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Bounded Self-Adjoint Linear Operators [SBolnded Self=Adioint Binear Operators

Subsection 1

Bounded Self-Adjoint Linear Operators
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Bounded Self-Adjoint Linear Operators

o Let H be a complex Hilbert space.
o Let T:H— H be a bounded linear operator on H.

o The Hilbert-adjoint operator T*: H — H is defined to be the
operator satisfying

(Tx,y)y=<(x, T*y), forall x,ye€H.

o From the general theory of Hilbert Spaces, we know the following
facts:
o T* exists;
T* is a bounded linear operator;
T* is of norm | T*||=|T|;
T* is unique.

¢ € ¢©
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Bounded Self-Adjoint Linear Operators

Let H be a complex Hilbert space.
Let T:H — H be a bounded linear operator on H.

©

©

o T is said to be self-adjoint or Hermitian if

T=T".
o Then (Tx,y)=(x, T*y) becomes
(Tx,y) = (x, Ty).
o If T is self-adjoint, then (Tx,x) is real for all xe H.
o Since H being complex, this condition implies self-adjointness.
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Bounded Self-Adjoint Linear Operators

Theorem (Eigenvalues and Eigenvectors)

Let T:H— H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Then:

All the eigenvalues of T (if they exist) are real.

Eigenvectors corresponding to different eigenvalues are orthogonal.

Let A be any eigenvalue of T and x a corresponding eigenvector.
Then x#0 and Tx = Ax.
Using the self-adjointness of T, we get

A, x) = (Ax, x) ={Tx,x) ={x, Tx) = {(x,Ax) = Z(X, X).

Note that, since x #0. (x,x) = |x[? #0.
So dividing by (x,x) gives 1 =A.
We conclude that A is real.



Bounded Self-Adjoint Linear Operators

Let A and u be eigenvalues of T.

Let x and y be corresponding eigenvectors.
Then Tx=Ax and Ty = uy.

Note that T is self-adjoint and u is real.

So we get
A, yy =(Ax,y) =(Tx,y) =(x, Ty) ={x,uy) = pix, y).

Since A # pu, (x,y)=0.
This shows that x and y are orthogonal.
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Bounded Self-Adjoint Linear Operators

Theorem (Resolvent Set)

Let T:H — H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Then a number A belongs to the resolvent set p(T) of T
if and only if there exists a ¢ >0, such that for every x € H,

| Taxll =clixll, where Ty=T-Al.

If e p(T), then Ry=T;*:H— H exists and is bounded.
Since Ry #0, Ryl = k, where k> 0.
Now / = Ry T,. So, for every x € H, we have

XN = 1Ry TaxIl < I RAIN TaxIl = kIl Tax|l.

This gives || Tyx| = clix|l, where ¢ = %
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Bounded Self-Adjoint Linear Operators

Suppose || Tyx|l = clixll, ¢ >0, holds for all xe H. We prove:
Ty :H— Ty(H) is bijective;
TAr(H) is dense in H;
Tyr(H) is closed in H.

Then Ty(H)=H and Ry =T, is bounded by the Bounded Inverse
Theorem.

We must show that Tyx; = Taxo implies x; = xo.
As T, is linear, if Tyxy = Tyxo, then

0=Tix1— Taxall = | Ta(x1 —x2)ll = cllx1 — x2ll.

Since ¢ >0, we get [|x3 — x| = 0.
So X1 = X2.
Since x1,x2 were arbitrary, T): H — T)(H) is bijective.
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Bounded Self-Adjoint Linear Operators

We show xg L T;(H) implies xg = 0.

Then, by the Projection Theorem, T(H) = H.
Let xo L TA(H). Then xo L Ty(H).
Hence, for all xe H, 0= (T x,xg0) = {Tx, xo0) — A{X, X0).

Since T is self-adjoint,
x, Tx0) = {Tx, X0) = (x, Ax0).

Hence, Txg = Axo.

A solution is xg =0. Moreover, xg #0 is impossible.
Indeed, that would mean that A is an eigenvalue of T.
Then, A=A and Txg—Axo= Taxo=0.

Since ¢ >0, by hypothesis, 0= Tyxoll = clixoll > O.

As xp was any vector orthogonal to T)(H), T,l(H)L = {0}.

Hence T)(H)=H. l.e.,, Ty(H) is dense in H.



Bounded Self-Adjoint Linear Operators

We prove y € T)(H) implies y € T)(H).

Then T)(H) is closed and T)(H) = H by Part (ii).

Let y € TA(H).

Then, there is a sequence (y,) in Ty(H), which converges to y.

Since y, € T)(H), we have y, = T)xp, for some x, € H.
By the hypothesis,

1 1
IXn = Xmll < p I Ta(xn = xm)ll = p 1Yn=ymll.

Since (yn) converges, (x,) is Cauchy.

Since H is complete, (x,) converges, say, x, — X.
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Bounded Self-Adjoint Linear Operators

o Since T is continuous, so is T).
Hence, y, = Thx, — Tyx.
By definition, Tyxe Ty(H).
Since the limit is unique, Tyx=y.
Hence, y € T)(H).
Since y € T(H) was arbitrary, Ty(H) is closed.
We thus have T)(H) = H by Part (ii).
This means that Ry = T/l_l is defined on all of H.
Moreover, by the Bounded Inverse Theorem, it is bounded.

Hence, A€ p(T).
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Bounded Self-Adjoint Linear Operators

Theorem (Spectrum)

The spectrum o(T) of a bounded self-adjoint linear operator T:H — H on
a complex Hilbert space H is real.

o Using the theorem, we show that a A=a+iB, a,p real, with §#0
must belong to p(T). It will follow that o(T) < R.

For every x #0 in H, we have (T)x,x) = {Tx,x) — A{x, x).

Since (x,x) and (Tx,x) are real,

(Tax,x) = {Tx, x) — A{x, x).

By subtraction,

(Tax, ) = (Tax,x) = (A= 1) (x, x) = 2iBlIx|°.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Bounded Self-Adjoint Linear Operators

o We found
(Tax,x) = (Tax, x) = 2i llx|%.
The left side is —2/Im(T3x,x), where Im is the imaginary part.
The latter cannot exceed the absolute value.

Dividing by 2, taking absolute values and applying the Schwarz
inequality, we obtain

1BIIxII% = Im( Tax, ) < K Tax, x| < | Taxlix]l.

Division by [|x|l #0 gives |BllIx|l < | Tax|l.
If B#0, then, by a previous theorem, A€ p(T).
Hence, if Aea(T), p=0. So A is real.
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Bounded Self-Adjoint Linear Operators |[SElFtherPropertiesiof Bolnded SelfAdjoint Operators

Subsection 2

Further Properties of Bounded Self-Adjoint Operators
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Bounded Self-Adjoint Linear Operators

Theorem (Spectrum)
The spectrum o(T) of a bounded self-adjoint linear operator T:H — H on
a complex Hilbert space H lies in the closed interval [m, M] on the real

axis, where
m= inf (Tx,x), M = sup (Tx,x).

Ixl=1 lIxlI=1
o By a previous result, o(T) lies on the real axis.
We show that any real A = M+ ¢, with ¢ >0, belongs to the resolvent
set p(T).
Suppose x #0 and v = | x| "1x.
Then x = |Ix|lv and

(Tx,x) = IxI%(Tv,v) < ”X"2”Sil|fp1<TV’ V) = x) M.
V=
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Bounded Self-Adjoint Linear Operators

o Hence, —(Tx,x) = —{(x,x)M.

By the Schwarz inequality, we obtain

I Taxllixll =  —(Tyx,x)
—{(Tx,x) + A{x, x)
(=M +2){x,x)
clixl?,

v 1

where ¢ =1 — M >0 by assumption.
Division by [|x|| yields || Tax|l = c||x]|.
Hence, by the Resolvent Set Theorem, A€ p(T).

For a real A < m the idea of proof is the same.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Bounded Self-Adjoint Linear Operators

Theorem (Norm)

For any bounded self-adjoint linear operator T on a complex Hilbert space
H we have

171 = max(Iml,|IM[) = sup. [{Tx, %))

lIxll=
o Let K =sup,=11{Tx,x)|. By the Schwarz inequality,

K= sup K{Tx,x)| < sup [ TxIllIxI=1TI.
IxlI=1 lIxlI=1
We show, next, that | T = K.
Suppose, first, Tz=0, for all z of norm 1. Then T =0.

In this case, there is nothing to prove.
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Bounded Self-Adjoint Linear Operators

o Consider, next, a z of norm 1, such that Tz #0.
Set v=|Tz|I*?z and w = || Tz||"Y/?Tz.
Then [Iv|I®> = w|®= [ Tz].
We now set y; =v+w and yo =v—w.

Then, since T is self-adjoint,

(Ty1,y1) —{(Tyn,y2) = (Tv+Tw,v+w)—(Tv—Tw,v—w)
= (Tv,v)+(Tv,w)+{Tw,v)+{Tw,w)
—(Tv,v) +{Tv,w)+{(Tw,v)—{Tw, w)
= 2((Tv,w)+(Tw,v))
= 20Tzl Tz, | Tz 7/2 Tz)
+(I Tz 72 T2, Tz||/22))
= 2Tz, Tz)+(T?z,2))
= 4Tz
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Bounded Self-Adjoint Linear Operators

o Now for every y #0 and x = ||y||‘1y, we have y = |y|x.

Moreover,

KTy, )1 = Iy I Tx, x| < ||y||2"sup T3 =Kllyl>.

X|l=1

So, by the triangle inequality and straightforward calculation,

KTy1,y1) —(Ty2,y2)| =
<

K Ty1, y) |+ Ty, yo)l
K(lly1 12 + ly211?)
K(llv+wl?+llv - wl?)
2K (VI +llwll?)

4K\ Tz|.

Hence 4| Tz|? <4K| Tz|. So || Tzl < K.
Taking the supremum over all z of norm 1, we obtain | T| < K.
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Bounded Self-Adjoint Linear Operators

Theorem (m and M as Spectral Values)

Let T:H— H be a bounded self-adjoint linear operator on a complex
Hilbert space H #{0}. Let m=infj =1 (Tx,x), M = supyxj=1 ¢ Tx,X).
Then m and M are spectral values of T.

o We show that Meo(T).

By the spectral mapping theorem, the spectrum of T + k/, k a real
constant, is obtained from that of T by a translation.

Moreover, Mea(T) iff M+ kea(T +kl).

Hence, we may assume 0 < m < M, without loss of generality.

By the previous theorem, we have M = sup, =1 (Tx,x) = [ T

By the definition of a supremum, there is a sequence (x,), such that

Ixpll =1, {(Txp,xp)=M—-5,, 6,=0 and 6, — 0.
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Bounded Self-Adjoint Linear Operators

o Then [ Txpll < ITHIXall =T N =M.

Since T is self-adjoint,

I TXn - I\/’Xn”2 (TXn - MXn; TXn - MXn>
I Txnll2 = 2M{ Txp, XY + M2 1112
M2 —2M(M = 68,) + M?

2Mé, — 0.

IA

Hence, there is no positive ¢, such that
I Tamxall = | Txp — Mxpll = ¢ = clixqll,  lIxnll = 1.

By a preceding theorem, A = M is not in the resolvent set of T.
Hence, Mea(T).

For A = m, the proof is similar.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Bounded Self-Adjoint Linear Operators

Theorem (Residual Spectrum)

The residual spectrum o,(T) of a bounded self-adjoint linear operator
T :H— H on a complex Hilbert space H is empty.

o We show that the assumption o,(T) # @ leads to a contradiction.
Let Aeo,(T). By the definition of a,(T), we have:

o The inverse of T, exists;
o lts domain @(T/{l) is not dense in H.

By the projection theorem, some y #0 in H is orthogonal to 9( T/l‘l).
But @(T/{l) is the range of T,. Hence, (T x,y) =0, for all x€ H.
Since A is real and T is self-adjoint, we have (x, Tpy) =0, for all x.
Taking x = Ty, we get | Tayll>=0. So Ty =Ty —Ay =0.

Since y # 0, this shows that A is an eigenvalue of T.

But this contradicts A€ a,(T). Hence, o,.(T) = 9.
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Bounded Self-Adjoint Linear Operators Positive Operators

Subsection 3

Positive Operators
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Bounded Self-Adjoint Linear Operators

o We consider the set of all bounded self-adjoint linear operators on a
complex Hilbert space H.

o If T is self-adjoint, (Tx,x) is real.

o So we may introduce on this set a partial ordering < by defining

Ti<T, ifandonlyif (Tix,x)<(Tox,x), for all xe H.

o A bounded self-adjoint linear operator T : H— H is said to be
positive, written T =0, if and only if (Tx,x) =0, for all x€ H.

o The operator is “nonnegative’, but “positive” is the usual term.

o Notethat 1= TL iff0< T - T;.
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Bounded Self-Adjoint Linear Operators

o The sum of positive operators is positive.

o We know that a product (composite) of bounded self-adjoint linear
operators is self-adjoint if and only if the operators commute.

Theorem (Product of Positive Operators)

If two bounded self-adjoint linear operators S and T on a Hilbert space H
are positive and commute (ST = TS), then their product ST is positive.

o We must show that (STx,x) =0, for all xe H.

If S=0, this holds.

Let S#0. We proceed in two steps:
We consider S; = ﬁs, Spe1=5n —53, n=12,....
We prove by induction that 0< S, < /.
We prove that (STx,x) =0, for all xe H.
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Bounded Self-Adjoint Linear Operators

First, we show that the inequality holds for n=1.
The assumption 0< S implies 0 < S;.
By an application of the Schwarz inequality and [|Sx| < |IS||IIx]l, we get

(S1x,x) = ﬁ(SX,X)
< el Sxlixl

NG

= {Ix,x).
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Bounded Self-Adjoint Linear Operators

o Suppose the inequality holds for an n=k, i.e., 0= S, <.
Thus, 0</-5, <.
Since S is self-adjoint, for every xe H, y = S, x,

(S2(1 = Sk)x,x) = (I = Sk) Skx, Skx) = (I = Sk)y, y) = 0.

By definition this proves S2(/ - Si) = 0. Similarly, Si(/—Sk)? =0.
By addition and simplification,

0= S7(I = Sk)+ Sk(I = Sk)? = Sk — S = Sk1-
Finally, note that Si >0and /-5,=0.

Adding, we get 0< /-5y +5£ =1-Sk.1. Hence, Sii1=1.
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Bounded Self-Adjoint Linear Operators

We now show that (STx,x) =0, for all xe H.

We have
51

512+52
S2+52+5;

= 524852+ +52+5,.1.

Since S,.1 =0, this implies
S2+-+52=5-Sp1=5S1.
By the self-adjointness of S; and the definition of <, we get
n 5 n n 5
Z 15;x11< = Z(SJ'X, Six) = Z(Sj X, X) < (51x,x).
j=1 j=1 j=1
Since n is arbitrary, the infinite series || S1x||? + || Sox||? + -+ converges.

Hence ||S,x|| — 0. Therefore, S,,x — 0.



Bounded Self-Adjoint Linear Operators

o We obtained:
9 512+---+53=51—5n+1;
o S5,x—0.
Hence,

n
(Z 512) X = (51 - 5n+1)X = 51X.
=1
All the S;'s commute with T, since they are sums and products of
51 = ﬁs and S and T commute.

Using S =||S||S1, the preceding formula, T =0 and the continuity of

the inner product, we obtain, for every x € H and y; = Sjx,
(STx,x) = [ISIKTS1x,x)
= ”5”,,|Ln3021"1:1<TSj2X’X>
= SH lim 32, (Tyjo yp)
0.

%

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Bounded Self-Adjoint Linear Operators

Definition (Monotone Sequence)

A monotone sequence (T,) of self-adjoint linear operators T, on a
Hilbert space H is a sequence (T,) satisfying one of the following:

o It is monotone increasing, that is,
Ti<Tr=sT3<---;
o It is monotone decreasing, that is,

T1=zTy=T3=---.
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Bounded Self-Adjoint Linear Operators

Theorem (Monotone Sequence)

Let (T,) be a sequence of bounded self-adjoint linear operators on a
complex Hilbert space H, such that

Ti1=sTy<s---=Tp<---=K,

where K is a bounded self-adjoint linear operator on H.

Suppose that any T; commutes with K and with every T,

Then (T,) is strongly operator convergent (Tp,x — Tx, for all x € H).
The limit operator T is linear, bounded, self-adjoint and satisfies T < K.

o We consider S, = K — T, and prove:

The sequence ((53x,x>) converges, for every x € H.
Tnx — Tx, where T is linear and self-adjoint, and is bounded by the
Uniform Boundedness Theorem.
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Bounded Self-Adjoint Linear Operators

Clearly, S, = K — T, is self-adjoint. We have
5,2,, — 559 = (8= S0)8% 2 (V= Tl = Vi)

Let m<n. Then T,— T, and K— T, are positive. Since these
operators commute, by the theorem, their product is positive.
Hence on the left, S2 -~ 5,5, =0. le., S2=5,S,, for m<n.
Similarly,

5n5m_5r21 = Sn(sm - Sn) = (K_ Tn)(Tn - Tm) = 0.

So S,Sm=S2. Taken together, S2,>5,5,,= 52, m<n.
By definition, using the self-adjointness of S,,, we have

(52.%,X) = (SnSmx, x) = (52, %) = (Spx, Spx) = [Spx1I? = 0.

This shows that ((S2x,x)), with fixed x, is a monotone decreasing
sequence of nonnegative numbers. Hence, it converges.
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Bounded Self-Adjoint Linear Operators

We show that (T,x) converges.

By assumption, every T, commutes with every T,, and with K.
Hence, the S;'s all commute.

These operators are self-adjoint.

For m<n, we have —2(S,,S,x,x) < —2(52x, x).

Thus, we obtain

1Smx — Spx|12 ((Sm=Sn)%, (Sm—Sn)x)
((Sm=Sn)*x,%)
(5,2,,x, X) —2{5mSpx, x) + (5,2,x, X)

< (5,2,,X,X) - (S,%X,X).

From this and Part (a), (Snx) is Cauchy.

It converges since H is complete.
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Bounded Self-Adjoint Linear Operators

o Now T,=K-5,,.
Since (Spx) converges, (T,x) also converges.
Clearly, the limit depends on x.
So we can write T,x — Tx, for every x€ H.
Hence, this defines an operator T : H— H, which is linear.

T is self-adjoint because T, is self-adjoint and the inner product is
continuous.

Since (T,x) converges, it is bounded for every x € H.
The Uniform Boundedness Theorem now implies that T is bounded.
Finally, T <K follows from T, < K.
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Subsection 4

Square Roots of a Positive Operator
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Bounded Self-Adjoint Linear Operators

o Let T be self-adjoint.

o Then T2 is positive, since (T2x,x) = (Tx, Tx) =0.

o The converse problem consists of, given a positive operator T, finding
a self-adjoint A such that A>2=T.

Definition (Positive Square Root)

Let T:H — H be a positive bounded self-adjoint linear operator on a
complex Hilbert space H. Then a bounded self-adjoint linear operator A is

called a square root of T if
A’=T.

If, in addition, A=0, then A is called a positive square root of T,
denoted by A= T1/2.
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Bounded Self-Adjoint Linear Operators

Theorem (Positive Square Root)

Every positive bounded self-adjoint linear operator T: H— H on a complex
Hilbert space H has a positive square root A, which is unique. This
operator A commutes with every bounded linear operator on H which
commutes with T.

o We proceed in three steps:
We show that if the theorem holds under the additional assumption
T <1, it also holds without that assumption.
We obtain the existence of the operator A= T1/2 from Apx — Ax,
where Ag=0 and A,;1=A,+ %(T—A%), n=0,1,....
We also prove the commutativity stated in the theorem.
We prove uniqueness of the positive square root.
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Bounded Self-Adjoint Linear Operators

If T=0, we can take A= T/2=0.
Let T #0. By the Schwarz inequality,
(Tx,x) < I TxIIxI < I THxI2
Dividing by || T|| #0 and setting Q = ”—%" T, we obtain
(Qx,x) = IxII* = (Ix, ).

le., Q=I.
Suppose @ has a unique positive square root B = Q1/2. Then B2= Q.
Moreover, we have

(ITI2BY =ITIB*=ITIQ=T.
So a square root of T=|TIQ is | TIY2B. Also, uniqueness of Q1/2
implies uniqueness of the positive square root of T.

Hence, it suffices to prove the theorem under the additional
assumption T < /.
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Bounded Self-Adjoint Linear Operators

(Existence) Consider

Ao = 0
Aps1 = Ap+3(T-A2), n=0,1,...

Since Ag =0, we have
1 1,
A]_—ET, A2—T—§T, etc..

Each A, is a polynomial in T.
Hence, the A,'s are self-adjoint and all commute.
They also commute with every operator that T commutes with.

We now prove:
A,<Il,n=0,1,..;
An<Ani1, n=0,1,..;
Apx — Ax, A= T1/2;
ST =TS implies AS = SA, where S is a bounded linear operator on H.
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Bounded Self-Adjoint Linear Operators

We have Ag < /.
Let n>0.
Since | — A,—1 is self-adjoint,

(I-A,_1)*=0.

Also, T </ implies /= T =0.

From this, we obtain

0 <= L(/-Ap1)?+3(/-T)
= I-An—3(T-4A2)
= I—A,,.
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Bounded Self-Adjoint Linear Operators

We use induction.
We have ]
0=Ap<A;==T.
2
We show that A,_1 < A,, for any fixed n, implies A, < Ap41.
We calculate directly

Ans1—An An+3(T-A2)-An1—2(T-A2_)
= (A,,—A,,_l)[l—%(A,,+A,,_1)].

Here A,—A,-1 =0, by hypothesis, and the bracket is =0 by (i).

Hence, A1 — A, =0.
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Bounded Self-Adjoint Linear Operators

(Ap) is monotone by (ii) and A, </ by (i).
Hence, a previous theorem implies the existence of a bounded
self-adjoint linear operator A, such that A,x — Ax, for all xe H.

Since (Anx) converges,

1
5( Tx — A%X) =Api1x—Apx—0.

Hence, Tx—A%x =0, for all x. l.e., T =A2.

Also A=0, because 0=Ag < A, by (ii).

le., (Anx,x) =0, for every xe H.

By the continuity of the inner product, (Ax,x) =0, for every x € H.
We know that ST = TS implies A,S = SA,.

l.e., A,Sx = SA,x, for all xe H.

Letting n— oo, we obtain (iv).



Bounded Self-Adjoint Linear Operators

(Uniqueness) Let both A and B be positive square roots of T.
Then A2=B%2=T. Also

BT =BB?=B%*B=TB.

So, by (iv), AB = BA.

Let x € H be arbitrary and y = (A- B)x.

Then (Ay,y) =0 and (By,y)=0 because A=0 and B=0.
Using AB = BA and A2 = B2, we obtain

(Ay,y) +(By,y) = ((A+B)y,y) = (A= B?)x,y) =

Hence (Ay,y)=(By,y)=0
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o Since A=0 and A is self-adjoint, it has itself a positive square root C,
that is, C?>=A and C is self-adjoint.

We thus obtain
0=(Ay,y) =(C?,y)=(Cy,Cy) = I Cy|I>.
So Cy =0. Moreover,
Ay = C%y=C(Cy)=0.

Similarly, By =0. Hence, (A—B)y =0.
Using y = (A— B)x, we thus have, for all xe H,

IAx — Bx||2 = ((A- B)?x,x) = ((A- B)y,x) = 0.

This shows that Ax—Bx =0, for all xe H. So A=B.



Bounded Self-Adjoint Linear Operators Projection Operators

Subsection 5

Projection Operators
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©

A Hilbert space H can be represented as the direct sum of a closed
subspace Y and its orthogonal complement Y+:

H

X

Yo Yt
y+2z, yeY,ze Yt

©

Since the sum is direct, y is unique, for any given x € H.

©

Hence this representation defines a linear operator

P. H — H
x — y=Px

©

P is called an orthogonal projection or projection on H.

©

More specifically, P is called the projection of H onto Y.
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o A linear operator P: H— H is a projection on H if there is a closed
subspace Y of H, such that:

o Y is the range of P;
o Y1 is the null space of P;
o P|y is the identity operator on Y.

o Note that, with this notation, we can now write
x=y+z=Px+(l-P)x.

o So the projection of H onto Yt is | - P.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Bounded Self-Adjoint Linear Operators

Theorem (Projection)

A bounded linear operator P: H — H on a Hilbert space H is a projection if
and only if P is self-adjoint and idempotent (that is, P? = P).

Suppose that P is a projection on H and denote P(H) by Y.
For every xe H and Px=y € Y, we have

P2x=Py=y=Px.

Hence, P2 =P.
Let xs=y1+21 and x» =Y+ 27, where vy, €Y and z;,z, € Y-+
Then, since Y L Y+, (y1,20) = (y»,21) =0. So we have

(Px1,x2) = {y1,y2 + 22) = {y1,y2) = (y1 + 21, y2) = {x1, Px2).

Hence, P is self-adjoint.
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Conversely, suppose that P2 = P = P* and denote P(H) by Y.
Then, for every x€ H,

x=Px+(I-P)x.
The orthogonality Y = P(H) L (/- P)(H) follows from
(Px,(I = P)vy = (x, P(I = P)v) = (x, Pv — P?v) = (x,0) = 0.

We show Y is the null space A(/-P) of I -P.
o YeH(I-P): (I-P)Px=Px-P2x=0;
o Y2 N (I-P): (I-P)x=0 implies x = Px.
Hence, Y is closed.
Finally, writing y = Px, we have

Py=P?x=Px=y.

Therefore, P |y is the identity operator on Y.
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o We attempt to represent complicated linear operators on Hilbert
spaces in terms of simple operators, such as projections.

o The resulting representation is called a spectral representation of
the operator because the projections employed for that purpose are
related to the spectrum of the operator.

o For a spectral representation of bounded self-adjoint linear operators:

o The first step is a thorough investigation of general properties of
projections.

o The second step is the definition of projections suitable for that
purpose.
These are one-parameter families of projections, called spectral
families.

o The third step associates with a given bounded self-adjoint linear
operator T a spectral family in a unique way.
This is called the spectral family associated with T.
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Theorem (Positivity, Norm)

For any projection P on a Hilbert space H:
(Px,x) = I Px|1?;
P=0;
IPI<1; NIPIl=1if P(H)#1{0}.

o (a) and (b) follow from
(Px,x) = (P?x,x) = (Px, Px) = || Px||*> = 0.
By the Schwarz inequality,
IPx11? = (Px,x) < | PxIllIx].

So "I:DT)TI” <1, for every x #0. Hence, |P| <1.

If xe P(H) and x#0, Y20 =1 This proves (c).

Tl
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Theorem (Product of Projections)

In connection with products (composites) of projections on a Hilbert space
H, the following two statements hold:
P = Py P, is a projection on H if and only if the projections P; and P,
commute, that is, PyP>, = P,P;. Then P projects H onto Y = Y1 n Y5,
where Y = P;(H).
Two closed subspaces Y and V of H are orthogonal if and only if the
corresponding projections satisfy Py Py, = 0.

Suppose that P1P, = P, P;.
Then P is self-adjoint, by a previous theorem.
Moreover, P is idempotent, since

P? = (P1P)(P1P2) = P2P3= PP, = P.

Hence P is a projection.
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o For every x € H, we have Px = P1(Pyx) = P»(P1x).
Since P; projects H onto Y7, we must have P;(P>x) € Y. Similarly,
P,(P1x) € Y. Together, Px € Y1 n Ys. Since x € H was arbitrary, this
shows that P projects H into Y = Y1 n Y>.

P projects H onto Y: Suppose ye Y. Then ye Y; and y € Y5. Thus,
Py=PiPy=Piy=y.

Conversely, suppose P = P1P; is a projection defined on H.

Then P is self-adjoint. By a previous theorem, PP, = P>P;.

Suppose Y L V. Then YnV ={0}. Hence, Py Py x=0, for all xe H,
by part (a). So Py Py =0.

Conversely, suppose Py Py =0. Then, for every ye Y and ve V,

(y,v) =(Pyy,Pyv)={y,PyPyv)=(y,0)=0.

Hence, Y L V.
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Theorem (Sum of Projections)

Let P, and P> be projections on a Hilbert space H. Then:

The sum P = P; + P, is a projection on H if and only if Y7 = P1(H)
and Y, = P»(H) are orthogonal.

If P=P;+ P> is a projection, P projects H onto Y = Y] & Y>.

If P=P;+ P, is a projection, P = P2. Expanding, we get

P1+P2

(P1+P2)2
= P]?+P1P2+P2P1+P22
P1 A P1P2 A P2P1 + P2.

Hence, P1 P2 + P2P1 =0.
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o We obtained P1 P>+ P,P; =0.
Multiplying by P, on the left, we obtain PP P>+ P,P; =0.
Multiplying this by P> on the right, we have 2P, P; P, = 0.
So P,P; =0. Hence, Y7 L Y5.
Conversely, suppose Y7 L Y>.
Then P1P,=P>P; =0.
This yields P; P+ PPy =0.
So we get P?=P.
Since Py and P, are self-adjoint, so is P = Py + P5.

Hence, P is a projection.
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We determine the closed subspace Y < H onto which P projects.

Since P = Py + P,, we have, for every xe H,
y=Px=Pix+ Px.

Here, P1x€ Y7 and Pyx€e Ys.

Hence ye Yi® Y5. So YCS Yia Yo.

We show that Y2 Yie Y.

Let ve Y ® Y, be arbitrary.

Then v =y; + yo, with y3 € Y7 and y» € Y5.
Applying P and using Y7 L Y5, we obtain

Pv=Pi(y1+y2)+P2(y1+y2) = Piy1+Paya=y1+y2 = v.

Hence, ve Y. So Y2 Yi @ Y.
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Subsection 6

Further Properties of Projections
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Theorem (Partial Order)

Let P; and P, be projections defined on a Hilbert space H. Denote by
Y1=Pi1(H) and Y2 = P,(H) the subspaces onto which H is projected by P;
and P;. Let A (P1) and A (P2) be the null spaces of these projections.
Then the following conditions are equivalent:

PrP1=P1P>=Py;

YiS Y5

N (P1)2 N (P?);

| Pix]l < || Pox|l, for all x € H;
P1 = P2.

(1)=(4): We have ||P1ll = 1. Hence (1) yields, for all xe H,
| Pixll = 1P PaxIl < I P Poxl < Il Paxll.
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(4)=(5): We have, for all xe H,

(P1x,x) = [PLx]1? < | Pox||? = (P2x, x).
This shows that Py < P, by definition.
(5)=(3): Let xe A(P). Then P,x=0. By hypothesis,

IPxl? = (P1x, x) < (Pax, x) = 0.

Hence, Pix=0. So x € A (P1). This shows that A (Py) 2.4 (P2).
(3)=(2): Note that A(P;) is the orthogonal complement of Y; in H.
(2)=(1): For every xe H, we have Pix€ Y;.

Hence, by hypothesis, P1x € Y2. So P,(P1x) = Pix. le., P,P; = P;.
Since P; is self-adjoint, by a preceding result, Py = P,P; = P, P>.
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Theorem (Difference of Projections)

Let P, and P, be projections on a Hilbert space H. Then:

The difference P = P, — P; is a projection on H if and only if Y; € Y5,
where Y = P;(H).

If P=P,— P; is a projection, P projects H onto Y, where Y is the
orthogonal complement of Y7 in Y5.

If P=P,—P; is a projection, P = P2, Expanding

Py—Py (Py—Py)?
P22—P2P1—P1P2+P%

Pg— P2P1 = P1P2+ P1.

Hence P1 P2 r P2P1 = 2P1.
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o We got P1P>+ P,P; =2P;.
Multiplication by P, from left and right gives

PyP1Py+ PP =2P> P, and P1P+ P> PPy =2P;1 Ps.
Hence, we get
P2P1P2=P2P1 and P2P1P2=P1P2.

So PPy =P1Py=Py. Thus, Y1 S Y>.

Conversely, suppose Y; € Y.

Then PPy = PP, = P;. This implies P1 Py + PPy =2P;.
Thus, P is idempotent.

Since Py and P, are self-adjoint, P = P, — Py is self-adjoint.
So P is a projection.
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Y = P(H) consists of all vectors of the form
y=Px=Pyx—P1x, xeH.
Since Y1 € Y2, by Part (a), we have P,P; = P;. Thus,
Py = P22x —PyPix=Pox—Pix=y.
This shows that y € Y5. Moreover,
Piy = P1Pyx— Pix = Pyx— P1x=0.

This shows that y e #/(P1) =Y} So Y Yon Y-
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o We show, next, that Y 2 Y>n Yi-.
The projection of H onto Y- is /- P;.
So every ve Yon Yi- is of the form v=(/-P1)ys, y2 € Ya.
Using again P>P; = Py, we obtain, since Prys = y»,

Pv = (P2—P1)(/—P1)y2
= (P2—P2P1—P1+P12)y2
= y-Piy
= Ygﬂ Ylj‘.

This shows that ve Y. Hence, Y2 Yon YlJ'.
We conclude that Y = P(H) = Yon Y.
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Theorem (Monotone Increasing Sequence)

Let (P,) be a monotone increasing sequence of projections P, defined on a
Hilbert space H. Then:

(Pp) is strongly operator convergent, say, P,x — Px, for every x€ H,
and the limit operator P is a projection defined on H.

P projects H onto P(H) =US2, Pn(H).
P has the null space A (P) =02, A (Pp).

Let m < n. By assumption, Pp, < P,. So Pp(H) < P,(H).
By the previous theorem, P, — P, is a projection.
o Hence, for every fixed x € H, we obtain

1Pax = Pmxl12 = [(Pn=Pm)xlI2 = {(Pn— Pm)x,x)
= (Ppx,x) = {Pmx, X) = [|Ppxl? = || Prmxl|?.
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o Now [|P,ll<1. So [|Ppx| < |Ix]l, for every n.
Hence (IIPnxll) is a bounded sequence of numbers.
(IIPxl) is also monotone since (P,,) is monotone.
Hence (IlPpxIl) converges.
From this and the preceding equality, (P,x) is Cauchy.
Since H is complete, (Ppx) converges.
The limit depends on x, say, P,x — Px.
This defines an operator P on H.
Linearity of P is obvious.

Since P,x — Px and the P,'s are bounded, self-adjoint and
idempotent, P has the same properties.

Hence, by the Projection Theorem, P is a projection.
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We determine P(H). Let m<n. Then P, < P,,.

This gives P,— P =0. So ((Pn— Pm)x,x) =0, by definition.

As n— oo, by continuity of the inner product, (P —Pp)x,x) = 0.
So Py < P. Hence, Py(H) < P(H), for all m. So UPmn(H) < P(H).
Now, for all m and all xe H, Ppx € Pp(H) < UPm(H).

Since Ppx — Px, we see that Px € UP,,(H).

Hence, P(H) < UPm(H).

Taken together,

UJPm(H) < P(H) < JPm(H).

Therefore, we have P(H) =4 (I —P). So P(H) is closed.
This proves (b).
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We determine A (P).

By Part (b) of the proof, for all n, P(H) 2 P,(H).
Using a preceding lemma, A/ (P) = P(H)* < P,(H)*.
Hence, A (P)cNPu(H): =N (Py).

On the other hand, suppose x e N A (Py).

Then x € A (P,), for every n. So P,x =0.

Moreover, P,x — Px implies Px =0.

le., xe /(P).

Since x e N A (P,) was arbitrary, NA (P,) € A (P).
We, thus, obtain A (P)=NAN(Pp).
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Consider the unitary space (inner product space over C) H=C".
Let T:H— H be a self-adjoint linear operator on H.
Then T is bounded.

Moreover, we may choose a basis for H and represent T by a
Hermitian matrix which we denote simply by T.

¢ ¢ © ¢

o The spectrum of the operator consists of the eigenvalues of that
matrix which are real.
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For simplicity, we assume that the matrix T has n different
eigenvalues 11 <Ay <---<A,.

©

Then a previous theorem implies that T has an orthonormal set of n
eigenvectors xi,x, ..., X, Where x; corresponds to A;.

©

We write these vectors as column vectors, for convenience.
This is a basis for H.
So every x € H has a unique representation

©

©

©

n

T_

X=2 Y% Yi= o) =xX;.
=t
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o We obtained the representation

n

T_

x=2 Y%y ¥j=06x)=x"Xj.
=t

o Since x; is an eigenvector of T, Tx; = A;x;.

o Consequently, we obtain
n
Tx = Z Aj)/ij.
J=1

o Thus, whereas T may act on x in a complicated way, it acts on each
term of the sum in a very simple fashion.
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©

We may define an operator

Pi: H — H,
X ’}’JXJ

©

Obviously, P; is the projection (orthogonal projection) of H onto the
eigenspace of T corresponding to A;.

o We obtain .,
X = Z Pjx.
j=1

Hence, [ = ZJ’.’zl P:, with | the identity on H.
We also have

©

©

n
Tx = Z AjPix.
j=1

-y 1.P.
o Hence, T=3%",A;P;.
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©

For any real A, we define

E,1= Z P;, Ael.
/ljS/l

©

For any A, the operator E, is the projection of H onto the subspace
V) spanned by all those x; for which 1; < A.

Thus V) €V, for A< p.
As A traverses R in the positive sense, E; grows from 0 to /.

o The growth occurs at the eigenvalues of T;
o Ej remains unchanged for A in any interval that is free of eigenvalues.

o Hence, Ej has the following properties:

¢ ©

L) EAEHZEHEAZEA, if/1</,t;
o Ey=0,if A<Aq;

o Ex=1,if A=Ay

)

E/1+= lim E ZEA.
pat
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Definition (Spectral Family or Decomposition of Unity)

A real spectral family (or real decomposition of unity) is a
one-parameter family & = (Ej)iecr of projections E; defined on a Hilbert
space H (of any dimension) which depends on a real parameter A and is
such that:

o0 Ey<Ey hence EAE, =E Ey=E), A<y;

o |lim Eyx=0, lim Eyx=x;
A——o00 A—+

o Ep+x= lim Eyx=Ejx, xe H.
port

o Thus, a real spectral family can be regarded as a mapping
R— B(H,H); A— E,.
To each 1€ R, it associates a projection Ej € B(H,H), where B(H, H)

is the space of all bounded linear operators from H into H.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators
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©

9

& is called a spectral family on an interval [a, b] if
Ey=0, A<, Ey=1, A=b.

Such families are of particular interest, since the spectrum of a

bounded self-adjoint linear operator lies in a finite interval on the real

line.

©— A% indicates that in this limit process we restrict to values u > A.

The condition Iirr; Eux=Ejyx, x€ H, means that A — E, is strongly
ﬂ_’ +

operator continuous from the right.

We will see that with any given bounded self-adjoint linear operator T
on any Hilbert space we can associate a spectral family which may be
used for representing T by a Riemann-Stieltjes integral.

This is known as a spectral representation.
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©

Assume again, for simplicity, that the eigenvalues A4,...,A, of T are
all different, and A1 <o <---< A,

o Then we have:

o Eﬂl = Pl;

[} Eﬂz =P;+ Py;

o By, =Pr+--+Py.

©

Hence, conversely,

P1 = E/ll;
P_/ =] E/‘Lj— /‘lj—l’ j:2,...,n.

©

Note that Ej remains the same for A1 €[A;_1, ;).
So we may write

©

Pj = Ey— Ex-.
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o Now we have

o Moreover,

n n
Tx=) AjPix=) Aj(Ep - EAJ.— )X.
j=1 j=1

o If we drop the x and write 6E) = E} — E;-, we get

n
T=Y A6Ey.
j=1

o This is the spectral representation of the self-adjoint operator T
with eigenvalues A1 <A, <--- <A, on the n-dimensional Hilbert space
H.
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o We obtained the spectral representation
n
T= Zlitjé‘E,lj
J:

of the self-adjoint linear operator T with eigenvalues 1; <Ay <---< A,
on the n-dimensional Hilbert space H.

o The representation shows that for any x,y € H,

n
(Tx,y) = Z A(SEp X, ).
Jj=1

o We note that this may be written as a Riemann-Stieltjes integral
+0o
(Tx,y) =f Adw(Q),
—0o0

where w(A) = (Exx,y).
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Subsection 8

Spectral Family of a Bounded Self-Adjoint Operator
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o Let H be a complex Hilbert space.

o Let T:H— H be a bounded self-adjoint linear operator on H.

o With T we can associate a spectral family & that will be used for a
spectral representation of T.

o To define & we need the following:

o The operator
TA=T-Al;

o The positive square root of T2,
By=(T2)Y?
o The operator
1
TI = E(B;L ar T,l),

called the positive part of T,.
o The spectral family & of T is defined by & = (Ej)ecr, where E) is
the projection of H onto the null space A (T") of T
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o Consider the operators

B= (T2)1/2 (positive square root of T2);
T*=1(B+T) (positive part of T);
T = %(B— T) (negative part of T).

o Let E be the projection of H onto the null space of T+,
E:H—Y=WN(T").
o By subtraction and addition we see that

T = T+-T-;
B = T++T-.
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Lemma (Operators related to T)

The operators just defined have the following properties:
B, T" and T~ are bounded and self-adjoint.
B, T and T~ commute with every bounded linear operator that T
commutes with; in particular,
BT=TB, T"T=TT", T T=TT", T T =T T".

E commutes with every bounded self-adjoint linear operator that T
commutes with; in particular, ET = TE and EB = BE.

Furthermore,
T*T-=0 T-Tt=0
T"E=ET*=0 T E=ET =T~
TE=-T- T(I-E)=T*
T =0 T-=0.
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Clear, since T and B are bounded and self-adjoint.
Suppose that TS=ST. Then

T25=TST =ST2.

BS = SB follows from a previous theorem.

Hence, ) )
T*S= E(BS+ TS)= E(SB+5T) =ST.

The proof of TS =ST" is similar.
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For every xe€ H, we have y=Exe Y =4 (T").
Hence, T*y =0. And, also, STty =50=0.
From TS =ST and Part (b) we have ST"*=T*S and

T*SEx=T*Sy=ST*y=0.

Hence SExe Y.

But E projects H onto Y.

Thus, ESEx = SEx, for every x € H.
That is, ESE = SE.

Since a projection is self-adjoint, by a previous result, and so is S,

ES=E*S* = (SE)* =(ESE)* = E*S*E* = ESE = SE.
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We prove all equalities in Part (d):

o From B=(T2)Y/2 we have B2=T2. Also BT = TB by Part (b).

Hence, again by Part (b),

T+T- =T T*= (B )5 (B+T) (B2+BT—TB—T2)=O.

o By definition, EXEJV( T). So TTEx=0, for all xe H.
Since T7 is self-adjoint, by Parts (b) and (c),

ET *'x=T"Ex=0.

Thatis, ETt*=T*E =0.
By the previous subpart, T*T~x=0. So T-xe A (T7).
Hence, ET"x= T~ x. Since T~ is self-adjoint, Part (c) yields

T Ex=ET x=T x, xeH.
Thatis, T"TE=ET =T".
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We continue with the equalities in Part (d):
> From a previous subpart,

TE=(T"-T)E=-T".

From this,
T(I-E)=T-TE=T+T =T".

o Now note that:
o E and B are self-adjoint and commute;
@ E =0, by the Positivity Theorem, and B =0, by definition.

So, by a preceding subpart and a preceding theorem,
T =ET +ET*=E(T"+T*)=EB=0.
Similarly, since, by the Positivity Theorem, | — E =0,
T*=B-T =B-EB=(I-E)B=0.
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o Instead of T, we now consider T =T —A/.
o Instead of B, T*, T~ and E we now have to take:
o The positive square root of T2,

By := (Tf)1/2;
o The positive part and negative part of T, defined by
+_1 _ 1
T)L ZE(B;L+T,1) and T/l =§(B/I_T)L);

o The projection
E;“H—*Y;L:JV(TI)

of H onto the null space Yy = A(T)") of T,
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Lemma (Operators Related to T))

The previous lemma remains true if we replace T,B, T, T—,E by
TABa, Ty, T, Ex, respectively, where A is real. Moreover, for any real
x, A, 14, v, T, the following operators all commute: T, By, T;{, T B,

o The first statement is obvious. We turn to the second statement.
Note that /IS = S/ and

Ta=T-A=T—pl+(u-A) = Ty+(u-A).

Hence,
ST=TS implies ST,=T,S
implies ST, =T,S
implies SBy=B,S,5B,=B,S

For S=T,, we get TxBy =B} Tx,....



Bounded Self-Adjoint Linear Operators

Theorem (Spectral Family Associated with an Operator)

Let T:H— H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Furthermore, let Ej (A real) be the projection of H onto
the null space Y) = A(T) of the positive part T of T, =T —Al.

Then & = (Ep)aer is a spectral family on the interval [m, M] = R, where
m=infy=1(Tx,x) and M = SUP|x=1 ¢ T, X).

o &=(E,) is called the spectral family associated with T.

o We shall prove:
A< p implies Ey < Ey;
A< m implies Ey =0;
A= M implies Ej = I;

J_lp} Eux = Ejx.
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o In the proof we use the following properties:

TAEA=-T;:
TA(I-E)=Ty;
T/{f >0;

TA‘ >0;

T;[ TE =0;
TuEu=-Tj:
TJ =>0;

Tu = 0.
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o Let A<p. Since —=T; <0, we have Ty =T~ T, < T . Hence,
Ti=Ty=Ty-Tu=(u-A)l=0.

Ty — Ty is self-adjoint and commutes with T,;. Also T,; =0.
A previous theorem, thus, implies

THT =T =T (T - T+ T,;)=0.

We have T, T, =0, by one of the preceding identities.

Hence, T;[ T/{’ > T;2. l.e., for all xe H,

(T Ty %) 2T 2%, = T x|I> 2 0.
This shows that T;x=0 implies T;x=0.
Hence, &(T) = A (T,).
So, by the Partial Order Theorem, Ej < E,,.



Bounded Self-Adjoint Linear Operators

o Let A < m but that, nevertheless, E; #0.
Then Ejz #0, for some z.
We set x = Ejz. Then

Eyx= E/%z =Ez=x.

So, without loss of generality, we assume || x| = 1.
It follows that

(TAEAX, X) (Tax, x)
(Tx,x)=A
inf||,~<||=1 (T)?,?) -A

m—A>0.

1%

This contradicts TyEy =-T, <0.
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o Suppose that A > M, but E; # /.
So I - Ey #0.
Then, (/ — Ey)x = x, for some x of norm ||x| =1.

Hence,

(TA(l = Ex)x,x) (Tax,x)
(Tx,x)—A
SUp”;”=1 <T;,Y> —A

M-21<0.

This contradicts Ty(/ - E,) =T, =0.
Also Ep; =1, by the continuity from the right to be proved next.

IIA i
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o With an interval A = (A, u] we associate the operator E(A) = E,,— Ej.
Since A <pu, we have Ej < E;,. Hence, Ej(H) < E,(H).
This shows that E(A) is a projection. Also, E(A)=0.
We also have
E,E(A) = EZ-E.Ey=E,—Ey=E(A);
(I-EA)E(A) E(A)-EA(Eu— Ea) = E(D).

Now E(A), T, and T are positive and commute.
So the products T, E(A) and T,"E(A)T are positive. Hence

TWE(D) = TuE.E(A)=-T,E(8)=0;
TAE(A) TA(I- E\)E(A) = TFE(A) 2 0.

This implies TE(A) <puE(A) and TE(A) = AE(A), respectively.
Taken together, AE(A) < TE(A) < uE(A).



Bounded Self-Adjoint Linear Operators

o We keep A fixed and let p— A from the right in a monotone fashion.
Then E(A)x — P(A)x by the analog of the Monotone Sequence
Theorem for a decreasing sequence.

Here P(A) is bounded and self-adjoint.

Since E(A) is idempotent, so is P(A).

Hence P(A) is a projection.

Also AP(A)=TP(A). l.e., TAP(A)=0. From this,

Ty P(A)=Ta(I-EA)P(A) = (I - Ex) TAP(1) =0.

Hence, Ty P(A)x=0, for all xe H. Hence, P(1)xe A (T;).
By definition, E; projects H onto A(T;).

Consequently, we have E;P(A)x = P(A)x. l.e., E;P(A) = P(A).
On the other hand, if we let p— A", then (/- E;)P(1) = P(A).
Taken, together, P(1) =0. But we had E(A)x — P(1)x.

So P(A) =0 proves continuity of & from the right.
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Subsection 9

Spectral Representation of Bounded Self-Adjoint Operators
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Bounded Self-Adjoint Linear Operators

Spectral Theorem for Bounded Self-Adjoint Linear Operators

Let T:H— H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Then:

T has the spectral representation

M
T= f AdE,,
.

where & = (E,) is the spectral family associated with T.

The integral is to be understood in the sense of uniform operator

convergence [convergence in the norm on B(H, H)], and for all
x,y € H,

M
<Tx,y>=f7 Adw(A),  w(A)=(Eax,y),

where the integral is an ordinary Riemann-Stieltjes integral.
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Spectral Theorem for Bounded Self-Adjoint Linear Operators

More generally, let p is a polynomial in A with real coefficients, say,

p(A) = apA" +ap 1 A"+ + .
Then the operator p(T) defined by

p(M=anT"+a, 1 T 4+ +agl

has the spectral representation

Moreover, for all x,y € H,
M
e(T)xy) = [ “p(A)dw(2), w(n) = Erxiy)
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o The notation m~ indicates that one must take into account a
contribution at A = m which occurs if E,, #0 (and m #0).

o Thus, using any a< m, we can write

M M M
f AdEy =f AdEy = mE, +f AdE).
a m- m

o Similarly,

M M M
[ pydEa= [ p(0)dEr = p(m)En+ [ p(2)dE

m m
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Choose a sequence (22,) of partitions of (a, b], where a<m and M < b.
Here every 22, is a partition of (a, b] into intervals A,; = (A, inj],
Jj=1,...,n, of length £(Ap;) = pnj — Apj.
Note that pp; = Apjs1, for j=1,...,n—1.
We assume (2,) to be such that n(22,) = max; £(A,;) — 0.
We have shown that A,;E(Anj) < TE(Anj) < njE(Arj).
Summing over j, we get
n n n
Z A”J'E(Anj) = Z TE(Anj) = Z .unjE(Anj)-
j=1 j=1 j=1
Since ppj = Anjs1, for j=1,...,n—1, we get
n

TY. E(8)=T Y. (Euy—Eny) = T(1-0)=T.
J=1 j=1

George Voutsadakis (LSSU) Spectral Theory of Linear Operators



Bounded Self-Adjoint Linear Operators

o For every € >0, there is an n, such that n(2?,) <e. Hence,

n n n
> HnE(Dnj) =Y AnE(Ap)) = Z Hnj—Anf)E(Ans) <€l
=1 j=1 j=1

It follows that, given any £ >0, there is an N, such that, for every
n> N and every choice of A,; € Apj, we have

HT AniE(An)| <e.

m:

Since E, is constant for A < m and for A = M, the particular choice of
an a<m and a b> M is immaterial.
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We prove the theorem for polynomials, starting with p(1) =A", re N.
For any x <A < u<v, we have

(Ea—-E)(Eu—-E)) = E\E,—E\E,-EE,+EGE,
= EA—EA—EK+EK=0.
This shows that E(A,;)E(Ank) =0, for j # k.
Since E(Ayj) is a projection, E(Ap;)° = E(Ap;), for every s=1,2,....
Consequently, we obtain

n r n
[ AnjE(Bnj)| = 2 AnE(An)).
j=1 j=1
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o We have

n r n
[_ZIAW-E(A,U-) = leng(Anj).
J= J=

Suppose the sum on the left is close to T.

Then the expression on the left is close to T' because multiplication
(composition) of bounded linear operators is continuous.

Hence, given € >0, there is an N, such that, for all n> N,

This proves the result for p(1) = A".

<E.

n
T - ZIA[U.E(A,,J-)
J:

The formulas for an arbitrary polynomial with real coefficients follow
from this case.
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Theorem (Properties of p(T))

Let T:H— H be a bounded self-adjoint linear operator on a complex

Hilbert space H. Let p,p; and po be polynomials with real coefficients.
Then:

p(T) is self-adjoint.

If p(1) = ap1(A)+ Bp2(A), then p(T)=ap:(T)+pp2(T).
If p(A) = p1(A)p2(A), then p(T) = p1(T)p2(T).

If p(A) =0, for all Ae[m, M], then p(T)=0.

If p1(A) < p2(A), for all A€[m, M], then p1(T) < pa(T).
Ip(T)Il = maxye,Ip(A)l, where J=[m, M].

If a bounded linear operator commutes with T, it also commutes with
p(T).
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T is self-adjoint and p has real coefficients.

So we get (a;T/)* =a;(T*Y =a; T .

This is obvious from the definition.

This is obvious from the definition.

Note that p has real coefficients.

So complex zeros must occur in conjugate pairs if they occur at all.

We observe that:
o p changes sign if A passes through a zero of odd multiplicity;
o p(A)=0 on [m, M].

So zeros of p in (m, M) must be of even multiplicity.

Hence, we can write

p() =10~ ) [~ DI - ) +3),
J

where Bj<m, y, =M and the quadratic factors correspond to
complex conjugate zeros and to real zeros in (m, M).
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o We have p(A) = aIT;(A—Bj) ITk(vk = A)[Tel(A - pe)* +v2].
We show that a >0 if p#0.
For all sufficiently large A, say, for all A= Ag, we have

sgnp(A) =sgna,A" =sgna,,

where n is the degree of p.
o Suppose a, >0. Then:
o p(Ag)>0;
@ The number of the y,'s (each counted according to its multiplicity)
must be even, to make p(1) =0 in (m, M).
Then all three products are positive at Ag.
Hence, we must have a >0 in order that p(1g) > 0.
o Suppose a, <0. Then:
2 p(4) <0;
o The number of the y,'s is odd, to make p(1) =0 on (m, M).
It follows that the second product is negative at Ag.
Hence, a >0, as before.
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o We replace A by T.
Then each of the factors above is a positive operator.
Consider x #0. Set v = ”71”x. Then x = ||x]|v.
Since —f;=-m,

((T—,Bj/)X,X>

(Tx, x) — Bj{x, x)

IxI2¢Tv, vy — mlx|?
IxN12infyg1=1(TV, V) — mlx|?
0.

v v

That is, T—p;/=20. Similarly, y,/-T =0.

Now, T — gl is self-adjoint. So its square is positive.

It follows that (T —p,/)?+v31 = 0.

Since all those operators commute, their product is positive.
So, since a>0, p(T)=0.



Bounded Self-Adjoint Linear Operators

This follows immediately from Part (d).
Let k denote the maximum of |p(A)| on J.
Then 0 < p(A)? < k2, for Le J.

Hence Part (e) yields p(T)? < k21.

Since p(T) is self-adjoint, for all x,

(p(T)x, p(T)x)=(p( T)2x,x) < k%(x,x).

Now we get [|p(T)x|l < kllxIl.

Taking the supremum over all x of norm 1,
T)Il = max|p(A)l.
Ip(T)I eD lp(A)l

This follows immediately from the definition of p(T).
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Subsection 10

Extension of the Spectral Theorem to Continuous Functions
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o The theorem holds for p(T), where T is a bounded self-adjoint linear
operator and p is a polynomial with real coefficients.

o We want to extend the theorem to operators f(T), where T is as
before and f is a continuous real-valued function.

o Let H be a complex Hilbert space.
o Let T:H— H be a bounded self-adjoint linear operator on H.
o Let f be a continuous real-valued function on [m, M], where:

9 m= inf“X“:l <TX,X);
o M= SUp”X”:]_ <TX,X>.

o By the WeierstralR approximation theorem, there is a sequence of
polynomials (pn), with real coefficients, such that p,(1) — f(1)
uniformly on [m, M].
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o Corresponding to the sequence of polynomials (p,), we have a
sequence of bounded self-adjoint linear operators p,(T).

o By the preceding theorem, for J =[m, M],
||Pn( T) - pr( T)” = TEaJX |Pn(ﬂ) - pr(/l)|~

o Since pp(A) — f(A), given any € >0, there is an N, such that, for all
nr>N,

A)—pr(A) <e.
max|pn(1) —pr(A)I<e

o Hence, (pn(T)) is Cauchy.
o So, since B(H,H) is complete, (p,(T)) has a limit in B(H, H).
We define f(T) to be that limit: p,(T)— f(T).

©
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Q

: f(T) depends only on f (and T, of course), but not on the
particular choice of a sequence of polynomials converging to f
uniformly.

Let (pn) be another sequence of polynomials with real coefficients

such that pp(4) — f(4) uniformly on [m, M]. Then p,(T)— f(T) by
the previous argument. So it suffices to show that f(T)=f(T).
Clearly, Bn(A) = pn(A) — 0. Hence, B,(T)—pn(T)— 0.

Consequently, given £ >0, there is an N, such that for n> N,

IF(T) = Ba(T)Il < g 1Bn(T) — pa(T)Il < g Ipn(T) = F(T)ll < g

By the triangle inequality it follows that

IE(T)=F (T <1 (T)=Ba( TII+1Ba(T)=pa( T)I+1pa(T)-F(T)Il <e.
Since >0 was arbitrary, f(T)—f(T)=0. Thus, f(T)=f(T).
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Spectral Theorem

Let T:H— H be a bounded self-adjoint linear operator on a complex
Hilbert space H and f a continuous real-valued function on [m, M].
Then f(T) has the spectral representation

M
A(T)= [ F(A)dEs
-
where & = (E,) is the spectral family associated with T.

The integral is to be understood in the sense of uniform operator
convergence, and, for all x,y € H,

M
(F(T)xy) = f CFA)dw(A),  w(d) = (Erxy),

where the integral is an ordinary Riemann-Stieltjes integral.
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o For every € >0, there is a polynomial p, with real coefficients, such
that, for all A€ [m, M],

S =f()-p(1) =

Hence, If(T)—p(T)lI<%.
Note that ¥ E(Apj) = 1.
Using the preceding inequality, we get, for any partition,

_§/<Z[f(]tnj) P( nJ)]E( nj)S s

Wl M

It follows that

W[ m

311G~ pAIEy)|
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o Recall that p(T) is represented by p(T) =f,ﬁ/1 p(A)dEj.

So there is an N, such that, for every n> N,

UOIM

ipum ~p(T)| =

We now estimate the norm of the difference between f(T) and the
Riemann-Stieltjes sums corresponding to the integral.

For n> N, we obtain, by means of the triangle inequality,

I Z0y F(Rnf) E(Brj) = F(TIN < WLy [F(Rn) = (A )] E(A 1)
+||Zn_1p(AnJ)E( ) P(T)||+||P( ) (T)”55~

Since € >0 was arbitrary, this establishes the statement.
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o : &=(Ey) is the only spectral family on [m, M]
that yields the representations

f(T)
(f( T)Xr}/>

S F(A)dEy;
IM Q) dw(A),  w(A) = (Eax, ).

o The plausibility is indicated by the following:

o The second equality holds for every continuous real-valued function f
on [m, M];
o lIts left hand side is defined in a way which does not depend on &.

o A rigorous proof follows from a uniqueness theorem for Stieltjes
integrals.
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o A uniqueness theorem for Stieltjes integrals states that, for any fixed x
and y, the expression

w(A) =(Exx,y)

is determined, up to an additive constant, by

M
F(T)xy) = f CFA)dw(), w(d) = (Erxy),

at its points of continuity and at m~ and M.
Now we have:

S <EMX!y> = (X;y>, since EM = I'
o (E,) is continuous from the right.

It follows w(A) is uniquely determined everywhere.
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o The properties of p(T), listed in a previous theorem, extend to f(T).

Theorem (Properties of f(T))

Let T:H— H be a bounded self-adjoint linear operator on a complex
Hilbert space H. Let f, f; and £ be continuous real-valued functions on
[m, M]. Then:

f(T) is self-adjoint.

If f(A)=afi(A)+ph(A), then F(T)=af(T)+pr(T).

It £(1) = 1(A)R2(A), then £(T) =A(T)R(T).

If f(1)=0, for all A€ [m,M], then f(T)=0.

If A(A) < f(A), for all Ae[m,M], then A(T)<1f(T).

I1F(T)Il <maxyeyIf ()], where J=[m, M].

If a bounded linear operator commutes with T, it also commutes with
f(T).
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Subsection 11

Properties of Spectral Family of a Bounded Self-Adjoint Operator
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Theorem (Eigenvalues)

Let T:H— H be a bounded self-adjoint linear operator on a complex
Hilbert space H and & = (E,) the corresponding spectral family. Then
A— E, has a discontinuity at any A =Ag (that is, Ey, # E/'l6) if and only if
Ao is an eigenvalue of T. In this case, the corresponding eigenspace is

N (T =2ol) = (Exo = Exg)(H).

o Ag is an eigenvalue of T if and only if A(T —2o/) # {0}.
So the first statement follows from the displayed equation.

Hence, it suffices to prove this equation.
We set Fo = Ej, — Ej;. We must show that:
o Fo(H) s A (T -2pl);
o Fo(H)2 /(T -2pl).
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o Since Ag —% < Ao, setting Ag = (Ao — %,/10], we have

(Ao- %)E(Ao) < TE(Ao) = A0E(Ao).

Now let n—oo. Then E(Ag) — Fo.
So the preceding inequalities yield

AoFo =< TFo = AoFo.

Hence, TFy=AgFo. Thatis, (T —Agl)Fo =0.
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o Let xe A(T —Agl). We show that then x € Fo(H).
Since Fy is a projection, this amounts to Fox = x.
Suppose Ag &[m, M]. Then Ag€ p(T).
Since Fo(H) is a vector space, A (T —Apl) ={0} < Fo(H).
Suppose Ag € [m, M]. By assumption, (T —2Ap/)x =0.
This implies (T —Ao/)?x = 0.
By the Spectral Representation Theorem, for a<m and b> M,

f b(]L—]Lo)2dw(/1) =0, w(A)=<(Exx,x).

Here (A—210)?>=0 and A — (E;x,x) is monotone increasing.
Hence, the integral over any subinterval of positive length must be

ZEro.
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o In particular, for every £ >0, we must have

0= [207¢ (A= 20)2dw(A) = €2 [~ dw () = €X(Epy_ex, X);

a
0= f/ﬁ)+8 (A=20)%dw(Q) = €2 ffo% dw(A) = €2(Ix,x) — €2(Epy4eX, X).
Since £ >0, by the Positivity Theorem,

(Erg—ex,x) =0 implies Ej,_.x=0;

(x=Epg+ex,x) =0 implies x—Ej 1.x=0.

We may thus write x = (Ejy+e — Epg—¢)X-
But A — E, is continuous from the right.

So, letting € — 0, we obtain x = Fgx.
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Theorem (Resolvent Set)

Let T:H— H be a bounded self-adjoint linear operator on a complex
Hilbert space H and & = (E,) the corresponding spectral family. Then a
real Ao belongs to the resolvent set p(T) of T if and only if there is a
¥ >0, such that & = (E,) is constant on the interval [Ag —y, A0 +7].

o We prove that:

The given condition is sufficient for Ag € p(T);
The given condition is necessary for Ag € p(T).

o We use the previously shown fact that Ag € p(T) if and only if there
exists a y >0, such that

I(T—2)xll =ylixll, forall xeH.
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Suppose that Ag is real, such that, for some y >0, & is constant on
J=[Ao~-7,A0+7Y]

By a previous result,
2 2 M 2
I(T = Aol )xI12 = (T = Aol) ,x>=f (A=A0)2d(Exx,x).
-
Since & is constant on J, integration over J yields the value zero.
Moreover, for A ¢ J, we have (A—21¢)%=7y2.

Thus, the previous equation implies

M
(T = Agh)xI1? = y2f d(Exx,x) =7%(x,x).
.

Taking square roots, we obtain ||(T = Ao/)x|| = ylix|.
Hence, Ao € p(T).
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Conversely, suppose that 1g€ p(T).
Then, for some y >0,

I(T =Aol)xll =ylxI|l, forall xeH.
So, by the equation above,

M M
fﬁ(/1—/10)2d<E;Lx,x>2y2fid(E,lx,x).

m

Suppose that & is not constant on the interval [Ag—7, Ao +7].
Since Ej < E, for A <, we can find a positive <7, such that

Ero+n—=Erg—n #0.

Hence, there is a y € H, such that x = (Ej 4y — Erg—p)y #0.
Using this x, we get

Exx = Ex(Erg+n = Ero-n)y-
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o Now EAX = E/l(E/lo+1] - E/lo—ﬂ)y is:
s (Ex—Ex)y =0, when A< 2 —1n;
o (Eprg+n—Eng-n)y, when A > Ap+1.
So it is independent of A. Thus, we may take K =[1¢g—n,A0+17] as
the interval of integration in the integral above.
If 1€ K, by straightforward calculation,

(Exx,x) = {(Ex — Exg—n)y,¥)-

Hence, the inequality gives

Ao+n

Aot 2 2
f (A—=Ao) d(Ery,y) =y f d{Epry,y).
Ao—1 Ao=1

This is impossible because the integral on the right is positive and,
when 1€ K, (A-210)? <n?<vy2.
Thus, & must be constant on [Ao—7Y, 40 +7].
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Theorem (Continuous Spectrum)

Let T:H— H be a bounded self-adjoint linear operator on a complex

Hilbert space H and & = (E,) the corresponding spectral family. Then a

real Ao belongs to the continuous spectrum o(T) of T if and only if & is:
o Continuous at Ag (thus, Ey, = E,la);

o Not constant in any neighborhood of 1y on R.

o The preceding theorem shows that Ao € g(T) if and only if & is not
constant in any neighborhood of 1y on RR.
Moreover, we have:
o 0/(T)=9;
o Points of 0,(T) correspond to discontinuities of &.

These yield the conclusion of the theorem.

George Voutsadakis (LSSU) Spectral Theory of Linear Operators
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