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The Hilbert Adjoint Operator

Let H be a complex Hilbert space.

Let T :H →H be a bounded linear operator on H.

The Hilbert-adjoint operator T ∗ :H →H is defined to be the
operator satisfying

〈Tx ,y 〉 = 〈x ,T ∗y 〉, for all x ,y ∈H .

From the general theory of Hilbert Spaces, we know the following
facts:

T ∗ exists;
T ∗ is a bounded linear operator;
T ∗ is of norm ‖T ∗‖ = ‖T ‖;
T ∗ is unique.
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Self-Adjoint or Hermitian Operators

Let H be a complex Hilbert space.

Let T :H →H be a bounded linear operator on H.

T is said to be self-adjoint or Hermitian if

T =T ∗
.

Then 〈Tx ,y 〉 = 〈x ,T ∗y 〉 becomes

〈Tx ,y 〉 = 〈x ,Ty 〉.

If T is self-adjoint, then 〈Tx ,x〉 is real for all x ∈H.

Since H being complex, this condition implies self-adjointness.
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Eigenvalues and Eigenvectors

Theorem (Eigenvalues and Eigenvectors)

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Then:

(a) All the eigenvalues of T (if they exist) are real.

(b) Eigenvectors corresponding to different eigenvalues are orthogonal.

(a) Let λ be any eigenvalue of T and x a corresponding eigenvector.

Then x 6= 0 and Tx =λx .

Using the self-adjointness of T , we get

λ〈x ,x〉 = 〈λx ,x〉 = 〈Tx ,x〉 = 〈x ,Tx〉 = 〈x ,λx〉 =λ〈x ,x〉.

Note that, since x 6= 0. 〈x ,x〉 = ‖x‖2 6= 0.

So dividing by 〈x ,x〉 gives λ=λ.

We conclude that λ is real.
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Eigenvalues and Eigenvectors (Cont’d)

(b) Let λ and µ be eigenvalues of T .

Let x and y be corresponding eigenvectors.

Then Tx =λx and Ty =µy .

Note that T is self-adjoint and µ is real.

So we get

λ〈x ,y 〉 = 〈λx ,y 〉 = 〈Tx ,y 〉 = 〈x ,Ty 〉 = 〈x ,µy 〉 =µ〈x ,y 〉.

Since λ 6=µ, 〈x ,y 〉 = 0.

This shows that x and y are orthogonal.
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Characterization of the Resolvent Set

Theorem (Resolvent Set)

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Then a number λ belongs to the resolvent set ρ(T ) of T
if and only if there exists a c > 0, such that for every x ∈H,

‖Tλx‖ ≥ c‖x‖, where Tλ =T −λI .

(a) If λ ∈ ρ(T ), then Rλ =T−1
λ

:H →H exists and is bounded.

Since Rλ 6= 0, ‖Rλ‖ = k , where k > 0.

Now I =RλTλ. So, for every x ∈H, we have

‖x‖= ‖RλTλx‖≤ ‖Rλ‖‖Tλx‖ = k‖Tλx‖.

This gives ‖Tλx‖ ≥ c‖x‖, where c = 1
k .
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Characterization of the Resolvent Set (Converse (i))

(b) Suppose ‖Tλx‖≥ c‖x‖, c > 0, holds for all x ∈H. We prove:

(i) Tλ :H →Tλ(H) is bijective;
(ii) Tλ(H) is dense in H ;
(iii) Tλ(H) is closed in H .

Then Tλ(H)=H and Rλ =T−1
λ

is bounded by the Bounded Inverse
Theorem.

(i) We must show that Tλx1 =Tλx2 implies x1 = x2.

As Tλ is linear, if Tλx1 =Tλx2, then

0= ‖Tλx1−Tλx2‖= ‖Tλ(x1−x2)‖ ≥ c‖x1−x2‖.

Since c > 0, we get ‖x1−x2‖= 0.

So x1 = x2.

Since x1,x2 were arbitrary, Tλ :H →Tλ(H) is bijective.
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Characterization of the Resolvent Set (Converse (ii))

(ii) We show x0 ⊥Tλ(H) implies x0 = 0.

Then, by the Projection Theorem, Tλ(H)=H.

Let x0 ⊥Tλ(H). Then x0 ⊥Tλ(H).

Hence, for all x ∈H, 0= 〈Tλx ,x0〉 = 〈Tx ,x0〉−λ〈x ,x0〉.

Since T is self-adjoint,

〈x ,Tx0〉 = 〈Tx ,x0〉 = 〈x ,λx0〉.

Hence, Tx0 =λx0.

A solution is x0 = 0. Moreover, x0 6= 0 is impossible.

Indeed, that would mean that λ is an eigenvalue of T .

Then, λ=λ and Tx0−λx0 =Tλx0 = 0.

Since c > 0, by hypothesis, 0=‖Tλx0‖≥ c‖x0‖> 0.

As x0 was any vector orthogonal to Tλ(H), Tλ(H)
⊥
= {0}.

Hence Tλ(H)=H. I.e., Tλ(H) is dense in H.
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Characterization of the Resolvent Set (Converse (iii))

(iii) We prove y ∈Tλ(H) implies y ∈Tλ(H).

Then Tλ(H) is closed and Tλ(H)=H by Part (ii).

Let y ∈Tλ(H).

Then, there is a sequence (yn) in Tλ(H), which converges to y .

Since yn ∈Tλ(H), we have yn =Tλxn, for some xn ∈H.

By the hypothesis,

‖xn−xm‖≤
1

c
‖Tλ(xn−xm)‖=

1

c
‖yn−ym‖.

Since (yn) converges, (xn) is Cauchy.

Since H is complete, (xn) converges, say, xn → x .
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Characterization of the Resolvent Set ((iii) Cont’d)

Since T is continuous, so is Tλ.

Hence, yn =Tλxn →Tλx .

By definition, Tλx ∈Tλ(H).

Since the limit is unique, Tλx = y .

Hence, y ∈Tλ(H).

Since y ∈Tλ(H) was arbitrary, Tλ(H) is closed.

We thus have Tλ(H)=H by Part (ii).

This means that Rλ =T−1
λ

is defined on all of H.

Moreover, by the Bounded Inverse Theorem, it is bounded.

Hence, λ ∈ ρ(T ).
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The Spectrum Theorem

Theorem (Spectrum)

The spectrum σ(T ) of a bounded self-adjoint linear operator T :H →H on
a complex Hilbert space H is real.

Using the theorem, we show that a λ=α+ iβ, α,β real, with β 6= 0
must belong to ρ(T ). It will follow that σ(T )⊆R.

For every x 6= 0 in H, we have 〈Tλx ,x〉 = 〈Tx ,x〉−λ〈x ,x〉.

Since 〈x ,x〉 and 〈Tx ,x〉 are real,

〈Tλx ,x〉 = 〈Tx ,x〉−λ〈x ,x〉.

By subtraction,

〈Tλx ,x〉−〈Tλx ,x〉 = (λ−λ)〈x ,x〉 = 2iβ‖x‖2
.
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The Spectrum Theorem (Cont’d)

We found
〈Tλx ,x〉−〈Tλx ,x〉 = 2iβ‖x‖2

.

The left side is −2i Im〈Tλx ,x〉, where Im is the imaginary part.

The latter cannot exceed the absolute value.

Dividing by 2, taking absolute values and applying the Schwarz
inequality, we obtain

|β|‖x‖2
= |Im〈Tλx ,x〉| ≤ |〈Tλx ,x〉| ≤ ‖Tλx‖‖x‖.

Division by ‖x‖ 6= 0 gives |β|‖x‖ ≤ ‖Tλx‖.

If β 6= 0, then, by a previous theorem, λ∈ ρ(T ).

Hence, if λ ∈σ(T ), β= 0. So λ is real.
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Subsection 2

Further Properties of Bounded Self-Adjoint Operators

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 15 / 129



Bounded Self-Adjoint Linear Operators Further Properties of Bounded Self-Adjoint Operators

Spectrum

Theorem (Spectrum)

The spectrum σ(T ) of a bounded self-adjoint linear operator T :H →H on
a complex Hilbert space H lies in the closed interval [m,M] on the real
axis, where

m= inf
‖x‖=1

〈Tx ,x〉, M = sup
‖x‖=1

〈Tx ,x〉.

By a previous result, σ(T ) lies on the real axis.

We show that any real λ=M +c , with c > 0, belongs to the resolvent
set ρ(T ).

Suppose x 6= 0 and v = ‖x‖−1x .

Then x = ‖x‖v and

〈Tx ,x〉 = ‖x‖2
〈Tv ,v 〉 ≤ ‖x‖2 sup

‖ṽ‖=1

〈Tṽ , ṽ 〉 = 〈x ,x〉M .
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Spectrum (Cont’d)

Hence, −〈Tx ,x〉 ≥−〈x ,x〉M.

By the Schwarz inequality, we obtain

‖Tλx‖‖x‖ ≥ −〈Tλx ,x〉

= −〈Tx ,x〉+λ〈x ,x〉

≥ (−M +λ)〈x ,x〉

= c‖x‖2,

where c =λ−M > 0 by assumption.

Division by ‖x‖ yields ‖Tλx‖ ≥ c‖x‖.

Hence, by the Resolvent Set Theorem, λ∈ ρ(T ).

For a real λ<m the idea of proof is the same.
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Norm

Theorem (Norm)

For any bounded self-adjoint linear operator T on a complex Hilbert space
H we have

‖T‖=max(|m|, |M |)= sup
‖x‖=1

|〈Tx ,x〉|.

Let K = sup‖x‖=1 |〈Tx ,x〉|. By the Schwarz inequality,

K = sup
‖x‖=1

|〈Tx ,x〉| ≤ sup
‖x‖=1

‖Tx‖‖x‖ = ‖T‖.

We show, next, that ‖T‖≤K .

Suppose, first, Tz = 0, for all z of norm 1. Then T = 0.

In this case, there is nothing to prove.
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Norm (Cont’d)

Consider, next, a z of norm 1, such that Tz 6= 0.

Set v = ‖Tz‖1/2z and w = ‖Tz‖−1/2Tz .

Then ‖v‖2 = ‖w‖2 = ‖Tz‖.

We now set y1 = v +w and y2 = v −w .

Then, since T is self-adjoint,

〈Ty1,y1〉−〈Ty2,y2〉 = 〈Tv +Tw ,v +w 〉−〈Tv −Tw ,v −w 〉

= 〈Tv ,v 〉+〈Tv ,w 〉+〈Tw ,v 〉+〈Tw ,w 〉

−〈Tv ,v 〉+〈Tv ,w 〉+〈Tw ,v 〉−〈Tw ,w 〉

= 2(〈Tv ,w 〉+〈Tw ,v 〉)

= 2(〈‖Tz‖1/2Tz ,‖Tz‖−1/2Tz〉

+〈‖Tz‖−1/2T 2z ,‖Tz‖1/2z〉)
= 2(〈Tz ,Tz〉+〈T 2z ,z〉)
= 4‖Tz‖2.
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Norm (Cont’d)

Now for every y 6= 0 and x = ‖y‖−1y , we have y = ‖y‖x .

Moreover,

|〈Ty ,y 〉| = ‖y‖2
|〈Tx ,x〉| ≤ ‖y‖2 sup

‖x̃‖=1

|〈Tx̃ , x̃〉| =K‖y‖2
.

So, by the triangle inequality and straightforward calculation,

|〈Ty1,y1〉−〈Ty2,y2〉| ≤ |〈Ty1,y1〉|+ |〈Ty2,y2〉|

≤ K (‖y1‖
2+‖y2‖

2)
= K (‖v +w‖2+‖v −w‖2)
= 2K (‖v‖2+‖w‖2)
= 4K‖Tz‖.

Hence 4‖Tz‖2 ≤ 4K‖Tz‖. So ‖Tz‖≤K .

Taking the supremum over all z of norm 1, we obtain ‖T‖≤K .

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 20 / 129



Bounded Self-Adjoint Linear Operators Further Properties of Bounded Self-Adjoint Operators

m and M as Spectral Values

Theorem (m and M as Spectral Values)

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H 6= {0}. Let m= inf‖x‖=1 〈Tx ,x〉, M = sup‖x‖=1 〈Tx ,x〉.
Then m and M are spectral values of T .

We show that M ∈σ(T ).

By the spectral mapping theorem, the spectrum of T +kI , k a real
constant, is obtained from that of T by a translation.

Moreover, M ∈σ(T ) iff M +k ∈σ(T +kI ).

Hence, we may assume 0≤m≤M, without loss of generality.

By the previous theorem, we have M = sup‖x‖=1 〈Tx ,x〉 = ‖T‖.

By the definition of a supremum, there is a sequence (xn), such that

‖xn‖ = 1, 〈Txn,xn〉 =M −δn, δn ≥ 0 and δn → 0.
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m and M as Spectral Values (Cont’d)

Then ‖Txn‖ ≤ ‖T‖‖xn‖= ‖T‖=M.

Since T is self-adjoint,

‖Txn−Mxn‖
2 = 〈Txn−Mxn,Txn−Mxn〉

= ‖Txn‖
2−2M〈Txn,xn〉+M2‖xn‖

2

≤ M2−2M(M −δn)+M2

= 2Mδn → 0.

Hence, there is no positive c , such that

‖TMxn‖= ‖Txn−Mxn‖ ≥ c = c‖xn‖, ‖xn‖= 1.

By a preceding theorem, λ=M is not in the resolvent set of T .

Hence, M ∈σ(T ).

For λ=m, the proof is similar.
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The Residual Spectrum

Theorem (Residual Spectrum)

The residual spectrum σr (T ) of a bounded self-adjoint linear operator
T :H →H on a complex Hilbert space H is empty.

We show that the assumption σr (T ) 6= ; leads to a contradiction.

Let λ∈σr (T ). By the definition of σr (T ), we have:

The inverse of Tλ exists;
Its domain D(T−1

λ
) is not dense in H .

By the projection theorem, some y 6= 0 in H is orthogonal to D(T−1
λ

).

But D(T−1
λ

) is the range of Tλ. Hence, 〈Tλx ,y 〉 = 0, for all x ∈H.

Since λ is real and T is self-adjoint, we have 〈x ,Tλy 〉 = 0, for all x .

Taking x =Tλy , we get ‖Tλy‖
2 = 0. So Tλy =Ty −λy = 0.

Since y 6= 0, this shows that λ is an eigenvalue of T .

But this contradicts λ∈σr (T ). Hence, σr (T )=;.
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Subsection 3

Positive Operators
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Positive Operators on Hilbert Spaces

We consider the set of all bounded self-adjoint linear operators on a
complex Hilbert space H.

If T is self-adjoint, 〈Tx ,x〉 is real.

So we may introduce on this set a partial ordering ≤ by defining

T1 ≤T2 if and only if 〈T1x ,x〉 ≤ 〈T2x ,x〉, for all x ∈H.

A bounded self-adjoint linear operator T :H →H is said to be
positive, written T ≥ 0, if and only if 〈Tx ,x〉 ≥ 0, for all x ∈H.

The operator is “nonnegative”, but “positive” is the usual term.

Note that T1 ≤T2 iff 0≤T2−T1.
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Product of Positive Operators

The sum of positive operators is positive.

We know that a product (composite) of bounded self-adjoint linear
operators is self-adjoint if and only if the operators commute.

Theorem (Product of Positive Operators)

If two bounded self-adjoint linear operators S and T on a Hilbert space H

are positive and commute (ST =TS), then their product ST is positive.

We must show that 〈STx ,x〉 ≥ 0, for all x ∈H.

If S = 0, this holds.

Let S 6= 0. We proceed in two steps:

(a) We consider S1 =
1

‖S‖
S , Sn+1 = Sn−S2

n , n= 1,2, . . ..
We prove by induction that 0≤ Sn ≤ I .

(b) We prove that 〈STx ,x〉 ≥ 0, for all x ∈H .
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Product of Positive Operators Part (a)

(a) First, we show that the inequality holds for n= 1.

The assumption 0≤ S implies 0≤S1.

By an application of the Schwarz inequality and ‖Sx‖≤ ‖S‖‖x‖, we get

〈S1x ,x〉 =
1

‖S‖
〈Sx ,x〉

≤
1

‖S‖‖Sx‖‖x‖

≤ ‖x‖2

= 〈Ix ,x〉.
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Product of Positive Operators Part (a) (Cont’d)

Suppose the inequality holds for an n= k , i.e., 0≤ Sk ≤ I .

Thus, 0≤ I −Sk ≤ I .

Since Sk is self-adjoint, for every x ∈H, y =Skx ,

〈S2
k (I −Sk)x ,x〉 = 〈(I −Sk)Skx ,Skx〉 = 〈(I −Sk)y ,y 〉 ≥ 0.

By definition this proves S2
k
(I −Sk)≥ 0. Similarly, Sk(I −Sk)

2 ≥ 0.

By addition and simplification,

0≤ S2
k (I −Sk)+Sk(I −Sk)

2
= Sk −S2

k = Sk+1.

Finally, note that S2
k
≥ 0 and I −Sk ≥ 0.

Adding, we get 0≤ I −Sk +S2
k
= I −Sk+1. Hence, Sk+1 ≤ I .
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Product of Positive Operators Part (b)

(b) We now show that 〈STx ,x〉 ≥ 0, for all x ∈H.

We have
S1 = S2

1 +S2

= S2
1 +S2

2 +S3

= ·· ·

= S2
1 +S2

2 +·· ·+S2
n +Sn+1.

Since Sn+1 ≥ 0, this implies

S2
1 +·· ·+S2

n = S1−Sn+1 ≤ S1.

By the self-adjointness of Sj and the definition of ≤, we get

n∑

j=1

‖Sjx‖
2
=

n∑

j=1

〈Sjx ,Sjx〉 =
n∑

j=1

〈S2
j x ,x〉 ≤ 〈S1x ,x〉.

Since n is arbitrary, the infinite series ‖S1x‖
2+‖S2x‖

2+·· · converges.

Hence ‖Snx‖→ 0. Therefore, Snx → 0.
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Product of Positive Operators Part (b) (Cont’d)

We obtained:
S2
1
+·· ·+S2

n = S1−Sn+1;
Snx → 0.

Hence, (
n∑

j=1

S2
j

)
x = (S1−Sn+1)x → S1x .

All the Sj ’s commute with T , since they are sums and products of
S1 =

1
‖S‖

S and S and T commute.

Using S = ‖S‖S1, the preceding formula, T ≥ 0 and the continuity of
the inner product, we obtain, for every x ∈H and yj =Sjx ,

〈STx ,x〉 = ‖S‖〈TS1x ,x〉

= ‖S‖ lim
n→∞

∑n
j=1

〈TS2
j
x ,x〉

= ‖S‖ lim
n→∞

∑n
j=1

〈Tyj ,yj 〉

≥ 0.
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Monotone Sequences

Definition (Monotone Sequence)

A monotone sequence (Tn) of self-adjoint linear operators Tn on a
Hilbert space H is a sequence (Tn) satisfying one of the following:

It is monotone increasing, that is,

T1 ≤T2 ≤T3 ≤ ·· · ;

It is monotone decreasing, that is,

T1 ≥T2 ≥T3 ≥ ·· · .
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The Monotone Sequence Theorem

Theorem (Monotone Sequence)

Let (Tn) be a sequence of bounded self-adjoint linear operators on a
complex Hilbert space H, such that

T1 ≤T2 ≤ ·· · ≤Tn ≤ ·· · ≤K ,

where K is a bounded self-adjoint linear operator on H.
Suppose that any Tj commutes with K and with every Tm.
Then (Tn) is strongly operator convergent (Tnx →Tx , for all x ∈H).
The limit operator T is linear, bounded, self-adjoint and satisfies T ≤K .

We consider Sn =K −Tn and prove:

(a) The sequence (〈S2
n x ,x〉) converges, for every x ∈H .

(b) Tnx →Tx , where T is linear and self-adjoint, and is bounded by the
Uniform Boundedness Theorem.
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Bounded Self-Adjoint Linear Operators Positive Operators

The Monotone Sequence Theorem Part (a)

(a) Clearly, Sn =K −Tn is self-adjoint. We have

S2
m−SnSm = (Sm−Sn)Sm = (Tn−Tm)(K −Tm).

Let m< n. Then Tn−Tm and K −Tm are positive. Since these
operators commute, by the theorem, their product is positive.

Hence on the left, S2
m−SnSm ≥ 0. I.e., S2

m ≥ SnSm, for m< n.

Similarly,

SnSm−S2
n = Sn(Sm−Sn)= (K −Tn)(Tn−Tm)≥ 0.

So SnSm ≥ S2
n . Taken together, S2

m ≥ SnSm ≥S2
n , m< n.

By definition, using the self-adjointness of Sn, we have

〈S2
mx ,x〉 ≥ 〈SnSmx ,x〉 ≥ 〈S2

nx ,x〉 = 〈Snx ,Snx〉 = ‖Snx‖
2
≥ 0.

This shows that (〈S2
nx ,x〉), with fixed x , is a monotone decreasing

sequence of nonnegative numbers. Hence, it converges.
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Bounded Self-Adjoint Linear Operators Positive Operators

The Monotone Sequence Theorem Part (b)

(b) We show that (Tnx) converges.

By assumption, every Tn commutes with every Tm and with K .

Hence, the Sj ’s all commute.

These operators are self-adjoint.

For m< n, we have −2〈SmSnx ,x〉 ≤−2〈S2
nx ,x〉.

Thus, we obtain

‖Smx −Snx‖
2 = 〈(Sm−Sn)x ,(Sm−Sn)x〉

= 〈(Sm−Sn)
2x ,x〉

= 〈S2
mx ,x〉−2〈SmSnx ,x〉+〈S2

nx ,x〉

≤ 〈S2
mx ,x〉−〈S2

nx ,x〉.

From this and Part (a), (Snx) is Cauchy.

It converges since H is complete.
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Bounded Self-Adjoint Linear Operators Positive Operators

The Monotone Sequence Theorem Part (b) (Cont’d)

Now Tn =K −Sn.

Since (Snx) converges, (Tnx) also converges.

Clearly, the limit depends on x .

So we can write Tnx →Tx , for every x ∈H.

Hence, this defines an operator T :H →H, which is linear.

T is self-adjoint because Tn is self-adjoint and the inner product is
continuous.

Since (Tnx) converges, it is bounded for every x ∈H.

The Uniform Boundedness Theorem now implies that T is bounded.

Finally, T ≤K follows from Tn ≤K .
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Subsection 4

Square Roots of a Positive Operator
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Bounded Self-Adjoint Linear Operators Square Roots of a Positive Operator

Positive Square Root

Let T be self-adjoint.

Then T 2 is positive, since 〈T 2x ,x〉 = 〈Tx ,Tx〉 ≥ 0.

The converse problem consists of, given a positive operator T , finding
a self-adjoint A such that A2 =T .

Definition (Positive Square Root)

Let T :H →H be a positive bounded self-adjoint linear operator on a
complex Hilbert space H. Then a bounded self-adjoint linear operator A is
called a square root of T if

A2
=T .

If, in addition, A≥ 0, then A is called a positive square root of T ,
denoted by A=T 1/2.
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Bounded Self-Adjoint Linear Operators Square Roots of a Positive Operator

The Positive Square Root Theorem

Theorem (Positive Square Root)

Every positive bounded self-adjoint linear operator T :H →H on a complex
Hilbert space H has a positive square root A, which is unique. This
operator A commutes with every bounded linear operator on H which
commutes with T .

We proceed in three steps:

(a) We show that if the theorem holds under the additional assumption
T ≤ I , it also holds without that assumption.

(b) We obtain the existence of the operator A=T 1/2 from Anx →Ax ,
where A0 = 0 and An+1 =An+

1
2 (T −A2

n), n= 0,1, . . ..
We also prove the commutativity stated in the theorem.

(c) We prove uniqueness of the positive square root.
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Bounded Self-Adjoint Linear Operators Square Roots of a Positive Operator

Positive Square Root Part (a)

(a) If T = 0, we can take A=T 1/2 = 0.

Let T 6= 0. By the Schwarz inequality,

〈Tx ,x〉 ≤ ‖Tx‖‖x‖≤ ‖T‖‖x‖2
.

Dividing by ‖T‖ 6= 0 and setting Q =
1

‖T‖
T , we obtain

〈Qx ,x〉 ≤ ‖x‖2
= 〈Ix ,x〉.

I.e., Q ≤ I .

Suppose Q has a unique positive square root B =Q1/2. Then B2 =Q.

Moreover, we have

(‖T‖
1/2B)2 = ‖T‖B2

= ‖T‖Q =T .

So a square root of T =‖T‖Q is ‖T‖1/2B . Also, uniqueness of Q1/2

implies uniqueness of the positive square root of T .

Hence, it suffices to prove the theorem under the additional
assumption T ≤ I .
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Positive Square Root Part (b)

(b) (Existence) Consider

A0 = 0;
An+1 = An+

1
2
(T −A2

n), n= 0,1, . . . .

Since A0 = 0, we have

A1 =
1

2
T , A2 =T −

1

8
T 2

, etc..

Each An is a polynomial in T .

Hence, the An’s are self-adjoint and all commute.

They also commute with every operator that T commutes with.
We now prove:
(i) An ≤ I , n= 0,1, . . .;
(ii) An ≤An+1, n= 0,1, . . .;

(iii) Anx →Ax , A=T 1/2;
(iv) ST =TS implies AS = SA, where S is a bounded linear operator on H .
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Bounded Self-Adjoint Linear Operators Square Roots of a Positive Operator

Positive Square Root Part (b) (i)

(i) We have A0 ≤ I .

Let n> 0.

Since I −An−1 is self-adjoint,

(I −An−1)
2
≥ 0.

Also, T ≤ I implies I −T ≥ 0.

From this, we obtain

0 ≤ 1
2
(I −An−1)

2+ 1
2
(I −T )

= I −An−1−
1
2
(T −A2

n−1)

= I −An.
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Bounded Self-Adjoint Linear Operators Square Roots of a Positive Operator

Positive Square Root Part (b) (ii)

(ii) We use induction.

We have

0=A0 ≤A1 =
1

2
T .

We show that An−1 ≤An, for any fixed n, implies An ≤An+1.

We calculate directly

An+1−An = An+
1
2
(T −A2

n)−An−1−
1
2
(T −A2

n−1)

= (An−An−1)[I −
1
2
(An+An−1)].

Here An−An−1 ≥ 0, by hypothesis, and the bracket is ≥ 0 by (i).

Hence, An+1−An ≥ 0.
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Bounded Self-Adjoint Linear Operators Square Roots of a Positive Operator

Positive Square Root Part (b) (iii) and (iv)

(iii) (An) is monotone by (ii) and An ≤ I by (i).

Hence, a previous theorem implies the existence of a bounded
self-adjoint linear operator A, such that Anx →Ax , for all x ∈H.

Since (Anx) converges,

1

2
(Tx −A2

nx)=An+1x −Anx → 0.

Hence, Tx −A2x = 0, for all x . I.e., T =A2.

Also A≥ 0, because 0=A0 ≤An by (ii).

I.e., 〈Anx ,x〉 ≥ 0, for every x ∈H.

By the continuity of the inner product, 〈Ax ,x〉 ≥ 0, for every x ∈H.

(iv) We know that ST =TS implies AnS =SAn.

I.e., AnSx = SAnx , for all x ∈H.

Letting n→∞, we obtain (iv).

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 43 / 129



Bounded Self-Adjoint Linear Operators Square Roots of a Positive Operator

Positive Square Root Part (c)

(c) (Uniqueness) Let both A and B be positive square roots of T .

Then A2 =B2 =T . Also

BT =BB2
=B2B =TB .

So, by (iv), AB =BA.

Let x ∈H be arbitrary and y = (A−B)x .

Then 〈Ay ,y 〉 ≥ 0 and 〈By ,y 〉≥ 0 because A≥ 0 and B ≥ 0.

Using AB =BA and A2 =B2, we obtain

〈Ay ,y 〉+〈By ,y 〉= 〈(A+B)y ,y 〉 = 〈(A2
−B2)x ,y 〉 = 0.

Hence 〈Ay ,y 〉 = 〈By ,y 〉 = 0.
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Bounded Self-Adjoint Linear Operators Square Roots of a Positive Operator

Positive Square Root Part (c) (Cont’d)

Since A≥ 0 and A is self-adjoint, it has itself a positive square root C ,
that is, C 2 =A and C is self-adjoint.

We thus obtain

0= 〈Ay ,y 〉 = 〈C 2y ,y 〉 = 〈Cy ,Cy 〉 = ‖Cy‖2
.

So Cy = 0. Moreover,

Ay =C 2y =C (Cy)= 0.

Similarly, By = 0. Hence, (A−B)y = 0.

Using y = (A−B)x , we thus have, for all x ∈H,

‖Ax −Bx‖2
= 〈(A−B)2x ,x〉 = 〈(A−B)y ,x〉 = 0.

This shows that Ax −Bx = 0, for all x ∈H. So A=B .
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Subsection 5

Projection Operators
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Bounded Self-Adjoint Linear Operators Projection Operators

Orthogonal Projections

A Hilbert space H can be represented as the direct sum of a closed
subspace Y and its orthogonal complement Y ⊥:

H = Y ⊕Y ⊥;
x = y +z , y ∈Y ,z ∈Y ⊥.

Since the sum is direct, y is unique, for any given x ∈H.

Hence this representation defines a linear operator

P : H → H

x 7→ y =Px .

P is called an orthogonal projection or projection on H.

More specifically, P is called the projection of H onto Y .
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Orthogonal Projections (Cont’d)

A linear operator P :H →H is a projection on H if there is a closed
subspace Y of H, such that:

Y is the range of P ;
Y ⊥ is the null space of P ;
P |Y is the identity operator on Y .

Note that, with this notation, we can now write

x = y +z =Px + (I −P)x .

So the projection of H onto Y ⊥ is I −P .
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The Projection Theorem

Theorem (Projection)

A bounded linear operator P :H →H on a Hilbert space H is a projection if
and only if P is self-adjoint and idempotent (that is, P2 =P).

(a) Suppose that P is a projection on H and denote P(H) by Y .

For every x ∈H and Px = y ∈Y , we have

P2x =Py = y =Px .

Hence, P2 =P .

Let x1 = y1+z1 and x2 = y2+z2, where y1,y2 ∈Y and z1,z2 ∈Y
⊥.

Then, since Y ⊥Y ⊥, 〈y1,z2〉 = 〈y2,z1〉 = 0. So we have

〈Px1,x2〉 = 〈y1,y2+z2〉 = 〈y1,y2〉 = 〈y1+z1,y2〉 = 〈x1,Px2〉.

Hence, P is self-adjoint.
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Bounded Self-Adjoint Linear Operators Projection Operators

The Projection Theorem (Converse)

(b) Conversely, suppose that P2 =P =P∗ and denote P(H) by Y .

Then, for every x ∈H,

x =Px + (I −P)x .

The orthogonality Y =P(H)⊥ (I −P)(H) follows from

〈Px ,(I −P)v 〉 = 〈x ,P(I −P)v 〉 = 〈x ,Pv −P2v 〉 = 〈x ,0〉 = 0.

We show Y is the null space N (I −P) of I −P .
Y ⊆N (I −P): (I −P)Px =Px −P2x = 0;
Y ⊇N (I −P): (I −P)x = 0 implies x =Px .

Hence, Y is closed.

Finally, writing y =Px , we have

Py =P2x =Px = y .

Therefore, P |Y is the identity operator on Y .
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Spectral Representations

We attempt to represent complicated linear operators on Hilbert
spaces in terms of simple operators, such as projections.

The resulting representation is called a spectral representation of
the operator because the projections employed for that purpose are
related to the spectrum of the operator.

For a spectral representation of bounded self-adjoint linear operators:

The first step is a thorough investigation of general properties of
projections.
The second step is the definition of projections suitable for that
purpose.
These are one-parameter families of projections, called spectral

families.
The third step associates with a given bounded self-adjoint linear
operator T a spectral family in a unique way.
This is called the spectral family associated with T .
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Bounded Self-Adjoint Linear Operators Projection Operators

Positivity and Norm of Projections

Theorem (Positivity, Norm)

For any projection P on a Hilbert space H:

(a) 〈Px ,x〉 = ‖Px‖2;

(b) P ≥ 0;

(c) ‖P‖≤ 1; ‖P‖= 1 if P(H) 6= {0}.

(a) and (b) follow from

〈Px ,x〉 = 〈P2x ,x〉 = 〈Px ,Px〉 = ‖Px‖2
≥ 0.

By the Schwarz inequality,

‖Px‖2
= 〈Px ,x〉 ≤ ‖Px‖‖x‖.

So ‖Px‖
‖x‖ ≤ 1, for every x 6= 0. Hence, ‖P‖≤ 1.

If x ∈P(H) and x 6= 0, ‖Px‖
‖x‖ = 1. This proves (c).

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 52 / 129



Bounded Self-Adjoint Linear Operators Projection Operators

Product of Projections

Theorem (Product of Projections)

In connection with products (composites) of projections on a Hilbert space
H, the following two statements hold:

(a) P =P1P2 is a projection on H if and only if the projections P1 and P2

commute, that is, P1P2 =P2P1. Then P projects H onto Y =Y1∩Y2,
where Yj =Pj(H).

(b) Two closed subspaces Y and V of H are orthogonal if and only if the
corresponding projections satisfy PYPV = 0.

(a) Suppose that P1P2 =P2P1.

Then P is self-adjoint, by a previous theorem.

Moreover, P is idempotent, since

P2
= (P1P2)(P1P2)=P2

1P
2
2 =P1P2 =P .

Hence P is a projection.
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Product of Projections (Cont’d)

For every x ∈H, we have Px =P1(P2x)=P2(P1x).

Since P1 projects H onto Y1, we must have P1(P2x) ∈Y1. Similarly,
P2(P1x) ∈Y2. Together, Px ∈Y1∩Y2. Since x ∈H was arbitrary, this
shows that P projects H into Y =Y1∩Y2.

P projects H onto Y : Suppose y ∈Y . Then y ∈Y1 and y ∈Y2. Thus,
Py =P1P2y =P1y = y .

Conversely, suppose P =P1P2 is a projection defined on H.

Then P is self-adjoint. By a previous theorem, P1P2 =P2P1.

(b) Suppose Y ⊥V . Then Y ∩V = {0}. Hence, PYPV x = 0, for all x ∈H,
by part (a). So PYPV = 0.

Conversely, suppose PYPV = 0. Then, for every y ∈Y and v ∈V ,

〈y ,v 〉 = 〈PY y ,PV v 〉 = 〈y ,PYPV v 〉 = 〈y ,0〉 = 0.

Hence, Y ⊥V .
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Sum of Projections

Theorem (Sum of Projections)

Let P1 and P2 be projections on a Hilbert space H. Then:

(a) The sum P =P1+P2 is a projection on H if and only if Y1 =P1(H)
and Y2 =P2(H) are orthogonal.

(b) If P =P1+P2 is a projection, P projects H onto Y =Y1⊕Y2.

(a) If P =P1+P2 is a projection, P =P2. Expanding, we get

P1+P2 = (P1+P2)
2

= P2
1 +P1P2+P2P1+P2

2

= P1+P1P2+P2P1+P2.

Hence, P1P2+P2P1 = 0.
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Sum of Projections Part (a) (Cont’d)

We obtained P1P2+P2P1 = 0.

Multiplying by P2 on the left, we obtain P2P1P2+P2P1 = 0.

Multiplying this by P2 on the right, we have 2P2P1P2 = 0.

So P2P1 = 0. Hence, Y1 ⊥Y2.

Conversely, suppose Y1 ⊥Y2.

Then P1P2 =P2P1 = 0.

This yields P1P2+P2P1 = 0.

So we get P2 =P .

Since P1 and P2 are self-adjoint, so is P =P1+P2.

Hence, P is a projection.
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Sum of Projections Part (b)

(b) We determine the closed subspace Y ⊆H onto which P projects.

Since P =P1+P2, we have, for every x ∈H,

y =Px =P1x +P2x .

Here, P1x ∈Y1 and P2x ∈Y2.

Hence y ∈Y1⊕Y2. So Y ⊆Y1⊕Y2.

We show that Y ⊇Y1⊕Y2.

Let v ∈Y1⊕Y2 be arbitrary.

Then v = y1+y2, with y1 ∈Y1 and y2 ∈Y2.

Applying P and using Y1 ⊥Y2, we obtain

Pv =P1(y1+y2)+P2(y1+y2)=P1y1+P2y2 = y1+y2 = v .

Hence, v ∈Y . So Y ⊇Y1⊕Y2.
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Subsection 6

Further Properties of Projections
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Partial Order on the Set of all Projections

Theorem (Partial Order)

Let P1 and P2 be projections defined on a Hilbert space H. Denote by
Y1 =P1(H) and Y2 =P2(H) the subspaces onto which H is projected by P1

and P2. Let N (P1) and N (P2) be the null spaces of these projections.
Then the following conditions are equivalent:

(1) P2P1 =P1P2 =P1;

(2) Y1 ⊆Y2;

(3) N (P1)⊇N (P2);

(4) ‖P1x‖ ≤ ‖P2x‖, for all x ∈H;

(5) P1 ≤P2.

(1)⇒(4): We have ‖P1‖≤ 1. Hence (1) yields, for all x ∈H,

‖P1x‖ = ‖P1P2x‖ ≤ ‖P1‖‖P2x‖ ≤ ‖P2x‖.
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Partial Order on the Set of all Projections (Cont’d)

(4)⇒(5): We have, for all x ∈H,

〈P1x ,x〉 = ‖P1x‖
2
≤‖P2x‖

2
= 〈P2x ,x〉.

This shows that P1 ≤P2, by definition.

(5)⇒(3): Let x ∈N (P2). Then P2x = 0. By hypothesis,

‖P1x‖
2
= 〈P1x ,x〉 ≤ 〈P2x ,x〉 = 0.

Hence, P1x = 0. So x ∈N (P1). This shows that N (P1)⊇N (P2).

(3)⇒(2): Note that N (Pj) is the orthogonal complement of Yj in H.

(2)⇒(1): For every x ∈H, we have P1x ∈Y1.

Hence, by hypothesis, P1x ∈Y2. So P2(P1x)=P1x . I.e., P2P1 =P1.

Since P1 is self-adjoint, by a preceding result, P1 =P2P1 =P1P2.
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Difference of Projections

Theorem (Difference of Projections)

Let P1 and P2 be projections on a Hilbert space H. Then:

(a) The difference P =P2−P1 is a projection on H if and only if Y1 ⊆Y2,
where Yj =Pj(H).

(b) If P =P2−P1 is a projection, P projects H onto Y , where Y is the
orthogonal complement of Y1 in Y2.

(a) If P =P2−P1 is a projection, P =P2. Expanding

P2−P1 = (P2−P1)
2

= P2
2 −P2P1−P1P2+P2

1

= P2−P2P1−P1P2+P1.

Hence P1P2+P2P1 = 2P1.
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Difference of Projections Part (a) (Cont’d)

We got P1P2+P2P1 = 2P1.

Multiplication by P2 from left and right gives

P2P1P2+P2P1 = 2P2P1 and P1P2+P2P1P2 = 2P1P2.

Hence, we get

P2P1P2 =P2P1 and P2P1P2 =P1P2.

So P2P1 =P1P2 =P1. Thus, Y1 ⊆Y2.

Conversely, suppose Y1 ⊆Y2.

Then P2P1 =P1P2 =P1. This implies P1P2+P2P1 = 2P1.

Thus, P is idempotent.

Since P1 and P2 are self-adjoint, P =P2−P1 is self-adjoint.

So P is a projection.
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Difference of Projections Part (b)

(b) Y =P(H) consists of all vectors of the form

y =Px =P2x −P1x , x ∈H.

Since Y1 ⊆Y2, by Part (a), we have P2P1 =P1. Thus,

P2y =P2
2x −P2P1x =P2x −P1x = y .

This shows that y ∈Y2. Moreover,

P1y =P1P2x −P2
1x =P1x −P1x = 0.

This shows that y ∈N (P1)=Y ⊥
1

. So Y ⊆Y2∩Y ⊥
1

.
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Difference of Projections Part (b) (Cont’d)

We show, next, that Y ⊇Y2∩Y ⊥
1 .

The projection of H onto Y ⊥
1 is I −P1.

So every v ∈Y2∩Y ⊥
1 is of the form v = (I −P1)y2, y2 ∈Y2.

Using again P2P1 =P1, we obtain, since P2y2 = y2,

Pv = (P2−P1)(I −P1)y2

= (P2−P2P1−P1+P2
1 )y2

= y2−P1y2

= Y2∩Y ⊥
1

.

This shows that v ∈Y . Hence, Y ⊇Y2∩Y ⊥
1 .

We conclude that Y =P(H)=Y2∩Y ⊥
1 .
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Monotone Increasing Sequence

Theorem (Monotone Increasing Sequence)

Let (Pn) be a monotone increasing sequence of projections Pn defined on a
Hilbert space H. Then:

(a) (Pn) is strongly operator convergent, say, Pnx →Px , for every x ∈H,
and the limit operator P is a projection defined on H.

(b) P projects H onto P(H)=
⋃∞
n=1Pn(H).

(c) P has the null space N (P)=
⋂∞
n=1N (Pn).

(a) Let m< n. By assumption, Pm ≤Pn. So Pm(H)⊆Pn(H).

By the previous theorem, Pn−Pm is a projection.

Hence, for every fixed x ∈H, we obtain

‖Pnx −Pmx‖
2 = ‖(Pn−Pm)x‖

2 = 〈(Pn−Pm)x ,x〉

= 〈Pnx ,x〉−〈Pmx ,x〉 = ‖Pnx‖
2−‖Pmx‖

2.
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Monotone Increasing Sequence Part (a) (Cont’d)

Now ‖Pn‖ ≤ 1. So ‖Pnx‖ ≤ ‖x‖, for every n.

Hence (‖Pnx‖) is a bounded sequence of numbers.

(‖Pn‖) is also monotone since (Pn) is monotone.

Hence (‖Pnx‖) converges.

From this and the preceding equality, (Pnx) is Cauchy.

Since H is complete, (Pnx) converges.

The limit depends on x , say, Pnx →Px .

This defines an operator P on H.

Linearity of P is obvious.

Since Pnx →Px and the Pn’s are bounded, self-adjoint and
idempotent, P has the same properties.

Hence, by the Projection Theorem, P is a projection.
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Monotone Increasing Sequence Part (b)

(b) We determine P(H). Let m< n. Then Pm ≤Pn.

This gives Pn−Pm ≥ 0. So 〈(Pn−Pm)x ,x〉 ≥ 0, by definition.

As n→∞, by continuity of the inner product, 〈(P−Pm)x ,x〉 ≥ 0.

So Pm ≤P . Hence, Pm(H)⊆P(H), for all m. So
⋃
Pm(H)⊆P(H).

Now, for all m and all x ∈H, Pmx ∈Pm(H)⊆
⋃
Pm(H).

Since Pmx →Px , we see that Px ∈
⋃
Pm(H).

Hence, P(H)⊆
⋃
Pm(H).

Taken together,

⋃
Pm(H)⊆P(H)⊆

⋃
Pm(H).

Therefore, we have P(H)=N (I −P). So P(H) is closed.

This proves (b).
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Monotone Increasing Sequence Part (c)

(c) We determine N (P).

By Part (b) of the proof, for all n, P(H)⊇Pn(H).

Using a preceding lemma, N (P)=P(H)⊥ ⊆Pn(H)⊥.

Hence, N (P)⊆
⋂
Pn(H)⊥ =

⋂
N (Pn).

On the other hand, suppose x ∈
⋂

N (Pn).

Then x ∈N (Pn), for every n. So Pnx = 0.

Moreover, Pnx →Px implies Px = 0.

I.e., x ∈N (P).

Since x ∈
⋂

N (Pn) was arbitrary,
⋂

N (Pn)⊆N (P).

We, thus, obtain N (P)=
⋂

N (Pn).

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 68 / 129



Bounded Self-Adjoint Linear Operators Spectral Family

Subsection 7

Spectral Family

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 69 / 129
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Self-Adjoint Operators on a Unitary Space

Consider the unitary space (inner product space over C) H =Cn.

Let T :H →H be a self-adjoint linear operator on H.

Then T is bounded.

Moreover, we may choose a basis for H and represent T by a
Hermitian matrix which we denote simply by T .

The spectrum of the operator consists of the eigenvalues of that
matrix which are real.
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Spectrum of Self-Adjoint Operators on a Unitary Space

For simplicity, we assume that the matrix T has n different
eigenvalues λ1 <λ2 < ·· · <λn.

Then a previous theorem implies that T has an orthonormal set of n
eigenvectors x1,x2, . . . ,xn, where xj corresponds to λj .

We write these vectors as column vectors, for convenience.

This is a basis for H.

So every x ∈H has a unique representation

x =

n∑

j=1

γjxj , γj = 〈x ,xj〉 = x⊤x j .
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Spectral Representation of Self-Adjoint Operators

We obtained the representation

x =

n∑

j=1

γjxj , γj = 〈x ,xj〉 = x⊤x j .

Since xj is an eigenvector of T , Txj =λjxj .

Consequently, we obtain

Tx =

n∑

j=1

λjγjxj .

Thus, whereas T may act on x in a complicated way, it acts on each
term of the sum in a very simple fashion.
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Spectral Representation of Self-Adjoint Operators (Cont’d)

We may define an operator

Pj : H → H;
x 7→ γjxj .

Obviously, Pj is the projection (orthogonal projection) of H onto the
eigenspace of T corresponding to λj .

We obtain

x =

n∑

j=1

Pjx .

Hence, I =
∑n

j=1
Pj , with I the identity on H.

We also have

Tx =

n∑

j=1

λjPjx .

Hence, T =
∑n

j=1
λjPj .
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The One-Parameter Family of Projections Eλ

For any real λ, we define

Eλ =
∑

λj≤λ

Pj , λ ∈R.

For any λ, the operator Eλ is the projection of H onto the subspace
Vλ spanned by all those xj for which λj ≤λ.

Thus Vλ ⊆Vµ, for λ≤µ.

As λ traverses R in the positive sense, Eλ grows from 0 to I .
The growth occurs at the eigenvalues of T ;
Eλ remains unchanged for λ in any interval that is free of eigenvalues.

Hence, Eλ has the following properties:
EλEµ =EµEλ =Eλ, if λ< µ;
Eλ = 0, if λ<λ1;
Eλ = I , if λ≥λn;
Eλ+ = lim

µ→λ+
Eµ =Eλ.
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Spectral Family or Decomposition of Unity

Definition (Spectral Family or Decomposition of Unity)

A real spectral family (or real decomposition of unity) is a
one-parameter family E = (Eλ)λ∈R of projections Eλ defined on a Hilbert
space H (of any dimension) which depends on a real parameter λ and is
such that:

Eλ ≤Eµ, hence EλEµ =EµEλ =Eλ, λ<µ;

lim
λ→−∞

Eλx = 0, lim
λ→+∞

Eλx = x ;

Eλ+x = lim
µ→λ+

Eµx =Eλx , x ∈H.

Thus, a real spectral family can be regarded as a mapping
R→B(H,H); λ 7→Eλ.

To each λ∈R, it associates a projection Eλ ∈B(H,H), where B(H,H)
is the space of all bounded linear operators from H into H.
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Spectral Family on an Interval

E is called a spectral family on an interval [a,b] if

Eλ = 0, λ< a, Eλ = I , λ≥ b.

Such families are of particular interest, since the spectrum of a
bounded self-adjoint linear operator lies in a finite interval on the real
line.

µ→λ+ indicates that in this limit process we restrict to values µ>λ.

The condition lim
µ→λ+

Eµx =Eλx , x ∈H, means that λ 7→Eλ is strongly

operator continuous from the right.

We will see that with any given bounded self-adjoint linear operator T
on any Hilbert space we can associate a spectral family which may be
used for representing T by a Riemann-Stieltjes integral.

This is known as a spectral representation.
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The Spectral Representation

Assume again, for simplicity, that the eigenvalues λ1, . . . ,λn of T are
all different, and λ1 <λ2 < ·· · <λn.
Then we have:

Eλ1 =P1;
Eλ2 =P1+P2;
...
Eλn =P1+·· ·+Pn.

Hence, conversely,

P1 = Eλ1
;

Pj = Eλj
−Eλj−1

, j = 2, . . . ,n.

Note that Eλ remains the same for λ ∈ [λj−1,λj).

So we may write
Pj =Eλj

−Eλ−

j
.
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The Spectral Representation (Cont’d)

Now we have

x =

n∑

j=1

Pjx =

n∑

j=1

(Eλj
−Eλ−

j
)x .

Moreover,

Tx =

n∑

j=1

λjPjx =

n∑

j=1

λj(Eλj
−Eλ−

j
)x .

If we drop the x and write δEλ =Eλ−Eλ− , we get

T =

n∑

j=1

λjδEλj
.

This is the spectral representation of the self-adjoint operator T
with eigenvalues λ1 <λ2 < ·· · <λn on the n-dimensional Hilbert space
H.
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Spectral Representation as an Integral

We obtained the spectral representation

T =

n∑

j=1

λjδEλj

of the self-adjoint linear operator T with eigenvalues λ1 <λ2 < ·· · <λn

on the n-dimensional Hilbert space H.

The representation shows that for any x ,y ∈H,

〈Tx ,y 〉 =
n∑

j=1

λj 〈δEλj
x ,y 〉.

We note that this may be written as a Riemann-Stieltjes integral

〈Tx ,y 〉 =

∫+∞

−∞

λdw(λ),

where w(λ)= 〈Eλx ,y 〉.
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Subsection 8

Spectral Family of a Bounded Self-Adjoint Operator
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The Spectral Family of an Operator

Let H be a complex Hilbert space.

Let T :H →H be a bounded self-adjoint linear operator on H.

With T we can associate a spectral family E that will be used for a
spectral representation of T .
To define E we need the following:

The operator
Tλ =T −λI ;

The positive square root of T 2
λ
,

Bλ = (T 2
λ )

1/2;

The operator

T+

λ =
1

2
(Bλ+Tλ),

called the positive part of Tλ.

The spectral family E of T is defined by E = (Eλ)λ∈R, where Eλ is
the projection of H onto the null space N (T+

λ
) of T+

λ
.
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Definition of Operators B ,T+,T−

Consider the operators

B = (T 2)1/2 (positive square root of T 2);

T+ =
1
2
(B +T ) (positive part of T );

T− =
1
2
(B −T ) (negative part of T ).

Let E be the projection of H onto the null space of T+,

E :H →Y =N (T+).

By subtraction and addition we see that

T = T+−T−;
B = T++T−.
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Properties of the Operators

Lemma (Operators related to T )

The operators just defined have the following properties:

(a) B ,T+ and T− are bounded and self-adjoint.

(b) B ,T+ and T− commute with every bounded linear operator that T
commutes with; in particular,

BT =TB , T+T =TT+
, T−T =TT−

, T+T−
=T−T+

.

(c) E commutes with every bounded self-adjoint linear operator that T
commutes with; in particular, ET =TE and EB =BE .

(d) Furthermore,
T+T− = 0 T−T+ = 0
T+E =ET+ = 0 T−E =ET− =T−

TE =−T− T (I −E )=T+

T+ ≥ 0 T− ≥ 0.
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Proof of Properties (a),(b)

(a) Clear, since T and B are bounded and self-adjoint.

(b) Suppose that TS = ST . Then

T 2S =TST =ST 2
.

BS =SB follows from a previous theorem.

Hence,

T+S =
1

2
(BS +TS)=

1

2
(SB +ST )= ST+

.

The proof of T−S = ST− is similar.
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Proof of Property (c)

(c) For every x ∈H, we have y =Ex ∈Y =N (T+).

Hence, T+y = 0. And, also, ST+y =S0= 0.

From TS =ST and Part (b) we have ST+ =T+S and

T+SEx =T+Sy = ST+y = 0.

Hence SEx ∈Y .

But E projects H onto Y .

Thus, ESEx = SEx , for every x ∈H.

That is, ESE =SE .

Since a projection is self-adjoint, by a previous result, and so is S ,

ES =E∗S∗
= (SE )∗ = (ESE )∗ =E∗S∗E∗

=ESE = SE .

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 85 / 129
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Proof of Properties (d)

(d) We prove all equalities in Part (d):

From B = (T 2)1/2, we have B2 =T 2. Also BT =TB by Part (b).
Hence, again by Part (b),

T+T−
=T−T+

=
1

2
(B −T )

1

2
(B +T )=

1

4
(B2

+BT −TB −T 2)= 0.

By definition, Ex ∈N (T+). So T+Ex = 0, for all x ∈H .
Since T+ is self-adjoint, by Parts (b) and (c),

ET+x =T+Ex = 0.

That is, ET+ =T+E = 0.
By the previous subpart, T+T−x = 0. So T−x ∈N (T+).
Hence, ET−x =T−x . Since T− is self-adjoint, Part (c) yields

T−Ex = ET−x =T−x , x ∈H .

That is, T−E =ET− =T−.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 86 / 129



Bounded Self-Adjoint Linear Operators Spectral Family of a Bounded Self-Adjoint Operator

Proof of Properties (d) (Cont’d)

(d) We continue with the equalities in Part (d):
From a previous subpart,

TE = (T+
−T−)E = −T−

.

From this,
T (I −E )=T −TE =T +T−

=T+
.

Now note that:
E and B are self-adjoint and commute;
E ≥ 0, by the Positivity Theorem, and B ≥ 0, by definition.

So, by a preceding subpart and a preceding theorem,

T−
=ET−

+ET+
=E (T−

+T+)=EB ≥ 0.

Similarly, since, by the Positivity Theorem, I −E ≥ 0,

T+
=B −T−

=B −EB = (I −E )B ≥ 0.
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Operators Related to Tλ

Instead of T , we now consider Tλ =T −λI .

Instead of B ,T+,T− and E we now have to take:

The positive square root of T 2
λ
,

Bλ := (T 2
λ )

1/2;

The positive part and negative part of Tλ, defined by

T+

λ =
1

2
(Bλ+Tλ) and T−

λ =
1

2
(Bλ−Tλ);

The projection
Eλ :H →Yλ =N (T+

λ )

of H onto the null space Yλ =N (T+

λ
) of T+

λ
.
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Properties of the Operators Related to Tλ

Lemma (Operators Related to Tλ)

The previous lemma remains true if we replace T ,B ,T+,T−,E by
TλBλ,T+

λ
,T−

λ
,Eλ, respectively, where λ is real. Moreover, for any real

κ,λ,µ,ν,τ, the following operators all commute: Tκ,Bλ,T+
µ ,T−

ν ,Eτ.

The first statement is obvious. We turn to the second statement.

Note that IS = SI and

Tλ =T −λI =T −µI + (µ−λ)I =Tµ+ (µ−λ)I .

Hence,
ST =TS implies STµ =TµS

implies STλ =TλS

implies SBλ =BλS ,SBµ =BµS
...

For S =Tκ, we get TκBλ =BλTκ, . . ..
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Spectral Family Associated with an Operator

Theorem (Spectral Family Associated with an Operator)

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Furthermore, let Eλ (λ real) be the projection of H onto
the null space Yλ =N (T+

λ
) of the positive part T+

λ
of Tλ =T −λI .

Then E = (Eλ)λ∈R is a spectral family on the interval [m,M]⊆R, where
m= inf‖x‖=1 〈Tx ,x〉 and M = sup‖x‖=1 〈Tx ,x〉.

E = (Eλ) is called the spectral family associated with T .

We shall prove:

(i) λ<µ implies Eλ ≤Eµ;
(ii) λ<m implies Eλ = 0;
(iii) λ≥M implies Eλ = I ;
(iv) lim

µ→λ+
Eµx =Eλx .
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Spectral Family Associated with an Operator (Proof)

In the proof we use the following properties:

(a) TλEλ =−T−
λ

;
(b) Tλ(I −Eλ)=T+

λ
;

(c) T+
λ
≥ 0;

(d) T−
λ
≥ 0;

(e) T+
µ T

−
µ = 0;

(f) TµEµ =−T−
µ ;

(g) T+
µ ≥ 0;

(h) T−
µ ≥ 0.
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Proof of Property (i)

Let λ<µ. Since −T−
λ
≤ 0, we have Tλ =T+

λ
−T−

λ
≤T+

λ
. Hence,

T+
λ −Tµ ≥Tλ−Tµ = (µ−λ)I ≥ 0.

T+
λ
−Tµ is self-adjoint and commutes with T+

µ . Also T+
µ ≥ 0.

A previous theorem, thus, implies

T+
µ (T

+
λ −Tµ)=T+

µ (T
+
λ −T+

µ +T−
µ )≥ 0.

We have T+
µ T

−
µ = 0, by one of the preceding identities.

Hence, T+
µ T

+
λ
≥T+2

µ . I.e., for all x ∈H,

〈T+
µ T

+

λ x ,x〉 ≥ 〈T+2
µ x ,x〉 = ‖T+

µ x‖
2
≥ 0.

This shows that T+

λ
x = 0 implies T+

µ x = 0.

Hence, N (T+
λ
)⊆N (T+

µ ).

So, by the Partial Order Theorem, Eλ ≤Eµ.
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Proof of Property (ii)

Let λ<m but that, nevertheless, Eλ 6= 0.

Then Eλz 6= 0, for some z .

We set x =Eλz . Then

Eλx =E 2
λz =Eλz = x .

So, without loss of generality, we assume ‖x‖= 1.

It follows that

〈TλEλx ,x〉 = 〈Tλx ,x〉

= 〈Tx ,x〉−λ

≥ inf‖x̃‖=1 〈Tx̃ , x̃〉−λ

= m−λ> 0.

This contradicts TλEλ =−T−
λ
≤ 0.
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Proof of Property (iii)

Suppose that λ>M, but Eλ 6= I .

So I −Eλ 6= 0.

Then, (I −Eλ)x = x , for some x of norm ‖x‖= 1.

Hence,
〈Tλ(I −Eλ)x ,x〉 = 〈Tλx ,x〉

= 〈Tx ,x〉−λ

≤ sup‖x̃‖=1 〈Tx̃ , x̃〉−λ

= M −λ< 0.

This contradicts Tλ(I −Eλ)=T+
λ
≥ 0.

Also EM = 1, by the continuity from the right to be proved next.
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Proof of Property (iv)

With an interval ∆= (λ,µ] we associate the operator E (∆)=Eµ−Eλ.

Since λ<µ, we have Eλ ≤Eµ. Hence, Eλ(H)⊆Eµ(H).

This shows that E (∆) is a projection. Also, E (∆)≥ 0.

We also have

EµE (∆) = E 2
µ −EµEλ =Eµ−Eλ =E (∆);

(I −Eλ)E (∆) = E (∆)−Eλ(Eµ−Eλ)=E (∆).

Now E (∆),T−
µ and T+

λ
are positive and commute.

So the products T−
µ E (∆) and T+

λ
E (∆)T are positive. Hence

TµE (∆) = TµEµE (∆)= −T−
µ E (∆)≤ 0;

TλE (∆) = Tλ(I −Eλ)E (∆)=T+

λ
E (∆)≥ 0.

This implies TE (∆)≤µE (∆) and TE (∆)≥λE (∆), respectively.

Taken together, λE (∆)≤TE (∆)≤µE (∆).
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Proof of Property (iv) (Cont’d)

We keep λ fixed and let µ→λ from the right in a monotone fashion.

Then E (∆)x →P(λ)x by the analog of the Monotone Sequence
Theorem for a decreasing sequence.

Here P(λ) is bounded and self-adjoint.

Since E (∆) is idempotent, so is P(λ).

Hence P(λ) is a projection.

Also λP(λ)=TP(λ). I.e., TλP(λ)= 0. From this,

T+

λ P(λ)=Tλ(I −Eλ)P(λ)= (I −Eλ)TλP(λ)= 0.

Hence, T+

λ
P(λ)x = 0, for all x ∈H. Hence, P(λ)x ∈N (T+

λ
).

By definition, Eλ projects H onto N (T+
λ
).

Consequently, we have EλP(λ)x =P(λ)x . I.e., EλP(λ)=P(λ).

On the other hand, if we let µ→λ+, then (I −Eλ)P(λ)=P(λ).

Taken, together, P(λ)= 0. But we had E (∆)x →P(λ)x .

So P(λ)= 0 proves continuity of E from the right.
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Subsection 9

Spectral Representation of Bounded Self-Adjoint Operators
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Spectral Theorem for Bounded Self-Adjoint Linear Operators

Spectral Theorem for Bounded Self-Adjoint Linear Operators

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Then:

(a) T has the spectral representation

T =

∫M

m−

λdEλ,

where E = (Eλ) is the spectral family associated with T .

The integral is to be understood in the sense of uniform operator
convergence [convergence in the norm on B(H,H)], and for all
x ,y ∈H,

〈Tx ,y 〉 =

∫M

m−

λdw(λ), w(λ)= 〈Eλx ,y 〉,

where the integral is an ordinary Riemann-Stieltjes integral.
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Spectral Theorem (Cont’d)

Spectral Theorem for Bounded Self-Adjoint Linear Operators

(b) More generally, let p is a polynomial in λ with real coefficients, say,
p(λ)=αnλ

n+αn−1λ
n−1+·· ·+α0.

Then the operator p(T ) defined by

p(T )=αnT
n
+αn−1T

n−1
+·· ·+α0I

has the spectral representation

p(T )=

∫M

m−

p(λ)dEλ.

Moreover, for all x ,y ∈H,

〈p(T )x ,y 〉 =

∫M

m−

p(λ)dw(λ), w(λ)= 〈Eλx ,y 〉.
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Comments on the Spectral Theorem

The notation m− indicates that one must take into account a
contribution at λ=m which occurs if Em 6= 0 (and m 6= 0).

Thus, using any a<m, we can write

∫M

a
λdEλ =

∫M

m−

λdEλ =mEm+

∫M

m
λdEλ.

Similarly,

∫M

a
p(λ)dEλ =

∫M

m−

p(λ)dEλ = p(m)Em+

∫M

m
p(λ)dEλ.
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Proof of the Spectral Theorem Part (a)

(a) Choose a sequence (Pn) of partitions of (a,b], where a<m and M < b.

Here every Pn is a partition of (a,b] into intervals ∆nj = (λnj ,µnj ],
j = 1, . . . ,n, of length ℓ(∆nj)=µnj −λnj .

Note that µnj =λn,j+1, for j = 1, . . . ,n−1.

We assume (Pn) to be such that η(Pn)=maxj ℓ(∆nj)
n→∞
−→ 0.

We have shown that λnjE (∆nj)≤TE (∆nj)≤µnjE (∆nj).

Summing over j , we get

n∑

j=1

λnjE (∆nj)≤
n∑

j=1

TE (∆nj)≤
n∑

j=1

µnjE (∆nj).

Since µnj =λn,j+1, for j = 1, . . . ,n−1, we get

T
n∑

j=1

E (∆nj)=T
n∑

j=1

(Eµnj
−Eλnj

)=T (I −0)=T .
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Bounded Self-Adjoint Linear Operators Spectral Representation of Bounded Self-Adjoint Operators

Proof of the Spectral Theorem Part (a) (Cont’d)

For every ε> 0, there is an n, such that η(Pn)< ε. Hence,

n∑

j=1

µnjE (∆nj)−
n∑

j=1

λnjE (∆nj)=
n∑

j=1

(µnj −λnj)E (∆nj )< εI .

It follows that, given any ε> 0, there is an N, such that, for every
n>N and every choice of λnj ∈∆nj , we have

∥∥∥∥∥T −

n∑

j=1

λ̂njE (∆nj)

∥∥∥∥∥< ε.

Since Eλ is constant for λ<m and for λ≥M, the particular choice of
an a<m and a b >M is immaterial.
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Proof of the Spectral Theorem Part (b)

(b) We prove the theorem for polynomials, starting with p(λ)=λr , r ∈N.

For any κ<λ≤µ< ν, we have

(Eλ−Eκ)(Eµ−Eν) = EλEµ−EλEν−EκEµ+EκEν

= Eλ−Eλ−Eκ+Eκ = 0.

This shows that E (∆nj)E (∆nk)= 0, for j 6= k .

Since E (∆nj) is a projection, E (∆nj)
s =E (∆nj), for every s = 1,2, . . ..

Consequently, we obtain

[
n∑

j=1

λ̂njE (∆nj)

]r
=

n∑

j=1

λ̂r
njE (∆nj).
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Bounded Self-Adjoint Linear Operators Spectral Representation of Bounded Self-Adjoint Operators

Proof of the Spectral Theorem Part (b) (Cont’d)

We have [
n∑

j=1

λ̂njE (∆nj)

]r
=

n∑

j=1

λ̂r
njE (∆nj).

Suppose the sum on the left is close to T .

Then the expression on the left is close to T r because multiplication
(composition) of bounded linear operators is continuous.

Hence, given ε> 0, there is an N, such that, for all n>N,

∥∥∥∥∥T
r
−

n∑

j=1

λ̂r
njE (∆nj)

∥∥∥∥∥< ε.

This proves the result for p(λ)=λr .

The formulas for an arbitrary polynomial with real coefficients follow
from this case.
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Properties of p(T )

Theorem (Properties of p(T ))

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Let p,p1 and p2 be polynomials with real coefficients.
Then:

(a) p(T ) is self-adjoint.

(b) If p(λ)=αp1(λ)+βp2(λ), then p(T )=αp1(T )+βp2(T ).

(c) If p(λ)= p1(λ)p2(λ), then p(T )= p1(T )p2(T ).

(d) If p(λ)≥ 0, for all λ ∈ [m,M], then p(T )≥ 0.

(e) If p1(λ)≤ p2(λ), for all λ ∈ [m,M], then p1(T )≤ p2(T ).

(f) ‖p(T )‖≤maxλ∈J |p(λ)|, where J = [m,M].

(g) If a bounded linear operator commutes with T , it also commutes with
p(T ).
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Bounded Self-Adjoint Linear Operators Spectral Representation of Bounded Self-Adjoint Operators

Properties of p(T ) Parts (a)-(d)

(a) T is self-adjoint and p has real coefficients.

So we get (αjT
j)∗ =αj (T

∗)j =αjT
j .

(b) This is obvious from the definition.

(c) This is obvious from the definition.

(d) Note that p has real coefficients.

So complex zeros must occur in conjugate pairs if they occur at all.
We observe that:

p changes sign if λ passes through a zero of odd multiplicity;
p(λ)≥ 0 on [m,M ].

So zeros of p in (m,M) must be of even multiplicity.

Hence, we can write

p(λ)=α
∏

j

(λ−βj )
∏

k

(γk −λ)
∏

ℓ

[(λ−µℓ)
2
+ν2

ℓ],

where βj ≤m, γk ≥M and the quadratic factors correspond to
complex conjugate zeros and to real zeros in (m,M).
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Properties of p(T ) Part (d)

We have p(λ)=α
∏

j(λ−βj)
∏

k(γk −λ)
∏

ℓ[(λ−µℓ)
2+ν2

ℓ
].

We show that α> 0 if p 6= 0.

For all sufficiently large λ, say, for all λ≥λ0, we have

sgnp(λ)= sgnαnλ
n
= sgnαn,

where n is the degree of p.
Suppose αn > 0. Then:

p(λ0)> 0;
The number of the γk ’s (each counted according to its multiplicity)
must be even, to make p(λ)≥ 0 in (m,M).

Then all three products are positive at λ0.
Hence, we must have α> 0 in order that p(λ0)> 0.
Suppose αn < 0. Then:

p(λ0)< 0;
The number of the γk ’s is odd, to make p(λ)≥ 0 on (m,M).

It follows that the second product is negative at λ0.
Hence, α> 0, as before.
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Properties of p(T ) Part (d) (Cont’d)

We replace λ by T .

Then each of the factors above is a positive operator.

Consider x 6= 0. Set v = 1
‖x‖

x . Then x = ‖x‖v .

Since −βj ≥−m,

〈(T −βj I )x ,x〉 = 〈Tx ,x〉−βj 〈x ,x〉

≥ ‖x‖2〈Tv ,v 〉−m‖x‖2

≥ ‖x‖2 inf‖ṽ‖=1 〈Tṽ , ṽ 〉−m‖x‖2

= 0.

That is, T −βj I ≥ 0. Similarly, γk I −T ≥ 0.

Now, T −µℓI is self-adjoint. So its square is positive.

It follows that (T −µℓI )
2+ν2

ℓ
I ≥ 0.

Since all those operators commute, their product is positive.

So, since α> 0, p(T )≥ 0.
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Properties of p(T ) Parts (e)-(g)

(e) This follows immediately from Part (d).

(f) Let k denote the maximum of |p(λ)| on J.

Then 0≤ p(λ)2 ≤ k2, for λ∈ J.

Hence Part (e) yields p(T )2 ≤ k2I .

Since p(T ) is self-adjoint, for all x ,

〈p(T )x ,p(T )x〉 = 〈p(T )2x ,x〉 ≤ k2
〈x ,x〉.

Now we get ‖p(T )x‖≤ k‖x‖.

Taking the supremum over all x of norm 1,

‖p(T )‖ ≤max
λ∈J

|p(λ)|.

(g) This follows immediately from the definition of p(T ).
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Subsection 10

Extension of the Spectral Theorem to Continuous Functions
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Bounded Self-Adjoint Linear Operators Extension to Continuous Functions

Extension to Continuous Functions

The theorem holds for p(T ), where T is a bounded self-adjoint linear
operator and p is a polynomial with real coefficients.

We want to extend the theorem to operators f (T ), where T is as
before and f is a continuous real-valued function.

Let H be a complex Hilbert space.

Let T :H →H be a bounded self-adjoint linear operator on H.

Let f be a continuous real-valued function on [m,M], where:

m= inf‖x‖=1 〈Tx ,x〉;
M = sup‖x‖=1 〈Tx ,x〉.

By the Weierstraß approximation theorem, there is a sequence of
polynomials (pn), with real coefficients, such that pn(λ)→ f (λ)
uniformly on [m,M].
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The Definition of f (T )

Corresponding to the sequence of polynomials (pn), we have a
sequence of bounded self-adjoint linear operators pn(T ).

By the preceding theorem, for J = [m,M],

‖pn(T )−pr (T )‖ ≤max
λ∈J

|pn(λ)−pr (λ)|.

Since pn(λ)→ f (λ), given any ε> 0, there is an N, such that, for all
n,r >N,

max
λ∈J

|pn(λ)−pr (λ)| < ε.

Hence, (pn(T )) is Cauchy.

So, since B(H,H) is complete, (pn(T )) has a limit in B(H,H).

We define f (T ) to be that limit: pn(T )→ f (T ).
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f (T ) is Well-Defined

Claim: f (T ) depends only on f (and T , of course), but not on the
particular choice of a sequence of polynomials converging to f

uniformly.

Let (p̃n) be another sequence of polynomials with real coefficients
such that p̃n(λ)→ f (λ) uniformly on [m,M]. Then p̃n(T )→ f̃ (T ) by
the previous argument. So it suffices to show that f̃ (T )= f (T ).

Clearly, p̃n(λ)−pn(λ)→ 0. Hence, p̃n(T )−pn(T )→ 0.

Consequently, given ε> 0, there is an N, such that for n >N,

‖f̃ (T )− p̃n(T )‖ <
ε

3
, ‖p̃n(T )−pn(T )‖ <

ε

3
, ‖pn(T )− f (T )‖ <

ε

3
.

By the triangle inequality it follows that

‖f̃ (T )−f (T )‖ ≤ ‖f̃ (T )−p̃n(T )‖+‖p̃n(T )−pn(T )‖+‖pn(T )−f (T )‖ < ε.

Since ε> 0 was arbitrary, f̃ (T )− f (T )= 0. Thus, f̃ (T )= f (T ).
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Spectral Theorem

Spectral Theorem

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H and f a continuous real-valued function on [m,M].
Then f (T ) has the spectral representation

f (T )=

∫M

m−

f (λ)dEλ,

where E = (Eλ) is the spectral family associated with T .
The integral is to be understood in the sense of uniform operator
convergence, and, for all x ,y ∈H,

〈f (T )x ,y 〉 =

∫M

m−

f (λ)dw(λ), w(λ)= 〈Eλx ,y 〉,

where the integral is an ordinary Riemann-Stieltjes integral.
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Spectral Theorem (Proof)

For every ε> 0, there is a polynomial p, with real coefficients, such
that, for all λ ∈ [m,M],

−
ε

3
≤ f (λ)−p(λ)≤

ε

3
.

Hence, ‖f (T )−p(T )‖ ≤ ε
3
.

Note that
∑
E (∆nj)= I .

Using the preceding inequality, we get, for any partition,

−
ε

3
I ≤

n∑

j=1

[f (λ̂nj)−p(λ̂nj )]E (∆nj)≤
ε

3
I .

It follows that
∥∥∥∥∥

n∑

j=1

[f (λ̂nj)−p(λ̂nj )]E (∆nj)

∥∥∥∥∥≤
ε

3
.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators January 2024 115 / 129



Bounded Self-Adjoint Linear Operators Extension to Continuous Functions

Spectral Theorem (Cont’d)

Recall that p(T ) is represented by p(T )=
∫M
m− p(λ)dEλ.

So there is an N, such that, for every n>N,

∥∥∥∥∥
n∑

j=1

p(λ̂nj)E (∆nj)−p(T )

∥∥∥∥∥≤
ε

3
.

We now estimate the norm of the difference between f (T ) and the
Riemann-Stieltjes sums corresponding to the integral.

For n>N, we obtain, by means of the triangle inequality,

‖
∑n

j=1
f (λ̂nj )E (∆nj)− f (T )‖ ≤ ‖

∑n
j=1

[f (λ̂nj)−p(λ̂nj )]E (∆nj)‖

+‖
∑n

j=1
p(λ̂nj)E (∆nj)−p(T )‖+‖p(T )− f (T )‖ ≤ ε.

Since ε> 0 was arbitrary, this establishes the statement.
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Uniqueness of the Spectral Representation

Uniqueness Property: E = (Eλ) is the only spectral family on [m,M]
that yields the representations

f (T ) =
∫M
m− f (λ)dEλ;

〈f (T )x ,y 〉 =
∫M
m− f (λ)dw(λ), w(λ)= 〈Eλx ,y 〉.

The plausibility is indicated by the following:

The second equality holds for every continuous real-valued function f

on [m,M ];
Its left hand side is defined in a way which does not depend on E .

A rigorous proof follows from a uniqueness theorem for Stieltjes
integrals.
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Bounded Self-Adjoint Linear Operators Extension to Continuous Functions

Uniqueness of the Spectral Representation (Cont’d)

A uniqueness theorem for Stieltjes integrals states that, for any fixed x

and y , the expression
w(λ)= 〈Eλx ,y 〉

is determined, up to an additive constant, by

〈f (T )x ,y 〉 =

∫M

m−

f (λ)dw(λ), w(λ)= 〈Eλx ,y 〉,

at its points of continuity and at m− and M.

Now we have:

〈EMx ,y〉 = 〈x ,y〉, since EM = I ;
(Eλ) is continuous from the right.

It follows w(λ) is uniquely determined everywhere.
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Properties of f (T )

The properties of p(T ), listed in a previous theorem, extend to f (T ).

Theorem (Properties of f (T ))

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Let f , f1 and f2 be continuous real-valued functions on
[m,M]. Then:

(a) f (T ) is self-adjoint.

(b) If f (λ)=αf1(λ)+βf2(λ), then f (T )=αf1(T )+βf2(T ).

(c) If f (λ)= f1(λ)f2(λ), then f (T )= f1(T )f2(T ).

(d) If f (λ)≥ 0, for all λ ∈ [m,M], then f (T )≥ 0.

(e) If f1(λ)≤ f2(λ), for all λ∈ [m,M], then f1(T )≤ f2(T ).

(f) ‖f (T )‖ ≤maxλ∈J |f (λ)|, where J = [m,M].

(g) If a bounded linear operator commutes with T , it also commutes with
f (T ).
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Subsection 11

Properties of Spectral Family of a Bounded Self-Adjoint Operator
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Bounded Self-Adjoint Linear Operators Properties of the Spectral Family

Eigenvalues

Theorem (Eigenvalues)

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H and E = (Eλ) the corresponding spectral family. Then
λ 7→Eλ has a discontinuity at any λ=λ0 (that is, Eλ0

6=Eλ−
0
) if and only if

λ0 is an eigenvalue of T . In this case, the corresponding eigenspace is

N (T −λ0I )= (Eλ0
−Eλ−

0
)(H).

λ0 is an eigenvalue of T if and only if N (T −λ0I ) 6= {0}.

So the first statement follows from the displayed equation.

Hence, it suffices to prove this equation.

We set F0 =Eλ0
−Eλ−

0
. We must show that:

F0(H)⊆N (T −λ0I );
F0(H)⊇N (T −λ0I ).
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Bounded Self-Adjoint Linear Operators Properties of the Spectral Family

Eigenvalues F0(H)⊆N (T −λ0I )

Since λ0−
1
n
<λ0, setting ∆0 = (λ0−

1
n

,λ0], we have

(λ0−
1

n
)E (∆0)≤TE (∆0)≤λ0E (∆0).

Now let n→∞. Then E (∆0)→F0.

So the preceding inequalities yield

λ0F0 ≤TF0 ≤λ0F0.

Hence, TF0 =λ0F0. That is, (T −λ0I )F0 = 0.
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Eigenvalues F0(H)⊇N (T −λ0I )

Let x ∈N (T −λ0I ). We show that then x ∈F0(H).

Since F0 is a projection, this amounts to F0x = x .

Suppose λ0 6∈ [m,M]. Then λ0 ∈ ρ(T ).

Since F0(H) is a vector space, N (T −λ0I )= {0} ⊆ F0(H).

Suppose λ0 ∈ [m,M]. By assumption, (T −λ0I )x = 0.

This implies (T −λ0I )
2x = 0.

By the Spectral Representation Theorem, for a<m and b >M,

∫b

a
(λ−λ0)

2dw(λ)= 0, w(λ)= 〈Eλx ,x〉.

Here (λ−λ0)
2 ≥ 0 and λ 7→ 〈Eλx ,x〉 is monotone increasing.

Hence, the integral over any subinterval of positive length must be
zero.
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Bounded Self-Adjoint Linear Operators Properties of the Spectral Family

Eigenvalues F0(H)⊇N (T −λ0I ) (Cont’d)

In particular, for every ε> 0, we must have

0=
∫λ0−ε
a (λ−λ0)

2dw(λ)≥ ε2
∫λ0−ε
a dw(λ)= ε2〈Eλ0−εx ,x〉;

0=
∫b
λ0+ε

(λ−λ0)
2dw(λ)≥ ε2

∫b
λ0+ε

dw(λ)= ε2〈Ix ,x〉−ε2〈Eλ0+εx ,x〉.

Since ε> 0, by the Positivity Theorem,

〈Eλ0−εx ,x〉 = 0 implies Eλ0−εx = 0;

〈x −Eλ0+εx ,x〉 = 0 implies x −Eλ0+εx = 0.

We may thus write x = (Eλ0+ε−Eλ0−ε)x .

But λ 7→Eλ is continuous from the right.

So, letting ε 7→ 0, we obtain x =F0x .
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Resolvent Set

Theorem (Resolvent Set)

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H and E = (Eλ) the corresponding spectral family. Then a
real λ0 belongs to the resolvent set ρ(T ) of T if and only if there is a
γ> 0, such that E = (Eλ) is constant on the interval [λ0−γ,λ0+γ].

We prove that:

(a) The given condition is sufficient for λ0 ∈ ρ(T );
(b) The given condition is necessary for λ0 ∈ ρ(T ).

We use the previously shown fact that λ0 ∈ ρ(T ) if and only if there
exists a γ> 0, such that

‖(T −λ0I )x‖ ≥γ‖x‖, for all x ∈H.
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Resolvent Set (Sufficiency)

(a) Suppose that λ0 is real, such that, for some γ> 0, E is constant on
J = [λ0−γ,λ0+γ].

By a previous result,

‖(T −λ0I )x‖
2
= 〈(T −λ0I )

2
,x〉 =

∫M

m−

(λ−λ0)
2d〈Eλx ,x〉.

Since E is constant on J, integration over J yields the value zero.

Moreover, for λ 6∈ J, we have (λ−λ0)
2 ≥ γ2.

Thus, the previous equation implies

‖(T −λ0I )x‖
2
≥ γ2

∫M

m−

d〈Eλx ,x〉 =γ2
〈x ,x〉.

Taking square roots, we obtain ‖(T −λ0I )x‖ ≥ γ‖x‖.

Hence, λ0 ∈ ρ(T ).
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Resolvent Set (Necessity)

(b) Conversely, suppose that λ0 ∈ ρ(T ).

Then, for some γ> 0,

‖(T −λ0I )x‖ ≥γ‖x‖, for all x ∈H.

So, by the equation above,
∫M

m−

(λ−λ0)
2d〈Eλx ,x〉 ≥γ2

∫M

m−

d〈Eλx ,x〉.

Suppose that E is not constant on the interval [λ0−γ,λ0+γ].

Since Eλ ≤Eµ, for λ<µ, we can find a positive η< γ, such that

Eλ0+η−Eλ0−η 6= 0.

Hence, there is a y ∈H, such that x = (Eλ0+η−Eλ0−η)y 6= 0.

Using this x , we get

Eλx =Eλ(Eλ0+η−Eλ0−η)y .
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Bounded Self-Adjoint Linear Operators Properties of the Spectral Family

Resolvent Set (Necessity Cont’d)

Now Eλx =Eλ(Eλ0+η−Eλ0−η)y is:
(Eλ−Eλ)y = 0, when λ< λ0−η;
(Eλ0+η−Eλ0−η)y , when λ>λ0+η.

So it is independent of λ. Thus, we may take K = [λ0−η,λ0+η] as
the interval of integration in the integral above.

If λ ∈K , by straightforward calculation,

〈Eλx ,x〉 = 〈(Eλ−Eλ0−η)y ,y 〉.

Hence, the inequality gives

∫λ0+η

λ0−η
(λ−λ0)

2d〈Eλy ,y 〉 ≥γ2

∫λ0+η

λ0−η
d〈Eλy ,y 〉.

This is impossible because the integral on the right is positive and,
when λ ∈K , (λ−λ0)

2 ≤ η2 < γ2.

Thus, E must be constant on [λ0−γ,λ0+γ].
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Bounded Self-Adjoint Linear Operators Properties of the Spectral Family

Continuous Spectrum

Theorem (Continuous Spectrum)

Let T :H →H be a bounded self-adjoint linear operator on a complex
Hilbert space H and E = (Eλ) the corresponding spectral family. Then a
real λ0 belongs to the continuous spectrum σc(T ) of T if and only if E is:

Continuous at λ0 (thus, Eλ0
=Eλ−

0
);

Not constant in any neighborhood of λ0 on R.

The preceding theorem shows that λ0 ∈σ(T ) if and only if E is not
constant in any neighborhood of λ0 on R.

Moreover, we have:

σr (T )=;;
Points of σp(T ) correspond to discontinuities of E .

These yield the conclusion of the theorem.
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