Introduction to Spectral Theory of Linear Operators

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

lanuary 2024

Bounded Self-Adjoint Linear Operators

- Bounded Self-Adjoint Linear Operators
- Further Properties of Bounded Self-Adjoint Operators
- Positive Operators
- Square Roots of a Positive Operator
- Projection Operators
- Further Properties of Projections
- Spectral Family
- Spectral Family of a Bounded Self-Adjoint Operator
- Spectral Representation of Bounded Self-Adjoint Operators
- Extension of the Spectral Theorem to Continuous Functions
- Properties of Spectral Family of a Bounded Self-Adjoint Operator

Subsection 1

Bounded Self-Adjoint Linear Operators

The Hilbert Adjoint Operator

- Let *H* be a complex Hilbert space.
- Let $T: H \rightarrow H$ be a bounded linear operator on H.
- The Hilbert-adjoint operator T^{*}: H → H is defined to be the operator satisfying

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
, for all $x, y \in H$.

- From the general theory of Hilbert Spaces, we know the following facts:
 - T^{*} exists;
 - T* is a bounded linear operator;
 - T^* is of norm $||T^*|| = ||T||$;
 - T* is unique.

Self-Adjoint or Hermitian Operators

- Let *H* be a complex Hilbert space.
- Let $T: H \rightarrow H$ be a bounded linear operator on H.
- T is said to be self-adjoint or Hermitian if

$$T = T^*$$
.

• Then
$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 becomes

$$\langle Tx, y \rangle = \langle x, Ty \rangle.$$

- If T is self-adjoint, then $\langle Tx, x \rangle$ is real for all $x \in H$.
- Since *H* being complex, this condition implies self-adjointness.

Eigenvalues and Eigenvectors

Theorem (Eigenvalues and Eigenvectors)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then:

- (a) All the eigenvalues of T (if they exist) are real.
- (b) Eigenvectors corresponding to different eigenvalues are orthogonal.
- (a) Let λ be any eigenvalue of T and x a corresponding eigenvector. Then $x \neq 0$ and $Tx = \lambda x$.

Using the self-adjointness of T, we get

$$\lambda \langle x, x \rangle = \langle \lambda x, x \rangle = \langle Tx, x \rangle = \langle x, Tx \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle.$$

Note that, since $x \neq 0$. $\langle x, x \rangle = ||x||^2 \neq 0$. So dividing by $\langle x, x \rangle$ gives $\lambda = \overline{\lambda}$. We conclude that λ is real.

Eigenvalues and Eigenvectors (Cont'd)

(b) Let λ and μ be eigenvalues of T. Let x and y be corresponding eigenvectors. Then Tx = λx and Ty = μy. Note that T is self-adjoint and μ is real. So we get

$$\lambda \langle x, y \rangle = \langle \lambda x, y \rangle = \langle Tx, y \rangle = \langle x, Ty \rangle = \langle x, \mu y \rangle = \mu \langle x, y \rangle.$$

Since $\lambda \neq \mu$, $\langle x, y \rangle = 0$. This shows that x and y are orthogonal.

Characterization of the Resolvent Set

Theorem (Resolvent Set)

Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then a number λ belongs to the resolvent set $\rho(T)$ of T if and only if there exists a c > 0, such that for every $x \in H$,

$$||T_{\lambda}x|| \ge c||x||$$
, where $T_{\lambda} = T - \lambda I$.

 $\|x\| = \|R_{\lambda}T_{\lambda}x\| \le \|R_{\lambda}\|\|T_{\lambda}x\| = k\|T_{\lambda}x\|.$

This gives $||T_{\lambda}x|| \ge c ||x||$, where $c = \frac{1}{k}$.

Characterization of the Resolvent Set (Converse (i))

(b) Suppose $||T_{\lambda}x|| \ge c ||x||$, c > 0, holds for all $x \in H$. We prove:

- (i) $T_{\lambda}: H \to T_{\lambda}(H)$ is bijective;
- (ii) $T_{\lambda}(H)$ is dense in H;
- (iii) $T_{\lambda}(H)$ is closed in H.

Then $T_{\lambda}(H) = H$ and $R_{\lambda} = T_{\lambda}^{-1}$ is bounded by the Bounded Inverse Theorem.

(i) We must show that $T_{\lambda}x_1 = T_{\lambda}x_2$ implies $x_1 = x_2$. As T_{λ} is linear, if $T_{\lambda}x_1 = T_{\lambda}x_2$, then

 $0 = \|T_{\lambda}x_1 - T_{\lambda}x_2\| = \|T_{\lambda}(x_1 - x_2)\| \ge c \|x_1 - x_2\|.$

Since c > 0, we get $||x_1 - x_2|| = 0$. So $x_1 = x_2$. Since x_1, x_2 were arbitrary, $T_{\lambda} : H \to T_{\lambda}(H)$ is bijective.

Characterization of the Resolvent Set (Converse (ii))

(ii) We show $x_0 \perp \overline{T_{\lambda}(H)}$ implies $x_0 = 0$. Then, by the Projection Theorem, $\overline{T_{\lambda}(H)} = H$. Let $x_0 \perp \overline{T_{\lambda}(H)}$. Then $x_0 \perp T_{\lambda}(H)$. Hence, for all $x \in H$, $0 = \langle T_{\lambda}x, x_0 \rangle = \langle Tx, x_0 \rangle - \lambda \langle x, x_0 \rangle$. Since T is self-adjoint,

$$\langle x, Tx_0 \rangle = \langle Tx, x_0 \rangle = \langle x, \overline{\lambda}x_0 \rangle.$$

Hence, $Tx_0 = \overline{\lambda} x_0$.

A solution is $x_0 = 0$. Moreover, $x_0 \neq 0$ is impossible. Indeed, that would mean that $\overline{\lambda}$ is an eigenvalue of T. Then, $\lambda = \overline{\lambda}$ and $Tx_0 - \lambda x_0 = T_\lambda x_0 = 0$. Since c > 0, by hypothesis, $0 = ||T_\lambda x_0|| \ge c ||x_0|| > 0$. As x_0 was any vector orthogonal to $\overline{T_\lambda(H)}$, $\overline{T_\lambda(H)}^{\perp} = \{0\}$. Hence $\overline{T_\lambda(H)} = H$. I.e., $T_\lambda(H)$ is dense in H.

George Voutsadakis (LSSU)

Characterization of the Resolvent Set (Converse (iii))

(iii) We prove y ∈ T_λ(H) implies y ∈ T_λ(H). Then T_λ(H) is closed and T_λ(H) = H by Part (ii). Let y ∈ T_λ(H). Then, there is a sequence (y_n) in T_λ(H), which converges to y. Since y_n ∈ T_λ(H), we have y_n = T_λx_n, for some x_n ∈ H. By the hypothesis,

$$||x_n - x_m|| \le \frac{1}{c} ||T_\lambda(x_n - x_m)|| = \frac{1}{c} ||y_n - y_m||.$$

Since (y_n) converges, (x_n) is Cauchy. Since *H* is complete, (x_n) converges, say, $x_n \rightarrow x$.

Characterization of the Resolvent Set ((iii) Cont'd)

• Since T is continuous, so is T_{λ} . Hence, $y_n = T_\lambda x_n \rightarrow T_\lambda x$. By definition, $T_{\lambda} x \in T_{\lambda}(H)$. Since the limit is unique, $T_{\lambda}x = y$. Hence, $y \in T_{\lambda}(H)$. Since $y \in \overline{T_{\lambda}(H)}$ was arbitrary, $T_{\lambda}(H)$ is closed. We thus have $T_{\lambda}(H) = H$ by Part (ii). This means that $R_{\lambda} = T_{\lambda}^{-1}$ is defined on all of H. Moreover, by the Bounded Inverse Theorem, it is bounded. Hence, $\lambda \in \rho(T)$.

The Spectrum Theorem

Theorem (Spectrum)

The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H is real.

Using the theorem, we show that a λ = α + iβ, α, β real, with β ≠ 0 must belong to ρ(T). It will follow that σ(T) ⊆ ℝ.
For every x ≠ 0 in H, we have ⟨T_λx,x⟩ = ⟨Tx,x⟩ - λ⟨x,x⟩.
Since ⟨x,x⟩ and ⟨Tx,x⟩ are real,

$$\overline{\langle T_\lambda x,x\rangle} = \langle Tx,x\rangle - \overline{\lambda} \langle x,x\rangle.$$

By subtraction,

$$\overline{\langle T_{\lambda}x,x\rangle} - \langle T_{\lambda}x,x\rangle = (\lambda - \overline{\lambda})\langle x,x\rangle = 2i\beta ||x||^2.$$

The Spectrum Theorem (Cont'd)

We found

$$\overline{\langle T_{\lambda}x,x\rangle} - \langle T_{\lambda}x,x\rangle = 2i\beta \|x\|^2.$$

The left side is $-2i \text{Im} \langle T_{\lambda} x, x \rangle$, where Im is the imaginary part.

The latter cannot exceed the absolute value.

Dividing by 2, taking absolute values and applying the Schwarz inequality, we obtain

$$|\beta| ||x||^2 = |\operatorname{Im} \langle T_{\lambda} x, x \rangle| \le |\langle T_{\lambda} x, x \rangle| \le ||T_{\lambda} x|| ||x||.$$

Division by $||x|| \neq 0$ gives $|\beta|||x|| \leq ||T_{\lambda}x||$. If $\beta \neq 0$, then, by a previous theorem, $\lambda \in \rho(T)$. Hence, if $\lambda \in \sigma(T)$, $\beta = 0$. So λ is real.

Subsection 2

Further Properties of Bounded Self-Adjoint Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

January 2024

15 / 129

Spectrum

Theorem (Spectrum)

The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H lies in the closed interval [m, M] on the real axis, where

$$m = \inf_{\|x\|=1} \langle Tx, x \rangle, \qquad M = \sup_{\|x\|=1} \langle Tx, x \rangle.$$

By a previous result, σ(T) lies on the real axis.
We show that any real λ = M + c, with c > 0, belongs to the resolvent set ρ(T).
Suppose x ≠ 0 and v = ||x||⁻¹x.
Then x = ||x||v and
⟨Tx,x⟩ = ||x||²⟨Tv,v⟩ ≤ ||x||² sup ⟨Tṽ, ṽ⟩ = ⟨x,x⟩M.

 $\|\widetilde{v}\|=1$

Spectrum (Cont'd)

• Hence, $-\langle Tx, x \rangle \ge -\langle x, x \rangle M$.

By the Schwarz inequality, we obtain

$$\|T_{\lambda}x\|\|x\| \geq -\langle T_{\lambda}x,x\rangle$$

= - \lapha Tx,x \rangle + \lambda \lambda,x \rangle
\ge (-M+\lambda) \lambda,x \rangle
= c ||x||^2,

where $c = \lambda - M > 0$ by assumption. Division by ||x|| yields $||T_{\lambda}x|| \ge c||x||$. Hence, by the Resolvent Set Theorem, $\lambda \in \rho(T)$. For a real $\lambda < m$ the idea of proof is the same.

Norm

Theorem (Norm)

For any bounded self-adjoint linear operator ${\mathcal T}$ on a complex Hilbert space ${\mathcal H}$ we have

$$|T|| = \max(|m|, |M|) = \sup_{\|x\|=1} |\langle Tx, x\rangle|.$$

• Let $K = \sup_{\|x\|=1} |\langle Tx, x \rangle|$. By the Schwarz inequality,

$$\mathcal{K} = \sup_{\|x\|=1} |\langle Tx, x \rangle| \le \sup_{\|x\|=1} \|Tx\| \|x\| = \|T\|.$$

We show, next, that $||T|| \le K$. Suppose, first, Tz = 0, for all z of norm 1. Then T = 0. In this case, there is nothing to prove.

Norm (Cont'd)

• Consider, next, a z of norm 1, such that $Tz \neq 0$. Set $v = ||Tz||^{1/2}z$ and $w = ||Tz||^{-1/2}Tz$. Then $||v||^2 = ||w||^2 = ||Tz||$. We now set $y_1 = v + w$ and $y_2 = v - w$. Then, since T is self-adjoint,

$$\langle Ty_1, y_1 \rangle - \langle Ty_2, y_2 \rangle = \langle Tv + Tw, v + w \rangle - \langle Tv - Tw, v - w \rangle = \langle Tv, v \rangle + \langle Tv, w \rangle + \langle Tw, v \rangle + \langle Tw, w \rangle - \langle Tv, v \rangle + \langle Tv, w \rangle + \langle Tw, v \rangle - \langle Tw, w \rangle = 2(\langle Tv, w \rangle + \langle Tw, v \rangle) = 2(\langle \|Tz\|^{1/2}Tz, \|Tz\|^{-1/2}Tz \rangle + \langle \|Tz\|^{-1/2}T^2z, \|Tz\|^{1/2}z \rangle) = 2(\langle Tz, Tz \rangle + \langle T^2z, z \rangle) = 4\|Tz\|^2.$$

Norm (Cont'd)

Now for every y ≠ 0 and x = ||y||⁻¹y, we have y = ||y||x.
 Moreover,

$$|\langle Ty, y \rangle| = ||y||^2 |\langle Tx, x \rangle| \le ||y||^2 \sup_{\|\widetilde{x}\|=1} |\langle T\widetilde{x}, \widetilde{x} \rangle| = K ||y||^2.$$

So, by the triangle inequality and straightforward calculation,

$$\begin{aligned} |\langle Ty_1, y_1 \rangle - \langle Ty_2, y_2 \rangle| &\leq |\langle Ty_1, y_1 \rangle| + |\langle Ty_2, y_2 \rangle| \\ &\leq K(||y_1||^2 + ||y_2||^2) \\ &= K(||v + w||^2 + ||v - w||^2) \\ &= 2K(||v||^2 + ||w||^2) \\ &= 4K||Tz||. \end{aligned}$$

Hence $4||Tz||^2 \le 4K||Tz||$. So $||Tz|| \le K$. Taking the supremum over all z of norm 1, we obtain $||T|| \le K$.

m and *M* as Spectral Values

Theorem (m and M as Spectral Values)

Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space $H \neq \{0\}$. Let $m = \inf_{\|x\|=1} \langle Tx, x \rangle$, $M = \sup_{\|x\|=1} \langle Tx, x \rangle$. Then *m* and *M* are spectral values of *T*.

• We show that $M \in \sigma(T)$.

By the spectral mapping theorem, the spectrum of T + kI, k a real constant, is obtained from that of T by a translation.

Moreover, $M \in \sigma(T)$ iff $M + k \in \sigma(T + kI)$.

Hence, we may assume $0 \le m \le M$, without loss of generality.

By the previous theorem, we have $M = \sup_{\|x\|=1} \langle Tx, x \rangle = \|T\|$.

By the definition of a supremum, there is a sequence (x_n) , such that

$$||x_n|| = 1$$
, $\langle Tx_n, x_n \rangle = M - \delta_n$, $\delta_n \ge 0$ and $\delta_n \to 0$.

m and *M* as Spectral Values (Cont'd)

• Then
$$||Tx_n|| \le ||T|| ||x_n|| = ||T|| = M$$
.
Since T is self-adjoint,

Π

$$\begin{aligned} Tx_n - Mx_n \|^2 &= \langle Tx_n - Mx_n, Tx_n - Mx_n \rangle \\ &= \|Tx_n\|^2 - 2M\langle Tx_n, x_n \rangle + M^2 \|x_n\|^2 \\ &\leq M^2 - 2M(M - \delta_n) + M^2 \\ &= 2M\delta_n \to 0. \end{aligned}$$

Hence, there is no positive c, such that

$$||T_M x_n|| = ||Tx_n - Mx_n|| \ge c = c||x_n||, ||x_n|| = 1.$$

By a preceding theorem, $\lambda = M$ is not in the resolvent set of T. Hence, $M \in \sigma(T)$. For $\lambda = m$, the proof is similar.

The Residual Spectrum

Theorem (Residual Spectrum)

The residual spectrum $\sigma_r(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H is empty.

- We show that the assumption $\sigma_r(T) \neq \emptyset$ leads to a contradiction. Let $\lambda \in \sigma_r(T)$. By the definition of $\sigma_r(T)$, we have:
 - The inverse of T_{λ} exists;
 - Its domain $\mathscr{D}(T_{\lambda}^{-1})$ is not dense in H.

By the projection theorem, some $y \neq 0$ in H is orthogonal to $\mathscr{D}(T_{\lambda}^{-1})$. But $\mathscr{D}(T_{\lambda}^{-1})$ is the range of T_{λ} . Hence, $\langle T_{\lambda}x, y \rangle = 0$, for all $x \in H$. Since λ is real and T is self-adjoint, we have $\langle x, T_{\lambda}y \rangle = 0$, for all x. Taking $x = T_{\lambda}y$, we get $||T_{\lambda}y||^2 = 0$. So $T_{\lambda}y = Ty - \lambda y = 0$. Since $y \neq 0$, this shows that λ is an eigenvalue of T. But this contradicts $\lambda \in \sigma_r(T)$. Hence, $\sigma_r(T) = \emptyset$.

Subsection 3

Positive Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

January 2024

Positive Operators on Hilbert Spaces

- We consider the set of all bounded self-adjoint linear operators on a complex Hilbert space *H*.
- If T is self-adjoint, $\langle Tx, x \rangle$ is real.
- So we may introduce on this set a partial ordering ≤ by defining

 $T_1 \leq T_2$ if and only if $\langle T_1 x, x \rangle \leq \langle T_2 x, x \rangle$, for all $x \in H$.

- A bounded self-adjoint linear operator T : H → H is said to be positive, written T ≥ 0, if and only if (Tx, x) ≥ 0, for all x ∈ H.
- The operator is "nonnegative", but "positive" is the usual term.
- Note that $T_1 \leq T_2$ iff $0 \leq T_2 T_1$.

Product of Positive Operators

- The sum of positive operators is positive.
- We know that a product (composite) of bounded self-adjoint linear operators is self-adjoint if and only if the operators commute.

Theorem (Product of Positive Operators)

If two bounded self-adjoint linear operators S and T on a Hilbert space H are positive and commute (ST = TS), then their product ST is positive.

- We must show that $\langle STx, x \rangle \ge 0$, for all $x \in H$.
 - If S = 0, this holds.

Let $S \neq 0$. We proceed in two steps:

- (a) We consider $S_1 = \frac{1}{\|S\|}S$, $S_{n+1} = S_n S_n^2$, n = 1, 2, ...We prove by induction that $0 \le S_n \le I$.
- (b) We prove that $\langle STx, x \rangle \ge 0$, for all $x \in H$.

Product of Positive Operators Part (a)

(a) First, we show that the inequality holds for n = 1. The assumption $0 \le S$ implies $0 \le S_1$. By an application of the Schwarz inequality and $||Sx|| \le ||S|| ||x||$, we get

$$\begin{split} \langle S_1 x, x \rangle &= \frac{1}{\|S\|} \langle S x, x \rangle \\ &\leq \frac{1}{\|S\|} \|S x\| \|x \\ &\leq \|x\|^2 \\ &= \langle I x, x \rangle. \end{split}$$

Product of Positive Operators Part (a) (Cont'd)

• Suppose the inequality holds for an n = k, i.e., $0 \le S_k \le I$. Thus, $0 \le I - S_k \le I$. Since S_k is self-adjoint, for every $x \in H$, $y = S_k x$, $\langle S_k^2(I - S_k)x, x \rangle = \langle (I - S_k)S_k x, S_k x \rangle = \langle (I - S_k)y, y \rangle \ge 0$.

By definition this proves $S_k^2(I-S_k) \ge 0$. Similarly, $S_k(I-S_k)^2 \ge 0$. By addition and simplification,

$$0 \leq S_k^2 (I - S_k) + S_k (I - S_k)^2 = S_k - S_k^2 = S_{k+1}.$$

Finally, note that $S_k^2 \ge 0$ and $I - S_k \ge 0$. Adding, we get $0 \le I - S_k + S_k^2 = I - S_{k+1}$. Hence, $S_{k+1} \le I$.

Product of Positive Operators Part (b)

(b) We now show that $\langle STx, x \rangle \ge 0$, for all $x \in H$. We have

$$S_1 = S_1^2 + S_2$$

= $S_1^2 + S_2^2 + S_3$
= ...
= $S_1^2 + S_2^2 + \dots + S_n^2 + S_{n+1}$

Since $S_{n+1} \ge 0$, this implies

$$S_1^2 + \dots + S_n^2 = S_1 - S_{n+1} \le S_1.$$

By the self-adjointness of S_j and the definition of \leq , we get

$$\sum_{j=1}^{n} \|S_j x\|^2 = \sum_{j=1}^{n} \langle S_j x, S_j x \rangle = \sum_{j=1}^{n} \langle S_j^2 x, x \rangle \le \langle S_1 x, x \rangle.$$

Since *n* is arbitrary, the infinite series $||S_1x||^2 + ||S_2x||^2 + \cdots$ converges. Hence $||S_nx|| \to 0$. Therefore, $S_nx \to 0$.

George Voutsadakis (LSSU)

Product of Positive Operators Part (b) (Cont'd)

• We obtained:

•
$$S_1^2 + \dots + S_n^2 = S_1 - S_{n+1};$$

• $S_n \times \to 0.$

Hence,

$$\left(\sum_{j=1}^n S_j^2\right) x = (S_1 - S_{n+1}) x \to S_1 x.$$

All the S_j 's commute with T, since they are sums and products of $S_1 = \frac{1}{\|S\|}S$ and S and T commute. Using $S = \|S\|S_1$, the preceding formula, $T \ge 0$ and the continuity of

the inner product, we obtain, for every $x \in H$ and $y_j = S_j x$,

$$\langle STx, x \rangle = \|S\| \langle TS_1x, x \rangle = \|S\| \lim_{n \to \infty} \sum_{j=1}^n \langle TS_j^2x, x \rangle = \|S\| \lim_{n \to \infty} \sum_{j=1}^n \langle Ty_j, y_j \rangle \ge 0.$$

Monotone Sequences

Definition (Monotone Sequence)

A monotone sequence (T_n) of self-adjoint linear operators T_n on a Hilbert space H is a sequence (T_n) satisfying one of the following:

It is monotone increasing, that is,

$$T_1 \le T_2 \le T_3 \le \cdots;$$

It is monotone decreasing, that is,

 $T_1 \ge T_2 \ge T_3 \ge \cdots.$

The Monotone Sequence Theorem

Theorem (Monotone Sequence)

Let (T_n) be a sequence of bounded self-adjoint linear operators on a complex Hilbert space H, such that

$$T_1 \le T_2 \le \cdots \le T_n \le \cdots \le K,$$

where K is a bounded self-adjoint linear operator on H. Suppose that any T_j commutes with K and with every T_m . Then (T_n) is strongly operator convergent $(T_n x \to Tx, \text{ for all } x \in H)$. The limit operator T is linear, bounded, self-adjoint and satisfies $T \leq K$.

- We consider $S_n = K T_n$ and prove:
 - (a) The sequence $(\langle S_n^2 x, x \rangle)$ converges, for every $x \in H$.
 - (b) $T_n x \rightarrow T x$, where T is linear and self-adjoint, and is bounded by the Uniform Boundedness Theorem.

The Monotone Sequence Theorem Part (a)

(a) Clearly, $S_n = K - T_n$ is self-adjoint. We have

$$S_m^2 - S_n S_m = (S_m - S_n) S_m = (T_n - T_m)(K - T_m).$$

Let m < n. Then $T_n - T_m$ and $K - T_m$ are positive. Since these operators commute, by the theorem, their product is positive. Hence on the left, $S_m^2 - S_n S_m \ge 0$. I.e., $S_m^2 \ge S_n S_m$, for m < n. Similarly,

$$S_n S_m - S_n^2 = S_n (S_m - S_n) = (K - T_n) (T_n - T_m) \ge 0.$$

So $S_n S_m \ge S_n^2$. Taken together, $S_m^2 \ge S_n S_m \ge S_n^2$, m < n. By definition, using the self-adjointness of S_n , we have

$$\langle S_m^2 x, x\rangle \geq \langle S_n S_m x, x\rangle \geq \langle S_n^2 x, x\rangle = \langle S_n x, S_n x\rangle = \|S_n x\|^2 \geq 0.$$

This shows that $(\langle S_n^2 x, x \rangle)$, with fixed x, is a monotone decreasing sequence of nonnegative numbers. Hence, it converges.

The Monotone Sequence Theorem Part (b)

(b) We show that $(T_n x)$ converges. By assumption, every T_n commutes with every T_m and with K. Hence, the S_j 's all commute. These operators are self-adjoint. For m < n, we have $-2\langle S_m S_n x, x \rangle \le -2\langle S_n^2 x, x \rangle$. Thus, we obtain

$$\begin{split} \|S_m x - S_n x\|^2 &= \langle (S_m - S_n) x, (S_m - S_n) x \rangle \\ &= \langle (S_m - S_n)^2 x, x \rangle \\ &= \langle S_m^2 x, x \rangle - 2 \langle S_m S_n x, x \rangle + \langle S_n^2 x, x \rangle \\ &\leq \langle S_m^2 x, x \rangle - \langle S_n^2 x, x \rangle. \end{split}$$

From this and Part (a), $(S_n x)$ is Cauchy. It converges since *H* is complete.

The Monotone Sequence Theorem Part (b) (Cont'd)

- Now $T_n = K S_n$.
 - Since $(S_n x)$ converges, $(T_n x)$ also converges.
 - Clearly, the limit depends on x.
 - So we can write $T_n x \to T x$, for every $x \in H$.
 - Hence, this defines an operator $T: H \rightarrow H$, which is linear.
 - T is self-adjoint because T_n is self-adjoint and the inner product is continuous.
 - Since $(T_n x)$ converges, it is bounded for every $x \in H$.
 - The Uniform Boundedness Theorem now implies that T is bounded. Finally, $T \leq K$ follows from $T_n \leq K$.

Subsection 4

Square Roots of a Positive Operator
Positive Square Root

- Let T be self-adjoint.
- Then T^2 is positive, since $\langle T^2x, x \rangle = \langle Tx, Tx \rangle \ge 0$.
- The converse problem consists of, given a positive operator T, finding a self-adjoint A such that $A^2 = T$.

Definition (Positive Square Root)

Let $T: H \to H$ be a positive bounded self-adjoint linear operator on a complex Hilbert space H. Then a bounded self-adjoint linear operator A is called a square root of T if

$$A^2 = T.$$

If, in addition, $A \ge 0$, then A is called a **positive square root** of T, denoted by $A = T^{1/2}$.

anuary 2024 37 /

The Positive Square Root Theorem

Theorem (Positive Square Root)

Every positive bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H has a positive square root A, which is unique. This operator A commutes with every bounded linear operator on H which commutes with T.

- We proceed in three steps:
 - (a) We show that if the theorem holds under the additional assumption $T \le I$, it also holds without that assumption.

(b) We obtain the existence of the operator $A = T^{1/2}$ from $A_n x \to Ax$, where $A_0 = 0$ and $A_{n+1} = A_n + \frac{1}{2}(T - A_n^2)$, n = 0, 1, ...

- We also prove the commutativity stated in the theorem.
- (c) We prove uniqueness of the positive square root.

Positive Square Root Part (a)

(a) If
$$T = 0$$
, we can take $A = T^{1/2} = 0$.
Let $T \neq 0$. By the Schwarz inequality,

 $\langle Tx, x \rangle \le ||Tx|| ||x|| \le ||T|| ||x||^2.$

Dividing by $||T|| \neq 0$ and setting $Q = \frac{1}{||T||}T$, we obtain

$$\langle Qx, x \rangle \le ||x||^2 = \langle Ix, x \rangle.$$

I.e., $Q \leq I$.

Suppose Q has a unique positive square root $B = Q^{1/2}$. Then $B^2 = Q$. Moreover, we have

$$(||T||^{1/2}B)^2 = ||T||B^2 = ||T||Q = T.$$

So a square root of T = ||T||Q is $||T||^{1/2}B$. Also, uniqueness of $Q^{1/2}$ implies uniqueness of the positive square root of T. Hence, it suffices to prove the theorem under the additional assumption $T \le I$.

Positive Square Root Part (b)

(b) (Existence) Consider

$$A_0 = 0;$$

$$A_{n+1} = A_n + \frac{1}{2}(T - A_n^2), \quad n = 0, 1, \dots$$

Since $A_0 = 0$, we have

$$A_1 = \frac{1}{2}T$$
, $A_2 = T - \frac{1}{8}T^2$, etc..

Each A_n is a polynomial in T.

Hence, the A_n 's are self-adjoint and all commute.

They also commute with every operator that T commutes with. We now prove:

(i)
$$A_n \le I$$
, $n = 0, 1, ...$;
(ii) $A_n \le A_{n+1}$, $n = 0, 1, ...$;
(iii) $A_n \times \rightarrow A \times$, $A = T^{1/2}$;
(iv) $ST = TS$ implies $AS = SA$, where S is a bounded linear operator on H.

January 2024

0 / 129

Positive Square Root Part (b) (i)

We have $A_0 \le I$. Let n > 0. Since $I - A_{n-1}$ is self-adjoint,

$$(I-A_{n-1})^2\geq 0.$$

Also, $T \le I$ implies $I - T \ge 0$. From this, we obtain

$$0 \leq \frac{1}{2}(I - A_{n-1})^2 + \frac{1}{2}(I - T)$$

= $I - A_{n-1} - \frac{1}{2}(T - A_{n-1}^2)$
= $I - A_n$.

Positive Square Root Part (b) (ii)

(ii) We use induction.We have

$$0 = A_0 \le A_1 = \frac{1}{2}T.$$

We show that $A_{n-1} \leq A_n$, for any fixed *n*, implies $A_n \leq A_{n+1}$. We calculate directly

$$A_{n+1} - A_n = A_n + \frac{1}{2}(T - A_n^2) - A_{n-1} - \frac{1}{2}(T - A_{n-1}^2)$$

= $(A_n - A_{n-1})[I - \frac{1}{2}(A_n + A_{n-1})].$

Here $A_n - A_{n-1} \ge 0$, by hypothesis, and the bracket is ≥ 0 by (i). Hence, $A_{n+1} - A_n \ge 0$.

Positive Square Root Part (b) (iii) and (iv)

(iii) (A_n) is monotone by (ii) and A_n ≤ I by (i).
Hence, a previous theorem implies the existence of a bounded self-adjoint linear operator A, such that A_nx → Ax, for all x ∈ H.
Since (A_nx) converges,

$$\frac{1}{2}(Tx - A_n^2 x) = A_{n+1}x - A_n x \to 0.$$

Hence, $Tx - A^2x = 0$, for all x. I.e., $T = A^2$. Also $A \ge 0$, because $0 = A_0 \le A_n$ by (ii). I.e., $\langle A_n x, x \rangle \ge 0$, for every $x \in H$. By the continuity of the inner product, $\langle Ax, x \rangle \ge 0$, for every $x \in H$. (iv) We know that ST = TS implies $A_n S = SA_n$. I.e., $A_n Sx = SA_n x$, for all $x \in H$. Letting $n \to \infty$, we obtain (iv).

Positive Square Root Part (c)

(c) (Uniqueness) Let both A and B be positive square roots of T. Then $A^2 = B^2 = T$. Also

$$BT = BB^2 = B^2B = TB.$$

So, by (iv), AB = BA. Let $x \in H$ be arbitrary and y = (A - B)x. Then $\langle Ay, y \rangle \ge 0$ and $\langle By, y \rangle \ge 0$ because $A \ge 0$ and $B \ge 0$. Using AB = BA and $A^2 = B^2$, we obtain

$$\langle Ay, y \rangle + \langle By, y \rangle = \langle (A+B)y, y \rangle = \langle (A^2 - B^2)x, y \rangle = 0.$$

Hence $\langle Ay, y \rangle = \langle By, y \rangle = 0$.

January 2024

4 / 129

Positive Square Root Part (c) (Cont'd)

Since A≥0 and A is self-adjoint, it has itself a positive square root C, that is, C² = A and C is self-adjoint.
 We thus obtain

$$0 = \langle Ay, y \rangle = \langle C^2 y, y \rangle = \langle Cy, Cy \rangle = \|Cy\|^2.$$

So Cy = 0. Moreover,

$$Ay = C^2 y = C(Cy) = 0.$$

Similarly, By = 0. Hence, (A - B)y = 0. Using y = (A - B)x, we thus have, for all $x \in H$,

$$\|Ax - Bx\|^2 = \langle (A - B)^2 x, x \rangle = \langle (A - B)y, x \rangle = 0.$$

This shows that Ax - Bx = 0, for all $x \in H$. So A = B.

Subsection 5

Projection Operators

Orthogonal Projections

 A Hilbert space H can be represented as the direct sum of a closed subspace Y and its orthogonal complement Y[⊥]:

$$\begin{array}{rcl} H &=& Y \oplus Y^{\perp}; \\ x &=& y+z, & y \in Y, z \in Y^{\perp}. \end{array}$$

- Since the sum is direct, y is unique, for any given $x \in H$.
- Hence this representation defines a linear operator

$$\begin{array}{rccc} P: & H & \to & H \\ & x & \mapsto & y = Px \end{array}$$

P is called an orthogonal projection or projection on *H*.
More specifically, *P* is called the projection of *H* onto *Y*.

Orthogonal Projections (Cont'd)

- A linear operator P: H→ H is a projection on H if there is a closed subspace Y of H, such that:
 - Y is the range of P;
 - Y^{\perp} is the null space of P;
 - $P|_Y$ is the identity operator on Y.
- Note that, with this notation, we can now write

$$x = y + z = Px + (I - P)x.$$

• So the projection of *H* onto Y^{\perp} is I - P.

The Projection Theorem

Theorem (Projection)

A bounded linear operator $P: H \rightarrow H$ on a Hilbert space H is a projection if and only if P is self-adjoint and idempotent (that is, $P^2 = P$).

(a) Suppose that P is a projection on H and denote P(H) by Y.
 For every x ∈ H and Px = y ∈ Y, we have

$$P^2 x = P y = y = P x.$$

Hence, $P^2 = P$. Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$, where $y_1, y_2 \in Y$ and $z_1, z_2 \in Y^{\perp}$. Then, since $Y \perp Y^{\perp}$, $\langle y_1, z_2 \rangle = \langle y_2, z_1 \rangle = 0$. So we have

 $\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle = \langle y_1 + z_1, y_2 \rangle = \langle x_1, Px_2 \rangle.$

Hence, P is self-adjoint.

The Projection Theorem (Converse)

(b) Conversely, suppose that $P^2 = P = P^*$ and denote P(H) by Y. Then, for every $x \in H$,

$$x = Px + (I - P)x.$$

The orthogonality $Y = P(H) \perp (I - P)(H)$ follows from

$$\langle Px, (I-P)v \rangle = \langle x, P(I-P)v \rangle = \langle x, Pv - P^2v \rangle = \langle x, 0 \rangle = 0.$$

We show Y is the null space $\mathcal{N}(I-P)$ of I-P. • $Y \subseteq \mathcal{N}(I-P)$: $(I-P)Px = Px - P^2x = 0$; • $Y \supseteq \mathcal{N}(I-P)$: (I-P)x = 0 implies x = Px.

Hence, Y is closed.

Finally, writing y = Px, we have

$$Py = P^2 x = Px = y.$$

Therefore, $P|_Y$ is the identity operator on Y.

Spectral Representations

- We attempt to represent complicated linear operators on Hilbert spaces in terms of simple operators, such as projections.
- The resulting representation is called a **spectral representation** of the operator because the projections employed for that purpose are related to the spectrum of the operator.
- For a spectral representation of bounded self-adjoint linear operators:
 - The first step is a thorough investigation of general properties of projections.
 - The second step is the definition of projections suitable for that purpose.

These are one-parameter families of projections, called **spectral families**.

The third step associates with a given bounded self-adjoint linear operator T a spectral family in a unique way.
 This is called the spectral family associated with T.

Positivity and Norm of Projections

Theorem (Positivity, Norm)

For any projection P on a Hilbert space H:

- (a) $\langle Px, x \rangle = ||Px||^2$;
- (b) $P \ge 0;$
- (c) $||P|| \le 1$; ||P|| = 1 if $P(H) \ne \{0\}$.

• (a) and (b) follow from

$$\langle Px,x\rangle = \langle P^2x,x\rangle = \langle Px,Px\rangle = \|Px\|^2 \ge 0.$$

By the Schwarz inequality,

$$\|Px\|^2 = \langle Px, x \rangle \le \|Px\| \|x\|.$$

So
$$\frac{\|P_X\|}{\|x\|} \le 1$$
, for every $x \ne 0$. Hence, $\|P\| \le 1$.
If $x \in P(H)$ and $x \ne 0$, $\frac{\|P_X\|}{\|x\|} = 1$. This proves (c).

Product of Projections

Theorem (Product of Projections)

In connection with products (composites) of projections on a Hilbert space H, the following two statements hold:

- (a) $P = P_1P_2$ is a projection on H if and only if the projections P_1 and P_2 commute, that is, $P_1P_2 = P_2P_1$. Then P projects H onto $Y = Y_1 \cap Y_2$, where $Y_j = P_j(H)$.
- (b) Two closed subspaces Y and V of H are orthogonal if and only if the corresponding projections satisfy $P_Y P_V = 0$.
- (a) Suppose that $P_1P_2 = P_2P_1$. Then P is self-adjoint, by a previous theorem. Moreover, P is idempotent, since

$$P^{2} = (P_{1}P_{2})(P_{1}P_{2}) = P_{1}^{2}P_{2}^{2} = P_{1}P_{2} = P.$$

Hence P is a projection.

Product of Projections (Cont'd)

• For every $x \in H$, we have $Px = P_1(P_2x) = P_2(P_1x)$.

Since P_1 projects H onto Y_1 , we must have $P_1(P_2x) \in Y_1$. Similarly, $P_2(P_1x) \in Y_2$. Together, $Px \in Y_1 \cap Y_2$. Since $x \in H$ was arbitrary, this shows that P projects H into $Y = Y_1 \cap Y_2$.

P projects *H* onto *Y*: Suppose $y \in Y$. Then $y \in Y_1$ and $y \in Y_2$. Thus, $Py = P_1P_2y = P_1y = y$.

Conversely, suppose $P = P_1P_2$ is a projection defined on H.

Then P is self-adjoint. By a previous theorem, $P_1P_2 = P_2P_1$.

(b) Suppose $Y \perp V$. Then $Y \cap V = \{0\}$. Hence, $P_Y P_V x = 0$, for all $x \in H$, by part (a). So $P_Y P_V = 0$.

Conversely, suppose $P_Y P_V = 0$. Then, for every $y \in Y$ and $v \in V$,

$$\langle y, v \rangle = \langle P_Y y, P_V v \rangle = \langle y, P_Y P_V v \rangle = \langle y, 0 \rangle = 0.$$

Hence, $Y \perp V$.

Sum of Projections

Theorem (Sum of Projections)

Let P_1 and P_2 be projections on a Hilbert space H. Then:

- (a) The sum $P = P_1 + P_2$ is a projection on H if and only if $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$ are orthogonal.
- (b) If $P = P_1 + P_2$ is a projection, P projects H onto $Y = Y_1 \oplus Y_2$.

(a) If $P = P_1 + P_2$ is a projection, $P = P^2$. Expanding, we get

$$P_1 + P_2 = (P_1 + P_2)^2$$

= $P_1^2 + P_1 P_2 + P_2 P_1 + P_2^2$
= $P_1 + P_1 P_2 + P_2 P_1 + P_2.$

Hence, $P_1P_2 + P_2P_1 = 0$.

Sum of Projections Part (a) (Cont'd)

• We obtained $P_1P_2 + P_2P_1 = 0$.

Multiplying by P_2 on the left, we obtain $P_2P_1P_2 + P_2P_1 = 0$. Multiplying this by P_2 on the right, we have $2P_2P_1P_2 = 0$. So $P_2P_1 = 0$. Hence, $Y_1 \perp Y_2$. Conversely, suppose $Y_1 \perp Y_2$. Then $P_1P_2 = P_2P_1 = 0$. This yields $P_1P_2 + P_2P_1 = 0$. So we get $P^2 = P$. Since P_1 and P_2 are self-adjoint, so is $P = P_1 + P_2$. Hence, P is a projection.

Sum of Projections Part (b)

(b) We determine the closed subspace $Y \subseteq H$ onto which P projects. Since $P = P_1 + P_2$, we have, for every $x \in H$,

$$y = Px = P_1x + P_2x.$$

Here, $P_1 x \in Y_1$ and $P_2 x \in Y_2$. Hence $y \in Y_1 \oplus Y_2$. So $Y \subseteq Y_1 \oplus Y_2$. We show that $Y \supseteq Y_1 \oplus Y_2$. Let $v \in Y_1 \oplus Y_2$ be arbitrary. Then $v = y_1 + y_2$, with $y_1 \in Y_1$ and $y_2 \in Y_2$. Applying P and using $Y_1 \perp Y_2$, we obtain

 $Pv = P_1(y_1 + y_2) + P_2(y_1 + y_2) = P_1y_1 + P_2y_2 = y_1 + y_2 = v.$

Hence, $v \in Y$. So $Y \supseteq Y_1 \oplus Y_2$.

Subsection 6

Further Properties of Projections

Partial Order on the Set of all Projections

Theorem (Partial Order)

Let P_1 and P_2 be projections defined on a Hilbert space H. Denote by $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$ the subspaces onto which H is projected by P_1 and P_2 . Let $\mathcal{N}(P_1)$ and $\mathcal{N}(P_2)$ be the null spaces of these projections. Then the following conditions are equivalent:

- (1) $P_2P_1 = P_1P_2 = P_1;$
- $(2) \quad Y_1 \subseteq Y_2;$
- (3) $\mathcal{N}(P_1) \supseteq \mathcal{N}(P_2);$
- (4) $||P_1x|| \le ||P_2x||$, for all $x \in H$;

(5) $P_1 \leq P_2$.

 $(1) \Rightarrow (4)$: We have $||P_1|| \le 1$. Hence (1) yields, for all $x \in H$,

 $\|P_1x\| = \|P_1P_2x\| \le \|P_1\| \|P_2x\| \le \|P_2x\|.$

Partial Order on the Set of all Projections (Cont'd)

(4) \Rightarrow (5): We have, for all $x \in H$,

$$\langle P_1 x, x \rangle = \|P_1 x\|^2 \le \|P_2 x\|^2 = \langle P_2 x, x \rangle.$$

This shows that $P_1 \le P_2$, by definition. (5) \Rightarrow (3): Let $x \in \mathcal{N}(P_2)$. Then $P_2x = 0$. By hypothesis,

$$\|P_1x\|^2 = \langle P_1x, x \rangle \le \langle P_2x, x \rangle = 0.$$

Hence, $P_1 x = 0$. So $x \in \mathcal{N}(P_1)$. This shows that $\mathcal{N}(P_1) \supseteq \mathcal{N}(P_2)$. (3) \Rightarrow (2): Note that $\mathcal{N}(P_j)$ is the orthogonal complement of Y_j in H. (2) \Rightarrow (1): For every $x \in H$, we have $P_1 x \in Y_1$. Hence, by hypothesis, $P_1 x \in Y_2$. So $P_2(P_1 x) = P_1 x$. I.e., $P_2 P_1 = P_1$. Since P_1 is self-adjoint, by a preceding result, $P_1 = P_2 P_1 = P_1 P_2$.

Difference of Projections

Theorem (Difference of Projections)

Let P_1 and P_2 be projections on a Hilbert space H. Then:

- (a) The difference $P = P_2 P_1$ is a projection on H if and only if $Y_1 \subseteq Y_2$, where $Y_j = P_j(H)$.
- (b) If $P = P_2 P_1$ is a projection, P projects H onto Y, where Y is the orthogonal complement of Y_1 in Y_2 .
- (a) If $P = P_2 P_1$ is a projection, $P = P^2$. Expanding

$$P_2 - P_1 = (P_2 - P_1)^2$$

= $P_2^2 - P_2 P_1 - P_1 P_2 + P_1^2$
= $P_2 - P_2 P_1 - P_1 P_2 + P_1$.

Hence $P_1P_2 + P_2P_1 = 2P_1$.

Difference of Projections Part (a) (Cont'd)

• We got $P_1P_2 + P_2P_1 = 2P_1$.

Multiplication by P_2 from left and right gives

 $P_2P_1P_2 + P_2P_1 = 2P_2P_1$ and $P_1P_2 + P_2P_1P_2 = 2P_1P_2$.

Hence, we get

$$P_2P_1P_2 = P_2P_1$$
 and $P_2P_1P_2 = P_1P_2$.

So $P_2P_1 = P_1P_2 = P_1$. Thus, $Y_1 \subseteq Y_2$. Conversely, suppose $Y_1 \subseteq Y_2$. Then $P_2P_1 = P_1P_2 = P_1$. This implies $P_1P_2 + P_2P_1 = 2P_1$. Thus, P is idempotent. Since P_1 and P_2 are self-adjoint, $P = P_2 - P_1$ is self-adjoint. So P is a projection.

Difference of Projections Part (b)

(b) Y = P(H) consists of all vectors of the form

$$y = Px = P_2 x - P_1 x, \quad x \in H.$$

Since $Y_1 \subseteq Y_2$, by Part (a), we have $P_2P_1 = P_1$. Thus,

$$P_2 y = P_2^2 x - P_2 P_1 x = P_2 x - P_1 x = y.$$

This shows that $y \in Y_2$. Moreover,

$$P_1 y = P_1 P_2 x - P_1^2 x = P_1 x - P_1 x = 0.$$

This shows that $y \in \mathcal{N}(P_1) = Y_1^{\perp}$. So $Y \subseteq Y_2 \cap Y_1^{\perp}$.

Difference of Projections Part (b) (Cont'd)

We show, next, that Y ⊇ Y₂ ∩ Y₁[⊥]. The projection of H onto Y₁[⊥] is I − P₁. So every v ∈ Y₂ ∩ Y₁[⊥] is of the form v = (I − P₁)y₂, y₂ ∈ Y₂. Using again P₂P₁ = P₁, we obtain, since P₂y₂ = y₂,

$$Pv = (P_2 - P_1)(I - P_1)y_2$$

= $(P_2 - P_2P_1 - P_1 + P_1^2)y_2$
= $y_2 - P_1y_2$
= $Y_2 \cap Y_1^{\perp}$.

This shows that $v \in Y$. Hence, $Y \supseteq Y_2 \cap Y_1^{\perp}$. We conclude that $Y = P(H) = Y_2 \cap Y_1^{\perp}$.

Monotone Increasing Sequence

Theorem (Monotone Increasing Sequence)

Let (P_n) be a monotone increasing sequence of projections P_n defined on a Hilbert space H. Then:

- (a) (P_n) is strongly operator convergent, say, $P_n x \to P x$, for every $x \in H$, and the limit operator P is a projection defined on H.
- (b) *P* projects *H* onto $P(H) = \overline{\bigcup_{n=1}^{\infty} P_n(H)}$.
- (c) *P* has the null space $\mathcal{N}(P) = \bigcap_{n=1}^{\infty} \mathcal{N}(P_n)$.
- (a) Let m < n. By assumption, $P_m \le P_n$. So $P_m(H) \subseteq P_n(H)$. By the previous theorem, $P_n - P_m$ is a projection.
 - Hence, for every fixed $x \in H$, we obtain

$$\begin{split} \|P_n x - P_m x\|^2 &= \|(P_n - P_m) x\|^2 = \langle (P_n - P_m) x, x \rangle \\ &= \langle P_n x, x \rangle - \langle P_m x, x \rangle = \|P_n x\|^2 - \|P_m x\|^2. \end{split}$$

Monotone Increasing Sequence Part (a) (Cont'd)

 Now ||P_n|| ≤ 1. So ||P_nx|| ≤ ||x||, for every n. Hence (||P_nx||) is a bounded sequence of numbers. (||P_n||) is also monotone since (P_n) is monotone. Hence (||P_nx||) converges.
 From this and the preceding equality, (P_nx) is Cauchy.

Since *H* is complete, $(P_n x)$ converges.

The limit depends on x, say, $P_n x \rightarrow P x$.

This defines an operator P on H.

Linearity of P is obvious.

Since $P_n x \rightarrow P x$ and the P_n 's are bounded, self-adjoint and idempotent, P has the same properties.

Hence, by the Projection Theorem, P is a projection.

Monotone Increasing Sequence Part (b)

(b) We determine P(H). Let m < n. Then $P_m \le P_n$. This gives $P_n - P_m \ge 0$. So $\langle (P_n - P_m)x, x \rangle \ge 0$, by definition. As $n \to \infty$, by continuity of the inner product, $\langle (P - P_m)x, x \rangle \ge 0$. So $P_m \le P$. Hence, $P_m(H) \subseteq P(H)$, for all m. So $\bigcup P_m(H) \subseteq P(H)$. Now, for all m and all $x \in H$, $P_m x \in P_m(H) \subseteq \bigcup P_m(H)$. Since $P_m x \to Px$, we see that $Px \in \overline{\bigcup P_m(H)}$. Hence, $P(H) \subseteq \overline{\bigcup P_m(H)}$. Taken together,

$$\bigcup P_m(H) \subseteq P(H) \subseteq \overline{\bigcup P_m(H)}.$$

Therefore, we have $P(H) = \mathcal{N}(I - P)$. So P(H) is closed. This proves (b).

Monotone Increasing Sequence Part (c)

(c) We determine $\mathcal{N}(P)$.

By Part (b) of the proof, for all $n, P(H) \supseteq P_n(H)$. Using a preceding lemma, $\mathcal{N}(P) = P(H)^{\perp} \subseteq P_n(H)^{\perp}$. Hence, $\mathcal{N}(P) \subseteq \bigcap P_n(H)^{\perp} = \bigcap \mathcal{N}(P_n).$ On the other hand, suppose $x \in \bigcap \mathcal{N}(P_n)$. Then $x \in \mathcal{N}(P_n)$, for every *n*. So $P_n x = 0$. Moreover, $P_n x \rightarrow P x$ implies P x = 0. I.e., $x \in \mathcal{N}(P)$. Since $x \in \bigcap \mathcal{N}(P_n)$ was arbitrary, $\bigcap \mathcal{N}(P_n) \subseteq \mathcal{N}(P)$. We, thus, obtain $\mathcal{N}(P) = \bigcap \mathcal{N}(P_n)$.

Subsection 7

Spectral Family

Self-Adjoint Operators on a Unitary Space

- Consider the unitary space (inner product space over \mathbb{C}) $H = \mathbb{C}^n$.
- Let $T: H \rightarrow H$ be a self-adjoint linear operator on H.
- Then T is bounded.
- Moreover, we may choose a basis for *H* and represent *T* by a Hermitian matrix which we denote simply by *T*.
- The spectrum of the operator consists of the eigenvalues of that matrix which are real.

Spectrum of Self-Adjoint Operators on a Unitary Space

- For simplicity, we assume that the matrix T has n different eigenvalues $\lambda_1 < \lambda_2 < \cdots < \lambda_n$.
- Then a previous theorem implies that T has an orthonormal set of n eigenvectors x₁, x₂,...,x_n, where x_j corresponds to λ_j.
- We write these vectors as column vectors, for convenience.
- This is a basis for *H*.
- So every $x \in H$ has a unique representation

$$x = \sum_{j=1}^{n} \gamma_j x_j, \quad \gamma_j = \langle x, x_j \rangle = x^\top \overline{x}_j.$$

Spectral Representation of Self-Adjoint Operators

• We obtained the representation

$$x = \sum_{j=1}^{n} \gamma_j x_j, \quad \gamma_j = \langle x, x_j \rangle = x^\top \overline{x}_j.$$

- Since x_j is an eigenvector of T, $Tx_j = \lambda_j x_j$.
- Consequently, we obtain

$$Tx = \sum_{j=1}^n \lambda_j \gamma_j x_j.$$

• Thus, whereas T may act on x in a complicated way, it acts on each term of the sum in a very simple fashion.
Spectral Representation of Self-Adjoint Operators (Cont'd)

• We may define an operator

$$\begin{array}{rccc} P_j: & H & \to & H; \\ & x & \mapsto & \gamma_j x_j \end{array}$$

- Obviously, P_j is the projection (orthogonal projection) of H onto the eigenspace of T corresponding to λ_j .
- We obtain

$$x = \sum_{j=1}^{n} P_j x.$$

Hence, I = ∑_{j=1}ⁿ P_j, with I the identity on H.
We also have n

$$Tx = \sum_{j=1}^{n} \lambda_j P_j x.$$

• Hence, $T = \sum_{j=1}^{n} \lambda_j P_j$.

January 2024

The One-Parameter Family of Projections ${\cal E}_\lambda$

• For any real λ , we define

$$E_{\lambda} = \sum_{\lambda_j \leq \lambda} P_j, \quad \lambda \in \mathbb{R}.$$

- For any λ , the operator E_{λ} is the projection of H onto the subspace V_{λ} spanned by all those x_j for which $\lambda_j \leq \lambda$.
- Thus $V_{\lambda} \subseteq V_{\mu}$, for $\lambda \leq \mu$.
- As λ traverses \mathbb{R} in the positive sense, E_{λ} grows from 0 to *I*.
 - The growth occurs at the eigenvalues of T;
 - E_{λ} remains unchanged for λ in any interval that is free of eigenvalues.
- Hence, E_{λ} has the following properties:

•
$$E_{\lambda}E_{\mu} = E_{\mu}E_{\lambda} = E_{\lambda}$$
, if $\lambda < \mu$;
• $E_{\lambda} = 0$, if $\lambda < \lambda_1$;
• $E_{\lambda} = I$, if $\lambda \ge \lambda_n$;
• $E_{\lambda^+} = \lim_{\mu \to \lambda^+} E_{\mu} = E_{\lambda}$.

Spectral Family or Decomposition of Unity

Definition (Spectral Family or Decomposition of Unity)

A real **spectral family** (or real **decomposition of unity**) is a one-parameter family $\mathscr{E} = (E_{\lambda})_{\lambda \in \mathbb{R}}$ of projections E_{λ} defined on a Hilbert space H (of any dimension) which depends on a real parameter λ and is such that:

•
$$E_{\lambda} \leq E_{\mu}$$
, hence $E_{\lambda}E_{\mu} = E_{\mu}E_{\lambda} = E_{\lambda}$, $\lambda < \mu$;

•
$$\lim_{\lambda \to -\infty} E_{\lambda} x = 0$$
, $\lim_{\lambda \to +\infty} E_{\lambda} x = x$;

•
$$E_{\lambda^+} x = \lim_{\mu \to \lambda^+} E_{\mu} x = E_{\lambda} x, x \in H.$$

- Thus, a real spectral family can be regarded as a mapping $\mathbb{R} \to B(H, H)$; $\lambda \mapsto E_{\lambda}$.
- To each $\lambda \in \mathbb{R}$, it associates a projection $E_{\lambda} \in B(H, H)$, where B(H, H) is the space of all bounded linear operators from H into H.

Spectral Family on an Interval

• E is called a spectral family on an interval [a, b] if

$$E_{\lambda} = 0, \quad \lambda < a, \qquad E_{\lambda} = I, \quad \lambda \ge b.$$

- Such families are of particular interest, since the spectrum of a bounded self-adjoint linear operator lies in a finite interval on the real line.
- $\mu \rightarrow \lambda^+$ indicates that in this limit process we restrict to values $\mu > \lambda$.
- The condition $\lim_{\mu \to \lambda^+} E_{\mu} x = E_{\lambda} x$, $x \in H$, means that $\lambda \mapsto E_{\lambda}$ is strongly operator continuous from the right.
- We will see that with any given bounded self-adjoint linear operator T on any Hilbert space we can associate a spectral family which may be used for representing T by a Riemann-Stieltjes integral.
- This is known as a **spectral representation**.

The Spectral Representation

- Assume again, for simplicity, that the eigenvalues $\lambda_1, \ldots, \lambda_n$ of T are all different, and $\lambda_1 < \lambda_2 < \cdots < \lambda_n$.
- Then we have:

•
$$E_{\lambda_1} = P_1;$$

• $E_{\lambda_2} = P_1 + P_2;$
:
• $E_{\lambda_n} = P_1 + \dots + P_n$

Hence, conversely,

$$P_{1} = E_{\lambda_{1}}; P_{j} = E_{\lambda_{j}} - E_{\lambda_{j-1}}, \quad j = 2, ..., n.$$

Note that E_λ remains the same for λ ∈ [λ_{j-1}, λ_j).
So we may write

$$P_j = E_{\lambda_j} - E_{\lambda_j^-}.$$

The Spectral Representation (Cont'd)

Now we have

$$x = \sum_{j=1}^{n} P_j x = \sum_{j=1}^{n} (E_{\lambda_j} - E_{\lambda_j^-}) x.$$

Moreover,

$$Tx = \sum_{j=1}^n \lambda_j P_j x = \sum_{j=1}^n \lambda_j (E_{\lambda_j} - E_{\lambda_j^-}) x.$$

• If we drop the x and write $\delta E_{\lambda} = E_{\lambda} - E_{\lambda^{-}}$, we get

$$T=\sum_{j=1}^n\lambda_j\delta E_{\lambda_j}.$$

• This is the **spectral representation** of the self-adjoint operator T with eigenvalues $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ on the *n*-dimensional Hilbert space H.

Spectral Representation as an Integral

• We obtained the spectral representation

$$T = \sum_{j=1}^{n} \lambda_j \delta E_{\lambda_j}$$

of the self-adjoint linear operator T with eigenvalues $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ on the *n*-dimensional Hilbert space *H*.

• The representation shows that for any $x, y \in H$,

$$\langle Tx, y \rangle = \sum_{j=1}^{n} \lambda_j \langle \delta E_{\lambda_j} x, y \rangle.$$

• We note that this may be written as a Riemann-Stieltjes integral

$$\langle Tx,y\rangle = \int_{-\infty}^{+\infty} \lambda dw(\lambda),$$

where $w(\lambda) = \langle E_{\lambda} x, y \rangle$.

George Voutsadakis (LSSU)

Subsection 8

Spectral Family of a Bounded Self-Adjoint Operator

The Spectral Family of an Operator

- Let *H* be a complex Hilbert space.
- Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on H.
- With T we can associate a spectral family & that will be used for a spectral representation of T.
- To define & we need the following:
 - The operator

$$T_{\lambda}=T-\lambda I;$$

• The positive square root of T_{λ}^2 ,

$$B_{\lambda}=(T_{\lambda}^2)^{1/2};$$

The operator

$$T_{\lambda}^{+}=\frac{1}{2}(B_{\lambda}+T_{\lambda}),$$

called the **positive part** of T_{λ} .

• The spectral family \mathscr{E} of T is defined by $\mathscr{E} = (E_{\lambda})_{\lambda \in \mathbb{R}}$, where E_{λ} is the projection of H onto the null space $\mathscr{N}(T_{\lambda}^{+})$ of T_{λ}^{+} .

Definition of Operators *B*, *T*⁺, *T*⁻

Consider the operators

$$B = (T^2)^{1/2}$$
 (positive square root of T^2);

$$T^+ = \frac{1}{2}(B+T)$$
 (positive part of T);

$$T^- = \frac{1}{2}(B-T)$$
 (negative part of T).

• Let *E* be the projection of *H* onto the null space of T^+ ,

$$E: H \to Y = \mathcal{N}(T^+).$$

• By subtraction and addition we see that

$$T = T^+ - T^-;$$

 $B = T^+ + T^-.$

Properties of the Operators

Lemma (Operators related to T)

The operators just defined have the following properties:

- (a) B, T^+ and T^- are bounded and self-adjoint.
- (b) B, T^+ and T^- commute with every bounded linear operator that T commutes with; in particular,

$$BT = TB$$
, $T^+T = TT^+$, $T^-T = TT^-$, $T^+T^- = T^-T^+$.

(c) E commutes with every bounded self-adjoint linear operator that T commutes with; in particular, ET = TE and EB = BE.

) Furthermore,

$$T^{+}T^{-} = 0 \qquad T^{-}T^{+} = 0$$

$$T^{+}E = ET^{+} = 0 \qquad T^{-}E = ET^{-} = T^{-}$$

$$TE = -T^{-} \qquad T(I - E) = T^{+}$$

$$T^{+} \ge 0 \qquad T^{-} \ge 0.$$

Proof of Properties (a),(b)

(a) Clear, since T and B are bounded and self-adjoint.
(b) Suppose that TS = ST. Then

$$T^2S = TST = ST^2.$$

BS = SB follows from a previous theorem.

Hence,

$$T^+S = \frac{1}{2}(BS + TS) = \frac{1}{2}(SB + ST) = ST^+.$$

The proof of $T^-S = ST^-$ is similar.

Proof of Property (c)

(c) For every $x \in H$, we have $y = Ex \in Y = \mathcal{N}(T^+)$. Hence, $T^+y = 0$. And, also, $ST^+y = S0 = 0$. From TS = ST and Part (b) we have $ST^+ = T^+S$ and

$$T^+SEx = T^+Sy = ST^+y = 0.$$

Hence $SE_X \in Y$. But *E* projects *H* onto *Y*. Thus, $ESE_X = SE_X$, for every $x \in H$. That is, ESE = SE. Since a projection is self-adjoint, by a previous result, and so is *S*,

 $ES = E^*S^* = (SE)^* = (ESE)^* = E^*S^*E^* = ESE = SE.$

Proof of Properties (d)

(d) We prove all equalities in Part (d):

• From $B = (T^2)^{1/2}$, we have $B^2 = T^2$. Also BT = TB by Part (b). Hence, again by Part (b),

$$T^{+}T^{-} = T^{-}T^{+} = \frac{1}{2}(B-T)\frac{1}{2}(B+T) = \frac{1}{4}(B^{2}+BT-TB-T^{2}) = 0.$$

By definition, Ex ∈ N(T⁺). So T⁺Ex = 0, for all x ∈ H.
 Since T⁺ is self-adjoint, by Parts (b) and (c),

$$ET^+x = T^+Ex = 0.$$

That is, $ET^+ = T^+E = 0$. By the previous subpart, $T^+T^-x = 0$. So $T^-x \in \mathcal{N}(T^+)$. Hence, $ET^-x = T^-x$. Since T^- is self-adjoint, Part (c) yields

$$T^-Ex = ET^-x = T^-x, \quad x \in H.$$

That is, $T^{-}E = ET^{-} = T^{-}$.

Proof of Properties (d) (Cont'd)

(d) We continue with the equalities in Part (d):

From a previous subpart,

$$TE = (T^+ - T^-)E = -T^-.$$

From this,

$$T(I-E) = T - TE = T + T^{-} = T^{+}.$$

Now note that:

• E and B are self-adjoint and commute;

• $E \ge 0$, by the Positivity Theorem, and $B \ge 0$, by definition. So, by a preceding subpart and a preceding theorem,

$$T^{-} = ET^{-} + ET^{+} = E(T^{-} + T^{+}) = EB \ge 0.$$

Similarly, since, by the Positivity Theorem, $I - E \ge 0$,

$$T^+ = B - T^- = B - EB = (I - E)B \ge 0.$$

Operators Related to $\, {\cal T}_{\lambda} \,$

- Instead of T, we now consider $T_{\lambda} = T \lambda I$.
- Instead of B, T^+, T^- and E we now have to take:
 - The positive square root of T_{λ}^2 ,

$$B_{\lambda}:=(T_{\lambda}^2)^{1/2};$$

• The positive part and negative part of T_{λ} , defined by

$$T_{\lambda}^{+} = \frac{1}{2}(B_{\lambda} + T_{\lambda}) \text{ and } T_{\lambda}^{-} = \frac{1}{2}(B_{\lambda} - T_{\lambda});$$

The projection

$$E_{\lambda}: H \to Y_{\lambda} = \mathcal{N}(T_{\lambda}^{+})$$

of H onto the null space $Y_{\lambda} = \mathcal{N}(T_{\lambda}^{+})$ of T_{λ}^{+} .

Properties of the Operators Related to T_{λ}

Lemma (Operators Related to T_{λ})

The previous lemma remains true if we replace T, B, T^+, T^-, E by $T_{\lambda}B_{\lambda}, T_{\lambda}^+, T_{\lambda}^-, E_{\lambda}$, respectively, where λ is real. Moreover, for any real $\kappa, \lambda, \mu, \nu, \tau$, the following operators all commute: $T_{\kappa}, B_{\lambda}, T_{\mu}^+, T_{\nu}^-, E_{\tau}$.

• The first statement is obvious. We turn to the second statement. Note that *IS* = *SI* and

$$T_{\lambda} = T - \lambda I = T - \mu I + (\mu - \lambda)I = T_{\mu} + (\mu - \lambda)I.$$

Hence,

$$ST = TS \quad \text{implies} \quad ST_{\mu} = T_{\mu}S \\ \text{implies} \quad ST_{\lambda} = T_{\lambda}S \\ \text{implies} \quad SB_{\lambda} = B_{\lambda}S, SB_{\mu} = B_{\mu}S \\ \end{bmatrix}$$

For $S = T_{\kappa}$, we get $T_{\kappa}B_{\lambda} = B_{\lambda}T_{\kappa}$,....

Spectral Family Associated with an Operator

Theorem (Spectral Family Associated with an Operator)

Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Furthermore, let E_{λ} (λ real) be the projection of H onto the null space $Y_{\lambda} = \mathcal{N}(T_{\lambda}^{+})$ of the positive part T_{λ}^{+} of $T_{\lambda} = T - \lambda I$. Then $\mathscr{E} = (E_{\lambda})_{\lambda \in \mathbb{R}}$ is a spectral family on the interval $[m, M] \subseteq \mathbb{R}$, where $m = \inf_{\|x\|=1} \langle Tx, x \rangle$ and $M = \sup_{\|x\|=1} \langle Tx, x \rangle$.

- $\mathscr{E} = (E_{\lambda})$ is called the spectral family associated with T.
- We shall prove:

(i)
$$\lambda < \mu$$
 implies $E_{\lambda} \le E_{\mu}$
(ii) $\lambda < m$ implies $E_{\lambda} = 0$;
(iii) $\lambda \ge M$ implies $E_{\lambda} = I$;
(iv) $\lim_{\mu \to \lambda^{+}} E_{\mu} x = E_{\lambda} x$.

Spectral Family Associated with an Operator (Proof)

• In the proof we use the following properties:

(a)
$$T_{\lambda}E_{\lambda} = -T_{\lambda}^{-};$$

(b) $T_{\lambda}(I - E_{\lambda}) = T_{\lambda}^{+};$
(c) $T_{\lambda}^{+} \ge 0;$
(d) $T_{\lambda}^{-} \ge 0;$
(e) $T_{\mu}^{+}T_{\mu}^{-} = 0;$
(f) $T_{\mu}E_{\mu} = -T_{\mu}^{-};$
(g) $T_{\mu}^{+} \ge 0;$
(h) $T_{\mu}^{-} \ge 0.$

Proof of Property (i)

• Let
$$\lambda < \mu$$
. Since $-T_{\lambda}^{-} \leq 0$, we have $T_{\lambda} = T_{\lambda}^{+} - T_{\lambda}^{-} \leq T_{\lambda}^{+}$. Hence,
 $T_{\lambda}^{+} - T_{\mu} \geq T_{\lambda} - T_{\mu} = (\mu - \lambda)I \geq 0$.

 $T_{\lambda}^{+} - T_{\mu}$ is self-adjoint and commutes with T_{μ}^{+} . Also $T_{\mu}^{+} \ge 0$. A previous theorem, thus, implies

$$T^{+}_{\mu}(T^{+}_{\lambda} - T^{-}_{\mu}) = T^{+}_{\mu}(T^{+}_{\lambda} - T^{+}_{\mu} + T^{-}_{\mu}) \ge 0.$$

We have $T^+_{\mu}T^-_{\mu} = 0$, by one of the preceding identities. Hence, $T^+_{\mu}T^+_{\lambda} \ge T^{+2}_{\mu}$. I.e., for all $x \in H$,

$$\langle T_{\mu}^{+}T_{\lambda}^{+}x,x\rangle \geq \langle T_{\mu}^{+2}x,x\rangle = \|T_{\mu}^{+}x\|^{2} \geq 0.$$

This shows that $T_{\lambda}^+ x = 0$ implies $T_{\mu}^+ x = 0$. Hence, $\mathcal{N}(T_{\lambda}^+) \subseteq \mathcal{N}(T_{\mu}^+)$. So, by the Partial Order Theorem, $E_{\lambda} \leq E_{\mu}$.

Proof of Property (ii)

• Let $\lambda < m$ but that, nevertheless, $E_{\lambda} \neq 0$. Then $E_{\lambda}z \neq 0$, for some z. We set $x = E_{\lambda}z$. Then

$$E_{\lambda}x = E_{\lambda}^2 z = E_{\lambda}z = x.$$

So, without loss of generality, we assume ||x|| = 1. It follows that

This contradicts $T_{\lambda}E_{\lambda} = -T_{\lambda}^{-} \leq 0$.

Proof of Property (iii)

• Suppose that $\lambda > M$, but $E_{\lambda} \neq I$. So $I - E_{\lambda} \neq 0$. Then, $(I - E_{\lambda})x = x$, for some x of norm ||x|| = 1. Hence, $\langle T_{\lambda}(I - E_{\lambda})x, x \rangle = \langle T_{\lambda}x, x \rangle$

$$\langle T_{\lambda}(T - E_{\lambda})X, X \rangle = \langle T_{\lambda}X, X \rangle = \langle TX, X \rangle - \lambda \leq \sup_{\|\widetilde{X}\| = 1} \langle T\widetilde{X}, \widetilde{X} \rangle - \lambda = M - \lambda < 0.$$

This contradicts $T_{\lambda}(I - E_{\lambda}) = T_{\lambda}^+ \ge 0$. Also $E_M = 1$, by the continuity from the right to be proved next.

Proof of Property (iv)

 With an interval Δ = (λ, μ] we associate the operator E(Δ) = E_μ - E_λ. Since λ < μ, we have E_λ ≤ E_μ. Hence, E_λ(H) ⊆ E_μ(H). This shows that E(Δ) is a projection. Also, E(Δ) ≥ 0. We also have

$$E_{\mu}E(\Delta) = E_{\mu}^{2} - E_{\mu}E_{\lambda} = E_{\mu} - E_{\lambda} = E(\Delta);$$

(I - E_{\lambda})E(\Delta) = E(\Delta) - E_{\lambda}(E_{\mu} - E_{\lambda}) = E(\Delta).

Now $E(\Delta)$, T_{μ}^{-} and T_{λ}^{+} are positive and commute. So the products $T_{\mu}^{-}E(\Delta)$ and $T_{\lambda}^{+}E(\Delta)T$ are positive. Hence

$$\begin{aligned} T_{\mu}E(\Delta) &= T_{\mu}E_{\mu}E(\Delta) = -T_{\mu}^{-}E(\Delta) \leq 0; \\ T_{\lambda}E(\Delta) &= T_{\lambda}(I-E_{\lambda})E(\Delta) = T_{\lambda}^{+}E(\Delta) \geq 0. \end{aligned}$$

This implies $TE(\Delta) \le \mu E(\Delta)$ and $TE(\Delta) \ge \lambda E(\Delta)$, respectively. Taken together, $\lambda E(\Delta) \le TE(\Delta) \le \mu E(\Delta)$.

George Voutsadakis (LSSU)

Proof of Property (iv) (Cont'd)

• We keep λ fixed and let $\mu \rightarrow \lambda$ from the right in a monotone fashion. Then $E(\Delta)x \rightarrow P(\lambda)x$ by the analog of the Monotone Sequence Theorem for a decreasing sequence. Here $P(\lambda)$ is bounded and self-adjoint. Since $E(\Delta)$ is idempotent, so is $P(\lambda)$. Hence $P(\lambda)$ is a projection. Also $\lambda P(\lambda) = TP(\lambda)$. I.e., $T_{\lambda}P(\lambda) = 0$. From this, $T_{\lambda}^{+}P(\lambda) = T_{\lambda}(I - E_{\lambda})P(\lambda) = (I - E_{\lambda})T_{\lambda}P(\lambda) = 0.$ Hence, $T_{\lambda}^+ P(\lambda) x = 0$, for all $x \in H$. Hence, $P(\lambda) x \in \mathcal{N}(T_{\lambda}^+)$. By definition, E_{λ} projects H onto $\mathcal{N}(T_{\lambda}^{+})$. Consequently, we have $E_{\lambda}P(\lambda)x = P(\lambda)x$. I.e., $E_{\lambda}P(\lambda) = P(\lambda)$. On the other hand, if we let $\mu \rightarrow \lambda^+$, then $(I - E_{\lambda})P(\lambda) = P(\lambda)$. Taken, together, $P(\lambda) = 0$. But we had $E(\Delta)x \rightarrow P(\lambda)x$. So $P(\lambda) = 0$ proves continuity of \mathscr{E} from the right.

Subsection 9

Spectral Representation of Bounded Self-Adjoint Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

Spectral Theorem for Bounded Self-Adjoint Linear Operators

Spectral Theorem for Bounded Self-Adjoint Linear Operators

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then:

(a) T has the spectral representation

$$T=\int_{m^{-}}^{M}\lambda\,dE_{\lambda},$$

where $\mathscr{E} = (E_{\lambda})$ is the spectral family associated with T.

The integral is to be understood in the sense of uniform operator convergence [convergence in the norm on B(H,H)], and for all $x, y \in H$,

$$\langle Tx, y \rangle = \int_{m^-}^M \lambda dw(\lambda), \quad w(\lambda) = \langle E_{\lambda}x, y \rangle,$$

where the integral is an ordinary Riemann-Stieltjes integral.

Spectral Theorem (Cont'd)

Spectral Theorem for Bounded Self-Adjoint Linear Operators

More generally, let p is a polynomial in λ with real coefficients, say, $p(\lambda) = \alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_0.$

Then the operator p(T) defined by

$$p(T) = \alpha_n T^n + \alpha_{n-1} T^{n-1} + \dots + \alpha_0 I$$

has the spectral representation

$$p(T) = \int_{m^-}^M p(\lambda) dE_{\lambda}.$$

Moreover, for all $x, y \in H$,

$$\langle p(T)x,y\rangle = \int_{m^-}^M p(\lambda)dw(\lambda), \quad w(\lambda) = \langle E_{\lambda}x,y\rangle.$$

Comments on the Spectral Theorem

- The notation m^- indicates that one must take into account a contribution at $\lambda = m$ which occurs if $E_m \neq 0$ (and $m \neq 0$).
- Thus, using any a < m, we can write

$$\int_{a}^{M} \lambda dE_{\lambda} = \int_{m^{-}}^{M} \lambda dE_{\lambda} = mE_{m} + \int_{m}^{M} \lambda dE_{\lambda}.$$

• Similarly,

$$\int_{a}^{M} p(\lambda) dE_{\lambda} = \int_{m^{-}}^{M} p(\lambda) dE_{\lambda} = p(m)E_{m} + \int_{m}^{M} p(\lambda) dE_{\lambda}.$$

Proof of the Spectral Theorem Part (a)

(a) Choose a sequence (𝒫_n) of partitions of (a, b], where a < m and M < b. Here every 𝒫_n is a partition of (a, b] into intervals Δ_{nj} = (λ_{nj}, μ_{nj}], j = 1,...,n, of length ℓ(Δ_{nj}) = μ_{nj} - λ_{nj}. Note that μ_{nj} = λ_{n,j+1}, for j = 1,..., n - 1. We assume (𝒫_n) to be such that η(𝒫_n) = max_j ℓ(Δ_{nj}) ^{n→∞} 0. We have shown that λ_{nj}E(Δ_{nj}) ≤ TE(Δ_{nj}) ≤ μ_{nj}E(Δ_{nj}). Summing over j, we get

$$\sum_{j=1}^n \lambda_{nj} E(\Delta_{nj}) \leq \sum_{j=1}^n TE(\Delta_{nj}) \leq \sum_{j=1}^n \mu_{nj} E(\Delta_{nj}).$$

Since $\mu_{nj} = \lambda_{n,j+1}$, for j = 1, ..., n-1, we get

$$T\sum_{j=1}^{n} E(\Delta_{nj}) = T\sum_{j=1}^{n} (E_{\mu_{nj}} - E_{\lambda_{nj}}) = T(I-0) = T.$$

Proof of the Spectral Theorem Part (a) (Cont'd)

• For every $\varepsilon > 0$, there is an *n*, such that $\eta(\mathscr{P}_n) < \varepsilon$. Hence,

$$\sum_{j=1}^n \mu_{nj} E(\Delta_{nj}) - \sum_{j=1}^n \lambda_{nj} E(\Delta_{nj}) = \sum_{j=1}^n (\mu_{nj} - \lambda_{nj}) E(\Delta_{nj}) < \varepsilon I.$$

It follows that, given any $\varepsilon > 0$, there is an N, such that, for every n > N and every choice of $\lambda_{nj} \in \Delta_{nj}$, we have

$$\left\| T - \sum_{j=1}^n \widehat{\lambda}_{nj} E(\Delta_{nj}) \right\| < \varepsilon.$$

Since E_{λ} is constant for $\lambda < m$ and for $\lambda \ge M$, the particular choice of an a < m and a b > M is immaterial.

Proof of the Spectral Theorem Part (b)

(b) We prove the theorem for polynomials, starting with $p(\lambda) = \lambda^r$, $r \in \mathbb{N}$. For any $\kappa < \lambda \le \mu < \nu$, we have

$$(E_{\lambda} - E_{\kappa})(E_{\mu} - E_{\nu}) = E_{\lambda}E_{\mu} - E_{\lambda}E_{\nu} - E_{\kappa}E_{\mu} + E_{\kappa}E_{\nu}$$

= $E_{\lambda} - E_{\lambda} - E_{\kappa} + E_{\kappa} = 0.$

This shows that $E(\Delta_{nj})E(\Delta_{nk}) = 0$, for $j \neq k$. Since $E(\Delta_{nj})$ is a projection, $E(\Delta_{nj})^s = E(\Delta_{nj})$, for every s = 1, 2, ...Consequently, we obtain

$$\left[\sum_{j=1}^n \widehat{\lambda}_{nj} E(\Delta_{nj})\right]^r = \sum_{j=1}^n \widehat{\lambda}_{nj}^r E(\Delta_{nj}).$$

Proof of the Spectral Theorem Part (b) (Cont'd)

We have

$$\left[\sum_{j=1}^{n} \widehat{\lambda}_{nj} E(\Delta_{nj})\right]^{r} = \sum_{j=1}^{n} \widehat{\lambda}_{nj}^{r} E(\Delta_{nj}).$$

Suppose the sum on the left is close to T.

Then the expression on the left is close to T^r because multiplication (composition) of bounded linear operators is continuous.

Hence, given $\varepsilon > 0$, there is an N, such that, for all n > N,

$$\left\| T^r - \sum_{j=1}^n \widehat{\lambda}_{nj}^r E(\Delta_{nj}) \right\| < \varepsilon.$$

This proves the result for $p(\lambda) = \lambda^r$.

The formulas for an arbitrary polynomial with real coefficients follow from this case.

anuary 2024

.04 / 129

Properties of p(T)

Theorem (Properties of p(T))

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Let p, p_1 and p_2 be polynomials with real coefficients. Then:

(a)
$$p(T)$$
 is self-adjoint.

(b) If
$$p(\lambda) = \alpha p_1(\lambda) + \beta p_2(\lambda)$$
, then $p(T) = \alpha p_1(T) + \beta p_2(T)$.

c) If
$$p(\lambda) = p_1(\lambda)p_2(\lambda)$$
, then $p(T) = p_1(T)p_2(T)$.

(d) If $p(\lambda) \ge 0$, for all $\lambda \in [m, M]$, then $p(T) \ge 0$.

- (e) If $p_1(\lambda) \le p_2(\lambda)$, for all $\lambda \in [m, M]$, then $p_1(T) \le p_2(T)$.
- (f) $\|p(T)\| \le \max_{\lambda \in J} |p(\lambda)|$, where J = [m, M].

g) If a bounded linear operator commutes with T, it also commutes with p(T).

Properties of p(T) Parts (a)-(d)

- (a) T is self-adjoint and p has real coefficients. So we get $(\alpha_i T^j)^* = \overline{\alpha_i} (T^*)^j = \alpha_i T^j$.
- (b) This is obvious from the definition.
- c) This is obvious from the definition.
- (d) Note that p has real coefficients.

So complex zeros must occur in conjugate pairs if they occur at all. We observe that:

• p changes sign if λ passes through a zero of odd multiplicity;

$$p(\lambda) \ge 0$$
 on $[m, M]$.

So zeros of p in (m, M) must be of even multiplicity.

Hence, we can write

$$p(\lambda) = \alpha \prod_{j} (\lambda - \beta_{j}) \prod_{k} (\gamma_{k} - \lambda) \prod_{\ell} [(\lambda - \mu_{\ell})^{2} + v_{\ell}^{2}],$$

where $\beta_j \leq m$, $\gamma_k \geq M$ and the quadratic factors correspond to complex conjugate zeros and to real zeros in (m, M).

Properties of p(T) Part (d)

• We have $p(\lambda) = \alpha \prod_j (\lambda - \beta_j) \prod_k (\gamma_k - \lambda) \prod_\ell [(\lambda - \mu_\ell)^2 + v_\ell^2].$ We show that $\alpha > 0$ if $p \neq 0$.

For all sufficiently large λ , say, for all $\lambda \geq \lambda_0$, we have

$$\operatorname{sgn} p(\lambda) = \operatorname{sgn} \alpha_n \lambda^n = \operatorname{sgn} \alpha_n,$$

where n is the degree of p.

- Suppose $\alpha_n > 0$. Then:
 - $p(\lambda_0) > 0;$
 - The number of the γ_k's (each counted according to its multiplicity) must be even, to make p(λ) ≥ 0 in (m, M).

Then all three products are positive at λ_0 .

Hence, we must have $\alpha > 0$ in order that $p(\lambda_0) > 0$.

• Suppose $\alpha_n < 0$. Then:

• $p(\lambda_0) < 0;$

• The number of the γ_k 's is odd, to make $p(\lambda) \ge 0$ on (m, M).

It follows that the second product is negative at λ_0 .

Hence, $\alpha > 0$, as before.

Properties of p(T) Part (d) (Cont'd)

• We replace λ by T.

Then each of the factors above is a positive operator. Consider $x \neq 0$. Set $v = \frac{1}{\|x\|}x$. Then $x = \|x\|v$. Since $-\beta_j \ge -m$,

$$\langle (T - \beta_j I) x, x \rangle = \langle Tx, x \rangle - \beta_j \langle x, x \rangle \geq \|x\|^2 \langle Tv, v \rangle - m\|x\|^2 \geq \|x\|^2 \inf_{\|\widetilde{v}\|=1} \langle T\widetilde{v}, \widetilde{v} \rangle - m\|x\|^2 = 0.$$

That is, $T - \beta_j I \ge 0$. Similarly, $\gamma_k I - T \ge 0$. Now, $T - \mu_\ell I$ is self-adjoint. So its square is positive. It follows that $(T - \mu_\ell I)^2 + \nu_\ell^2 I \ge 0$. Since all those operators commute, their product is positive. So, since $\alpha > 0$, $p(T) \ge 0$.
Properties of p(T) Parts (e)-(g)

(e) This follows immediately from Part (d).
(f) Let k denote the maximum of |p(λ)| on J. Then 0 ≤ p(λ)² ≤ k², for λ ∈ J. Hence Part (e) yields p(T)² ≤ k²I. Since p(T) is self-adjoint, for all x,

$$\langle p(T)x, p(T)x \rangle = \langle p(T)^2 x, x \rangle \le k^2 \langle x, x \rangle.$$

Now we get $||p(T)x|| \le k||x||$.

Taking the supremum over all x of norm 1,

$$\|p(T)\| \le \max_{\lambda \in J} |p(\lambda)|.$$

) This follows immediately from the definition of p(T).

Subsection 10

Extension of the Spectral Theorem to Continuous Functions

George Voutsadakis (LSSU) Spectral Theory of Linear Operators

January 2024

Extension to Continuous Functions

- The theorem holds for p(T), where T is a bounded self-adjoint linear operator and p is a polynomial with real coefficients.
- We want to extend the theorem to operators f(T), where T is as before and f is a continuous real-valued function.
- Let *H* be a complex Hilbert space.
- Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on H.
- Let f be a continuous real-valued function on [m, M], where:
 - $m = \inf_{\|x\|=1} \langle Tx, x \rangle;$
 - $M = \sup_{\|x\|=1} \langle Tx, x \rangle.$
- By the Weierstraß approximation theorem, there is a sequence of polynomials (p_n) , with real coefficients, such that $p_n(\lambda) \rightarrow f(\lambda)$ uniformly on [m, M].

The Definition of f(T)

- Corresponding to the sequence of polynomials (p_n) , we have a sequence of bounded self-adjoint linear operators $p_n(T)$.
- By the preceding theorem, for J = [m, M],

$$\|p_n(T) - p_r(T)\| \leq \max_{\lambda \in J} |p_n(\lambda) - p_r(\lambda)|.$$

• Since $p_n(\lambda) \to f(\lambda)$, given any $\varepsilon > 0$, there is an N, such that, for all n, r > N,

$$\max_{\lambda \in J} |p_n(\lambda) - p_r(\lambda)| < \varepsilon.$$

- Hence, $(p_n(T))$ is Cauchy.
- So, since B(H,H) is complete, $(p_n(T))$ has a limit in B(H,H).
- We define f(T) to be that limit: $p_n(T) \rightarrow f(T)$.

f(T) is Well-Defined

• Claim: f(T) depends only on f (and T, of course), but not on the particular choice of a sequence of polynomials converging to f uniformly.

Let (\tilde{p}_n) be another sequence of polynomials with real coefficients such that $\tilde{p}_n(\lambda) \to f(\lambda)$ uniformly on [m, M]. Then $\tilde{p}_n(T) \to \tilde{f}(T)$ by the previous argument. So it suffices to show that $\tilde{f}(T) = f(T)$. Clearly, $\tilde{p}_n(\lambda) - p_n(\lambda) \to 0$. Hence, $\tilde{p}_n(T) - p_n(T) \to 0$. Consequently, given $\varepsilon > 0$, there is an N, such that for n > N,

$$\|\widetilde{f}(T) - \widetilde{p}_n(T)\| < \frac{\varepsilon}{3}, \ \|\widetilde{p}_n(T) - p_n(T)\| < \frac{\varepsilon}{3}, \ \|p_n(T) - f(T)\| < \frac{\varepsilon}{3}.$$

By the triangle inequality it follows that

$$\begin{split} \|\widetilde{f}(T) - f(T)\| &\leq \|\widetilde{f}(T) - \widetilde{p}_n(T)\| + \|\widetilde{p}_n(T) - p_n(T)\| + \|p_n(T) - f(T)\| < \varepsilon. \\ \text{Since } \varepsilon > 0 \text{ was arbitrary, } \widetilde{f}(T) - f(T) = 0. \text{ Thus, } \widetilde{f}(T) = f(T). \end{split}$$

Spectral Theorem

Spectral Theorem

Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and f a continuous real-valued function on [m, M]. Then f(T) has the spectral representation

$$f(T) = \int_{m^-}^M f(\lambda) dE_{\lambda},$$

where $\mathscr{E} = (E_{\lambda})$ is the spectral family associated with T. The integral is to be understood in the sense of uniform operator convergence, and, for all $x, y \in H$,

$$\langle f(T)x,y\rangle = \int_{m^-}^M f(\lambda)dw(\lambda), \quad w(\lambda) = \langle E_{\lambda}x,y\rangle,$$

where the integral is an ordinary Riemann-Stieltjes integral.

Spectral Theorem (Proof)

For every ε > 0, there is a polynomial p, with real coefficients, such that, for all λ ∈ [m, M],

$$-\frac{\varepsilon}{3} \leq f(\lambda) - p(\lambda) \leq \frac{\varepsilon}{3}.$$

Hence, $||f(T) - p(T)|| \le \frac{\varepsilon}{3}$. Note that $\sum E(\Delta_{nj}) = I$.

Using the preceding inequality, we get, for any partition,

$$-\frac{\varepsilon}{3}I \leq \sum_{j=1}^{n} [f(\widehat{\lambda}_{nj}) - p(\widehat{\lambda}_{nj})] E(\Delta_{nj}) \leq \frac{\varepsilon}{3}I.$$

It follows that

$$\left\|\sum_{j=1}^{n} [f(\widehat{\lambda}_{nj}) - p(\widehat{\lambda}_{nj})] E(\Delta_{nj})\right\| \leq \frac{\varepsilon}{3}.$$

Spectral Theorem (Cont'd)

• Recall that p(T) is represented by $p(T) = \int_{m^-}^{M} p(\lambda) dE_{\lambda}$. So there is an N, such that, for every n > N,

$$\left\|\sum_{j=1}^{n} p(\widehat{\lambda}_{nj}) E(\Delta_{nj}) - p(T)\right\| \leq \frac{\varepsilon}{3}.$$

We now estimate the norm of the difference between f(T) and the Riemann-Stieltjes sums corresponding to the integral. For n > N, we obtain, by means of the triangle inequality,

$$\begin{split} \|\sum_{j=1}^n f(\widehat{\lambda}_{nj}) E(\Delta_{nj}) - f(T)\| &\leq \|\sum_{j=1}^n [f(\widehat{\lambda}_{nj}) - p(\widehat{\lambda}_{nj})] E(\Delta_{nj})\| \\ &+ \|\sum_{j=1}^n p(\widehat{\lambda}_{nj}) E(\Delta_{nj}) - p(T)\| + \|p(T) - f(T)\| \leq \varepsilon. \end{split}$$

Since $\varepsilon > 0$ was arbitrary, this establishes the statement.

Uniqueness of the Spectral Representation

• Uniqueness Property: $\mathscr{E} = (E_{\lambda})$ is the only spectral family on [m, M] that yields the representations

$$f(T) = \int_{m^{-}}^{M} f(\lambda) dE_{\lambda};$$

$$f(T)x, y = \int_{m^{-}}^{M} f(\lambda) dw(\lambda), \quad w(\lambda) = \langle E_{\lambda}x, y \rangle.$$

- The plausibility is indicated by the following:
 - The second equality holds for every continuous real-valued function f on [m, M];
 - Its left hand side is defined in a way which does not depend on \mathscr{E} .
- A rigorous proof follows from a uniqueness theorem for Stieltjes integrals.

Uniqueness of the Spectral Representation (Cont'd)

• A uniqueness theorem for Stieltjes integrals states that, for any fixed x and y, the expression

$$w(\lambda) = \langle E_{\lambda} x, y \rangle$$

is determined, up to an additive constant, by

$$\langle f(T)x,y\rangle = \int_{m^-}^M f(\lambda)dw(\lambda), \quad w(\lambda) = \langle E_{\lambda}x,y\rangle,$$

at its points of continuity and at m^- and M. Now we have:

- $\langle E_M x, y \rangle = \langle x, y \rangle$, since $E_M = I$;
- (E_{λ}) is continuous from the right.

It follows $w(\lambda)$ is uniquely determined everywhere.

• The properties of p(T), listed in a previous theorem, extend to f(T).

Theorem (Properties of f(T))

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Let f_1 , f_1 and f_2 be continuous real-valued functions on [*m*, *M*]. Then:

(a)
$$f(T)$$
 is self-adjoint.

(b) If
$$f(\lambda) = \alpha f_1(\lambda) + \beta f_2(\lambda)$$
, then $f(T) = \alpha f_1(T) + \beta f_2(T)$.

(c) If
$$f(\lambda) = f_1(\lambda)f_2(\lambda)$$
, then $f(T) = f_1(T)f_2(T)$.

- If $f(\lambda) \ge 0$, for all $\lambda \in [m, M]$, then $f(T) \ge 0$.
- If $f_1(\lambda) \leq f_2(\lambda)$, for all $\lambda \in [m, M]$, then $f_1(T) \leq f_2(T)$.
- $||f(T)|| \le \max_{\lambda \in J} |f(\lambda)|$, where J = [m, M].

If a bounded linear operator commutes with T, it also commutes with f(T).

Subsection 11

Properties of Spectral Family of a Bounded Self-Adjoint Operator

Eigenvalues

Theorem (Eigenvalues)

Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and $\mathscr{E} = (E_{\lambda})$ the corresponding spectral family. Then $\lambda \mapsto E_{\lambda}$ has a discontinuity at any $\lambda = \lambda_0$ (that is, $E_{\lambda_0} \neq E_{\lambda_0^-}$) if and only if λ_0 is an eigenvalue of T. In this case, the corresponding eigenspace is

$$\mathcal{N}(T-\lambda_0 I) = (E_{\lambda_0} - E_{\lambda_0^-})(H).$$

λ₀ is an eigenvalue of T if and only if N(T - λ₀I) ≠ {0}.
 So the first statement follows from the displayed equation.
 Hence, it suffices to prove this equation.
 We set F₀ = E_{λ0} - E_{λ0}. We must show that:
 F₀(H) ⊆ N(T - λ₀I);

•
$$F_0(H) \supseteq \mathcal{N}(T - \lambda_0 I).$$

January 2024

Eigenvalues $F_0(H) \subseteq \mathcal{N}(T - \lambda_0 I)$

• Since
$$\lambda_0 - \frac{1}{n} < \lambda_0$$
, setting $\Delta_0 = (\lambda_0 - \frac{1}{n}, \lambda_0]$, we have

$$(\lambda_0 - \frac{1}{n})E(\Delta_0) \leq TE(\Delta_0) \leq \lambda_0 E(\Delta_0).$$

Now let $n \to \infty$. Then $E(\Delta_0) \to F_0$. So the preceding inequalities yield

$$\lambda_0 F_0 \le TF_0 \le \lambda_0 F_0.$$

Hence, $TF_0 = \lambda_0 F_0$. That is, $(T - \lambda_0 I)F_0 = 0$.

Eigenvalues $F_0(H) \supseteq \mathcal{N}(T - \lambda_0 I)$

• Let $x \in \mathcal{N}(T - \lambda_0 I)$. We show that then $x \in F_0(H)$. Since F_0 is a projection, this amounts to $F_0 x = x$. Suppose $\lambda_0 \notin [m, M]$. Then $\lambda_0 \in \rho(T)$. Since $F_0(H)$ is a vector space, $\mathcal{N}(T - \lambda_0 I) = \{0\} \subseteq F_0(H)$. Suppose $\lambda_0 \in [m, M]$. By assumption, $(T - \lambda_0 I)x = 0$. This implies $(T - \lambda_0 I)^2 x = 0$.

By the Spectral Representation Theorem, for a < m and b > M,

$$\int_{a}^{b} (\lambda - \lambda_0)^2 dw(\lambda) = 0, \quad w(\lambda) = \langle E_{\lambda} \times, \times \rangle.$$

Here $(\lambda - \lambda_0)^2 \ge 0$ and $\lambda \mapsto \langle E_{\lambda} x, x \rangle$ is monotone increasing. Hence, the integral over any subinterval of positive length must be zero.

Eigenvalues $F_0(H) \supseteq \mathcal{N}(T - \lambda_0 I)$ (Cont'd)

• In particular, for every $\varepsilon > 0$, we must have

$$0 = \int_{a}^{\lambda_{0}-\varepsilon} (\lambda - \lambda_{0})^{2} dw(\lambda) \ge \varepsilon^{2} \int_{a}^{\lambda_{0}-\varepsilon} dw(\lambda) = \varepsilon^{2} \langle E_{\lambda_{0}-\varepsilon} x, x \rangle;$$

$$0 = \int_{\lambda_{0}+\varepsilon}^{b} (\lambda - \lambda_{0})^{2} dw(\lambda) \ge \varepsilon^{2} \int_{\lambda_{0}+\varepsilon}^{b} dw(\lambda) = \varepsilon^{2} \langle Ix, x \rangle - \varepsilon^{2} \langle E_{\lambda_{0}+\varepsilon} x, x \rangle.$$

Since $\varepsilon > 0$, by the Positivity Theorem,

$$\langle E_{\lambda_0-\varepsilon}x,x\rangle = 0$$
 implies $E_{\lambda_0-\varepsilon}x = 0$;
 $\langle x - E_{\lambda_0+\varepsilon}x,x\rangle = 0$ implies $x - E_{\lambda_0+\varepsilon}x = 0$.

We may thus write $x = (E_{\lambda_0 + \varepsilon} - E_{\lambda_0 - \varepsilon})x$. But $\lambda \mapsto E_{\lambda}$ is continuous from the right. So, letting $\varepsilon \mapsto 0$, we obtain $x = F_0 x$.

January 2024

Resolvent Set

Theorem (Resolvent Set)

Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and $\mathscr{E} = (E_{\lambda})$ the corresponding spectral family. Then a real λ_0 belongs to the resolvent set $\rho(T)$ of T if and only if there is a $\gamma > 0$, such that $\mathscr{E} = (E_{\lambda})$ is constant on the interval $[\lambda_0 - \gamma, \lambda_0 + \gamma]$.

- We prove that:
 - a) The given condition is sufficient for $\lambda_0 \in \rho(T)$;
 - b) The given condition is necessary for $\lambda_0 \in \rho(T)$.
- We use the previously shown fact that λ₀ ∈ ρ(T) if and only if there exists a γ > 0, such that

$$\|(T - \lambda_0 I)x\| \ge \gamma \|x\|, \quad \text{for all } x \in H.$$

Resolvent Set (Sufficiency)

(a) Suppose that λ_0 is real, such that, for some $\gamma > 0$, \mathscr{E} is constant on $J = [\lambda_0 - \gamma, \lambda_0 + \gamma]$.

By a previous result,

$$\|(T-\lambda_0 I)x\|^2 = \langle (T-\lambda_0 I)^2, x \rangle = \int_{m^-}^M (\lambda-\lambda_0)^2 d\langle E_{\lambda}x, x \rangle.$$

Since \mathscr{E} is constant on J, integration over J yields the value zero. Moreover, for $\lambda \not\in J$, we have $(\lambda - \lambda_0)^2 \ge \gamma^2$. Thus, the previous equation implies

$$\|(T-\lambda_0 I)x\|^2 \ge \gamma^2 \int_{m^-}^M d\langle E_\lambda x, x\rangle = \gamma^2 \langle x, x\rangle.$$

Taking square roots, we obtain $||(T - \lambda_0 I)x|| \ge \gamma ||x||$. Hence, $\lambda_0 \in \rho(T)$.

Resolvent Set (Necessity)

(b) Conversely, suppose that $\lambda_0 \in \rho(T)$. Then, for some $\gamma > 0$,

 $\|(T-\lambda_0 I)x\| \ge \gamma \|x\|, \quad \text{for all } x \in H.$

So, by the equation above,

$$\int_{m^-}^M (\lambda - \lambda_0)^2 d\langle E_\lambda x, x \rangle \geq \gamma^2 \int_{m^-}^M d\langle E_\lambda x, x \rangle.$$

Suppose that \mathscr{E} is not constant on the interval $[\lambda_0 - \gamma, \lambda_0 + \gamma]$. Since $E_{\lambda} \leq E_{\mu}$, for $\lambda < \mu$, we can find a positive $\eta < \gamma$, such that

$$E_{\lambda_0+\eta}-E_{\lambda_0-\eta}\neq 0.$$

Hence, there is a $y \in H$, such that $x = (E_{\lambda_0+\eta} - E_{\lambda_0-\eta})y \neq 0$. Using this x, we get

$$E_{\lambda}x = E_{\lambda}(E_{\lambda_0+\eta} - E_{\lambda_0-\eta})y.$$

Resolvent Set (Necessity Cont'd)

• Now
$$E_{\lambda}x = E_{\lambda}(E_{\lambda_0+\eta} - E_{\lambda_0-\eta})y$$
 is:
• $(E_{\lambda} - E_{\lambda})y = 0$, when $\lambda < \lambda_0 - \eta$;
• $(E_{\lambda_0+\eta} - E_{\lambda_0-\eta})y$, when $\lambda > \lambda_0 + \eta$.

So it is independent of λ . Thus, we may take $K = [\lambda_0 - \eta, \lambda_0 + \eta]$ as the interval of integration in the integral above.

If $\lambda \in K$, by straightforward calculation,

$$\langle E_{\lambda} x, x \rangle = \langle (E_{\lambda} - E_{\lambda_0 - \eta}) y, y \rangle.$$

Hence, the inequality gives

$$\int_{\lambda_0-\eta}^{\lambda_0+\eta} (\lambda-\lambda_0)^2 d\langle E_{\lambda}y,y\rangle \geq \gamma^2 \int_{\lambda_0-\eta}^{\lambda_0+\eta} d\langle E_{\lambda}y,y\rangle.$$

This is impossible because the integral on the right is positive and, when $\lambda \in K$, $(\lambda - \lambda_0)^2 \le \eta^2 < \gamma^2$. Thus, \mathscr{E} must be constant on $[\lambda_0 - \gamma, \lambda_0 + \gamma]$.

Continuous Spectrum

Theorem (Continuous Spectrum)

Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and $\mathscr{E} = (E_{\lambda})$ the corresponding spectral family. Then a real λ_0 belongs to the continuous spectrum $\sigma_c(T)$ of T if and only if \mathscr{E} is:

- Continuous at λ_0 (thus, $E_{\lambda_0} = E_{\lambda_0^-}$);
- Not constant in any neighborhood of λ_0 on \mathbb{R} .
- The preceding theorem shows that λ₀ ∈ σ(T) if and only if *E* is not constant in any neighborhood of λ₀ on ℝ.
 Moreover, we have:

• $\sigma_r(T) = \emptyset;$

• Points of $\sigma_p(T)$ correspond to discontinuities of \mathscr{E} .

These yield the conclusion of the theorem.