λx = 0 has a solution x₁ ≠ 0. For any y, Tx - λx = y is solvable. So T_λx = x₁ has a solution x = x₂. For the same reason, there is an x₃, such that T_λx₃ = x₂, etc.

Solutions of $Tx - \lambda x = y$ (Cont'd)

• By substitution, we thus have, for every k = 2, 3, ...,

$$0 \neq x_1 = T_\lambda x_2 = T_\lambda^2 x_3 = \cdots = T_\lambda^{k-1} x_k.$$

Moreover, $0 = T_{\lambda}x_1 = T_{\lambda}^k x_k$. Hence, $x_k \in \mathcal{N}(T_{\lambda}^k)$ but $x_k \notin \mathcal{N}(T_{\lambda}^{k-1})$. This means that the null space $\mathcal{N}(T_{\lambda}^{k-1})$ is a proper subspace of $\mathcal{N}(T_{\lambda}^k)$, for all k. But this contradicts a previous theorem.

Solutions of $Tx - \lambda x = y$ (Converse)

- Conversely, suppose that x = 0 is the only solution of Tx − λx = 0. Then, by a preceding result, T[×]f − λf = g, with any g, is solvable. We know that T[×] is compact.
 - So we can apply the first part of the proof to T^{\times} and conclude that f = 0 must be the only solution of $T^{\times}f \lambda f = 0$.
 - Solvability of $Tx \lambda x = y$ follows by a previous theorem.

Now note that the difference of two solutions of $Tx - \lambda x = y$ is a solution of $Tx - \lambda x = 0$. Clearly, such a unique solution $x = T_{\lambda}^{-1}y$ is the solution of minimum norm. Thus, the solution is unique.

By a previous lemma, boundedness of T_{λ}^{-1} follows:

$$||x|| = ||T_{\lambda}^{-1}y|| \le c||y||.$$

(b) This is a consequence of (a) and the fact that T^{\times} is compact.

The Biorthogonal System Lemma

Lemma (Biorthogonal System)

Given a linearly independent set $\{f_1, \ldots, f_m\}$ in the dual space X' of a normed space X, there are elements z_1, \ldots, z_m in X, such that

$$f_j(z_k) = \delta_{jk} = \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{if } j = k \end{cases}, \quad j, k = 1, \dots, m.$$

• The order being immaterial, it suffices to prove that there exists a z_m , such that $f_m(z_m) = 1$, $f_j(z_m) = 0$, j = 1, ..., m-1. If m = 1, by the linear independence, $f_1 \neq 0$. So, $f_1(x_0) \neq 0$, for some x_0 . Set $z_1 = \alpha x_0$, $\alpha = \frac{1}{f_1(x_0)}$. Then $f_1(z_1) = 1$. Let m > 1 and assume the lemma holds for m-1. So X contains elements $z_1, ..., z_{m-1}$, such that

$$f_k(z_k) = 1, \quad f_n(z_k) = 0, \quad n \neq k, \quad k, n = 1, \dots, m-1.$$

The Biorthogonal System Lemma (Cont'd)

 Consider the set M = {x ∈ X : f₁(x) = 0,..., f_{m-1}(x) = 0}. We show that M contains a ž_m, such that f_m(ž_m) = β ≠ 0. This clearly yields the result, where z_m = β⁻¹ ž_m. Suppose, to the contrary, that f_m(x) = 0, for all x ∈ M. We take any x ∈ X and set

$$\widetilde{x} = x - \sum_{j=1}^{m-1} f_j(x) z_j.$$

Then, for $k \leq m-1$,

$$f_k(\tilde{x}) = f_k(x) - \sum_{j=1}^{m-1} f_j(x) f_k(z_j) = f_k(x) - f_k(x) = 0.$$

This shows that $\tilde{x} \in M$.

The Biorthogonal System Lemma (Conclusion)

• So, by our assumption, $f_m(\tilde{x}) = 0$. By definition, we get

$$f_m(x) = f_m\left(\tilde{x} + \sum_{j=1}^{m-1} f_j(x) z_j\right) = f_m(\tilde{x}) + \sum_{j=1}^{m-1} f_j(x) f_m(z_j) = \sum_{j=1}^{m-1} \alpha_j f_j(x),$$

where $\alpha_j = f_m(z_j)$. But $x \in X$ was arbitrary. So this is a representation of f_m as a linear combination of f_1, \ldots, f_{m-1} . This contradicts the linear independence of $\{f_1, \ldots, f_m\}$.

Hence $f_m(x) = 0$, for all $x \in M$ is impossible.

So M must contain a z_m such that

$$f_m(z_m) = 1, \quad f_j(z_m) = 0, \quad j = 1, \dots, m-1.$$

Null Spaces of \mathcal{T}_{λ} and $\mathcal{T}_{\lambda}^{\circ}$

Theorem (Null Spaces of T_{λ} and T_{λ}^{\times})

Let $T: X \to X$ be a compact linear operator on a normed space X, and let $\lambda \neq 0$. Then, the equations $Tx - \lambda x = 0$ and $T^{\times}f - \lambda f = 0$ have the same number of linearly independent solutions.

• T and T^{\times} are compact.

So $\mathcal{N}(\mathcal{T}_{\lambda})$ and $\mathcal{N}(\mathcal{T}_{\lambda}^{\times})$ are finite dimensional, say

dim $\mathcal{N}(T_{\lambda}) = n$ and dim $\mathcal{N}(T_{\lambda}^{\times}) = m$.

We subdivide the proof into three parts:

- a) The case m = n = 0 and a preparation for m > 0, n > 0;
- The proof that n < m is impossible;
- c) The proof that n > m is impossible.

Null Spaces of T_{λ} and T_{λ}^{\times} Part (a)

(a) If n = 0, the only solution of $Tx - \lambda x = 0$ is x = 0. Then $T^{\times}f - \lambda f = g$ with any given g is solvable. By a preceding result, this implies that f = 0 is the only solution of $T^{\times}f - \lambda f = 0$. Hence m = 0. Similarly, from m = 0 it follows that n = 0. Suppose m > 0 and n > 0. Let $\{x_1, \ldots, x_n\}$ be a basis for $\mathcal{N}(T_{\lambda})$. Clearly, $x_1 \notin Y_1 = \operatorname{span}\{x_2, \ldots, x_n\}$. By a previous lemma, there is a $\tilde{g}_1 \in X'$, which is: • Zero everywhere on Y_1 ; • $\tilde{g}_1(x_1) = \delta$, where $\delta > 0$ is the distance from x_1 to Y_1 . Hence $g_1 = \delta^{-1} \tilde{g}_1$ satisfies

$$g_1(x_1) = 1$$
 and $g_1(x_2) = 0, \dots, g_1(x_n) = 0.$

Null Spaces of T_{λ} and T_{λ}^{\times} Part (a) (Cont'd)

Similarly, there is a g₂, such that

$$g_2(x_2) = 1$$
 and $g_2(x_j) = 0$, for $j \neq 2$, etc..

Hence X' contains g_1, \ldots, g_n , such that

$$g_k(x_j) = \delta_{jk} = \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{if } j = k \end{cases}, \quad j, k = 1, \dots, n.$$

Similarly, suppose $\{f_1, \ldots, f_m\}$ is a basis for $\mathcal{N}(\mathcal{T}^{\times}_{\lambda})$. Then by the lemma, there are elements z_1, \ldots, z_m of X, such that

$$f_j(z_k) = \delta_{jk}, \quad j, k = 1, \dots, m.$$

George Voutsadakis (LSSU) Spectral Theory of Linear Operators Janu

Null Spaces of T_{λ} and T_{λ}^{\times} Part (b) (Claim)

(b) We show that n < m is impossible. Let n < m. Define $S: X \to X$ by

$$Sx = Tx + \sum_{j=1}^{n} g_j(x) z_j.$$

S is compact since, by a previous result, $g_j(x)z_j$ represents a compact linear operator, and a sum of compact operators is compact. Claim: $S_\lambda x_0 = Sx_0 - \lambda x_0 = 0$ implies $x_0 = 0$. By the hypothesis, we have $f_k(S_\lambda x_0) = f_k(0) = 0$, for k = 1, ..., m. Hence, by the definition of *S* and of f_j , we obtain

Null Spaces of $\, {\cal T}_{\lambda} \,$ and $\, {\cal T}_{\lambda}^{ imes} \,$ Part (b) (Claim Cont'd)

Since f_k ∈ N(T[×]_λ), we have T[×]_λ f_k = 0. Hence, by the preceding equation, g_k(x₀) = 0, k = 1,...,m. This implies Sx₀ = Tx₀, by the definition of S. So T_λx₀ = S_λx₀ = 0, by the hypothesis. Hence x₀ ∈ N(T_λ). Since {x₁,...,x_n} is a basis for N(T_λ), x₀ = Σⁿ_{j=1} α_jx_j, where the α_j's are suitable scalars.

Applying g_k , we have, for all k = 1, ..., n,

$$0=g_k(x_0)=\sum_{j=1}^n\alpha_jg_k(x_j)=\alpha_k.$$

Hence $x_0 = 0$.

January 2024

Null Spaces of T_{λ} and T_{λ}^{\times} Part (b) (Cont'd)

• A preceding theorem now implies that $S_{\lambda}x = y$, with any y, is solvable. We choose $y = z_{n+1}$.

Let x = v be a corresponding solution, i.e., $S_{\lambda}v = z_{n+1}$.

We calculate

$$\begin{aligned} &= f_{n+1}(z_{n+1}) \\ &= f_{n+1}(S_{\lambda}v) \\ &= f_{n+1}(T_{\lambda}v + \sum_{j=1}^{n}g_{j}(v)z_{j}) \\ &= (T_{\lambda}^{\times}f_{n+1})(v) + \sum_{j=1}^{n}g_{j}(v)f_{n+1}(z_{j}) \\ &= (T_{\lambda}^{\times}f_{n+1})(v). \end{aligned}$$

Since we assumed n < m, we have $n + 1 \le m$ and $f_{n+1} \in \mathcal{N}(T^{\times}_{\lambda})$. Hence $T^{\times}_{\lambda} f_{n+1} = 0$. This contradicts the preceding equation. Therefore, n < m is impossible.

Null Spaces of T_{λ} and T_{λ}^{\times} Part (c) (Claim)

(c) We show n > m is also impossible. Let n > m. Define $\widetilde{S} : X' \to X'$ by

$$\widetilde{S}f = T^{\times}f + \sum_{j=1}^{m}f(z_j)g_j.$$

By a previous theorem, T^{\times} is compact.

Moreover, \tilde{S} is compact since $f(z_j)g_j$ represents a compact linear operator by a previous theorem.

Claim:
$$\widetilde{S}_{\lambda} f_0 = \widetilde{S} f_0 - \lambda f_0 = 0$$
 implies $f_0 = 0$.

Using the hypothesis, the definition of \tilde{S} , the definition of adjoint operator and that of the g_k 's we obtain for each k = 1, ..., m,

$$0 = (\widetilde{S}_{\lambda} f_0)(x_k) = (T_{\lambda}^* f_0)(x_k) + \sum_{j=1}^m f_0(z_j)g_j(x_k) = f_0(T_{\lambda}x_k) + f_0(z_k).$$

Null Spaces of \mathcal{T}_λ and $\mathcal{T}_\lambda^ imes$ Part (c) (Claim Cont'd)

• Recall that $\{x_1, \ldots, x_n\}$ is a basis for $\mathcal{N}(\mathcal{T}_{\lambda})$. Now m < n implies that $x_k \in \mathcal{N}(T_\lambda)$, for k = 1, ..., m. Hence, $f_0(T_\lambda x_k) = f_0(0)$. So $f_0(z_k) = 0, \ k = 1, ..., m$. Consequently, $\widetilde{S}f_0 = T^{\times}f_0$, by the definition of \widetilde{S} . By hypothesis, $T_{1}^{\times}f_{0}=\widetilde{S}_{\lambda}f_{0}=0.$ Hence, $f_0 \in \mathcal{N}(T_1^{\times})$. But $\{f_1, \ldots, f_m\}$ is a basis for $\mathcal{N}(\mathcal{T}^{\times}_{\lambda})$. So $f_0 = \sum_{i=1}^m \beta_i f_i$, where the β_i 's are suitable scalars. Thus, for each $k = 1, \ldots, m$,

$$0=f_0(z_k)=\sum_{j=1}^m\beta_jf_j(z_k)=\beta_k.$$

Hence $f_0 = 0$.

George Voutsadakis (LSSU)

Null Spaces of T_{λ} and T_{λ}^{\times} Part (c) (Cont'd)

- A preceding theorem now implies that $\tilde{S}_{\lambda}f = g$, for any g, is solvable. We choose $g = g_{m+1}$.
 - Let f = h be a corresponding solution, i.e., $\tilde{S}_{\lambda}h = g_{m+1}$. Using the definition of the g_k 's and that of \tilde{S} , we obtain

$$1 = g_{m+1}(x_{m+1}) = (\tilde{S}_{\lambda}h)(x_{m+1}) = (T_{\lambda}^{\times}h)(x_{m+1}) + \sum_{j=1}^{m} h(z_j)g_j(x_{m+1}) = (T_{\lambda}^{\times}h)(x_{m+1}) = h(T_{\lambda}(x_{m+1})).$$

The assumption m < n implies $m + 1 \le n$.

So $x_{m+1} \in \mathcal{N}(T_{\lambda})$. Hence, $h(T_{\lambda}x_{m+1}) = h(0) = 0$.

This contradicts the previous equation and shows that m < n is impossible.

The Eigenvalue Theorem

Theorem (Eigenvalues)

Let $T: X \to X$ be a compact linear operator on a normed space X. Then, if T has nonzero spectral values, every one of them must be an eigenvalue of T.

If the resolvent R_λ = T_λ⁻¹ does not exist, λ ∈ σ_p(T) by definition. Let λ ≠ 0 and assume that R_λ = T_λ⁻¹ exists. Then T_λx = 0 implies x = 0. This means that Tx - λx = 0 has only the trivial solution. By a preceding theorem, Tx - λx = y, with any y, is solvable. That is, R_λ is defined on all of X and is bounded. Hence, λ ∈ p(T).

Subsection 7

Fredholm Alternative

Fredholm Alternative

Definition (Fredholm Alternative)

A bounded linear operator $A: X \to X$ on a normed space X is said to satisfy the **Fredholm alternative** if A is such that either (I) or (II) holds:

The nonhomogeneous equations Ax = y, $A^{\times}f = g$ ($A^{\times} : X' \to X'$ the adjoint operator of A) have solutions x and f, respectively, for every given $y \in X$ and $g \in X'$, the solutions being unique. The corresponding homogeneous equations Ax = 0, $A^{\times}f = 0$ have only the trivial solutions x = 0 and f = 0, respectively.

11) The homogeneous equations Ax = 0, $A^*f = 0$ have the same number of linearly independent solutions x_1, \ldots, x_n and f_1, \ldots, f_n , $n \ge 1$, respectively.

The nonhomogeneous equations Ax = y, $A^{\times}f = g$ are not solvable for all y and g, respectively; they have a solution if and only if y and g are such that $f_k(y) = 0$, $g(x_k) = 0$, k = 1, ..., n, respectively.

The Fredholm Alternative Theorem

Summarizing the results of the preceding two sections:

Theorem (Fredholm Alternative)

Let $T: X \to X$ be a compact linear operator on a normed space X, and let $\lambda \neq 0$. Then $T_{\lambda} = T - \lambda I$ satisfies the Fredholm alternative.

- In applications, instead of showing the existence of a solution directly, it is often simpler to prove that the homogeneous equation has only the trivial solution.
- Riesz's theory of compact linear operators was suggested by Fredholm's theory of integral equations of the second kind

$$x(s) - \mu \int_{a}^{b} k(s,t) x(t) dt = \widetilde{y}(s)$$

• In fact Riesz's theory generalizes Fredholm's results, which predate the development of the theory of Hilbert and Banach spaces.

Fredholm Alternative for Integral Equations

• Consider again the integral equation

$$x(s) - \mu \int_{a}^{b} k(s,t) x(t) dt = \widetilde{y}(s).$$

$$x(s) - \frac{1}{\lambda} \int_{a}^{b} k(s,t) x(t) dt = -\frac{1}{\lambda} y(s).$$

This gives

$$\int_{a}^{b} k(s,t) x(t) dt - \lambda x(s) = y(s).$$

So we get

$$Tx - \lambda x = y, \quad \lambda \neq 0,$$

with T defined by $(Tx)(s) = \int_a^b k(s,t)x(t)dt$.

Fredholm Alternative for Integral Equations (Cont'd)

We obtained

$$Tx - \lambda x = y, \quad \lambda \neq 0,$$

with T defined by

$$(Tx)(s) = \int_a^b k(s,t)x(t)dt.$$

Now, the general theory applied to this T gives

Theorem (Fredholm Alternative for Integral Equations)

If k in is such that $T: X \to X$ is a compact linear operator on a normed space X, then the Fredholm alternative holds for T_{λ} . Thus, one of the two alternatives hold:

- The integral equation has a unique solution for all $y \in X$;
- The homogeneous equation corresponding to the integral equation has finitely many linearly independent nontrivial solutions x (i.e., $x \neq 0$).

Alternative (I): Neumann Series

- Suppose that T in $Tx \lambda x = y$ is compact.
- Suppose λ is in the resolvent set $\rho(T)$ of T.
- Then the resolvent

$$R_{\lambda}(T) = (T - \lambda I)^{-1}$$

exists, is defined on all of X and is bounded.

• So, for every $y \in X$, we get the unique solution of $Tx - \lambda x = y$

$$x=R_{\lambda}(T)y.$$

- Since $R_{\lambda}(T)$ is linear, we get $R_{\lambda}(T)0 = 0$.
- This implies that the homogeneous equation $Tx \lambda x = 0$ has only the trivial solution x = 0.
- Hence, $\lambda \in \rho(T)$ yields Case (I) of the Fredholm alternative.

Alternative (I): Neumann Series (Cont'd)

- Let $|\lambda| > ||T||$.
- Assume X is a complex Banach space.
- Then we have $\lambda \in \rho(T)$.
- Furthermore,

$$R_{\lambda}(T) = -\frac{1}{\lambda} \left(I + \frac{1}{\lambda}T + \frac{1}{\lambda^2}T^2 + \cdots \right).$$

• Consequently, for the solution $x = R_{\lambda}(T)y$, we have the representation

$$x = -\frac{1}{\lambda} \left(y + \frac{1}{\lambda} T y + \frac{1}{\lambda^2} T^2 y + \cdots \right).$$

• This series is called a Neumann series.

Alternative (II)

- Case (II) of the Fredholm alternative is obtained if we take a nonzero $\lambda \in \sigma(T)$ (if such a λ exists), where $\sigma(T)$ is the spectrum of T.
- A previous theorem implies that λ is an eigenvalue.
- The dimension of the corresponding eigenspace is finite.
- It is equal to the dimension of the corresponding eigenspace of T_{λ}^{\times} .

Special Cases

- Two spaces of particular interest are $X = L^2[a, b]$ and X = C[a, b].
- To apply the theorem, one needs conditions for the kernel k which are sufficient for T to be compact.
 - If X = L²[a, b], such a condition is that k be in L²(J×J), where J = [a, b]. (This is a measure theoretic result.)
 - In the case X = C[a, b], where [a, b] is compact, continuity of k will imply compactness of T.

We will obtain this result by applying Ascoli's Theorem.

Equicontinuous Sequences and Ascoli's Theorem

• A sequence (x_n) in C[a, b] is said to be **equicontinuous** if, for every $\varepsilon > 0$, there is a $\delta > 0$, depending only on ε , such that, for all x_n and all $s_1, s_2 \in [a, b]$, satisfying $|s_1 - s_2| < \delta$, we have

$$|x_n(s_1)-x_n(s_2)|<\varepsilon.$$

- Note that in equicontinuity:
 - δ does not depend on *n*;
 - Each x_n is uniformly continuous on [a, b].

Ascoli's Theorem (Equicontinuous Sequence)

A bounded equicontinuous sequence (x_n) in C[a, b] has a subsequence which converges (in the norm on C[a, b]).

Compact Integral Operators

Theorem (Compact Integral Operator)

Let J = [a, b] be any compact interval and suppose that k is continuous on $J \times J$. Then the operator $T : X \to X$ defined by $(Tx)(s) = \int_a^b k(s, t)x(t)dt$, where X = C[a, b], is a compact linear operator.

T is linear.

Boundedness of T follows from

$$\|T_X\| = \max_{s\in J} \left| \int_a^b k(s,t) x(t) dt \right| \le \|x\| \max_{s\in J} \int_a^b |k(s,t)| dt.$$

This is of the form $||Tx|| \le \tilde{c}||x||$. Let (x_n) be any bounded sequence in X, say, $||x_n|| \le c$, for all n. Let $y_n = Tx_n$. Then $||y_n|| \le ||T|| ||x_n||$. Hence, (y_n) is also bounded.

Compact Integral Operators (Cont'd)

Claim: (y_n) is equicontinuous.

By hypothesis, the kernel k is continuous on $J \times J$. Moreover, $J \times J$ is compact. Thus, k is uniformly continuous on $J \times J$. Hence, given $\varepsilon > 0$, there is a $\delta > 0$, such that, for all $t \in J$ and all $s_1, s_2 \in J$, satisfying $|s_1 - s_2| < \delta$, we have $|k(s_1, t) - k(s_2, t)| < \frac{\varepsilon}{(b-a)c}$. Consequently, for s_1, s_2 as before and every n,

$$|y_n(s_1) - y_n(s_2)| = \left| \int_a^b [k(s_1, t) - k(s_2, t)] x_n(t) dt \right|$$

$$< (b-a) \frac{\varepsilon}{(b-a)c} c = \varepsilon.$$

This proves equicontinuity of (y_n) .

Ascoli's Theorem implies that (y_n) has a convergent subsequence. Since (x_n) was an arbitrary bounded sequence and $y_n = Tx_n$, compactness of T follows from a previous theorem.