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Compact Linear Operators on Normed Spaces

Definition (Compact Linear Operator)

Let X, Y be normed spaces. An operator T: X — Y is called a compact
linear operator (or completely continuous linear operator) if:

o T is linear;
o For every bounded subset M of X, the image T (M) is relatively

compact, i.e., the closure T(M) is compact.

o The theory of compact linear operators emerged from the theory of
integral equations of the form

(T = A)x(s) = y(s), where Tx(s) = [2k(s, t)x(t)dt.

In this equation:

o AeC is a parameter;
o y and the kernel k are given functions (subject to certain conditions);
o x is the unknown function.
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Compact Linear Operators on Normed Spaces

Lemma (Continuity)

Let X and Y be normed spaces. Then:

Every compact linear operator T : X — Y is bounded, hence
continuous.

If dimX = oo, the identity operator /: X — X (which is continuous) is
not compact.

The unit sphere U={x€e X: |x|| =1} is bounded.
Since T is compact, T(U) is compact.

By the Compactness Lemma, T(U) is bounded.

So sup || Tx|| <oo. Hence, T is bounded and, so, continuous.
[IxlI=1

Of course, the closed unit ball M ={xe€ X : || x| =1} is bounded.
If dimX = o0, then M cannot be compact.
Thus, /(M) =M =M is not relatively compact.



Compact Linear Operators on Normed Spaces

Theorem (Compactness Criterion)

Let X and Y be normed spaces and T : X — Y a linear operator.
Then T is compact if and only if it maps every bounded sequence (x,) in
X onto a sequence (Tx,) in Y which has a convergent subsequence.

o If T is compact and (xp) is bounded.
Then the closure of (Tx,) in Y is compact.
Thus, (Txp) contains a convergent subsequence.

Conversely, assume that every bounded sequence (x,) contains a
subsequence (xp, ), such that (Tx,, ) converges in Y.
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Compact Linear Operators on Normed Spaces

o Consider any bounded subset B < X.
Let (yn) be any sequence in T(B).
Then y, = Tx,, for some x, € B.
Moreover, (x,) is bounded since B is bounded.
By assumption, (Tx,) contains a convergent subsequence.
Hence, T(B) is compact because (y,) in T(B) was arbitrary.

By definition, this shows that T is compact.

o By the Compactness Criterion, if Ty, To: X — Y are two compact
linear operators:

o The sum T7+ T is compact;
o The product a T7 is compact, a any scalar.

So the compact linear operators from X into Y form a vector space.
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Compact Linear Operators on Normed Spaces

Theorem (Finite Dimensionality of Domain or Range)

Let X and Y be normed spaces and T : X — Y a linear operator. Then:
If T is bounded and dim T (X) < oo, the operator T is compact.

If dimX < oo, the operator T is compact.

Let (x,) be any bounded sequence in X.
The inequality || Tx,ll < I TllIxnll shows that (Tx,) is bounded.
Since dimT(X) < oo, (Txp) is relatively compact.
It follows that ( Tx,) has a convergent subsequence.
By the Compactness Criterion, the operator T is compact.
Follows from (a) by noting that dimX < oo implies boundedness of T
and dimT(X) =dimX.
o An operator T € B(X,Y), with dimT(X) <oo, is often called an
operator of finite rank.
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Compact Linear Operators on Normed Spaces

Theorem (Sequence of Compact Linear Operators)

Let (T,) be a sequence of compact linear operators from a normed space
X into a Banach space Y. If (T},) is uniformly operator convergent, say,
| Tn— TI — 0, then the limit operator T is compact.

o Using a “diagonal method”, we show that, for any bounded sequence
(xm) in X, the image (Txm) has a convergent subsequence.
The conclusion then follows by the Compactness Criterion.
o Since Ty is compact, (xm) has a subsequence (x1,m), such that
(T1x1,m) is Cauchy;
o Since Ty is compact, (x1,m) has a subsequence (x,,) such that
(Tox2,m) is Cauchy.

The “diagonal sequence” (ym) = (Xm,m) is a subsequence of (xp,), such
that, for every fixed n, the sequence (Tpym)men is Cauchy.
(xm) is bounded, say, lIxmll < c, for all m. Hence |lymll < ¢, for all m.



Compact Linear Operators on Normed Spaces

o Let €>0. Since T,,, — T, there is an n= p, such that
€
T-Tyl<—.
[ pll 3c
Since (Tpym)mew is Cauchy, there is an N, such that
I Toy; — Toyl < g, for all j, k> N.

Hence, we obtain for j, k> IV,

Iy = Tyl

IA

1Ty = Toyill + I Tpyj = Tyl + 1 Tpyi = Tykll
1T = Tolllyll+5+1Tp= Tyl

EcrEp £
< 3CC+3+3CC—€.

IA

This shows that (Tyn,) is Cauchy. Since Y is complete, it converges.
But (ym) is a subsequence of the arbitrary bounded sequence (xx,).
So, by the Compactness Criterion, T is compact.
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o The preceding theorem becomes false if we replace uniform operator
convergence by strong operator convergence || T,x — Tx| — 0.

Consider T,,: ¢2 — ¢? defined, for all x = (¢;) € £2, by

Tox =(é1,...,€1,0,0,...).

Since T, is linear and bounded, T, is compact.
Clearly, for all x = (&;) € £2,

Thx — x = Ix.

However, | is not compact, since dim#? = co.
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o Use the theorem to prove compactness of T : ¢? — ¢2 defined by
y= (77j) = Tx, where n; = i—’ for j=1,2,....

T is linear. If x=(&;) € ¢2, then y =(n;) € 2. Let T,: 02— €2 be
defined by
$3 63 &n

51)2 3 _00

T, is linear and bounded, and is compact. Furthermore,

I(T = Ta)xI? 2=

2
‘j= n+1j |EJ|

oo lixII?
(n+1)2 Z =n+1 |EJ = (nil)2 :

o0
Zj—n+1|771

: 1
Taking the supremum over all x of norm 1, we get | T — Tl < 35

Hence, T, — T. So T is compact by the theorem.
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Compact Linear Operators on Normed Spaces

Theorem (Weak Convergence)

Let X and Y be normed spaces and T : X — Y a compact linear operator.
Suppose that (x,) in X is weakly convergent, say, x, — x. Then (Tx,) is
strongly convergent in Y and has the limit y = Tx.

o We write y, = Tx, and y = Tx.
L Yn Y.
Let g be any bounded linear functional on Y. We define a functional
on X by setting f(z) =g(7z), for all ze X. f is linear. f is bounded.

Since T is compact, it is bounded. Moreover,
If(2)l=1g(Tz)I=lgll Tzl < ligll Tzl

By definition, x, — x implies f(x,) — f(x).
Hence by definition, g(Tx,) — g(Tx). l.e., g(yn) — g(y).
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“Yn—Y.
Assume this does not hold.

Then (yn) has a subsequence (ypn, ), such that, for some >0,

1Yne =yl =m.

Since (xp) is weakly convergent, (xp) is bounded.

So (xp, ) is also bounded.

Compactness of T implies that ( Tx,, ) has a convergent subsequence,
say, (¥j). Let yi—y.

A fortiori, y; = y. Hence, y=y.

Consequently, [|yj—yll — 0.

But [lyj—yl =n>0, a contradiction.
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Compact Linear Operators on Normed Spaces

Definition (&-net, Total Boundedness)

Let B be a subset of a metric space X and let € >0 be given.
o A set M. c X is called an e-net for B if, for every point z € B, there is
a point of M, at a distance from z less than ¢.

o The set B is said to be totally bounded if, for every € >0, there is a
finite e-net M, < X for B, where “finite’ means that M is a finite set
(that is, consists of finitely many points).

o Consequently, total boundedness of B means that:

For every given € >0, the set B is contained in the union of finitely
many open balls of radius &.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Compact Linear Operators on Normed Spaces

Lemma (Total Boundedness)

Let B be a subset of a metric space X. Then:
If B is relatively compact, B is totally bounded.
If B is totally bounded and X is complete, B is relatively compact.
If B is totally bounded, for every € >0 it has a finite e-net M, < B.
If B is totally bounded, B is separable.

Assume that B is relatively compact.

We show that, for any gg > 0, there exists a finite £g-net for B.

If B=g@, then @ is an gg-net for B.

Suppose B # @. Pick any x; € B.

If d(x1,z) <é€p, for all ze B, then {x1} is an €p-net for B.

Otherwise, let x; € B be such that d(x1,x2) = €g.

If, for all ze B, d(xj,z) <é&o, j=1or 2, then {x;, x5} is an gp-net for B.
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Compact Linear Operators on Normed Spaces

o Otherwise, let z=x3 € B be a point not satisfying the inequality.

If, for all ze B, d(xj,z) <o, j=1,2 or 3, then {x1,x0,x3} is an gp-net
for B. Otherwise we continue by selecting an x4 € B, etc.

We assert the existence of a positive integer n, such that the set
{X1,...,Xn} obtained after n such steps is an gg-net for B.

If there were no such n, our construction would yield a sequence (x;)
satisfying d(xj,xx) = &g, for j # k.

Obviously, (x;) could not have a subsequence which is Cauchy.
Hence, (x;) could not have a subsequence which converges in X.

Since, by construction, (x;) lies in B, this contradicts the relative
compactness of B.

Hence, there must be a finite gg-net for B.

Since g > 0 was arbitrary, B is totally bounded.

George Voutsadakis (LSSU)



Compact Linear Operators on Normed Spaces

Let B be totally bounded and X complete.

Let (xn) be an arbitrary sequence in B.

We show that (x,) has a subsequence which converges in X.
By assumption, B has a finite e-net for £ = 1.

Hence, B is contained in the union of finitely many open balls of
radius 1.

From these balls we can pick a ball By which contains infinitely many
terms of (x,) (counting repetitions).

Let (x1,n) be the subsequence of (x,) which lies in B;.

Similarly, by assumption, B is also contained in the union of finitely
many balls of radius € = %

From these balls, we can pick a ball B, which contains a subsequence

(x2,n) of the subsequence (x,5).

1

Inductively, choose € = oL

George Voutsadakis (LSSU)
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Compact Linear Operators on Normed Spaces

o Now, for every given € >0, there is an N (depending on ¢), such that
all y, with n> N lie in a ball of radius €.
Hence (yn) is Cauchy.
Since X is complete, it converges in X, say, y, — y € X.
Also, y, € B implies y € B.
By the definition of the closure, for every sequence (z,) in B, there is
a sequence (xp) in B which satisfies d(xp,z,) < % for every n.
Since (x,) is in B, it has a subsequence which converges in B, as we
have just shown.
Hence, since d(xp,zs) <2, (z) also has a subsequence which

converges in B.

So B is compact and B is relatively compact.
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Compact Linear Operators on Normed Spaces

If B is totally bounded, for every € >0, it has a finite e-net M, < B.
The case B = @ is obvious.

Let B # @. By assumption, for given € >0, there is a finite £1-net
Mg, € X for B, where €1 = 5. Hence B is contained in the union of
finitely many balls of radius &1 with the elements of M., as centers.

Let By,..., B, be those balls which inter-
sect B, and let xi,...,x, be their centers.
We select a point zj€ Bn B;.

We claim that

Mg ={z,...,z,} S B

is an e-net for B.
For every z € B, there is a B; containing z. Moreover,

d(z,z) =d(z,x;) +d(xj,zj) <e1 +€1 = €.
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Compact Linear Operators on Normed Spaces

If B is totally bounded, B is separable.

Suppose B is totally bounded.

Then, by Part (c), the set B contains a finite e-net My /, for itself,
where e=¢, = % n=12,....

The union M of all these nets is countable.

Moreover, M is dense in B.

In fact, for any given £ >0, there is an n, such that %<£.

Hence, for any z € B, there is an ae My, < M, such that d(z,a) <e.

This proves that B is separable.
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Compact Linear Operators on Normed Spaces

o Total boundedness implies boundedness.
o The converse does not generally hold.
Consider the metric space ¢2.
Let U be the closed unit ball

U=ix:|lx| <1} c¢?

o U is bounded.

o U is not totally bounded.
¢2 is infinite dimensional and complete.
So U is not compact.
Hence, it is not totally bounded.
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Compact Linear Operators on Normed Spaces

Theorem (Separability of Range)

The range %2(T) of a compact linear operator T : X — Y is separable,
where X and Y are normed spaces.

o Consider the ball B,=B(0;n) < X.
Since T is compact, the image C, = T(B,) is relatively compact.
By Parts (a) and (d) of the Lemma, C, is separable.

The norm of any x € X is finite. So, for any x, there exists n
sufficiently large, such that ||x|| < n. Hence, x € B,,.

Consequently, X =%, B, and T(X)=US2, T(B,) =U>, Cp.
Since C, is separable, it has a countable dense subset D,,.
Moreover, the union D =2, D, is countable.

But T(X)=U2, Cy. So D is dense in the range 2(T) = T(X).
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Compact Linear Operators on Normed Spaces

Theorem (Compact Extension)

A compact linear operator T : X — Y from a normed space X into a
Banach space Y has a compact linear extension T : X — Y, where X is the
completion of X.

o We may regard X as a subspace of X.
Since T is bounded, it has a bounded linear extension T : X — Y.
We show that compactness of T implies T is also compact.
Let (X,) be an arbitrary bounded sequence in X.
We show that (Tx,) has a convergent subsequence.
X is dense in X.
So there is a sequence (x,) in X, such that X, - x, — 0.

Clearly, (x,) is bounded, too.
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Compact Linear Operators on Normed Spaces

o Since T is compact, (Tx,) has a convergent subsequence ( Txp,).
Suppose Txp, — yo€e Y.
Now X, —x, — 0 implies X,, —xpn, — 0.

Since T is linear and bounded, it is continuous. Thus,
TRn, = Txp, = T (R, —Xn,) — TO=0.

Since Txp, — yo €Y, 'T')?nk — ¥0.
We showed that the arbitrary bounded sequence (X;) has a
subsequence (X, ), such that (TX,,) converges. So T is compact.
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Compact Linear Operators on Normed Spaces

o The adjoint operator of a compact linear operator is itself compact.

Theorem (Adjoint Operator)

Let T:X — Y be a linear operator. If T is compact, so is its adjoint
operator T*:Y’'— X', where X and Y are normed spaces and X’ and Y’

the dual spaces of X and Y.

o Let B be a subset of Y’ which is bounded, say |lg|l < c, for all g€ B.
We show that the image T*(B) < X' is totally bounded.

Since X' is complete, by Part (b) of the Total Boundedness Lemma, it
will then follow that T*(B) is relatively compact.
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Compact Linear Operators on Normed Spaces

o We must show, for any fixed €9 >0, T*(B) has a finite gp-net.
Since T is compact, the image T(U) of the unit ball
U={xeX:|x| =1} is relatively compact.

Hence T(U) is totally bounded.

Thus, there is a finite £;-net M < T(U) for T(U), where 1 = 22.
This means that U contains points xi,...,xp, such that, for each
x € U, there exists some j, such that || Tx— Tx;j|| < 2.

We define a linear operator A: Y’ —R" by

Ag=(g(Tx1),8(Tx2),...,8(Txn)).

g is bounded by assumption.

T is bounded by the Continuity Lemma.

Hence, A is compact by the Finite Dimensionality Lemma.
Since B is bounded, A(B) is relatively compact.

Hence, A(B) is totally bounded.
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o Thus, A(B) contains a finite ex-net {Agy,...,Agm} for itself, where
&y = %0. This means that, for each g€ B, there exists k, such that
£
IAg - Agillo < .
where |-|lg is the norm on R".
We show that {Txgl, , T*gm} is the desired ep-net for T*(B).
Since [|Ag — Agkllo <%, for all j and all g€ B, there is a k, such that

n

E
lg(Tx;) — gk( Tx})1? Z (Tx) - &k(Tx)1? = I A(g — )13 < (:)2.

Let x € U be arbitrary. Then, there is a j, for which || Tx - Tx;|| < j—g
Let g€ B. Then, there is a k, such that

= €
IIAg—Agkllo<Z0 and Ig(TXj)—gk(TXJ')|2<(TO)2'
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Compact Linear Operators on Normed Spaces

o Thus,

lg(Tx)—g(Tx)l = 1g(Tx)—g(Tx;)I+1g(Tx;) — gk (Tx;)l
+1gk(Tx;) — gk (Tx)

E|
< gl Tx=Txjll + =2+ lgullll Tx; — Txl
= 2+ P+tcl e

Since this holds for every x € U and since by the definition of T* we
have g(Tx)=(T*g)(x), etc., we finally obtain

IT*g—T"gell = ”5‘ﬁpl|(Tx(g_gk))(X)|
x||=
= ||S||.||p1|g(Tx)—gk(Tx)|<:30.
xl=

This shows that {T*g1,..., T*gm} is an €o-net for T*(B).

Since go >0 was arbitrary, T*(B) is totally bounded.

Hence, by the Total Boundedness Lemma, it is relatively compact.
Since B was any bounded subset of Y’, we get compactness of T*.
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Compact Linear Operators on Normed Spaces

Theorem (Eigenvalues)

The set of eigenvalues of a compact linear operator 7T: X — X on a
normed space X is countable (perhaps finite or even empty), and the only
possible point of accumulation is A =0.

o It suffices to show, for all real k>0, the set of all A€ ,(T), such
that |A| = k is finite. Suppose not for some kg > 0.
Then there is a sequence (1,) of infinitely many distinct eigenvalues,
such that |A,| = kg. Also Tx, = A,x,, for some x, #0.
The set of all the x,'s is linearly independent.
Let M, =span{xi,...,xn}.
Then, every x e M, has a unique representation

X=1X1 + -+ aA&pXp.
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o Apply T-2,I to get
(T=2AnD)x=a1(T=Ap)x1 + -+ an(T = Anl)xp.
Use Tx; = Ajx; to get
(T-ApD)x=a1(A1—An)x1+ -+ a@n-1(An-1—An)Xp-1.

Note that x, no longer occurs.

So (T —Apl)x € M,_1, for all xe M,.

The M,’'s are closed.

By Riesz's Lemma, there exists a sequence (), such that:
9 Yn € My;

o llyall=1;
o llyn—xll= % for all xe M,,_1.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Compact Linear Operators on Normed Spaces

o We show that 1
| Tyn— Tymll = Eko’ n>m.
So (Tyn) has no convergent subsequence because kg > 0.
This contradicts the compactness of T since (y,) is bounded.
By adding and subtracting a term we can write Ty, — Tym = Anyn — X,
where X =AnYn— T¥n+ Tym.
Let m< n. We show that xe M,_1.
Since m=<n—1, we have

Ym € My € M,_1 =span{xi,...,Xp—1}.

Since Tx; = A;x;, Tym€ Mp_1.
Since (T —Apl)x € Mp_1,

Anyn—Tyn= _(T_/ln/))/n € Mp_1.
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o We have Ty, e M,y and Apyn— Typ€ Mp_1.
Together, X=Anyn— Tyn+ Tyme M,_1.
Thus, also x=A,1%€ M,_1.

Hence, since |A,| = kg,

~ 1 1
IAnyn =X =1Anlllyn—xIl = Em'nl = §k0~

We conclude || Ty, — Tymll = %ko-

Hence the assumption that there are infinitely many eigenvalues
satisfying || A, = ko, for some kg >0 must be false.

o It follows that, if a compact linear operator on a normed space has
infinitely many eigenvalues, we can arrange these eigenvalues in a
sequence converging to zero.
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Lemma (Compactness of Product)

Let T:X — X be a compact linear operator and S: X — X a bounded
linear operator on a normed space X. Then TS and ST are compact.

o Let B< X be any bounded set.
Since S is a bounded operator, S(B) is a bounded set.
Since T is compact, the set TS(B) = T(S(B)) is relatively compact.
Hence TS is a compact linear operator.
We prove that ST is also compact.
Let (x,) be any bounded sequence in X.
By a previous result, (Tx,) has a convergent subsequence ( Txp, ).
Thus, since S is bounded, (STx;,) converges.

Hence, ST is compact.
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Theorem (Null Space)

Let T:X — X be a compact linear operator on a normed space X. Then,
for every A #0, the null space A(T,) of T =T — Al is finite dimensional.

o We know that, if the closed unit ball in a normed space X is compact,
then the space is finite dimensional.
So we show that the closed unit ball M in A(T,) is compact.
Let (x,) be in M. Then (x,) is bounded (|Ix,ll <1).
By a previous result, (Tx,) has a convergent subsequence ( Tx,).
Now x, € M < A(T,) implies Tyx,= Tx,—Ax,=0.
So, since 1 #0, x,=A"1Tx,.
Consequently, (x5, )= (171 Txp,) also converges.
The limit is in M, since M is closed.
Hence M is compact because (x,) was arbitrary in M.
This proves dimA/(T) < oco.
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Corollary (Null Spaces)

Let T:X — X be a compact linear operator on a normed space X. Then,
for every A #0, dimA'(T}) <oo, n=1,2,..., and

O =N(THH(TH)sH (T .

o Since Ty is linear, it maps 0 onto 0.
Hence, T/{’x =0 implies T/{”lx =0.

This yields the second conclusion.
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o We prove, next, dimA/(T}) <oo
By the binomial theorem,

" = (T-Al)"
= Y (@7
k=0

(A)”I+TZ JTH(=A)™ k.

This can be written
Ty =W—ul,

with:

o p==(-A)";

o W=TS=ST, where S denotes the sum on the right.
T is compact. Since T is bounded, S is bounded, by a previous result.
Hence, W is compact by a previous lemma.
Now we obtain the result by applying the preceding theorem.
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o Recall that for a bounded linear operator, the null space is always
closed but the range need not be closed.

Theorem (Range)

Let T:X — X be a compact linear operator on a normed space X. Then,
for every A #0, the range of T = T — Al is closed.

o We assume that the range T)(X) is not closed. We derive a
contradiction by proceeding as follows:
We consider a y in the closure of T)(X) but not in Ty(X).
We let (T)xn) be a sequence converging to y.
We show that x, & A (T,) but A (T,) contains a sequence (z,), such
that [Ix, — zpll <28, where &, is the distance from x,, to A (T)).
We show that a, — oo, where a, = ||x, — zall.
We obtain the anticipated contradiction by considering the sequence
(wn), where wy, = a;t(xn — z).
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Suppose that T,(X) is not closed. Then there is a y € T}(X),
y € TH(X) and a sequence (x,) in X, such that y, = Tyx, —y.

Since Ty(X) is a vector space, 0€ Ty (X).

Since y ¢ T)(X), y #0.

This implies y, #0 and x, € A(T,), for all sufficiently large n.
Without loss of generality we may assume that this holds for all n.
Since A(T)) is closed, the distance §, from x, to A(T,) is positive,

6p= inf |x,—2z|>0.
ZEW(TA)

By the definition of an infimum, there is a sequence (z,) in A (Ty),
such that
an = lIxp— zpll <26,.
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We show that a, = [|x, — znll — oo. Suppose this does not hold.
Then (x,—z,) has a bounded subsequence.

Since T is compact, (T (x,—z,)) has a convergent subsequence.
From Tp=T-Al and 1 #0, we have [ = A71(T - T)).

Since z, € A (T,), we have T)z,=0.

So we get

o %(T— =) %[T(x,,—z,,)— ol
(T (xn—2zpn)) has a convergent subsequence and (T)x,) converges.
Hence, (x,—z,) has a convergent subsequence, say, xp, —zn, — V.
Since T is compact, T is continuous. Thus, sois Tj.
Hence, by a preceding theorem, T)(xn, —2n,) — Tav.
Since z, € A (Ty), Tazn, =0.
So, since y, = Tyxp — y, we have T)(xn, —2n,) = TaXn, — y-
Hence, Tyv=y. Thus y € Ty(X). This contradicts y & T(X).
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In Part (b) it was shown that a, =[x, — z,ll is divergent.
Set w, = al(xn—z,,). Then ||w,| = 1.
Since a, — oo, whereas T)z,=0 and (T)x,) converges, we get

1
TAW,, = a— T,lx,, — 0.
n

Using | = A71(T - T,), we obtain w, = 3(Tw,— Tawy).
Now T is compact and (wj,) is bounded.

So (Twy) has a convergent subsequence.

Furthermore, (Tyw,) converges.

So (wy) has a convergent subsequence, say w,, — w.

A comparison with Tyw, — 0 implies that T)w =0.
Hence, we A (T,).

Since z, € N(T)), also up =z, +aswe N (T)).
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o We showed that u, e A(T,).
Hence, for the distance from x, to u,, we must have |x, — un|l =6,.

Now recall that:
9 ap<20p;
1 ;
o wp= a_,,(X”_z”)’
9 Up=2Zp+apw.

So we get

On

IA

IXp—zp—anpwll = llapw, — apwli

anllwn —wll <26,llw, — wll.

Dividing by 26, >0, we have % < lw,—wl].

This contradicts w,, — w.
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Coronary (Ranges)

Under the assumptions in the theorem, the range of T} is closed for every
n=0,1,2,.... Furthermore,

X=TX)2TH(X)2T(X)=2--.

o Note that W in the proof of the Null Space Theorem is compact.

So the first statement follows from the Range Theorem.
The second statement follows by induction.

o We have
TY(X) = 1(X) =X 2 Ty(X).

o Assume T771(X)2 T7(X).
Applying T, we get T7(X)2 T/{'+1(X).
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o For now, concerning a compact linear operator T on a normed space
X and A #0, we know the following facts:

o The null spaces JV(T/{') n=1,2,..., are finite dimensional and satisfy
JV(T{)EJV(T;’LH']');
o The ranges T'(X) are closed and satisfy

TI(X)2 T7H(X).
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Lemma (Null Spaces)
Let T:X — X be a compact linear operator on a normed space X, and let
A #0. Then there exists a smallest integer r (depending on A) such that
from n=r on, the null spaces A(T) are all equal, and if r>0, the
inclusions A (TY) < A (Ty) -+ <A (T7) are all proper.

o Let us write A, = A(T]), for simplicity.
The idea of the proof is as follows.
We assume that A}, = 4,41, for no m and derive a contradiction,

using Riesz's Lemma.
We show that A}, = A1 implies A, = 41, for all n>m.
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We know that A}, € Am4e1. Suppose that A}, = A1, for no m.

Then A}, is a proper subspace of A},;1, for every n.

Since these null spaces are closed, Riesz's Lemma implies the existence
of a sequence (yy), such that:
9 Yn€Nn;

o llyall=1;
o llyn—xll= % for all xe A;,_1.

We show that ,
I Tyn = Tymll = EIAI, m<n.

Then (Typ) has no convergent subsequence because |A| > 0.

This contradicts the compactness of T since (y,) is bounded.
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o From T) =T —Al, we have:
o T=TH+Al;
o Typ— Tym=Ayn—X, where X= Tyym+AYm— Tayn.

Let m< n. We show that X€ A4,,_1.
Since m<n—1, we clearly have Ay, € A/ S A, 1.
Also ypm € Npm implies 0= Ty, = T/{”‘I(T,lym).
That is, TAYm € Nm-1S Nn_1.
Similarly, y, € A, implies Ty, € 1.
Together, X€ N_1. Also x=A"1X€ N _1.
Hence
I Tyn = Tymll = lIAyn — Xl = [Alllyn — xIl = %MI-

Our assumption that A}, = Am1, for no m is false.

We must have A}, = Ame1, for some m.
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We prove that A}, = A1 implies A, = A4, for all n>m.
Suppose this does not hold.
Then A, is a proper subspace of A},,1, for some n> m.
Consider an x € N,.1 — N},
By definition, T/{”lx =0, but T'x#0.
Since n> m, we have n—m> Q0.
Set z= T ™x. Then:
o TMlz=Tmlx=0;
o T"z=TIx#0.
Hence, z€ Ap41, but zg A,
So Ny, is a proper subspace of Aj.1.
This contradicts A, = Amt1.

The first statement is proved, where r is the smallest n, such that
Nn=Nns1. So, if r>0, the inclusions in the lemma are proper.
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Lemma (Ranges)
Let T:X — X be a compact linear operator on a normed space X, and let
A #0. Then, there exists a smallest integer g (depending on A1) such that

from n=q on, the ranges T(X) are all equal and, if g>0, the inclusions
TY(X)2 Ta(X)2---2 T)(X) are all proper.

o We write Z, = T (X). Suppose that s = %51 for no s.
Then %41 is a proper subspace of Z,,, for every n.
Since these ranges are closed, by Riesz's Lemma, there exists a
sequence (x,), such that:
9 Xp€Rnp;
o lIxnll =1,
o |lxp—xll = % for all xe Zp41.
Let m<n. Since T = T+ Al, we can write

Txm = Txn = Axm — (= Taxm + Taxn+ Axp).
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o We obtained Tx;, — Txp = Axm — (= Taxm + Taxn + Axp).
On the right side:
O AxXm € Bm;
o Taxm € B ms1, SINCE Xm € B m;
o Taxp+Axn € Bpn < Rms1, SiNCe N> m.

Hence Txm— Txp = A(xm—x), for all x € B pmy1.
Consequently, | Txm— Txall = 1AlIxm — xIl = %I/ll > 0.

Since (xp) is bounded and T is compact, (Tx,) has a convergent
subsequence. This contradicts the preceding inequality.

So we have s = Z<,1, for some s.

Let g be the smallest s such that Zs = Zs.1.

Then, if g>0, the inclusions stated in the lemma are proper.
Furthermore, Z4.+1 = %4 means that T, maps 24 onto itself.
Hence, repeated application of T, gives Z,.1 = Z,, for every n> q.
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Theorem (Null Spaces and Ranges)

Let 7T:X — X be a compact linear operator on a normed space X, and let
A #0. Then there exists a smallest integer n=r (depending on 1), such

that
H(TD) = A (T = N (T12) =
Tr(X) = TI+(X) = TH2(X) = -

If r>0, the following inclusions are proper:

(TS H(Ta) S-S H(T7) and TUX)2 Ty(X) 23 T{(X).

o A previous lemma gives the conclusions for the kernels.
The preceding lemma gives those for ranges with g instead of r.

All we have to show is that g=r.

Denoting, as before A, = A (T]) and %, = T](X), we show:
g=zr;
r<q.
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We have Zq+1=%q. This means that T)(2q) = %4.
Hence, if y€ Zq, y = T)x, for some x € Z.

i Tax=0, x€ Zq implies x =0.
Suppose not. Then Tjx; =0, for some nonzero x; € Z.
By hypothesis, x; = Tyxo, for some x; € Z.
Similarly, xo = Ty x3, for some x3 € Z, etc.
For every n, we thus obtain by substitution:

0 0#x1=Txp=---= T;’L’_lx,,;
0 0=Taxy = Txn.

Hence, x, &€ A,_1, but x, € A,,.
We have A,,_1 S A,.
Our result shows that this inclusion is proper, for every n.

This is a contradiction.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Compact Linear Operators on Normed Spaces

o Recall that Zq41=Z4.

We prove that Ag.1 = Ag.
Then g =r, since r is the smallest integer for which we have equality.

We have G412 A5.
We prove that A1 S A;. Equivalently,

T7x=0 implies T{x=0.
Suppose not. Then, for some xq,
y= foo Z0 but Ty= T/{”lxo =0.

Hence y € 4, y #0, Tpy =0.
This contradicts the Claim above.
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We prove that g<r. If g=0, this holds. Let g=1.

We prove g = r by showing that .4, is a proper subspace of ;.
Then g <r, since r is the smallest integer n, such that A, = A,,1.
By the definition of g, the inclusion 24 < %41 is proper.

Let ye Rgq-1—Rq. Then ye Rq_1. So y = Tf_lx, for some x.
Also Ty € Bq=Rq+1 implies that Tyy = T/{’Hz, for some z.

But T/{’z € Rq, Whereas y ¢ Z.

So Tf_l(x— Tyz)=y-T]z#0.

Hence. x— Tz ¢ Ng-1.

But x— Thz€ Ay because T)(x—Tyz)=Try— Ty =0.

This proves that Aq_1 # Aj.

Hence, A;-1 is a proper subspace of A;. So g=<r.
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Theorem (Eigenvalues)

Let T:X — X be a compact linear operator on a Banach space X. Then
every spectral value 1 #0 of T (if it exists) is an eigenvalue of T.

o If #(Ty)#10}, then A is an eigenvalue of T.
Suppose that A(T,) = {0}, where A #0.
Then Tyx =0 implies that x=0 and T;1: T1(X) — X exists.
Since {0} = A (/) = A (T?) =4 (T,), we have r=0.
Hence, X = T2(X) = Tx(X).
It follows that T is bijective.

Hence, since X is complete, by the Bounded Inverse Theorem, T/l‘1 is
bounded.

Therefore, by definition, A€ p(T).
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o Suppose T : X — X is a compact operator on a complex normed space
X.

o If X is finite dimensional, then T has representations by matrices.
It is clear that 0 may or may not belong to o(T)=0,(T).
le., if dimX < oo, we may have 0¢ g (T). Then 0€p(T).

o However, if dimX = oo, then we must have 0 e o(T).

In addition, all three cases

0€op(T), Oe€o(T), 0Oeo.(T)

are possible.
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Theorem (Direct Sum)

Let T:X — X be a compact linear operator on a normed space X, and let
A#0. Let r be the smallest integer (depending on 1), such that

N(T)) =N (T and  Tj(X)=T;"H(X).
Then X can be represented in the form
X=N(Ty)e T;(X).
o Consider any x € X. We must show that x has a unique representation

of the form
X=y+z, yeMN, zeR,,

where A, = A (T]) and Z, = T](X).
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o Let z=T;x. Then ze Z,.
Now Z, = %5, by the previous theorem. Hence z € Z5,.
So z= T/%’xl, for some xj € X.
Let xo=Tyx1. Then xo€ Z%,.
Moreover,
Tixo= T/%rxl =z=T;x.
This shows that T;(x—xp) =0. Hence, x —xg € A;.
So we get
x=(x—xp)+Xo,

with x—xg € A}, and xg € Z,.
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o We show uniqueness.
Assume, in addition to x = (x —Xxp) + o,
there exists Xg € Z,, with x—Xp € ;.
Let vo=xp—Xp-
Then vg € Z,, since &, is a vector space.
Hence vo = T v, for some ve X.

Also
%) =X0—;0 = (X—YO)_(X_XO).

Hence, vo € A} and T;vo=0.

Together, T/%rv =Tivw=0. Thus, ve A, =A,.

This implies that vo= T v=0. That is, vp =x0—X =0, or x0 = Xp.
Therefore, the representation is unique, and the sum A}, + 2, is
indeed direct.
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Let X be a normed space.
Let T:X — X be a compact linear operator on X.
Let T*: X' — X' be the adjoint operator of T.

We will be dealing with the equations:
Tx—Ax =y, with y € X given and 1 #0;
The corresponding homogeneous equation Tx—Ax=0, 1 #0;
Equations similar to (1) involving the adjoint operator T*f —Af =g,
where g € X’ is given and 1 #0;
The corresponding homogeneous equation T*f —Af =0, A #0.
o AeCis arbitrary and fixed, not zero, and we shall study the existence
of solutions x and f, respectively.
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Theorem (Solutions of (1))

Let 7:X — X be a compact linear operator on a normed space X and let
A#0. Then Tx—Ax =y has a solution x if and only if y is such that

f(y) =0, for all f e X' satisfying T*f —Af =0. Hence, if the latter has only
the trivial solution f =0, then the former is solvable for any given y € X.

Suppose Tx—Ax =y has a solution x =xg, i.e., y = Txg—Axp = T1Xo.
Let f be any solution of T*f—Af =0. Then we have

f(y)=Ff(Txo—Axp) = f(Txp) — Af(x0).
Now, by the definition of the adjoint, f(Txp) =(T>f)(xo).
Hence, by the adjoint equation, f(y)=(T"f)(x0)—Af(x0) =0.
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Conversely, assume that y in Tx—Ax =y satisfies f(y) =0, for all
fe X', such that T*f-Af =0.
Suppose Tx—Ax =y has no solution.
Then y = Tyx, for no x. Hence y & T)(X). We know T,(X) is closed.
So the distance § from y to Ty(X) is positive.
By a~previous lemma, there exists an f € X', such that:
o f(y)=0;
o f(z) =0, for every ze T;(X).
Since z€ Ty(X), we have z = T)x, for some x € X. So we get

0="F(z)=F(Tax)=F(Tx) = Af(x) = (T*F)(x) = Af(x).
This holds for every x € X, since ze€ T,(X) was arbitrary.
Hence, f is a solution of T*f —Af =0.
By assumption, it satisfies f(y) = 0. This contradicts f(y)=6>0.
Consequently, Tx—Ax =y must have a solution.
The second statement of the theorem follows from the first.



Compact Linear Operators on Normed Spaces

Let A: X — X be a bounded linear operator on a normed space X.

Let A* be the adjoint operator of A.

©

©

©

Consider the equation
Ax=y, y given.

Suppose that it has a solution x € X if and only if y satisfies f(y) =0,
for every solution f € X’ of the equation

©

A*f=0.

©

Then Ax =y is said to be normally solvable.

The preceding theorem shows that Tx—Ax =y, with a compact linear
operator T and A #0, is normally solvable.

©
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Lemma (Bound for Certain Solutions of (1))

Let 7:X — X be a compact linear operator on a normed space and let

A #0 be given. Then there exists a real number ¢ >0, which is independent
of y in Tx—Ax =y, and such that, for every y for which the equation has a
solution, at least one of these solutions, call it x = X, satisfies

IXI <cllyl, where y=T,Xx.

o We subdivide the proof into two steps:
We show that if the equation with a given y has solutions at all, the
set of these solutions contains a solution of minimum norm, call it X.
We show that there is a ¢ >0, such that the norm inequality holds for a
solution X of minimum norm corresponding to any y = T;X, for which
the equation has solutions.
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Let xo be a solution of Tx—Ax=y.

If x is any other solution, then z = x—xp satisfies Tx—Ax=0.
Hence, every solution can be written x = xo +z, where ze€ A (T)).
Conversely, for every ze A (T,), the sum xg +z is a solution.

For a fixed xg, the norm of x depends on z, p(z) = lixp+z|. Let

k - ZEJI‘D(fT,{)p(Z).

By the definition of an infimum, .A/(T)) contains a sequence (z,),
such that
p(zn) = lIxo+zall = k.

Since (p(zn)) converges, it is bounded. Moreover,
Izall = (X0 + 2n) = Xoll = lIx0 + zall + X0l = p(2n) + lIxoll-

So (z,) is bounded.
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o Since T is compact, (Tz,) has a convergent subsequence.
But z, € A (T)) means that Tz, =0.
l.e., Tz,=Az,, where A #0.
Hence, (z,) has a convergent subsequence, say, z, — z.
Since A(T,) is closed, zge A (Ty).
Since p is continuous, p(zn;) — p(20).
We thus obtain
p(z0) = lIxo + 2ol = k.

Thus, if Tx—Ax =y, with a given y, has solutions, the set of these
solutions contains a solution X = xg + zg of minimum norm.
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We show there is a ¢ >0 (independent of y) such that [[X]| < cllyll
holds for a solution X of minimum norm corresponding to any y = THX
for which Tx—Ax =y is solvable.

Suppose not. Then there is a sequence (yj,), such that

IXnll n—oo
=% 0,
Iynll

where X, is of minimum norm and satisfies T)X, = yn.

Multiplication by an a shows that to ay,, there corresponds aXx,, as a
solution of minimum norm.

Thus, without loss of generality, we assume [|X,| = 1.
Then |yl — 0.

Now T is compact and (X,) is bounded.

So (TXp) has a convergent subsequence, say, TX, — w.
If, for convenience, we write vo = AXp, then TX,, — A%.
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o Since y, = TaX, = TX,— AX,, we have AX, = TX, — yp.
Using this and [ly,ll — 0, and noting A #0,

_ 1 1, _
Xn; = X(Txnj —ynj) — Z(AXO -0) =Xo.

Since T is continuous, TX,, — TXo.
Hence TXxp=AXy.
Since T)X, = y,, we see that x =X, —Xg satisfies Tyx = y,.

Since X, is of minimum norm,
IxIl = IXn — Xoll = IXpll = 1.

This contradicts X, — Xp.

Hence, ¢ =supyeT,(x) H < oo, where y = T)X.
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Theorem (Solutions of (3))

Let T:X — X be a compact linear operator on a normed space X and let
A#0. Then T*f—Af =g has a solution f if and only if g is such that
g(x) =0, for all xe X, which satisfy Tx—Ax =0. Hence, if the latter has
only the trivial solution x =0, then the former is solvable, for any ge X’.

Suppose T*f —Af =g has a solution f.
Let x be such that Tx—Ax=0.

Then we have
g(x)=(T*f)(x)-Af(x)=f(Tx—Ax)=£(0) =0.

Conversely, suppose g satisfies g(x) =0, for all x, with Tx—-Ax=0.
We show that T*f —Af =g has a solution f.
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o Consider any x€ X and set y = T)x. Then y € T(X).
We may define a functional fy on T,(X) by

fo(y) = fo(Tax) = g(x).

This definition is unambiguous.

If Tix1 = Tyxo, then T;L(Xl —X2) =0.

So x1 —x2 is a solution of Tx—Ax=0.

Thus, g(x1 —x2) =0 by assumption.
fo is linear since T, and g are linear.
We show that fy is bounded.
By the preceding lemma, for every y € T;(X), at least one of the
corresponding x's satisfies | x|| < c|ly|l, where ¢ does not depend on y.
Boundedness of fy can now be seen from

Ifo(y)l =lg(x)I < ligllixll < clglllyll = Elyll,

where €= clg].
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o By the Hahn-Banach Theorem, the functional fy has an extension f on
X, which is a bounded linear functional defined on all of X.

By the definition of f,
f(Tx—Ax)=f(Tax)=fo(Tax) = g(x).
On the left, by the definition of adjoint, we have for all x € X,
f(Tx—Ax)=f(Tx)=Af(x)=(T"f)(x)—Af(x).
Together with the preceding formula this shows that f is a solution of
T*f-Af =g.
The second statement follows readily from the first one.
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o Let X be a normed space.
o We revisit compact linear operators T : X — X on X.

o Let T* be the adjoint operator of T and A #0 be fixed.

o We present further results about the solvability of the following
operator equations:
Tx—Ax=y, y given;
Tx—Ax=0;
T*f—Af =g, g given;
T*f—Af =0.
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Theorem (Solutions of (1))

Let 7:X — X be a compact linear operator on a normed space X and let
A #0. Then:

Tx—Ax =y has a solution x, for every y € X, if and only if the
homogeneous equation Tx—Ax =0 has only the trivial solution x =0.
In this case the solution is unique, and T, has a bounded inverse.

T*f—Af =g has a solution f, for every g€ X', if and only if
T*f—Af =0 has only the trivial solution f =0. In this case the
solution is unique.

Suppose that for every y € X, Tx—Ax =y is solvable.

Assume that x =0 is not the only solution of Tx—Ax=0.

Then Tx—Ax =0 has a solution x; #0.

For any y, Tx—Ax =y is solvable. So T3x = x; has a solution x = x.
For the same reason, there is an x3, such that Tyx3 = xo, etc.
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o By substitution, we thus have, for every k=2,3,...,
0 #Xl = T/lx2 = T/%X?, = e = T/{‘_lxk.

Moreover, 0= Tyx1 = T/{‘xk.
Hence, xx € A ( T/{‘) but xx & A ( T/{“l).

This means that the null space A/( T/{(‘l) is a proper subspace of
=/V(T/{‘) for all k.

But this contradicts a previous theorem.
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o Conversely, suppose that x =0 is the only solution of Tx—-Ax=0.
Then, by a preceding result, T*f — Af = g, with any g, is solvable.
We know that T* is compact.

So we can apply the first part of the proof to T* and conclude that
f =0 must be the only solution of T*f—Af =0.

Solvability of Tx—Ax =y follows by a previous theorem.

Now note that the difference of two solutions of Tx—Ax=y is a
solution of Tx—Ax=0. Clearly, such a unique solution x = Tl‘ly is
the solution of minimum norm. Thus, the solution is unique.

By a previous lemma, boundedness of T/{l follows:
IxlI = 1Tyl <cllyl.

This is a consequence of (a) and the fact that T* is compact.
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Lemma (Biorthogonal System)

Given a linearly independent set {fi,...,fn} in the dual space X’ of a
normed space X, there are elements zi,...,z, in X, such that

0, ifjtk
G(Zk):‘sjk:{ L okt kSLeam

o The order being immaterial, it suffices to prove that there exists a z,,
such that fn(zm) =1, fi(zm)=0,j=1,...,m-1.
If m=1, by the linear independence, f; #0.
So, fi(xo) #0, for some xg. Set z1 = axo, @ = 7 (X - Then fi(z1) =
Let m>1 and assume the lemma holds for m—1.
So X contains elements zi,...,zn_1, such that

f(zk)=1, fo(zx)=0, n#k, kn=1,..m-1

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Compact Linear Operators on Normed Spaces

o Consider the set M ={xe X: fi(x)=0,...,fm-1(x) =0}.
We show that M contains a Z,, such that f,,(Z) =B #0.
This clearly yields the result, where z,, = 71Z,.

Suppose, to the contrary, that f,(x) =0, for all xe M.
We take any x € X and set

m-1
Z=x- Y (x)z
j=1
Then, for k<= m-1,
m-1
fi(X) = fi(x)fi(z) = fi(x) — fi(x) = 0.
j=1

This shows that x e M.
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o So, by our assumption, f,(X)=0.
By definition, we get

m-1 m-1

m-1
fm(x) = fm (5?"' Zi 6(X)ZJ) = fm(X) + y fi(x)fm(z)
J:

where a; = f,(z;). But x € X was arbitrary. So this is a representation

of £, as a linear combination of fi,..., f;,—1. This contradicts the linear
independence of {fi,..., fm}.

Hence f(x) =0, for all xe M is impossible.

So M must contain a z,, such that

fm(zm) =1, G(Zm)=0, j=1,...,m-1
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|

Theorem (Null Spaces of Tj and T)

Let 7:X — X be a compact linear operator on a normed space X, and let
A #0. Then, the equations Tx—Ax=0 and T*f—Af =0 have the same
number of linearly independent solutions.

o T and T* are compact.
So A(Ty) and A(T;) are finite dimensional, say

dimA(Ty)=n and dimA(T))=m.

We subdivide the proof into three parts:

The case m=n=0 and a preparation for m>0,n>0;
The proof that n< m is impossible;
The proof that n> m is impossible.
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If n=0, the only solution of Tx—Ax=0is x=0.

Then T*f —Af = g with any given g is solvable.

By a preceding result, this implies that f =0 is the only solution of
T*f-Af=0. Hence m=0.

Similarly, from m =0 it follows that n=0.

Suppose m>0 and n>0.

Let {x1,...,xn} be a basis for A (T,).

Clearly, x; € Y1 =spanix,..., xx}.

By a previous lemma, there is a g1 € X', which is:

o Zero everywhere on Y7;
o g1(x1) =4, where § >0 is the distance from x; to Yj.

Hence gy =615, satisfies

gi(x1)=1 and gi(x2)=0,...,81(xn) =0.
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o Similarly, there is a g», such that
&(x2)=1 and g(x;)=0, forj#2, etc.
Hence X’ contains gi,...,&,, such that

0, ifj#k i
gk(XJ')z(sjk:{ 1, Iszk , hk=1..,n

Similarly, suppose {f,..., fn} is a basis for A (T)).
Then by the lemma, there are elements zi,...,z, of X, such that

fi(zk)=0jk, Jok=1,....,m.
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We show that n< m is impossible. Let n< m.
Define S: X — X by

Sx=Tx+)_ gj(x)z.
j=1

S is compact since, by a previous result, gj(x)z; represents a compact
linear operator, and a sum of compact operators is compact.

: SAXO = SXO —AXO =0 implies X0 = 0.
By the hypothesis, we have fi(Syxo) =f((0)=0, for k=1,,...,m.
Hence, by the definition of S and of f;, we obtain

0 fk(Saxo)

fi(Taxo+ X7, 8i(x0)Z))
fi(Taxo) + X, 8j(x0) ()
(T} fi)(x0) + &k (x0)-
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o Since fy e /(T), we have T f, =0.
Hence, by the preceding equation, gx(x0) =0, k=1,...,m.
This implies Sxp = Txp, by the definition of S.
So Tixg=S)xo =0, by the hypothesis.
Hence xp € A (Ty).

Since {xy,...,xp} is a basis for /(T)), xo = ZJ’.'zl a;x;, where the a;’s
are suitable scalars.

Applying g, we have, for all k=1,...,n,
n
0=gu(x0) = ) jg(x) = Q-
j=1

Hence xg = 0.
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o A preceding theorem now implies that Syx =y, with any y, is solvable.
We choose y = z41.
Let x = v be a corresponding solution, i.e., Sjv =z,,1.
We calculate
1 = for (Zn+1)

= fn+1(5/lV)

= for(Tav+X7, 8(v)z)

= Eijn 1)(v)+ X1, 8i(v)fai1(z))

Since we assumed n<m, we have n+1<m and f,.1€ A/(T)).
Hence T,f,,1=0. This contradicts the preceding equation.

Therefore, n< m is impossible.
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We show n> m is also impossible. Let n> m.
Define S: X' — X' by

SF=T*f+ i f(z)g;

j=1
By a previous theorem, T* is compact.
Moreover, S is compact since f(z;)gj represents a compact linear
operator by a previous theorem.

. Spfo=Sfy—Afy =0 implies fp = 0.

Using the hypothesis, the definition of S, the definition of adjoint
operator and that of the gi's we obtain for each k=1,...,m,

0= (Safo)(xk) = (T;fo) (xk) zlfo(zj)g,(xk) fo Taxi) + fo(zk)-
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o Recall that {xi,...,xp} is a basis for A (T)).
Now m < n implies that xx € A/(Ty), for k=1,...,m.
Hence, fo( Tyxk) = fo(0).
So fo(zx) =0, k=1,...,m.
Consequently, Sfy= T*fy, by the definition of S.
By hypothesis, T fo = Safo=0.
Hence, fo e A(T;).
But {f1,...,fm} is a basis for A(T).
So fo = Zj”;lﬁjﬁ-, where the B;'s are suitable scalars.
Thus, for each k=1,...,m,

3

0="fo(zk) = ) Bjfi(zx) = B«-
j=1

Hence f5 =0.
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o A preceding theorem now implies that S,f = g, for any g, is solvable.
We choose g = gm+1.
Let f = h be a corresponding solution, i.e., S3h = gme1.
Using the definition of the gi's and that of S, we obtain

1 = gLn+1(Xm+1)
= (Sah)(xm+1)
= (Ty h)(xm+1)+2j”;1 h(z;)gj(xm+1)
= (T3 h)(xm+1)

= h( TA(Xm+1))-

The assumption m < n implies m+1 < n.
So Xm+1 €A (Ty). Hence, h(Thxm+1) = h(0)=0.

This contradicts the previous equation and shows that m<n is
impossible.
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Theorem (Eigenvalues)

Let T:X — X be a compact linear operator on a normed space X. Then,
if T has nonzero spectral values, every one of them must be an eigenvalue
of T.

o If the resolvent Ry = T;! does not exist, A € gp(T) by definition.
Let A #0 and assume that R = T/l':l exists.
Then Tyx =0 implies x =0.
This means that Tx—Ax =0 has only the trivial solution.
By a preceding theorem, Tx—Ax =y, with any y, is solvable.
That is, R) is defined on all of X and is bounded.
Hence, A€ p(T).
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Subsection 7

Fredholm Alternative
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A bounded linear operator A: X — X on a normed space X is said to
satisfy the Fredholm alternative if A is such that either (I) or (II) holds:

The nonhomogeneous equations Ax=y, A*f =g (A*: X' — X' the
adjoint operator of A) have solutions x and f, respectively, for every
given y € X and g € X', the solutions being unique.

The corresponding homogeneous equations Ax =0, A*f =0 have only
the trivial solutions x =0 and f =0, respectively.

The homogeneous equations Ax =0, A*f =0 have the same number
of linearly independent solutions xi,...,x, and fi,...,f,, n=1,
respectively.

The nonhomogeneous equations Ax =y, A*f = g are not solvable for
all y and g, respectively; they have a solution if and only if y and g
are such that fi(y) =0, g(xk) =0, k=1,...,n, respectively.
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o Summarizing the results of the preceding two sections:

Theorem (Fredholm Alternative)

Let 7:X — X be a compact linear operator on a normed space X, and let
A#0. Then Ty =T — Al satisfies the Fredholm alternative.

o In applications, instead of showing the existence of a solution directly,
it is often simpler to prove that the homogeneous equation has only
the trivial solution.

o Riesz's theory of compact linear operators was suggested by
Fredholm's theory of integral equations of the second kind

b
x(s)=u [ K(s,t)x(e)dt =5(5)

o In fact Riesz's theory generalizes Fredholm's results, which predate the
development of the theory of Hilbert and Banach spaces.
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©

Consider again the integral equation

il fk(st £)dt = 7(s).

Set u= % and y(s) = —@, where 1 #0.
o Then

©

b
_ %fa k(s,t)x(t)dt = —%y(S)-

©

This gives
f s el us) = )

©

So we get
Tx-Ax=y, A#Q,

with T defined by (Tx)(s) = [ k(s, t)x(t)dt.
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o We obtained
Tx—-Ax=y, A#Q,

with T defined by

b
(T%)(s) = f K(s, t)x(£)dt.

o Now, the general theory applied to this T gives

Theorem (Fredholm Alternative for Integral Equations)

If k inis such that T : X — X is a compact linear operator on a normed
space X, then the Fredholm alternative holds for T;. Thus, one of the two
alternatives hold:

o The integral equation has a unique solution for all y € X;

o The homogeneous equation corresponding to the integral equation has
finitely many linearly independent nontrivial solutions x (i.e., x #0).
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Q

Suppose that T in Tx—Ax =y is compact.
Suppose A is in the resolvent set p(T) of T.
Then the resolvent

RA(T)=(T-AN)"
exists, is defined on all of X and is bounded.

So, for every y € X, we get the unique solution of Tx—Ax=y
x=Ry(T)y.

Since Ry(T) is linear, we get Ry(T)0=0.
This implies that the homogeneous equation Tx —Ax =0 has only the
trivial solution x = 0.

Hence, A€ p(T) yields Case (I) of the Fredholm alternative.
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o Let [A|>|T].
o Assume X is a complex Banach space.
o Then we have A€ p(T).
o Furthermore,

RUT)=-=|1+= TJFET2 )
o Consequently, for the solution x = Ry(T)y, we have the representation

1 1
Y T L -
=T (y ATt )

o This series is called a Neumann series.
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o Case (Il) of the Fredholm alternative is obtained if we take a nonzero
Aeoa(T) (if such a A exists), where o(T) is the spectrum of T.

o A previous theorem implies that A is an eigenvalue.
o The dimension of the corresponding eigenspace is finite.

: : . . «
o It is equal to the dimension of the corresponding eigenspace of T .
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o Two spaces of particular interest are X = L2[a, b] and X = C[a, b].

o To apply the theorem, one needs conditions for the kernel k which are
sufficient for T to be compact.
o If X =L?[a,b], such a condition is that k be in L?(J x J), where
J=[a,b]. (This is a measure theoretic result.)
o In the case X = C[a, b], where [a, b] is compact, continuity of k will
imply compactness of T.
We will obtain this result by applying Ascoli’s Theorem.
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o A sequence (xp) in Cl[a,b] is said to be equicontinuous if, for every
€>0, there is a § >0, depending only on ¢, such that, for all x, and
all s1,s, € [a, b], satisfying |s; —s2| <&, we have

|Xn(51) —Xn(52)| <E.

o Note that in equicontinuity:

o 6 does not depend on n;
o Each xj, is uniformly continuous on [a, b].

Ascoli’'s Theorem (Equicontinuous Sequence)

A bounded equicontinuous sequence (x,) in C[a, b] has a subsequence
which converges (in the norm on C[a, b]).
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Theorem (Compact Integral Operator)

Let J=[a, b] be any compact interval and suppose that k is continuous on
JxJ. Then the operator T : X — X defined by (Tx)(s) = fab k(s, t)x(t)dt,
where X = C|a, b], is a compact linear operator.

o T is linear.

Boundedness of T follows from

b b
f K(s, t)x(£)dt| < lIx] max f Ik(s, £)Id.
a sed Ja

| Tx|l = max
sed

This is of the form || Tx| < €|l x]l.
Let (x,) be any bounded sequence in X, say, x|l < ¢, for all n.
Let yn= Txp. Then llyall < I Tlllixall. Hence, (yn) is also bounded.
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. (vn) is equicontinuous.
By hypothesis, the kernel k is continuous on J x J.
Moreover, J x J is compact. Thus, k is uniformly continuous on J x J.
Hence, given € >0, there is a § >0, such that, for all te€ J and all
s1,52 € J, satisfying |s; —sp| <8, we have |k(s1,t) — k(sp, t)l < ﬁ.

Consequently, for s1,s, as before and every n,

|Yn(51) Yn 52

f [k(s1,£) — k(50, £)] () It
)(b 2)cC=E

This proves equicontinuity of (yp).
Ascoli's Theorem implies that (y,) has a convergent subsequence.

Since (x,) was an arbitrary bounded sequence and y, = Txp,
compactness of T follows from a previous theorem.
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