Introduction to Spectral Theory of Linear Operators

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

Bounded Self-Adjoint Linear Operators

- Bounded Self-Adjoint Linear Operators
- Further Properties of Bounded Self-Adjoint Operators
- Positive Operators
- Square Roots of a Positive Operator
- Projection Operators
- Further Properties of Projections
- Spectral Family
- Spectral Family of a Bounded Self-Adjoint Operator
- Spectral Representation of Bounded Self-Adjoint Operators
- Extension of the Spectral Theorem to Continuous Functions
- Properties of Spectral Family of a Bounded Self-Adjoint Operator

Subsection 1

Bounded Self-Adjoint Linear Operators

The Hilbert Adjoint Operator

- Let H be a complex Hilbert space.
- Let $T: H \rightarrow H$ be a bounded linear operator on H.
- The Hilbert-adjoint operator $T^{*}: H \rightarrow H$ is defined to be the operator satisfying

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle, \quad \text { for all } x, y \in H .
$$

- From the general theory of Hilbert Spaces, we know the following facts:
- T^{*} exists;
- T^{*} is a bounded linear operator;
- T^{*} is of norm $\left\|T^{*}\right\|=\|T\|$;
- T^{*} is unique.

Self-Adjoint or Hermitian Operators

- Let H be a complex Hilbert space.
- Let $T: H \rightarrow H$ be a bounded linear operator on H.
- T is said to be self-adjoint or Hermitian if

$$
T=T^{*}
$$

- Then $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ becomes

$$
\langle T x, y\rangle=\langle x, T y\rangle .
$$

- If T is self-adjoint, then $\langle T x, x\rangle$ is real for all $x \in H$.
- Since H being complex, this condition implies self-adjointness.

Eigenvalues and Eigenvectors

Theorem (Eigenvalues and Eigenvectors)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then:
(a) All the eigenvalues of T (if they exist) are real.
(b) Eigenvectors corresponding to different eigenvalues are orthogonal.
(a) Let λ be any eigenvalue of T and x a corresponding eigenvector. Then $x \neq 0$ and $T x=\lambda x$. Using the self-adjointness of T, we get

$$
\lambda\langle x, x\rangle=\langle\lambda x, x\rangle=\langle T x, x\rangle=\langle x, T x\rangle=\langle x, \lambda x\rangle=\bar{\lambda}\langle x, x\rangle .
$$

Note that, since $x \neq 0 .\langle x, x\rangle=\|x\|^{2} \neq 0$.
So dividing by $\langle x, x\rangle$ gives $\lambda=\bar{\lambda}$.
We conclude that λ is real.

Eigenvalues and Eigenvectors (Cont'd)

(b) Let λ and μ be eigenvalues of T.

Let x and y be corresponding eigenvectors.
Then $T x=\lambda x$ and $T y=\mu y$.
Note that T is self-adjoint and μ is real.
So we get

$$
\lambda\langle x, y\rangle=\langle\lambda x, y\rangle=\langle T x, y\rangle=\langle x, T y\rangle=\langle x, \mu y\rangle=\mu\langle x, y\rangle .
$$

Since $\lambda \neq \mu,\langle x, y\rangle=0$.
This shows that x and y are orthogonal.

Characterization of the Resolvent Set

Theorem (Resolvent Set)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then a number λ belongs to the resolvent set $\rho(T)$ of T if and only if there exists a $c>0$, such that for every $x \in H$,

$$
\left\|T_{\lambda} x\right\| \geq c\|x\|, \quad \text { where } T_{\lambda}=T-\lambda l
$$

(a) If $\lambda \in \rho(T)$, then $R_{\lambda}=T_{\lambda}^{-1}: H \rightarrow H$ exists and is bounded.

Since $R_{\lambda} \neq 0,\left\|R_{\lambda}\right\|=k$, where $k>0$.
Now $I=R_{\lambda} T_{\lambda}$. So, for every $x \in H$, we have

$$
\|x\|=\left\|R_{\lambda} T_{\lambda} x\right\| \leq\left\|R_{\lambda}\right\|\left\|T_{\lambda} x\right\|=k\left\|T_{\lambda} x\right\| .
$$

This gives $\left\|T_{\lambda} x\right\| \geq c\|x\|$, where $c=\frac{1}{k}$.

Characterization of the Resolvent Set (Converse (i))

(b) Suppose $\left\|T_{\lambda} x\right\| \geq c\|x\|, c>0$, holds for all $x \in H$. We prove:
(i) $T_{\lambda}: H \rightarrow T_{\lambda}(H)$ is bijective;
(ii) $T_{\lambda}(H)$ is dense in H;
(iii) $T_{\lambda}(H)$ is closed in H.

Then $T_{\lambda}(H)=H$ and $R_{\lambda}=T_{\lambda}^{-1}$ is bounded by the Bounded Inverse Theorem.
(i) We must show that $T_{\lambda} x_{1}=T_{\lambda} x_{2}$ implies $x_{1}=x_{2}$.

As T_{λ} is linear, if $T_{\lambda} x_{1}=T_{\lambda} x_{2}$, then

$$
0=\left\|T_{\lambda} x_{1}-T_{\lambda} x_{2}\right\|=\left\|T_{\lambda}\left(x_{1}-x_{2}\right)\right\| \geq c\left\|x_{1}-x_{2}\right\| .
$$

Since $c>0$, we get $\left\|x_{1}-x_{2}\right\|=0$.
So $x_{1}=x_{2}$.
Since x_{1}, x_{2} were arbitrary, $T_{\lambda}: H \rightarrow T_{\lambda}(H)$ is bijective.

Characterization of the Resolvent Set (Converse (ii))

(ii) We show $x_{0} \perp \overline{T_{\lambda}(H)}$ implies $x_{0}=0$.

Then, by the Projection Theorem, $\overline{T_{\lambda}(H)}=H$.
Let $x_{0} \perp \overline{T_{\lambda}(H)}$. Then $x_{0} \perp T_{\lambda}(H)$.
Hence, for all $x \in H, 0=\left\langle T_{\lambda} x, x_{0}\right\rangle=\left\langle T x, x_{0}\right\rangle-\lambda\left\langle x, x_{0}\right\rangle$.
Since T is self-adjoint,

$$
\left\langle x, T x_{0}\right\rangle=\left\langle T x, x_{0}\right\rangle=\left\langle x, \bar{\lambda} x_{0}\right\rangle .
$$

Hence, $T x_{0}=\bar{\lambda} x_{0}$.
A solution is $x_{0}=0$. Moreover, $x_{0} \neq 0$ is impossible. Indeed, that would mean that $\bar{\lambda}$ is an eigenvalue of T.
Then, $\lambda=\bar{\lambda}$ and $T x_{0}-\lambda x_{0}=T_{\lambda} x_{0}=0$.
Since $c>0$, by hypothesis, $0=\left\|T_{\lambda} x_{0}\right\| \geq c\left\|x_{0}\right\|>0$.
As x_{0} was any vector orthogonal to $\overline{T_{\lambda}(H)},{\overline{T_{\lambda}(H)}}^{\perp}=\{0\}$.
Hence $\overline{T_{\lambda}(H)}=H$. I.e., $T_{\lambda}(H)$ is dense in H.

Characterization of the Resolvent Set (Converse (iii))

(iii) We prove $y \in \overline{T_{\lambda}(H)}$ implies $y \in T_{\lambda}(H)$.

Then $T_{\lambda}(H)$ is closed and $T_{\lambda}(H)=H$ by Part (ii).
Let $y \in \overline{T_{\lambda}(H)}$.
Then, there is a sequence $\left(y_{n}\right)$ in $T_{\lambda}(H)$, which converges to y.
Since $y_{n} \in T_{\lambda}(H)$, we have $y_{n}=T_{\lambda} x_{n}$, for some $x_{n} \in H$.
By the hypothesis,

$$
\left\|x_{n}-x_{m}\right\| \leq \frac{1}{c}\left\|T_{\lambda}\left(x_{n}-x_{m}\right)\right\|=\frac{1}{c}\left\|y_{n}-y_{m}\right\| .
$$

Since $\left(y_{n}\right)$ converges, $\left(x_{n}\right)$ is Cauchy.
Since H is complete, $\left(x_{n}\right)$ converges, say, $x_{n} \rightarrow x$.

Characterization of the Resolvent Set ((iii) Cont'd)

- Since T is continuous, so is T_{λ}.

Hence, $y_{n}=T_{\lambda} x_{n} \rightarrow T_{\lambda} x$.
By definition, $T_{\lambda} x \in T_{\lambda}(H)$.
Since the limit is unique, $T_{\lambda} x=y$.
Hence, $y \in T_{\lambda}(H)$.
Since $y \in \overline{T_{\lambda}(H)}$ was arbitrary, $T_{\lambda}(H)$ is closed.
We thus have $T_{\lambda}(H)=H$ by Part (ii).
This means that $R_{\lambda}=T_{\lambda}^{-1}$ is defined on all of H.
Moreover, by the Bounded Inverse Theorem, it is bounded. Hence, $\lambda \in \rho(T)$.

The Spectrum Theorem

Theorem (Spectrum)

The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H is real.

- Using the theorem, we show that a $\lambda=\alpha+i \beta, \alpha, \beta$ real, with $\beta \neq 0$ must belong to $\rho(T)$. It will follow that $\sigma(T) \subseteq \mathbb{R}$.
For every $x \neq 0$ in H, we have $\left\langle T_{\lambda} x, x\right\rangle=\langle T x, x\rangle-\lambda\langle x, x\rangle$.
Since $\langle x, x\rangle$ and $\langle T x, x\rangle$ are real,

$$
\overline{\left\langle T_{\lambda} x, x\right\rangle}=\left\langle T_{x, x\rangle}-\bar{\lambda}\langle x, x\rangle .\right.
$$

By subtraction,

$$
\overline{\left\langle T_{\lambda} x, x\right\rangle}-\left\langle T_{\lambda} x, x\right\rangle=(\lambda-\bar{\lambda})\langle x, x\rangle=2 i \beta\|x\|^{2} .
$$

The Spectrum Theorem (Cont'd)

- We found

$$
\overline{\left\langle T_{\lambda} x, x\right\rangle}-\left\langle T_{\lambda} x, x\right\rangle=2 i \beta\|x\|^{2} .
$$

The left side is $-2 i \operatorname{lm}\left\langle T_{\lambda} x, x\right\rangle$, where Im is the imaginary part.
The latter cannot exceed the absolute value.
Dividing by 2, taking absolute values and applying the Schwarz inequality, we obtain

$$
|\beta|\|x\|^{2}=\left|\operatorname{lm}\left\langle T_{\lambda} x, x\right\rangle\right| \leq\left|\left\langle T_{\lambda} x, x\right\rangle\right| \leq\left\|T_{\lambda} x\right\|\|x\| .
$$

Division by $\|x\| \neq 0$ gives $|\beta|\|x\| \leq\left\|T_{\lambda} x\right\|$.
If $\beta \neq 0$, then, by a previous theorem, $\lambda \in \rho(T)$.
Hence, if $\lambda \in \sigma(T), \beta=0$. So λ is real.

Subsection 2

Further Properties of Bounded Self-Adjoint Operators

Spectrum

Theorem (Spectrum)

The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H lies in the closed interval $[m, M$] on the real axis, where

$$
m=\inf _{\|x\|=1}\langle T x, x\rangle, \quad M=\sup _{\|x\|=1}\langle T x, x\rangle .
$$

- By a previous result, $\sigma(T)$ lies on the real axis.

We show that any real $\lambda=M+c$, with $c>0$, belongs to the resolvent set $\rho(T)$.
Suppose $x \neq 0$ and $v=\|x\|^{-1} x$.
Then $x=\|x\| v$ and

$$
\langle T x, x\rangle=\|x\|^{2}\langle T v, v\rangle \leq\|x\|^{2} \sup _{\|\widetilde{v}\|=1}\langle T \widetilde{v}, \widetilde{v}\rangle=\langle x, x\rangle M
$$

Spectrum (Cont'd)

- Hence, $-\langle T x, x\rangle \geq-\langle x, x\rangle M$.

By the Schwarz inequality, we obtain

$$
\begin{aligned}
\left\|T_{\lambda x \|}\right\| x \| & \geq-\left\langle T_{\lambda x} x, x\right\rangle \\
& =-\langle T x, x\rangle+\lambda\langle x, x\rangle \\
& \geq(-M+\lambda)\langle x, x\rangle \\
& =c\|x\|^{2},
\end{aligned}
$$

where $c=\lambda-M>0$ by assumption.
Division by $\|x\|$ yields $\left\|T_{\lambda} x\right\| \geq c\|x\|$.
Hence, by the Resolvent Set Theorem, $\lambda \in \rho(T)$.
For a real $\lambda<m$ the idea of proof is the same.

Norm

Theorem (Norm)

For any bounded self-adjoint linear operator T on a complex Hilbert space H we have

$$
\|T\|=\max (|m|,|M|)=\sup _{\|x\|=1}|\langle T x, x\rangle| .
$$

- Let $K=\sup _{\|x\|=1}|\langle T x, x\rangle|$. By the Schwarz inequality,

$$
K=\sup _{\|x\|=1}|\langle T x, x\rangle| \leq \sup _{\|x\|=1}\|T x\|\|x\|=\|T\| .
$$

We show, next, that $\|T\| \leq K$.
Suppose, first, $T z=0$, for all z of norm 1. Then $T=0$. In this case, there is nothing to prove.

Norm (Cont'd)

- Consider, next, a z of norm 1 , such that $T z \neq 0$.

Set $v=\|T z\|^{1 / 2} z$ and $w=\|T z\|^{-1 / 2} T z$.
Then $\|v\|^{2}=\|w\|^{2}=\|T z\|$.
We now set $y_{1}=v+w$ and $y_{2}=v-w$.
Then, since T is self-adjoint,

$$
\begin{aligned}
\left\langle T y_{1}, y_{1}\right\rangle-\left\langle T y_{2}, y_{2}\right\rangle= & \langle T v+T w, v+w\rangle-\langle T v-T w, v-w\rangle \\
= & \langle T v, v\rangle+\langle T v, w\rangle+\langle T w, v\rangle+\langle T w, w\rangle \\
& -\langle T v, v\rangle+\langle T v, w\rangle+\langle T w, v\rangle-\langle T w, w\rangle \\
= & 2(\langle T v, w\rangle+\langle T w, v\rangle) \\
= & 2\left(\left\langle\|T z\|^{1 / 2} T z,\|T z\|^{-1 / 2} T z\right\rangle\right. \\
& \left.\quad+\left\langle\|T z\|^{-1 / 2} T^{2} z,\|T z\|^{1 / 2} z\right\rangle\right) \\
= & 2\left(\langle T z, T z\rangle+\left\langle T^{2} z, z\right\rangle\right) \\
= & 4\|T z\|^{2}
\end{aligned}
$$

Norm (Cont'd)

- Now for every $y \neq 0$ and $x=\|y\|^{-1} y$, we have $y=\|y\| x$.

Moreover,

$$
|\langle T y, y\rangle|=\|y\|^{2}|\langle T x, x\rangle| \leq\|y\|^{2} \sup _{\|\tilde{x}\|=1}|\langle T \widetilde{x}, \widetilde{x}\rangle|=K\|y\|^{2} .
$$

So, by the triangle inequality and straightforward calculation,

$$
\begin{aligned}
\left|\left\langle T y_{1}, y_{1}\right\rangle-\left\langle T y_{2}, y_{2}\right\rangle\right| & \leq\left|\left\langle T y_{1}, y_{1}\right\rangle\right|+\left|\left\langle T y_{2}, y_{2}\right\rangle\right| \\
& \leq K\left(\left\|y_{1}\right\|^{2}+\left\|y_{2}\right\|^{2}\right) \\
& =K\left(\|v+w\|^{2}+\|v-w\|^{2}\right) \\
& =2 K\left(\|v\|^{2}+\|w\|^{2}\right) \\
& =4 K\|T z\| .
\end{aligned}
$$

Hence $4\left\|T_{z}\right\|^{2} \leq 4 K \| T_{z \|}$. So $\| T_{z \|} \leq K$.
Taking the supremum over all z of norm 1 , we obtain $\|T\| \leq K$.

m and M as Spectral Values

Theorem (m and M as Spectral Values)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space $H \neq\{0\}$. Let $m=\inf _{\|x\|=1}\langle T x, x\rangle, M=\sup _{\|x\|=1}\langle T x, x\rangle$. Then m and M are spectral values of T.

- We show that $M \in \sigma(T)$.

By the spectral mapping theorem, the spectrum of $T+k l, k$ a real constant, is obtained from that of T by a translation.
Moreover, $M \in \sigma(T)$ iff $M+k \in \sigma(T+k l)$.
Hence, we may assume $0 \leq m \leq M$, without loss of generality.
By the previous theorem, we have $M=\sup _{\|x\|=1}\langle T x, x\rangle=\|T\|$.
By the definition of a supremum, there is a sequence $\left(x_{n}\right)$, such that

$$
\left\|x_{n}\right\|=1,\left\langle T x_{n}, x_{n}\right\rangle=M-\delta_{n}, \delta_{n} \geq 0 \text { and } \delta_{n} \rightarrow 0
$$

m and M as Spectral Values (Cont'd)

- Then $\left\|T x_{n}\right\| \leq\|T\|\left\|x_{n}\right\|=\|T\|=M$.

Since T is self-adjoint,

$$
\begin{aligned}
\left\|T x_{n}-M x_{n}\right\|^{2} & =\left\langle T x_{n}-M x_{n}, T x_{n}-M x_{n}\right\rangle \\
& =\left\|T x_{n}\right\|^{2}-2 M\left\langle T x_{n}, x_{n}\right\rangle+M^{2}\left\|x_{n}\right\|^{2} \\
& \leq M^{2}-2 M\left(M-\delta_{n}\right)+M^{2} \\
& =2 M \delta_{n} \rightarrow 0 .
\end{aligned}
$$

Hence, there is no positive c, such that

$$
\left\|T_{M} x_{n}\right\|=\left\|T x_{n}-M x_{n}\right\| \geq c=c\left\|x_{n}\right\|, \quad\left\|x_{n}\right\|=1 .
$$

By a preceding theorem, $\lambda=M$ is not in the resolvent set of T. Hence, $M \in \sigma(T)$.
For $\lambda=m$, the proof is similar.

The Residual Spectrum

Theorem (Residual Spectrum)

The residual spectrum $\sigma_{r}(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H is empty.

- We show that the assumption $\sigma_{r}(T) \neq \varnothing$ leads to a contradiction. Let $\lambda \in \sigma_{r}(T)$. By the definition of $\sigma_{r}(T)$, we have:
- The inverse of T_{λ} exists;
- Its domain $\mathscr{D}\left(T_{\lambda}^{-1}\right)$ is not dense in H.

By the projection theorem, some $y \neq 0$ in H is orthogonal to $\mathscr{D}\left(T_{\lambda}^{-1}\right)$. But $\mathscr{D}\left(T_{\lambda}^{-1}\right)$ is the range of T_{λ}. Hence, $\left\langle T_{\lambda} x, y\right\rangle=0$, for all $x \in H$. Since λ is real and T is self-adjoint, we have $\left\langle x, T_{\lambda} y\right\rangle=0$, for all x. Taking $x=T_{\lambda} y$, we get $\left\|T_{\lambda} y\right\|^{2}=0$. So $T_{\lambda} y=T y-\lambda y=0$.
Since $y \neq 0$, this shows that λ is an eigenvalue of T.
But this contradicts $\lambda \in \sigma_{r}(T)$. Hence, $\sigma_{r}(T)=\varnothing$.

Subsection 3

Positive Operators

Positive Operators on Hibert Spaces

- We consider the set of all bounded self-adjoint linear operators on a complex Hilbert space H.
- If T is self-adjoint, $\langle T x, x\rangle$ is real.
- So we may introduce on this set a partial ordering \leq by defining

$$
T_{1} \leq T_{2} \text { if and only if }\left\langle T_{1} x, x\right\rangle \leq\left\langle T_{2} x, x\right\rangle \text {, for all } x \in H \text {. }
$$

- A bounded self-adjoint linear operator $T: H \rightarrow H$ is said to be positive, written $T \geq 0$, if and only if $\langle T x, x\rangle \geq 0$, for all $x \in H$.
- The operator is "nonnegative", but "positive" is the usual term.
- Note that $T_{1} \leq T_{2}$ iff $0 \leq T_{2}-T_{1}$.

Product of Positive Operators

- The sum of positive operators is positive.
- We know that a product (composite) of bounded self-adjoint linear operators is self-adjoint if and only if the operators commute.

Theorem (Product of Positive Operators)

If two bounded self-adjoint linear operators S and T on a Hilbert space H are positive and commute $(S T=T S)$, then their product $S T$ is positive.

- We must show that $\langle S T x, x\rangle \geq 0$, for all $x \in H$.

If $S=0$, this holds.
Let $S \neq 0$. We proceed in two steps:
(a) We consider $S_{1}=\frac{1}{\|S\|} S, S_{n+1}=S_{n}-S_{n}^{2}, n=1,2, \ldots$. We prove by induction that $0 \leq S_{n} \leq I$.
(b) We prove that $\langle S T x, x\rangle \geq 0$, for all $x \in H$.

Product of Positive Operators Part (a)

(a) First, we show that the inequality holds for $n=1$.

The assumption $0 \leq S$ implies $0 \leq S_{1}$.
By an application of the Schwarz inequality and $\|S x\| \leq\|S\|\|x\|$, we get

$$
\begin{aligned}
\left\langle S_{1} x, x\right\rangle & =\frac{1}{\| S S}\langle S x, x\rangle \\
& \leq \frac{1}{\| S}\|S x\|\|x\| \\
& \leq\|x\|^{2} \\
& =\langle\mid x, x\rangle .
\end{aligned}
$$

Product of Positive Operators Part (a) (Cont'd)

- Suppose the inequality holds for an $n=k$, i.e., $0 \leq S_{k} \leq 1$.

Thus, $0 \leq I-S_{k} \leq I$.
Since S_{k} is self-adjoint, for every $x \in H, y=S_{k} x$,

$$
\left\langle S_{k}^{2}\left(I-S_{k}\right) x, x\right\rangle=\left\langle\left(I-S_{k}\right) S_{k} x, S_{k} x\right\rangle=\left\langle\left(I-S_{k}\right) y, y\right\rangle \geq 0 .
$$

By definition this proves $S_{k}^{2}\left(I-S_{k}\right) \geq 0$. Similarly, $S_{k}\left(I-S_{k}\right)^{2} \geq 0$. By addition and simplification,

$$
0 \leq S_{k}^{2}\left(I-S_{k}\right)+S_{k}\left(I-S_{k}\right)^{2}=S_{k}-S_{k}^{2}=S_{k+1}
$$

Finally, note that $S_{k}^{2} \geq 0$ and $I-S_{k} \geq 0$.
Adding, we get $0 \leq I-S_{k}+S_{k}^{2}=I-S_{k+1}$. Hence, $S_{k+1} \leq I$.

Product of Positive Operators Part (b)

(b) We now show that $\langle S T x, x\rangle \geq 0$, for all $x \in H$.

We have

$$
\begin{aligned}
S_{1} & =S_{1}^{2}+S_{2} \\
& =S_{1}^{2}+S_{2}^{2}+S_{3} \\
& =\cdots \\
& =S_{1}^{2}+S_{2}^{2}+\cdots+S_{n}^{2}+S_{n+1}
\end{aligned}
$$

Since $S_{n+1} \geq 0$, this implies

$$
S_{1}^{2}+\cdots+S_{n}^{2}=S_{1}-S_{n+1} \leq S_{1} .
$$

By the self-adjointness of S_{j} and the definition of \leq, we get

$$
\sum_{j=1}^{n}\left\|S_{j} x\right\|^{2}=\sum_{j=1}^{n}\left\langle S_{j} x, S_{j} x\right\rangle=\sum_{j=1}^{n}\left\langle S_{j}^{2} x, x\right\rangle \leq\left\langle S_{1} x, x\right\rangle
$$

Since n is arbitrary, the infinite series $\left\|S_{1} x\right\|^{2}+\left\|S_{2} x\right\|^{2}+\cdots$ converges. Hence $\left\|S_{n} x\right\| \rightarrow 0$. Therefore, $S_{n} x \rightarrow 0$.

Product of Positive Operators Part (b) (Cont'd)

- We obtained:

$$
\begin{aligned}
& S_{1}^{2}+\cdots+S_{n}^{2}=S_{1}-S_{n+1} \\
& S_{n} x \rightarrow 0
\end{aligned}
$$

Hence,

$$
\left(\sum_{j=1}^{n} S_{j}^{2}\right) x=\left(S_{1}-S_{n+1}\right) x \rightarrow S_{1} x
$$

All the S_{j} 's commute with T, since they are sums and products of $S_{1}=\frac{1}{\|S\|} S$ and S and T commute.
Using $S=\|S\| S_{1}$, the preceding formula, $T \geq 0$ and the continuity of the inner product, we obtain, for every $x \in H$ and $y_{j}=S_{j} x$,

$$
\begin{aligned}
\langle S T x, x\rangle & =\|S\|\left\langle T S_{1} x, x\right\rangle \\
& =\|S\| \lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left\langle T S_{j}^{2} x, x\right\rangle \\
& =\|S\| \lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left\langle T y_{j}, y_{j}\right\rangle \\
& \geq 0 .
\end{aligned}
$$

Monotone Sequences

Definition (Monotone Sequence)

A monotone sequence $\left(T_{n}\right)$ of self-adjoint linear operators T_{n} on a Hilbert space H is a sequence (T_{n}) satisfying one of the following:

- It is monotone increasing, that is,

$$
T_{1} \leq T_{2} \leq T_{3} \leq \cdots ;
$$

- It is monotone decreasing, that is,

$$
T_{1} \geq T_{2} \geq T_{3} \geq \cdots
$$

The Monotone Sequence Theorem

Theorem (Monotone Sequence)

Let $\left(T_{n}\right)$ be a sequence of bounded self-adjoint linear operators on a complex Hilbert space H, such that

$$
T_{1} \leq T_{2} \leq \cdots \leq T_{n} \leq \cdots \leq K
$$

where K is a bounded self-adjoint linear operator on H. Suppose that any T_{j} commutes with K and with every T_{m}. Then $\left(T_{n}\right)$ is strongly operator convergent ($T_{n} x \rightarrow T x$, for all $x \in H$). The limit operator T is linear, bounded, self-adjoint and satisfies $T \leq K$.

- We consider $S_{n}=K-T_{n}$ and prove:
(a) The sequence ($\left\langle S_{n}^{2} x, x\right\rangle$) converges, for every $x \in H$.
(b) $T_{n} x \rightarrow T x$, where T is linear and self-adjoint, and is bounded by the Uniform Boundedness Theorem.

The Monotone Sequence Theorem Part (a)

(a) Clearly, $S_{n}=K-T_{n}$ is self-adjoint. We have

$$
S_{m}^{2}-S_{n} S_{m}=\left(S_{m}-S_{n}\right) S_{m}=\left(T_{n}-T_{m}\right)\left(K-T_{m}\right)
$$

Let $m<n$. Then $T_{n}-T_{m}$ and $K-T_{m}$ are positive. Since these operators commute, by the theorem, their product is positive. Hence on the left, $S_{m}^{2}-S_{n} S_{m} \geq 0$. I.e., $S_{m}^{2} \geq S_{n} S_{m}$, for $m<n$.
Similarly,

$$
S_{n} S_{m}-S_{n}^{2}=S_{n}\left(S_{m}-S_{n}\right)=\left(K-T_{n}\right)\left(T_{n}-T_{m}\right) \geq 0
$$

So $S_{n} S_{m} \geq S_{n}^{2}$. Taken together, $S_{m}^{2} \geq S_{n} S_{m} \geq S_{n}^{2}, m<n$.
By definition, using the self-adjointness of S_{n}, we have

$$
\left\langle S_{m}^{2} x, x\right\rangle \geq\left\langle S_{n} S_{m} x, x\right\rangle \geq\left\langle S_{n}^{2} x, x\right\rangle=\left\langle S_{n} x, S_{n} x\right\rangle=\left\|S_{n} x\right\|^{2} \geq 0
$$

This shows that $\left(\left\langle S_{n}^{2} x, x\right\rangle\right)$, with fixed x, is a monotone decreasing sequence of nonnegative numbers. Hence, it converges.

The Monotone Sequence Theorem Part (b)

(b) We show that $\left(T_{n} x\right)$ converges.

By assumption, every T_{n} commutes with every T_{m} and with K. Hence, the S_{j} 's all commute.
These operators are self-adjoint.
For $m<n$, we have $-2\left\langle S_{m} S_{n} x, x\right\rangle \leq-2\left\langle S_{n}^{2} x, x\right\rangle$.
Thus, we obtain

$$
\begin{aligned}
\left\|S_{m} x-S_{n} x\right\|^{2} & =\left\langle\left(S_{m}-S_{n}\right) x,\left(S_{m}-S_{n}\right) x\right\rangle \\
& =\left\langle\left(S_{m}-S_{n}\right)^{2} x, x\right\rangle \\
& =\left\langle S_{m}^{2} x, x\right\rangle-2\left\langle S_{m} S_{n} x, x\right\rangle+\left\langle S_{n}^{2} x, x\right\rangle \\
& \leq\left\langle S_{m}^{2} x, x\right\rangle-\left\langle S_{n}^{2} x, x\right\rangle .
\end{aligned}
$$

From this and Part (a), $\left(S_{n} x\right)$ is Cauchy.
It converges since H is complete.

The Monotone Sequence Theorem Part (b) (Cont'd)

- Now $T_{n}=K-S_{n}$.

Since $\left(S_{n} x\right)$ converges, ($\left.T_{n} x\right)$ also converges.
Clearly, the limit depends on x.
So we can write $T_{n} x \rightarrow T x$, for every $x \in H$.
Hence, this defines an operator $T: H \rightarrow H$, which is linear.
T is self-adjoint because T_{n} is self-adjoint and the inner product is continuous.
Since ($T_{n} x$) converges, it is bounded for every $x \in H$.
The Uniform Boundedness Theorem now implies that T is bounded.
Finally, $T \leq K$ follows from $T_{n} \leq K$.

Subsection 4

Square Roots of a Positive Operator

Positive Square Root

- Let T be self-adjoint.
- Then T^{2} is positive, since $\left\langle T^{2} x, x\right\rangle=\langle T x, T x\rangle \geq 0$.
- The converse problem consists of, given a positive operator T, finding a self-adjoint A such that $A^{2}=T$.

Definition (Positive Square Root)

Let $T: H \rightarrow H$ be a positive bounded self-adjoint linear operator on a complex Hilbert space H. Then a bounded self-adjoint linear operator A is called a square root of T if

$$
A^{2}=T
$$

If, in addition, $A \geq 0$, then A is called a positive square root of T, denoted by $A=T^{1 / 2}$.

The Positive Square Root Theorem

Theorem (Positive Square Root)

Every positive bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H has a positive square root A, which is unique. This operator A commutes with every bounded linear operator on H which commutes with T.

- We proceed in three steps:
(a) We show that if the theorem holds under the additional assumption $T \leq I$, it also holds without that assumption.
(b) We obtain the existence of the operator $A=T^{1 / 2}$ from $A_{n} x \rightarrow A x$, where $A_{0}=0$ and $A_{n+1}=A_{n}+\frac{1}{2}\left(T-A_{n}^{2}\right), n=0,1, \ldots$.
We also prove the commutativity stated in the theorem.
(c) We prove uniqueness of the positive square root.

Positive Square Root Part (a)

(a) If $T=0$, we can take $A=T^{1 / 2}=0$.

Let $T \neq 0$. By the Schwarz inequality,

$$
\langle T x, x\rangle \leq\|T x\|\|x\| \leq\|T\|\|x\|^{2} .
$$

Dividing by $\|T\| \neq 0$ and setting $Q=\frac{1}{\|T\|} T$, we obtain

$$
\langle Q x, x\rangle \leq\|x\|^{2}=\langle\mid x, x\rangle .
$$

I.e., $Q \leq I$.

Suppose Q has a unique positive square root $B=Q^{1 / 2}$. Then $B^{2}=Q$. Moreover, we have

$$
\left(\|T\|^{1 / 2} B\right)^{2}=\|T\| B^{2}=\|T\| Q=T .
$$

So a square root of $T=\|T\| Q$ is $\|T\|^{1 / 2} B$. Also, uniqueness of $Q^{1 / 2}$ implies uniqueness of the positive square root of T. Hence, it suffices to prove the theorem under the additional assumption $T \leq I$.

Positive Square Root Part (b)

(b) (Existence) Consider

$$
\begin{aligned}
A_{0} & =0 ; \\
A_{n+1} & =A_{n}+\frac{1}{2}\left(T-A_{n}^{2}\right), \quad n=0,1, \ldots .
\end{aligned}
$$

Since $A_{0}=0$, we have

$$
A_{1}=\frac{1}{2} T, \quad A_{2}=T-\frac{1}{8} T^{2}, \quad \text { etc.. }
$$

Each A_{n} is a polynomial in T.
Hence, the A_{n} 's are self-adjoint and all commute.
They also commute with every operator that T commutes with.
We now prove:
(i) $A_{n} \leq I, n=0,1, \ldots$;
(ii) $A_{n} \leq A_{n+1}, n=0,1, \ldots$;
(iii) $A_{n} x \rightarrow A x, A=T^{1 / 2}$;
(iv) $S T=T S$ implies $A S=S A$, where S is a bounded linear operator on H.

Positive Square Root Part (b) (i)

(i) We have $A_{0} \leq 1$.

Let $n>0$.
Since $I-A_{n-1}$ is self-adjoint,

$$
\left(I-A_{n-1}\right)^{2} \geq 0
$$

Also, $T \leq I$ implies $I-T \geq 0$.
From this, we obtain

$$
\begin{aligned}
0 & \leq \frac{1}{2}\left(I-A_{n-1}\right)^{2}+\frac{1}{2}(I-T) \\
& =I-A_{n-1}-\frac{1}{2}\left(T-A_{n-1}^{2}\right) \\
& =I-A_{n} .
\end{aligned}
$$

Positive Square Root Part (b) (ii)

(ii) We use induction.

We have

$$
0=A_{0} \leq A_{1}=\frac{1}{2} T .
$$

We show that $A_{n-1} \leq A_{n}$, for any fixed n, implies $A_{n} \leq A_{n+1}$.
We calculate directly

$$
\begin{aligned}
A_{n+1}-A_{n} & =A_{n}+\frac{1}{2}\left(T-A_{n}^{2}\right)-A_{n-1}-\frac{1}{2}\left(T-A_{n-1}^{2}\right) \\
& =\left(A_{n}-A_{n-1}\right)\left[I-\frac{1}{2}\left(A_{n}+A_{n-1}\right)\right] .
\end{aligned}
$$

Here $A_{n}-A_{n-1} \geq 0$, by hypothesis, and the bracket is ≥ 0 by (i). Hence, $A_{n+1}-A_{n} \geq 0$.

Positive Square Root Part (b) (iii) and (iv)

(iii) $\left(A_{n}\right)$ is monotone by (ii) and $A_{n} \leq I$ by (i).

Hence, a previous theorem implies the existence of a bounded self-adjoint linear operator A, such that $A_{n} x \rightarrow A x$, for all $x \in H$.
Since $\left(A_{n} x\right)$ converges,

$$
\frac{1}{2}\left(T x-A_{n}^{2} x\right)=A_{n+1} x-A_{n} x \rightarrow 0
$$

Hence, $T x-A^{2} x=0$, for all x. I.e., $T=A^{2}$.
Also $A \geq 0$, because $0=A_{0} \leq A_{n}$ by (ii).
I.e., $\left\langle A_{n} x, x\right\rangle \geq 0$, for every $x \in H$.

By the continuity of the inner product, $\langle A x, x\rangle \geq 0$, for every $x \in H$.
(iv) We know that $S T=T S$ implies $A_{n} S=S A_{n}$.
I.e., $A_{n} S x=S A_{n} x$, for all $x \in H$.

Letting $n \rightarrow \infty$, we obtain (iv).

Positive Square Root Part (c)

(c) (Uniqueness) Let both A and B be positive square roots of T. Then $A^{2}=B^{2}=T$. Also

$$
B T=B B^{2}=B^{2} B=T B .
$$

So, by (iv), $A B=B A$.
Let $x \in H$ be arbitrary and $y=(A-B) x$.
Then $\langle A y, y\rangle \geq 0$ and $\langle B y, y\rangle \geq 0$ because $A \geq 0$ and $B \geq 0$.
Using $A B=B A$ and $A^{2}=B^{2}$, we obtain

$$
\langle A y, y\rangle+\langle B y, y\rangle=\langle(A+B) y, y\rangle=\left\langle\left(A^{2}-B^{2}\right) x, y\right\rangle=0 .
$$

Hence $\langle A y, y\rangle=\langle B y, y\rangle=0$.

Positive Square Root Part (c) (Cont'd)

- Since $A \geq 0$ and A is self-adjoint, it has itself a positive square root C, that is, $C^{2}=A$ and C is self-adjoint.
We thus obtain

$$
0=\langle A y, y\rangle=\left\langle C^{2} y, y\right\rangle=\langle C y, C y\rangle=\|C y\|^{2} .
$$

So Cy $=0$. Moreover,

$$
A y=C^{2} y=C(C y)=0
$$

Similarly, $B y=0$. Hence, $(A-B) y=0$.
Using $y=(A-B) x$, we thus have, for all $x \in H$,

$$
\|A x-B x\|^{2}=\left\langle(A-B)^{2} x, x\right\rangle=\langle(A-B) y, x\rangle=0 .
$$

This shows that $A x-B x=0$, for all $x \in H$. So $A=B$.

Subsection 5

Projection Operators

Orthogonal Projections

- A Hilbert space H can be represented as the direct sum of a closed subspace Y and its orthogonal complement Y^{\perp} :

$$
\begin{aligned}
H & =Y \oplus Y^{\perp} ; \\
x & =y+z, \quad y \in Y, z \in Y^{\perp} .
\end{aligned}
$$

- Since the sum is direct, y is unique, for any given $x \in H$.
- Hence this representation defines a linear operator

$$
\begin{aligned}
P: H & \rightarrow H \\
x & \mapsto y=P x .
\end{aligned}
$$

- P is called an orthogonal projection or projection on H.
- More specifically, P is called the projection of H onto Y.

Orthogonal Projections (Cont'd)

- A linear operator $P: H \rightarrow H$ is a projection on H if there is a closed subspace Y of H, such that:
- Y is the range of P;
- Y^{\perp} is the null space of P;
- $\left.P\right|_{Y}$ is the identity operator on Y.
- Note that, with this notation, we can now write

$$
x=y+z=P x+(I-P) x
$$

- So the projection of H onto Y^{\perp} is $I-P$.

The Projection Theorem

Theorem (Projection)

A bounded linear operator $P: H \rightarrow H$ on a Hilbert space H is a projection if and only if P is self-adjoint and idempotent (that is, $P^{2}=P$).
(a) Suppose that P is a projection on H and denote $P(H)$ by Y. For every $x \in H$ and $P x=y \in Y$, we have

$$
P^{2} x=P y=y=P x
$$

Hence, $P^{2}=P$.
Let $x_{1}=y_{1}+z_{1}$ and $x_{2}=y_{2}+z_{2}$, where $y_{1}, y_{2} \in Y$ and $z_{1}, z_{2} \in Y^{\perp}$.
Then, since $Y \perp Y^{\perp},\left\langle y_{1}, z_{2}\right\rangle=\left\langle y_{2}, z_{1}\right\rangle=0$. So we have

$$
\left\langle P x_{1}, x_{2}\right\rangle=\left\langle y_{1}, y_{2}+z_{2}\right\rangle=\left\langle y_{1}, y_{2}\right\rangle=\left\langle y_{1}+z_{1}, y_{2}\right\rangle=\left\langle x_{1}, P x_{2}\right\rangle .
$$

Hence, P is self-adjoint.

The Projection Theorem (Converse)

(b) Conversely, suppose that $P^{2}=P=P^{*}$ and denote $P(H)$ by Y. Then, for every $x \in H$,

$$
x=P x+(I-P) x
$$

The orthogonality $Y=P(H) \perp(I-P)(H)$ follows from

$$
\langle P x,(I-P) v\rangle=\langle x, P(I-P) v\rangle=\left\langle x, P v-P^{2} v\right\rangle=\langle x, 0\rangle=0 .
$$

We show Y is the null space $\mathscr{N}(I-P)$ of $I-P$.

- $Y \subseteq \mathscr{N}(I-P):(I-P) P x=P x-P^{2} x=0$;
- $Y \supseteq \mathscr{N}(I-P):(I-P) x=0$ implies $x=P x$.

Hence, Y is closed.
Finally, writing $y=P x$, we have

$$
P y=P^{2} x=P x=y
$$

Therefore, $\left.P\right|_{Y}$ is the identity operator on Y.

Spectral Representations

- We attempt to represent complicated linear operators on Hilbert spaces in terms of simple operators, such as projections.
- The resulting representation is called a spectral representation of the operator because the projections employed for that purpose are related to the spectrum of the operator.
- For a spectral representation of bounded self-adjoint linear operators:
- The first step is a thorough investigation of general properties of projections.
- The second step is the definition of projections suitable for that purpose.
These are one-parameter families of projections, called spectral families.
- The third step associates with a given bounded self-adjoint linear operator T a spectral family in a unique way.
This is called the spectral family associated with T.

Positivity and Norm of Projections

Theorem (Positivity, Norm)

For any projection P on a Hilbert space H :
(a) $\langle P x, x\rangle=\|P x\|^{2}$;
(b) $P \geq 0$;
(c) $\|P\| \leq 1 ; \quad\|P\|=1$ if $P(H) \neq\{0\}$.

- (a) and (b) follow from

$$
\langle P x, x\rangle=\left\langle P^{2} x, x\right\rangle=\langle P x, P x\rangle=\|P x\|^{2} \geq 0
$$

By the Schwarz inequality,

$$
\|P x\|^{2}=\langle P x, x\rangle \leq\|P x\|\|x\| .
$$

So $\frac{\|P x\|}{\|x\|} \leq 1$, for every $x \neq 0$. Hence, $\|P\| \leq 1$.
If $x \in P(H)$ and $x \neq 0, \frac{\|P x\|}{\|x\|}=1$. This proves (c).

Product of Projections

Theorem (Product of Projections)

In connection with products (composites) of projections on a Hilbert space H, the following two statements hold:
(a) $P=P_{1} P_{2}$ is a projection on H if and only if the projections P_{1} and P_{2} commute, that is, $P_{1} P_{2}=P_{2} P_{1}$. Then P projects H onto $Y=Y_{1} \cap Y_{2}$, where $Y_{j}=P_{j}(H)$.
(b) Two closed subspaces Y and V of H are orthogonal if and only if the corresponding projections satisfy $P_{Y} P_{V}=0$.
(a) Suppose that $P_{1} P_{2}=P_{2} P_{1}$.

Then P is self-adjoint, by a previous theorem.
Moreover, P is idempotent, since

$$
P^{2}=\left(P_{1} P_{2}\right)\left(P_{1} P_{2}\right)=P_{1}^{2} P_{2}^{2}=P_{1} P_{2}=P .
$$

Hence P is a projection.

Product of Projections (Cont'd)

- For every $x \in H$, we have $P x=P_{1}\left(P_{2} x\right)=P_{2}\left(P_{1} x\right)$.

Since P_{1} projects H onto Y_{1}, we must have $P_{1}\left(P_{2} x\right) \in Y_{1}$. Similarly, $P_{2}\left(P_{1} x\right) \in Y_{2}$. Together, $P x \in Y_{1} \cap Y_{2}$. Since $x \in H$ was arbitrary, this shows that P projects H into $Y=Y_{1} \cap Y_{2}$.
P projects H onto Y : Suppose $y \in Y$. Then $y \in Y_{1}$ and $y \in Y_{2}$. Thus, $P y=P_{1} P_{2} y=P_{1} y=y$.
Conversely, suppose $P=P_{1} P_{2}$ is a projection defined on H.
Then P is self-adjoint. By a previous theorem, $P_{1} P_{2}=P_{2} P_{1}$.
(b) Suppose $Y \perp V$. Then $Y \cap V=\{0\}$. Hence, $P_{Y} P_{V} X=0$, for all $x \in H$, by part (a). So $P_{Y} P_{V}=0$.
Conversely, suppose $P_{Y} P_{V}=0$. Then, for every $y \in Y$ and $v \in V$,

$$
\langle y, v\rangle=\left\langle P_{Y} y, P_{V} v\right\rangle=\left\langle y, P_{Y} P_{V} v\right\rangle=\langle y, 0\rangle=0 .
$$

Hence, $Y \perp V$.

Sum of Projections

Theorem (Sum of Projections)

Let P_{1} and P_{2} be projections on a Hilbert space H. Then:
(a) The sum $P=P_{1}+P_{2}$ is a projection on H if and only if $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$ are orthogonal.
(b) If $P=P_{1}+P_{2}$ is a projection, P projects H onto $Y=Y_{1} \oplus Y_{2}$.
(a) If $P=P_{1}+P_{2}$ is a projection, $P=P^{2}$. Expanding, we get

$$
\begin{aligned}
P_{1}+P_{2} & =\left(P_{1}+P_{2}\right)^{2} \\
& =P_{1}^{2}+P_{1} P_{2}+P_{2} P_{1}+P_{2}^{2} \\
& =P_{1}+P_{1} P_{2}+P_{2} P_{1}+P_{2}
\end{aligned}
$$

Hence, $P_{1} P_{2}+P_{2} P_{1}=0$.

Sum of Projections Part (a) (Cont'd)

- We obtained $P_{1} P_{2}+P_{2} P_{1}=0$.

Multiplying by P_{2} on the left, we obtain $P_{2} P_{1} P_{2}+P_{2} P_{1}=0$.
Multiplying this by P_{2} on the right, we have $2 P_{2} P_{1} P_{2}=0$.
So $P_{2} P_{1}=0$. Hence, $Y_{1} \perp Y_{2}$.
Conversely, suppose $Y_{1} \perp Y_{2}$.
Then $P_{1} P_{2}=P_{2} P_{1}=0$.
This yields $P_{1} P_{2}+P_{2} P_{1}=0$.
So we get $P^{2}=P$.
Since P_{1} and P_{2} are self-adjoint, so is $P=P_{1}+P_{2}$.
Hence, P is a projection.

Sum of Projections Part (b)

(b) We determine the closed subspace $Y \subseteq H$ onto which P projects.

Since $P=P_{1}+P_{2}$, we have, for every $x \in H$,

$$
y=P x=P_{1} x+P_{2} x
$$

Here, $P_{1} x \in Y_{1}$ and $P_{2} x \in Y_{2}$.
Hence $y \in Y_{1} \oplus Y_{2}$. So $Y \subseteq Y_{1} \oplus Y_{2}$.
We show that $Y \supseteq Y_{1} \oplus Y_{2}$.
Let $v \in Y_{1} \oplus Y_{2}$ be arbitrary.
Then $v=y_{1}+y_{2}$, with $y_{1} \in Y_{1}$ and $y_{2} \in Y_{2}$.
Applying P and using $Y_{1} \perp Y_{2}$, we obtain

$$
P v=P_{1}\left(y_{1}+y_{2}\right)+P_{2}\left(y_{1}+y_{2}\right)=P_{1} y_{1}+P_{2} y_{2}=y_{1}+y_{2}=v .
$$

Hence, $v \in Y$. So $Y \supseteq Y_{1} \oplus Y_{2}$.

Subsection 6

Further Properties of Projections

Partial Order on the Set of all Projections

Theorem (Partial Order)

Let P_{1} and P_{2} be projections defined on a Hilbert space H. Denote by $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$ the subspaces onto which H is projected by P_{1} and P_{2}. Let $\mathscr{N}\left(P_{1}\right)$ and $\mathscr{N}\left(P_{2}\right)$ be the null spaces of these projections.
Then the following conditions are equivalent:
(1) $P_{2} P_{1}=P_{1} P_{2}=P_{1}$;
(2) $Y_{1} \subseteq Y_{2}$;
(3) $\mathscr{N}\left(P_{1}\right) \supseteq \mathscr{N}\left(P_{2}\right)$;
(4) $\left\|P_{1} x\right\| \leq\left\|P_{2} x\right\|$, for all $x \in H$;
(5) $P_{1} \leq P_{2}$.
$(1) \Rightarrow(4):$ We have $\left\|P_{1}\right\| \leq 1$. Hence (1) yields, for all $x \in H$,

$$
\left\|P_{1} x\right\|=\left\|P_{1} P_{2} x\right\| \leq\left\|P_{1}\right\|\left\|P_{2} x\right\| \leq\left\|P_{2} x\right\| .
$$

Partial Order on the Set of all Projections (Cont'd)

$(4) \Rightarrow(5):$ We have, for all $x \in H$,

$$
\left\langle P_{1} x, x\right\rangle=\left\|P_{1} x\right\|^{2} \leq\left\|P_{2} x\right\|^{2}=\left\langle P_{2} x, x\right\rangle .
$$

This shows that $P_{1} \leq P_{2}$, by definition.
$(5) \Rightarrow(3)$: Let $x \in \mathscr{N}\left(P_{2}\right)$. Then $P_{2} x=0$. By hypothesis,

$$
\left\|P_{1} x\right\|^{2}=\left\langle P_{1} x, x\right\rangle \leq\left\langle P_{2} x, x\right\rangle=0 .
$$

Hence, $P_{1} x=0$. So $x \in \mathscr{N}\left(P_{1}\right)$. This shows that $\mathscr{N}\left(P_{1}\right) \supseteq \mathscr{N}\left(P_{2}\right)$.
(3) $\Rightarrow(2)$: Note that $\mathscr{N}\left(P_{j}\right)$ is the orthogonal complement of Y_{j} in H.
(2) $\Rightarrow(1)$: For every $x \in H$, we have $P_{1} x \in Y_{1}$.

Hence, by hypothesis, $P_{1} x \in Y_{2}$. So $P_{2}\left(P_{1} x\right)=P_{1} x$. I.e., $P_{2} P_{1}=P_{1}$.
Since P_{1} is self-adjoint, by a preceding result, $P_{1}=P_{2} P_{1}=P_{1} P_{2}$.

Difference of Projections

Theorem (Difference of Projections)

Let P_{1} and P_{2} be projections on a Hilbert space H. Then:
(a) The difference $P=P_{2}-P_{1}$ is a projection on H if and only if $Y_{1} \subseteq Y_{2}$, where $Y_{j}=P_{j}(H)$.
(b) If $P=P_{2}-P_{1}$ is a projection, P projects H onto Y, where Y is the orthogonal complement of Y_{1} in Y_{2}.
(a) If $P=P_{2}-P_{1}$ is a projection, $P=P^{2}$. Expanding

$$
\begin{aligned}
P_{2}-P_{1} & =\left(P_{2}-P_{1}\right)^{2} \\
& =P_{2}^{2}-P_{2} P_{1}-P_{1} P_{2}+P_{1}^{2} \\
& =P_{2}-P_{2} P_{1}-P_{1} P_{2}+P_{1}
\end{aligned}
$$

Hence $P_{1} P_{2}+P_{2} P_{1}=2 P_{1}$.

Difference of Projections Part (a) (Cont'd)

- We got $P_{1} P_{2}+P_{2} P_{1}=2 P_{1}$.

Multiplication by P_{2} from left and right gives

$$
P_{2} P_{1} P_{2}+P_{2} P_{1}=2 P_{2} P_{1} \quad \text { and } \quad P_{1} P_{2}+P_{2} P_{1} P_{2}=2 P_{1} P_{2}
$$

Hence, we get

$$
P_{2} P_{1} P_{2}=P_{2} P_{1} \quad \text { and } \quad P_{2} P_{1} P_{2}=P_{1} P_{2}
$$

So $P_{2} P_{1}=P_{1} P_{2}=P_{1}$. Thus, $Y_{1} \subseteq Y_{2}$.
Conversely, suppose $Y_{1} \subseteq Y_{2}$.
Then $P_{2} P_{1}=P_{1} P_{2}=P_{1}$. This implies $P_{1} P_{2}+P_{2} P_{1}=2 P_{1}$.
Thus, P is idempotent.
Since P_{1} and P_{2} are self-adjoint, $P=P_{2}-P_{1}$ is self-adjoint.
So P is a projection.

Difference of Projections Part (b)

(b) $Y=P(H)$ consists of all vectors of the form

$$
y=P x=P_{2} x-P_{1} x, \quad x \in H
$$

Since $Y_{1} \subseteq Y_{2}$, by Part (a), we have $P_{2} P_{1}=P_{1}$. Thus,

$$
P_{2} y=P_{2}^{2} x-P_{2} P_{1} x=P_{2} x-P_{1} x=y
$$

This shows that $y \in Y_{2}$. Moreover,

$$
P_{1} y=P_{1} P_{2} x-P_{1}^{2} x=P_{1} x-P_{1} x=0
$$

This shows that $y \in \mathscr{N}\left(P_{1}\right)=Y_{1}^{\perp}$. So $Y \subseteq Y_{2} \cap Y_{1}^{\perp}$.

Difference of Projections Part (b) (Cont'd)

- We show, next, that $Y \supseteq Y_{2} \cap Y_{1}^{\perp}$.

The projection of H onto Y_{1}^{\perp} is $I-P_{1}$.
So every $v \in Y_{2} \cap Y_{1}^{\perp}$ is of the form $v=\left(I-P_{1}\right) y_{2}, y_{2} \in Y_{2}$. Using again $P_{2} P_{1}=P_{1}$, we obtain, since $P_{2} y_{2}=y_{2}$,

$$
\begin{aligned}
P v & =\left(P_{2}-P_{1}\right)\left(I-P_{1}\right) y_{2} \\
& =\left(P_{2}-P_{2} P_{1}-P_{1}+P_{1}^{2}\right) y_{2} \\
& =y_{2}-P_{1} y_{2} \\
& =Y_{2} \cap Y_{1}^{\perp} .
\end{aligned}
$$

This shows that $v \in Y$. Hence, $Y \supseteq Y_{2} \cap Y_{1}^{\perp}$.
We conclude that $Y=P(H)=Y_{2} \cap Y_{1}^{\perp}$.

Monotone Increasing Sequence

Theorem (Monotone Increasing Sequence)

Let $\left(P_{n}\right)$ be a monotone increasing sequence of projections P_{n} defined on a Hilbert space H. Then:
(a) $\left(P_{n}\right)$ is strongly operator convergent, say, $P_{n} x \rightarrow P x$, for every $x \in H$, and the limit operator P is a projection defined on H.
(b) P projects H onto $P(H)=\overline{\cup_{n=1}^{\infty} P_{n}(H)}$.
(c) P has the null space $\mathscr{N}(P)=\bigcap_{n=1}^{\infty} \mathscr{N}\left(P_{n}\right)$.
(a) Let $m<n$. By assumption, $P_{m} \leq P_{n}$. So $P_{m}(H) \subseteq P_{n}(H)$. By the previous theorem, $P_{n}-P_{m}$ is a projection.

- Hence, for every fixed $x \in H$, we obtain

$$
\begin{aligned}
\left\|P_{n} x-P_{m} x\right\|^{2} & =\left\|\left(P_{n}-P_{m}\right) x\right\|^{2}=\left\langle\left(P_{n}-P_{m}\right) x, x\right\rangle \\
& =\left\langle P_{n} x, x\right\rangle-\left\langle P_{m} x, x\right\rangle=\left\|P_{n} x\right\|^{2}-\left\|P_{m} x\right\|^{2}
\end{aligned}
$$

Monotone Increasing Sequence Part (a) (Cont'd)

- Now $\left\|P_{n}\right\| \leq 1$. So $\left\|P_{n} x\right\| \leq\|x\|$, for every n. Hence $\left(\left\|P_{n} x\right\|\right)$ is a bounded sequence of numbers.
$\left(\left\|P_{n}\right\|\right)$ is also monotone since $\left(P_{n}\right)$ is monotone. Hence ($\left\|P_{n} x\right\|$) converges.
From this and the preceding equality, $\left(P_{n} x\right)$ is Cauchy.
Since H is complete, $\left(P_{n} x\right)$ converges.
The limit depends on x, say, $P_{n} x \rightarrow P x$.
This defines an operator P on H.
Linearity of P is obvious.
Since $P_{n} x \rightarrow P x$ and the P_{n} 's are bounded, self-adjoint and idempotent, P has the same properties.
Hence, by the Projection Theorem, P is a projection.

Monotone Increasing Sequence Part (b)

(b) We determine $P(H)$. Let $m<n$. Then $P_{m} \leq P_{n}$.

This gives $P_{n}-P_{m} \geq 0$. So $\left\langle\left(P_{n}-P_{m}\right) x, x\right\rangle \geq 0$, by definition.
As $n \rightarrow \infty$, by continuity of the inner product, $\left\langle\left(P-P_{m}\right) x, x\right\rangle \geq 0$.
So $P_{m} \leq P$. Hence, $P_{m}(H) \subseteq P(H)$, for all m. So $\cup P_{m}(H) \subseteq P(H)$.
Now, for all m and all $x \in H, P_{m} x \in P_{m}(H) \subseteq \cup P_{m}(H)$.
Since $P_{m} x \rightarrow P x$, we see that $P x \in \overline{\cup P_{m}(H)}$.
Hence, $P(H) \subseteq \overline{\bigcup P_{m}(H)}$.
Taken together,

$$
\bigcup P_{m}(H) \subseteq P(H) \subseteq \overline{\bigcup P_{m}(H)}
$$

Therefore, we have $P(H)=\mathscr{N}(I-P)$. So $P(H)$ is closed.
This proves (b).

Monotone Increasing Sequence Part (c)

(c) We determine $\mathscr{N}(P)$.

By Part (b) of the proof, for all $n, P(H) \supseteq P_{n}(H)$.
Using a preceding lemma, $\mathscr{N}(P)=P(H)^{\perp} \subseteq P_{n}(H)^{\perp}$.
Hence, $\mathscr{N}(P) \subseteq \cap P_{n}(H)^{\perp}=\cap \mathscr{N}\left(P_{n}\right)$.
On the other hand, suppose $x \in \cap \mathscr{N}\left(P_{n}\right)$.
Then $x \in \mathscr{N}\left(P_{n}\right)$, for every n. So $P_{n} x=0$.
Moreover, $P_{n} x \rightarrow P x$ implies $P x=0$.
l.e., $x \in \mathscr{N}(P)$.

Since $x \in \cap \mathscr{N}\left(P_{n}\right)$ was arbitrary, $\cap \mathscr{N}\left(P_{n}\right) \subseteq \mathscr{N}(P)$.
We, thus, obtain $\mathscr{N}(P)=\bigcap \mathscr{N}\left(P_{n}\right)$.

Subsection 7

Spectral Family

Self-Adjoint Operators on a Unitary Space

- Consider the unitary space (inner product space over \mathbb{C}) $H=\mathbb{C}^{n}$.
- Let $T: H \rightarrow H$ be a self-adjoint linear operator on H.
- Then T is bounded.
- Moreover, we may choose a basis for H and represent T by a Hermitian matrix which we denote simply by T.
- The spectrum of the operator consists of the eigenvalues of that matrix which are real.

Spectrum of Self-Adjoint Operators on a Unitary Space

- For simplicity, we assume that the matrix T has n different eigenvalues $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$.
- Then a previous theorem implies that T has an orthonormal set of n eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$, where x_{j} corresponds to λ_{j}.
- We write these vectors as column vectors, for convenience.
- This is a basis for H.
- So every $x \in H$ has a unique representation

$$
x=\sum_{j=1}^{n} \gamma_{j} x_{j}, \quad \gamma_{j}=\left\langle x, x_{j}\right\rangle=x^{\top} \bar{x}_{j}
$$

Spectral Representation of Self-Adjoint Operators

- We obtained the representation

$$
x=\sum_{j=1}^{n} \gamma_{j} x_{j}, \quad \gamma_{j}=\left\langle x, x_{j}\right\rangle=x^{\top} \bar{x}_{j}
$$

- Since x_{j} is an eigenvector of $T, T x_{j}=\lambda_{j} x_{j}$.
- Consequently, we obtain

$$
T_{x}=\sum_{j=1}^{n} \lambda_{j} \gamma_{j} x_{j}
$$

- Thus, whereas T may act on x in a complicated way, it acts on each term of the sum in a very simple fashion.

Spectral Representation of Self-Adjoint Operators (Cont'd)

- We may define an operator

$$
\begin{aligned}
P_{j}: \quad H & \rightarrow H ; \\
x & \mapsto
\end{aligned} \gamma_{j} x_{j} .
$$

- Obviously, P_{j} is the projection (orthogonal projection) of H onto the eigenspace of T corresponding to λ_{j}.
- We obtain

$$
x=\sum_{j=1}^{n} P_{j} x
$$

- Hence, $I=\sum_{j=1}^{n} P_{j}$, with I the identity on H.
- We also have

$$
T x=\sum_{j=1}^{n} \lambda_{j} P_{j} x
$$

- Hence, $T=\sum_{j=1}^{n} \lambda_{j} P_{j}$.

The One-Parameter Family of Projections E E

- For any real λ, we define

$$
E_{\lambda}=\sum_{\lambda_{j} \leq \lambda} P_{j}, \quad \lambda \in \mathbb{R} .
$$

- For any λ, the operator E_{λ} is the projection of H onto the subspace V_{λ} spanned by all those x_{j} for which $\lambda_{j} \leq \lambda$.
- Thus $V_{\lambda} \subseteq V_{\mu}$, for $\lambda \leq \mu$.
- As λ traverses \mathbb{R} in the positive sense, E_{λ} grows from 0 to I.
- The growth occurs at the eigenvalues of T;
- E_{λ} remains unchanged for λ in any interval that is free of eigenvalues.
- Hence, E_{λ} has the following properties:
- $E_{\lambda} E_{\mu}=E_{\mu} E_{\lambda}=E_{\lambda}$, if $\lambda<\mu$;
- $E_{\lambda}=0$, if $\lambda<\lambda_{1}$;
- $E_{\lambda}=I$, if $\lambda \geq \lambda_{n}$;
- $E_{\lambda^{+}}=\lim _{\mu \rightarrow \lambda^{+}} E_{\mu}=E_{\lambda}$.

Spectral Family or Decomposition of Unity

Definition (Spectral Family or Decomposition of Unity)

A real spectral family (or real decomposition of unity) is a one-parameter family $\mathscr{E}=\left(E_{\lambda}\right)_{\lambda \in \mathbb{R}}$ of projections E_{λ} defined on a Hilbert space H (of any dimension) which depends on a real parameter λ and is such that:

- $E_{\lambda} \leq E_{\mu}$, hence $E_{\lambda} E_{\mu}=E_{\mu} E_{\lambda}=E_{\lambda}, \lambda<\mu ;$
- $\lim _{\lambda \rightarrow-\infty} E_{\lambda} x=0, \lim _{\lambda \rightarrow+\infty} E_{\lambda} x=x$;
- $E_{\lambda^{+}} x=\lim _{\mu \rightarrow \lambda^{+}} E_{\mu} x=E_{\lambda} x, x \in H$.
- Thus, a real spectral family can be regarded as a mapping $\mathbb{R} \rightarrow B(H, H) ; \lambda \mapsto E_{\lambda}$.
- To each $\lambda \in \mathbb{R}$, it associates a projection $E_{\lambda} \in B(H, H)$, where $B(H, H)$ is the space of all bounded linear operators from H into H.

Spectral Family on an Interval

- \mathscr{E} is called a spectral family on an interval $[a, b]$ if

$$
E_{\lambda}=0, \quad \lambda<a, \quad E_{\lambda}=I, \quad \lambda \geq b .
$$

- Such families are of particular interest, since the spectrum of a bounded self-adjoint linear operator lies in a finite interval on the real line.
- $\mu \rightarrow \lambda^{+}$indicates that in this limit process we restrict to values $\mu>\lambda$.
- The condition $\lim _{\mu \rightarrow \lambda^{+}} E_{\mu} x=E_{\lambda} x, x \in H$, means that $\lambda \mapsto E_{\lambda}$ is strongly operator continuous from the right.
- We will see that with any given bounded self-adjoint linear operator T on any Hilbert space we can associate a spectral family which may be used for representing T by a Riemann-Stieltjes integral.
- This is known as a spectral representation.

The Spectral Representation

- Assume again, for simplicity, that the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of T are all different, and $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$.
- Then we have:
- $E_{\lambda_{1}}=P_{1}$;
- $E_{\lambda_{2}}=P_{1}+P_{2}$;
- $E_{\lambda_{n}}=P_{1}+\cdots+P_{n}$.
- Hence, conversely,

$$
\begin{aligned}
P_{1} & =E_{\lambda_{1}} ; \\
P_{j} & =E_{\lambda_{j}}-E_{\lambda_{j-1}}, \quad j=2, \ldots, n .
\end{aligned}
$$

- Note that E_{λ} remains the same for $\lambda \in\left[\lambda_{j-1}, \lambda_{j}\right)$.
- So we may write

$$
P_{j}=E_{\lambda_{j}}-E_{\lambda_{j}^{-}} .
$$

The Spectral Representation (Cont'd)

- Now we have

$$
x=\sum_{j=1}^{n} P_{j} x=\sum_{j=1}^{n}\left(E_{\lambda_{j}}-E_{\lambda_{j}^{-}}\right) x .
$$

- Moreover,

$$
T x=\sum_{j=1}^{n} \lambda_{j} P_{j} x=\sum_{j=1}^{n} \lambda_{j}\left(E_{\lambda_{j}}-E_{\lambda_{j}^{-}}\right) x
$$

- If we drop the x and write $\delta E_{\lambda}=E_{\lambda}-E_{\lambda^{-}}$, we get

$$
T=\sum_{j=1}^{n} \lambda_{j} \delta E_{\lambda_{j}}
$$

- This is the spectral representation of the self-adjoint operator T with eigenvalues $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$ on the n-dimensional Hilbert space H.

Spectral Representation as an Integral

- We obtained the spectral representation

$$
T=\sum_{j=1}^{n} \lambda_{j} \delta E_{\lambda_{j}}
$$

of the self-adjoint linear operator T with eigenvalues $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$ on the n-dimensional Hilbert space H.

- The representation shows that for any $x, y \in H$,

$$
\langle T x, y\rangle=\sum_{j=1}^{n} \lambda_{j}\left\langle\delta E_{\lambda_{j}} x, y\right\rangle
$$

- We note that this may be written as a Riemann-Stieltjes integral

$$
\langle T x, y\rangle=\int_{-\infty}^{+\infty} \lambda d w(\lambda)
$$

where $w(\lambda)=\left\langle E_{\lambda} x, y\right\rangle$.

Subsection 8

Spectral Family of a Bounded Self-Adjoint Operator

The Spectral Family of an Operator

- Let H be a complex Hilbert space.
- Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on H.
- With T we can associate a spectral family \mathscr{E} that will be used for a spectral representation of T.
- To define \mathscr{E} we need the following:
- The operator

$$
T_{\lambda}=T-\lambda I ;
$$

- The positive square root of T_{λ}^{2},

$$
B_{\lambda}=\left(T_{\lambda}^{2}\right)^{1 / 2} ;
$$

- The operator

$$
T_{\lambda}^{+}=\frac{1}{2}\left(B_{\lambda}+T_{\lambda}\right),
$$

called the positive part of T_{λ}.

- The spectral family \mathscr{E} of T is defined by $\mathscr{E}=\left(E_{\lambda}\right)_{\lambda \in \mathbb{R}}$, where E_{λ} is the projection of H onto the null space $\mathscr{N}\left(T_{\lambda}^{+}\right)$of T_{λ}^{+}.

Definition of Operators B, T^{+}, T^{-}

- Consider the operators

$$
\begin{array}{ll}
B=\left(T^{2}\right)^{1 / 2} & \text { (positive square root of } \left.T^{2}\right) ; \\
T^{+}=\frac{1}{2}(B+T) & \text { (positive part of } T) ; \\
T^{-}=\frac{1}{2}(B-T) & \text { (negative part of } T) .
\end{array}
$$

- Let E be the projection of H onto the null space of T^{+},

$$
E: H \rightarrow Y=\mathscr{N}\left(T^{+}\right)
$$

- By subtraction and addition we see that

$$
\begin{aligned}
& T=T^{+}-T^{-} \\
& B=T^{+}+T^{-}
\end{aligned}
$$

Properties of the Operators

Lemma (Operators related to T)

The operators just defined have the following properties:
(a) B, T^{+}and T^{-}are bounded and self-adjoint.
(b) B, T^{+}and T^{-}commute with every bounded linear operator that T commutes with; in particular,

$$
B T=T B, \quad T^{+} T=T T^{+}, \quad T^{-} T=T T^{-}, \quad T^{+} T^{-}=T^{-} T^{+} .
$$

(c) E commutes with every bounded self-adjoint linear operator that T commutes with; in particular, $E T=T E$ and $E B=B E$.
(d) Furthermore,

$$
\begin{array}{ll}
T^{+} T^{-}=0 & T^{-} T^{+}=0 \\
T^{+} E=E T^{+}=0 & T^{-} E=E T^{-}=T^{-} \\
T E=-T^{-} & T(I-E)=T^{+} \\
T^{+} \geq 0 & T^{-} \geq 0 .
\end{array}
$$

Proof of Properties (a), (b)

(a) Clear, since T and B are bounded and self-adjoint.
(b) Suppose that $T S=S T$. Then

$$
T^{2} S=T S T=S T^{2} .
$$

$B S=S B$ follows from a previous theorem.
Hence,

$$
T^{+} S=\frac{1}{2}(B S+T S)=\frac{1}{2}(S B+S T)=S T^{+} .
$$

The proof of $T^{-} S=S T^{-}$is similar.

Proof of Property (c)

(c) For every $x \in H$, we have $y=E x \in Y=\mathscr{N}\left(T^{+}\right)$.

Hence, $T^{+} y=0$. And, also, $S T^{+} y=S 0=0$.
From $T S=S T$ and Part (b) we have $S T^{+}=T^{+} S$ and

$$
T^{+} S E x=T^{+} S y=S T^{+} y=0
$$

Hence SEx \mathcal{Y}.
But E projects H onto Y.
Thus, $E S E x=S E x$, for every $x \in H$.
That is, $E S E=S E$.
Since a projection is self-adjoint, by a previous result, and so is S,

$$
E S=E^{*} S^{*}=(S E)^{*}=(E S E)^{*}=E^{*} S^{*} E^{*}=E S E=S E .
$$

Proof of Properties (d)

(d) We prove all equalities in Part (d):

- From $B=\left(T^{2}\right)^{1 / 2}$, we have $B^{2}=T^{2}$. Also $B T=T B$ by Part (b). Hence, again by Part (b),

$$
T^{+} T^{-}=T^{-} T^{+}=\frac{1}{2}(B-T) \frac{1}{2}(B+T)=\frac{1}{4}\left(B^{2}+B T-T B-T^{2}\right)=0 .
$$

- By definition, $E x \in \mathscr{N}\left(T^{+}\right)$. So $T^{+} E x=0$, for all $x \in H$. Since T^{+}is self-adjoint, by Parts (b) and (c),

$$
E T^{+} x=T^{+} E x=0
$$

That is, $E T^{+}=T^{+} E=0$.
By the previous subpart, $T^{+} T^{-} x=0$. So $T^{-} x \in \mathscr{N}\left(T^{+}\right)$.
Hence, $E T^{-} x=T^{-} x$. Since T^{-}is self-adjoint, Part (c) yields

$$
T^{-} E x=E T^{-} x=T^{-} x, \quad x \in H .
$$

That is, $T^{-} E=E T^{-}=T^{-}$.

Proof of Properties (d) (Cont'd)

(d) We continue with the equalities in Part (d):

- From a previous subpart,

$$
T E=\left(T^{+}-T^{-}\right) E=-T^{-}
$$

From this,

$$
T(I-E)=T-T E=T+T^{-}=T^{+}
$$

- Now note that:
- E and B are self-adjoint and commute;
- $E \geq 0$, by the Positivity Theorem, and $B \geq 0$, by definition.

So, by a preceding subpart and a preceding theorem,

$$
T^{-}=E T^{-}+E T^{+}=E\left(T^{-}+T^{+}\right)=E B \geq 0
$$

Similarly, since, by the Positivity Theorem, $I-E \geq 0$,

$$
T^{+}=B-T^{-}=B-E B=(I-E) B \geq 0
$$

Operators Related to T_{λ}

- Instead of T, we now consider $T_{\lambda}=T-\lambda I$.
- Instead of B, T^{+}, T^{-}and E we now have to take:
- The positive square root of T_{λ}^{2},

$$
B_{\lambda}:=\left(T_{\lambda}^{2}\right)^{1 / 2}
$$

- The positive part and negative part of T_{λ}, defined by

$$
T_{\lambda}^{+}=\frac{1}{2}\left(B_{\lambda}+T_{\lambda}\right) \quad \text { and } \quad T_{\lambda}^{-}=\frac{1}{2}\left(B_{\lambda}-T_{\lambda}\right)
$$

- The projection

$$
E_{\lambda}: H \rightarrow Y_{\lambda}=\mathscr{N}\left(T_{\lambda}^{+}\right)
$$

of H onto the null space $Y_{\lambda}=\mathscr{N}\left(T_{\lambda}^{+}\right)$of T_{λ}^{+}.

Properties of the Operators Related to T_{λ}

Lemma (Operators Related to T_{λ})

The previous lemma remains true if we replace T, B, T^{+}, T^{-}, E by $T_{\lambda} B_{\lambda}, T_{\lambda}^{+}, T_{\lambda}^{-}, E_{\lambda}$, respectively, where λ is real. Moreover, for any real $\kappa, \lambda, \mu, v, \tau$, the following operators all commute: $T_{\kappa}, B_{\lambda}, T_{\mu}^{+}, T_{v}^{-}, E_{\tau}$.

- The first statement is obvious. We turn to the second statement. Note that $I S=S I$ and

$$
T_{\lambda}=T-\lambda I=T-\mu I+(\mu-\lambda) I=T_{\mu}+(\mu-\lambda) I
$$

Hence,

$$
\begin{array}{lll}
S T=T S & \text { implies } & S T_{\mu}=T_{\mu} S \\
& \text { implies } & S T_{\lambda}=T_{\lambda} S \\
& \text { implies } & S B_{\lambda}=B_{\lambda} S, S B_{\mu}=B_{\mu} S
\end{array}
$$

For $S=T_{\kappa}$, we get $T_{\kappa} B_{\lambda}=B_{\lambda} T_{\kappa}, \ldots$

Spectral Family Associated with an Operator

Theorem (Spectral Family Associated with an Operator)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Furthermore, let $E_{\lambda}(\lambda$ real $)$ be the projection of H onto the null space $Y_{\lambda}=\mathscr{N}\left(T_{\lambda}^{+}\right)$of the positive part T_{λ}^{+}of $T_{\lambda}=T-\lambda I$. Then $\mathscr{E}=\left(E_{\lambda}\right)_{\lambda \in \mathbb{R}}$ is a spectral family on the interval $[m, M] \subseteq \mathbb{R}$, where $m=\inf _{\|x\|=1}\langle T x, x\rangle$ and $M=\sup _{\|x\|=1}\langle T x, x\rangle$.

- $\mathscr{E}=\left(E_{\lambda}\right)$ is called the spectral family associated with T.
- We shall prove:
(i) $\lambda<\mu$ implies $E_{\lambda} \leq E_{\mu}$;
(ii) $\lambda<m$ implies $E_{\lambda}=0$;
(iii) $\lambda \geq M$ implies $E_{\lambda}=I$;
(iv) $\lim _{\mu \rightarrow \lambda^{+}} E_{\mu} x=E_{\lambda} x$.

Spectral Family Associated with an Operator (Proof)

- In the proof we use the following properties:
(a) $T_{\lambda} E_{\lambda}=-T_{\lambda}^{-}$;
(b) $T_{\lambda}\left(I-E_{\lambda}\right)=T_{\lambda}^{+}$;
(c) $T_{\lambda}^{+} \geq 0$;
(d) $T_{\lambda}^{-} \geq 0$;
(e) $T_{\mu}^{+} T_{\mu}^{-}=0$;
(f) $T_{\mu} E_{\mu}=-T_{\mu}^{-}$;
(g) $T_{\mu}^{+} \geq 0$;
(h) $T_{\mu}^{-} \geq 0$.

Proof of Property (i)

- Let $\lambda<\mu$. Since $-T_{\lambda}^{-} \leq 0$, we have $T_{\lambda}=T_{\lambda}^{+}-T_{\lambda}^{-} \leq T_{\lambda}^{+}$. Hence,

$$
T_{\lambda}^{+}-T_{\mu} \geq T_{\lambda}-T_{\mu}=(\mu-\lambda) I \geq 0
$$

$T_{\lambda}^{+}-T_{\mu}$ is self-adjoint and commutes with T_{μ}^{+}. Also $T_{\mu}^{+} \geq 0$.
A previous theorem, thus, implies

$$
T_{\mu}^{+}\left(T_{\lambda}^{+}-T_{\mu}\right)=T_{\mu}^{+}\left(T_{\lambda}^{+}-T_{\mu}^{+}+T_{\mu}^{-}\right) \geq 0
$$

We have $T_{\mu}^{+} T_{\mu}^{-}=0$, by one of the preceding identities. Hence, $T_{\mu}^{+} T_{\lambda}^{+} \geq T_{\mu}^{+2}$. I.e., for all $x \in H$,

$$
\left\langle T_{\mu}^{+} T_{\lambda}^{+} x, x\right\rangle \geq\left\langle T_{\mu}^{+2} x, x\right\rangle=\left\|T_{\mu}^{+} x\right\|^{2} \geq 0
$$

This shows that $T_{\lambda}^{+} x=0$ implies $T_{\mu}^{+} x=0$. Hence, $\mathscr{N}\left(T_{\lambda}^{+}\right) \subseteq \mathscr{N}\left(T_{\mu}^{+}\right)$.
So, by the Partial Order Theorem, $E_{\lambda} \leq E_{\mu}$.

Proof of Property (ii)

- Let $\lambda<m$ but that, nevertheless, $E_{\lambda} \neq 0$.

Then $E_{\lambda} z \neq 0$, for some z.
We set $x=E_{\lambda} z$. Then

$$
E_{\lambda} x=E_{\lambda}^{2} z=E_{\lambda} z=x
$$

So, without loss of generality, we assume $\|x\|=1$.
It follows that

$$
\begin{aligned}
\left\langle T_{\lambda} E_{\lambda} x, x\right\rangle & =\left\langle T_{\lambda x, x\rangle}\right. \\
& =\left\langle T_{x, x\rangle}-\lambda\right. \\
& \geq \inf _{\|\widetilde{x}\|=1}\langle T \widetilde{x}, \tilde{x}\rangle-\lambda \\
& =m-\lambda>0 .
\end{aligned}
$$

This contradicts $T_{\lambda} E_{\lambda}=-T_{\lambda}^{-} \leq 0$.

Proof of Property (iii)

- Suppose that $\lambda>M$, but $E_{\lambda} \neq I$.

So $I-E_{\lambda} \neq 0$.
Then, $\left(I-E_{\lambda}\right) x=x$, for some x of norm $\|x\|=1$.
Hence,

$$
\begin{aligned}
\left\langle T_{\lambda}\left(I-E_{\lambda}\right) x, x\right\rangle & =\left\langle T_{\lambda} x, x\right\rangle \\
& =\langle T x, x\rangle-\lambda \\
& \leq \sup _{\|\tilde{x}\|=1}\langle T \widetilde{x}, \tilde{x}\rangle-\lambda \\
& =M-\lambda<0 .
\end{aligned}
$$

This contradicts $T_{\lambda}\left(I-E_{\lambda}\right)=T_{\lambda}^{+} \geq 0$.
Also $E_{M}=1$, by the continuity from the right to be proved next.

Proof of Property (iv)

- With an interval $\Delta=(\lambda, \mu]$ we associate the operator $E(\Delta)=E_{\mu}-E_{\lambda}$.

Since $\lambda<\mu$, we have $E_{\lambda} \leq E_{\mu}$. Hence, $E_{\lambda}(H) \subseteq E_{\mu}(H)$.
This shows that $E(\Delta)$ is a projection. Also, $E(\Delta) \geq 0$.
We also have

$$
\begin{aligned}
E_{\mu} E(\Delta) & =E_{\mu}^{2}-E_{\mu} E_{\lambda}=E_{\mu}-E_{\lambda}=E(\Delta) ; \\
\left(I-E_{\lambda}\right) E(\Delta) & =E(\Delta)-E_{\lambda}\left(E_{\mu}-E_{\lambda}\right)=E(\Delta) .
\end{aligned}
$$

Now $E(\Delta), T_{\mu}^{-}$and T_{λ}^{+}are positive and commute.
So the products $T_{\mu}^{-} E(\Delta)$ and $T_{\lambda}^{+} E(\Delta) T$ are positive. Hence

$$
\begin{aligned}
& T_{\mu} E(\Delta)=T_{\mu} E_{\mu} E(\Delta)=-T_{\mu}^{-} E(\Delta) \leq 0 \\
& T_{\lambda} E(\Delta)=T_{\lambda}\left(I-E_{\lambda}\right) E(\Delta)=T_{\lambda}^{+} E(\Delta) \geq 0
\end{aligned}
$$

This implies $T E(\Delta) \leq \mu E(\Delta)$ and $T E(\Delta) \geq \lambda E(\Delta)$, respectively. Taken together, $\lambda E(\Delta) \leq T E(\Delta) \leq \mu E(\Delta)$.

Proof of Property (iv) (Cont'd)

- We keep λ fixed and let $\mu \rightarrow \lambda$ from the right in a monotone fashion. Then $E(\Delta) x \rightarrow P(\lambda) x$ by the analog of the Monotone Sequence Theorem for a decreasing sequence.
Here $P(\lambda)$ is bounded and self-adjoint.
Since $E(\Delta)$ is idempotent, so is $P(\lambda)$.
Hence $P(\lambda)$ is a projection.
Also $\lambda P(\lambda)=T P(\lambda)$. I.e., $T_{\lambda} P(\lambda)=0$. From this,

$$
T_{\lambda}^{+} P(\lambda)=T_{\lambda}\left(I-E_{\lambda}\right) P(\lambda)=\left(I-E_{\lambda}\right) T_{\lambda} P(\lambda)=0 .
$$

Hence, $T_{\lambda}^{+} P(\lambda) x=0$, for all $x \in H$. Hence, $P(\lambda) x \in \mathscr{N}\left(T_{\lambda}^{+}\right)$.
By definition, E_{λ} projects H onto $\mathscr{N}\left(T_{\lambda}^{+}\right)$.
Consequently, we have $E_{\lambda} P(\lambda) x=P(\lambda) x$. I.e., $E_{\lambda} P(\lambda)=P(\lambda)$.
On the other hand, if we let $\mu \rightarrow \lambda^{+}$, then $\left(I-E_{\lambda}\right) P(\lambda)=P(\lambda)$.
Taken, together, $P(\lambda)=0$. But we had $E(\Delta) x \rightarrow P(\lambda) x$.
So $P(\lambda)=0$ proves continuity of \mathscr{E} from the right.

Subsection 9

Spectral Representation of Bounded Self-Adjoint Operators

Spectral Theorem for Bounded Self-Adjoint Linear Operators

Spectral Theorem for Bounded Self-Adjoint Linear Operators

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then:
(a) T has the spectral representation

$$
T=\int_{m^{-}}^{M} \lambda d E_{\lambda}
$$

where $\mathscr{E}=\left(E_{\lambda}\right)$ is the spectral family associated with T.
The integral is to be understood in the sense of uniform operator convergence [convergence in the norm on $B(H, H)$], and for all $x, y \in H$,

$$
\langle T x, y\rangle=\int_{m^{-}}^{M} \lambda d w(\lambda), \quad w(\lambda)=\left\langle E_{\lambda} x, y\right\rangle
$$

where the integral is an ordinary Riemann-Stieltjes integral.

Spectral Theorem (Cont'd)

Spectral Theorem for Bounded Self-Adjoint Linear Operators

More generally, let p is a polynomial in λ with real coefficients, say, $p(\lambda)=\alpha_{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{0}$.
Then the operator $p(T)$ defined by

$$
p(T)=\alpha_{n} T^{n}+\alpha_{n-1} T^{n-1}+\cdots+\alpha_{0} l
$$

has the spectral representation

$$
p(T)=\int_{m^{-}}^{M} p(\lambda) d E_{\lambda} .
$$

Moreover, for all $x, y \in H$,

$$
\langle p(T) x, y\rangle=\int_{m^{-}}^{M} p(\lambda) d w(\lambda), \quad w(\lambda)=\left\langle E_{\lambda} x, y\right\rangle .
$$

Comments on the Spectral Theorem

- The notation m^{-}indicates that one must take into account a contribution at $\lambda=m$ which occurs if $E_{m} \neq 0$ (and $m \neq 0$).
- Thus, using any $a<m$, we can write

$$
\int_{a}^{M} \lambda d E_{\lambda}=\int_{m^{-}}^{M} \lambda d E_{\lambda}=m E_{m}+\int_{m}^{M} \lambda d E_{\lambda} .
$$

- Similarly,

$$
\int_{a}^{M} p(\lambda) d E_{\lambda}=\int_{m^{-}}^{M} p(\lambda) d E_{\lambda}=p(m) E_{m}+\int_{m}^{M} p(\lambda) d E_{\lambda}
$$

Proof of the Spectral Theorem Part (a)

(a) Choose a sequence $\left(\mathscr{P}_{n}\right)$ of partitions of $(a, b]$, where $a<m$ and $M<b$. Here every \mathscr{P}_{n} is a partition of $(a, b]$ into intervals $\Delta_{n j}=\left(\lambda_{n j}, \mu_{n j}\right]$,
$j=1, \ldots, n$, of length $\ell\left(\Delta_{n j}\right)=\mu_{n j}-\lambda_{n j}$.
Note that $\mu_{n j}=\lambda_{n, j+1}$, for $j=1, \ldots, n-1$.
We assume $\left(\mathscr{P}_{n}\right)$ to be such that $\eta\left(\mathscr{P}_{n}\right)=\max _{j} \ell\left(\Delta_{n j}\right) \xrightarrow{n \rightarrow \infty} 0$.
We have shown that $\lambda_{n j} E\left(\Delta_{n j}\right) \leq T E\left(\Delta_{n j}\right) \leq \mu_{n j} E\left(\Delta_{n j}\right)$.
Summing over j, we get

$$
\sum_{j=1}^{n} \lambda_{n j} E\left(\Delta_{n j}\right) \leq \sum_{j=1}^{n} T E\left(\Delta_{n j}\right) \leq \sum_{j=1}^{n} \mu_{n j} E\left(\Delta_{n j}\right)
$$

Since $\mu_{n j}=\lambda_{n, j+1}$, for $j=1, \ldots, n-1$, we get

$$
T \sum_{j=1}^{n} E\left(\Delta_{n j}\right)=T \sum_{j=1}^{n}\left(E_{\mu_{n j}}-E_{\lambda_{n j}}\right)=T(I-0)=T
$$

Proof of the Spectral Theorem Part (a) (Cont'd)

- For every $\varepsilon>0$, there is an n, such that $\eta\left(\mathscr{P}_{n}\right)<\varepsilon$. Hence,

$$
\sum_{j=1}^{n} \mu_{n j} E\left(\Delta_{n j}\right)-\sum_{j=1}^{n} \lambda_{n j} E\left(\Delta_{n j}\right)=\sum_{j=1}^{n}\left(\mu_{n j}-\lambda_{n j}\right) E\left(\Delta_{n j}\right)<\varepsilon l .
$$

It follows that, given any $\varepsilon>0$, there is an N, such that, for every $n>N$ and every choice of $\lambda_{n j} \in \Delta_{n j}$, we have

$$
\left\|T-\sum_{j=1}^{n} \hat{\lambda}_{n j} E\left(\Delta_{n j}\right)\right\|<\varepsilon
$$

Since E_{λ} is constant for $\lambda<m$ and for $\lambda \geq M$, the particular choice of an $a<m$ and a $b>M$ is immaterial.

Proof of the Spectral Theorem Part (b)

(b) We prove the theorem for polynomials, starting with $p(\lambda)=\lambda^{r}, r \in \mathbb{N}$.

For any $\kappa<\lambda \leq \mu<v$, we have

$$
\begin{aligned}
\left(E_{\lambda}-E_{\kappa}\right)\left(E_{\mu}-E_{v}\right) & =E_{\lambda} E_{\mu}-E_{\lambda} E_{v}-E_{\kappa} E_{\mu}+E_{\kappa} E_{v} \\
& =E_{\lambda}-E_{\lambda}-E_{\kappa}+E_{\kappa}=0 .
\end{aligned}
$$

This shows that $E\left(\Delta_{n j}\right) E\left(\Delta_{n k}\right)=0$, for $j \neq k$.
Since $E\left(\Delta_{n j}\right)$ is a projection, $E\left(\Delta_{n j}\right)^{s}=E\left(\Delta_{n j}\right)$, for every $s=1,2, \ldots$.
Consequently, we obtain

$$
\left[\sum_{j=1}^{n} \hat{\lambda}_{n j} E\left(\Delta_{n j}\right)\right]^{r}=\sum_{j=1}^{n} \hat{\lambda}_{n j}^{r} E\left(\Delta_{n j}\right) .
$$

Proof of the Spectral Theorem Part (b) (Cont'd)

- We have

$$
\left[\sum_{j=1}^{n} \hat{\lambda}_{n j} E\left(\Delta_{n j}\right)\right]^{r}=\sum_{j=1}^{n} \hat{\lambda}_{n j}^{r} E\left(\Delta_{n j}\right) .
$$

Suppose the sum on the left is close to T.
Then the expression on the left is close to T^{r} because multiplication (composition) of bounded linear operators is continuous. Hence, given $\varepsilon>0$, there is an N, such that, for all $n>N$,

$$
\left\|T^{r}-\sum_{j=1}^{n} \hat{\lambda}_{n j}^{r} E\left(\Delta_{n j}\right)\right\|<\varepsilon .
$$

This proves the result for $p(\lambda)=\lambda^{r}$.
The formulas for an arbitrary polynomial with real coefficients follow from this case.

Properties of $p(T)$

Theorem (Properties of $p(T)$)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Let p, p_{1} and p_{2} be polynomials with real coefficients. Then:
(a) $p(T)$ is self-adjoint.
(b) If $p(\lambda)=\alpha p_{1}(\lambda)+\beta p_{2}(\lambda)$, then $p(T)=\alpha p_{1}(T)+\beta p_{2}(T)$.
(c) If $p(\lambda)=p_{1}(\lambda) p_{2}(\lambda)$, then $p(T)=p_{1}(T) p_{2}(T)$.
(d) If $p(\lambda) \geq 0$, for all $\lambda \in[m, M]$, then $p(T) \geq 0$.
(e) If $p_{1}(\lambda) \leq p_{2}(\lambda)$, for all $\lambda \in[m, M]$, then $p_{1}(T) \leq p_{2}(T)$.
(f) $\|p(T)\| \leq \max _{\lambda \in J}|p(\lambda)|$, where $J=[m, M]$.
(g) If a bounded linear operator commutes with T, it also commutes with $p(T)$.

Properties of $p(T)$ Parts (a)-(d)

(a) T is self-adjoint and p has real coefficients.

So we get $\left(\alpha_{j} T^{j}\right)^{*}=\overline{\alpha_{j}}\left(T^{*}\right)^{j}=\alpha_{j} T^{j}$.
(b) This is obvious from the definition.
(c) This is obvious from the definition.
(d) Note that p has real coefficients.

So complex zeros must occur in conjugate pairs if they occur at all. We observe that:

- p changes sign if λ passes through a zero of odd multiplicity;
- $p(\lambda) \geq 0$ on $[m, M]$.

So zeros of p in (m, M) must be of even multiplicity. Hence, we can write

$$
p(\lambda)=\alpha \prod_{j}\left(\lambda-\beta_{j}\right) \prod_{k}\left(\gamma_{k}-\lambda\right) \prod_{\ell}\left[\left(\lambda-\mu_{\ell}\right)^{2}+v_{\ell}^{2}\right]
$$

where $\beta_{j} \leq m, \gamma_{k} \geq M$ and the quadratic factors correspond to complex conjugate zeros and to real zeros in (m, M).

Properties of $p(T)$ Part (d)

- We have $p(\lambda)=\alpha \Pi_{j}\left(\lambda-\beta_{j}\right) \Pi_{k}\left(\gamma_{k}-\lambda\right) \Pi_{\ell}\left[\left(\lambda-\mu_{\ell}\right)^{2}+v_{\ell}^{2}\right]$.

We show that $\alpha>0$ if $p \neq 0$.
For all sufficiently large λ, say, for all $\lambda \geq \lambda_{0}$, we have

$$
\operatorname{sgn} p(\lambda)=\operatorname{sgn} \alpha_{n} \lambda^{n}=\operatorname{sgn} \alpha_{n},
$$

where n is the degree of p.

- Suppose $\alpha_{n}>0$. Then:
- $p\left(\lambda_{0}\right)>0$;
- The number of the γ_{k} 's (each counted according to its multiplicity) must be even, to make $p(\lambda) \geq 0$ in (m, M).
Then all three products are positive at λ_{0}.
Hence, we must have $\alpha>0$ in order that $p\left(\lambda_{0}\right)>0$.
- Suppose $\alpha_{n}<0$. Then:
- $p\left(\lambda_{0}\right)<0$;
- The number of the γ_{k} 's is odd, to make $p(\lambda) \geq 0$ on (m, M).

It follows that the second product is negative at λ_{0}.
Hence, $\alpha>0$, as before.

Properties of $p(T)$ Part (d) (Cont'd)

- We replace λ by T.

Then each of the factors above is a positive operator.
Consider $x \neq 0$. Set $v=\frac{1}{\|x\|} x$. Then $x=\|x\| v$.
Since $-\beta_{j} \geq-m$,

$$
\begin{aligned}
\left\langle\left(T-\beta_{j} I\right) x, x\right\rangle & =\langle T x, x\rangle-\beta_{j}\langle x, x\rangle \\
& \geq\|x\|^{2}\langle T v, v\rangle-m\|x\|^{2} \\
& \geq\|x\|^{2} \inf _{\|\tilde{v}\|=1}\langle T \widetilde{v}, \widetilde{v}\rangle-m\|x\|^{2} \\
& =0 .
\end{aligned}
$$

That is, $T-\beta_{j} I \geq 0$. Similarly, $\gamma_{k} I-T \geq 0$.
Now, $T-\mu_{\ell} l$ is self-adjoint. So its square is positive.
It follows that $\left(T-\mu_{\ell} I\right)^{2}+v_{\ell}^{2} I \geq 0$.
Since all those operators commute, their product is positive.
So, since $\alpha>0, p(T) \geq 0$.

Properties of $p(T)$ Parts $(e)-(\mathrm{g})$

(e) This follows immediately from Part (d).
(f) Let k denote the maximum of $|p(\lambda)|$ on J.

Then $0 \leq p(\lambda)^{2} \leq k^{2}$, for $\lambda \in J$.
Hence Part (e) yields $p(T)^{2} \leq k^{2} I$.
Since $p(T)$ is self-adjoint, for all x,

$$
\langle p(T) x, p(T) x\rangle=\left\langle p(T)^{2} x, x\right\rangle \leq k^{2}\langle x, x\rangle .
$$

Now we get $\|p(T) x\| \leq k\|x\|$.
Taking the supremum over all x of norm 1,

$$
\|p(T)\| \leq \max _{\lambda \in J}|p(\lambda)|
$$

(g) This follows immediately from the definition of $p(T)$.

Subsection 10

Extension of the Spectral Theorem to Continuous Functions

Extension to Continuous Functions

- The theorem holds for $p(T)$, where T is a bounded self-adjoint linear operator and p is a polynomial with real coefficients.
- We want to extend the theorem to operators $f(T)$, where T is as before and f is a continuous real-valued function.
- Let H be a complex Hilbert space.
- Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on H.
- Let f be a continuous real-valued function on $[m, M]$, where:
- $m=\inf _{\|x\|=1}\langle T x, x\rangle$;
- $M=\sup _{\|x\|=1}\langle T x, x\rangle$.
- By the Weierstraß approximation theorem, there is a sequence of polynomials $\left(p_{n}\right)$, with real coefficients, such that $p_{n}(\lambda) \rightarrow f(\lambda)$ uniformly on $[m, M]$.

The Definition of $f(T)$

- Corresponding to the sequence of polynomials $\left(p_{n}\right)$, we have a sequence of bounded self-adjoint linear operators $p_{n}(T)$.
- By the preceding theorem, for $J=[m, M]$,

$$
\left\|p_{n}(T)-p_{r}(T)\right\| \leq \max _{\lambda \in J}\left|p_{n}(\lambda)-p_{r}(\lambda)\right| .
$$

- Since $p_{n}(\lambda) \rightarrow f(\lambda)$, given any $\varepsilon>0$, there is an N, such that, for all $n, r>N$,

$$
\max _{\lambda \in J}\left|p_{n}(\lambda)-p_{r}(\lambda)\right|<\varepsilon .
$$

- Hence, $\left(p_{n}(T)\right)$ is Cauchy.
- So, since $B(H, H)$ is complete, $\left(p_{n}(T)\right)$ has a limit in $B(H, H)$.
- We define $f(T)$ to be that limit: $p_{n}(T) \rightarrow f(T)$.
- Claim: $f(T)$ depends only on f (and T, of course), but not on the particular choice of a sequence of polynomials converging to f uniformly.
Let (\widetilde{p}_{n}) be another sequence of polynomials with real coefficients such that $\widetilde{p}_{n}(\lambda) \rightarrow f(\lambda)$ uniformly on $[m, M]$. Then $\widetilde{p}_{n}(T) \rightarrow \widetilde{f}(T)$ by the previous argument. So it suffices to show that $\widetilde{f}(T)=f(T)$.
Clearly, $\widetilde{p}_{n}(\lambda)-p_{n}(\lambda) \rightarrow 0$. Hence, $\widetilde{p}_{n}(T)-p_{n}(T) \rightarrow 0$.
Consequently, given $\varepsilon>0$, there is an N, such that for $n>N$,

$$
\left\|\widetilde{f}(T)-\widetilde{p}_{n}(T)\right\|<\frac{\varepsilon}{3},\left\|\widetilde{p}_{n}(T)-p_{n}(T)\right\|<\frac{\varepsilon}{3},\left\|p_{n}(T)-f(T)\right\|<\frac{\varepsilon}{3} .
$$

By the triangle inequality it follows that
$\|\widetilde{f}(T)-f(T)\| \leq\left\|\tilde{f}(T)-\widetilde{p}_{n}(T)\right\|+\left\|\widetilde{p}_{n}(T)-p_{n}(T)\right\|+\left\|p_{n}(T)-f(T)\right\|<\varepsilon$.
Since $\varepsilon>0$ was arbitrary, $\tilde{f}(T)-f(T)=0$. Thus, $\widetilde{f}(T)=f(T)$.

Spectral Theorem

Spectral Theorem

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and f a continuous real-valued function on [m, M]. Then $f(T)$ has the spectral representation

$$
f(T)=\int_{m^{-}}^{M} f(\lambda) d E_{\lambda},
$$

where $\mathscr{E}=\left(E_{\lambda}\right)$ is the spectral family associated with T.
The integral is to be understood in the sense of uniform operator convergence, and, for all $x, y \in H$,

$$
\langle f(T) x, y\rangle=\int_{m^{-}}^{M} f(\lambda) d w(\lambda), \quad w(\lambda)=\left\langle E_{\lambda} x, y\right\rangle
$$

where the integral is an ordinary Riemann-Stieltjes integral.

Spectral Theorem (Proof)

- For every $\varepsilon>0$, there is a polynomial p, with real coefficients, such that, for all $\lambda \in[m, M]$,

$$
-\frac{\varepsilon}{3} \leq f(\lambda)-p(\lambda) \leq \frac{\varepsilon}{3}
$$

Hence, $\|f(T)-p(T)\| \leq \frac{\varepsilon}{3}$.
Note that $\sum E\left(\Delta_{n j}\right)=l$.
Using the preceding inequality, we get, for any partition,

$$
-\frac{\varepsilon}{3} I \leq \sum_{j=1}^{n}\left[f\left(\widehat{\lambda}_{n j}\right)-p\left(\widehat{\lambda}_{n j}\right)\right] E\left(\Delta_{n j}\right) \leq \frac{\varepsilon}{3} I .
$$

It follows that

$$
\left\|\sum_{j=1}^{n}\left[f\left(\hat{\lambda}_{n j}\right)-p\left(\hat{\lambda}_{n j}\right)\right] E\left(\Delta_{n j}\right)\right\| \leq \frac{\varepsilon}{3} .
$$

Spectral Theorem (Cont'd)

- Recall that $p(T)$ is represented by $p(T)=\int_{m^{-}}^{M} p(\lambda) d E_{\lambda}$. So there is an N, such that, for every $n>N$,

$$
\left\|\sum_{j=1}^{n} p\left(\hat{\lambda}_{n j}\right) E\left(\Delta_{n j}\right)-p(T)\right\| \leq \frac{\varepsilon}{3}
$$

We now estimate the norm of the difference between $f(T)$ and the Riemann-Stieltjes sums corresponding to the integral.
For $n>N$, we obtain, by means of the triangle inequality,

$$
\begin{array}{r}
\left\|\sum_{j=1}^{n} f\left(\hat{\lambda}_{n j}\right) E\left(\Delta_{n j}\right)-f(T)\right\| \leq\left\|\sum_{j=1}^{n}\left[f\left(\hat{\lambda}_{n j}\right)-p\left(\hat{\lambda}_{n j}\right)\right] E\left(\Delta_{n j}\right)\right\| \\
\quad+\left\|\sum_{j=1}^{n} p\left(\hat{\lambda}_{n j}\right) E\left(\Delta_{n j}\right)-p(T)\right\|+\|p(T)-f(T)\| \leq \varepsilon .
\end{array}
$$

Since $\varepsilon>0$ was arbitrary, this establishes the statement.

Uniqueness of the Spectral Representation

- Uniqueness Property: $\mathscr{E}=\left(E_{\lambda}\right)$ is the only spectral family on $[m, M$] that yields the representations

$$
\begin{aligned}
f(T) & =\int_{m^{-}}^{M} f(\lambda) d E_{\lambda} \\
\langle f(T) x, y\rangle & =\int_{m^{-}}^{M} f(\lambda) d w(\lambda), \quad w(\lambda)=\left\langle E_{\lambda} x, y\right\rangle
\end{aligned}
$$

- The plausibility is indicated by the following:
- The second equality holds for every continuous real-valued function f on [m, M];
- Its left hand side is defined in a way which does not depend on \mathscr{E}.
- A rigorous proof follows from a uniqueness theorem for Stieltjes integrals.

Uniqueness of the Spectral Representation (Cont'd)

- A uniqueness theorem for Stieltjes integrals states that, for any fixed x and y, the expression

$$
w(\lambda)=\left\langle E_{\lambda} x, y\right\rangle
$$

is determined, up to an additive constant, by

$$
\langle f(T) x, y\rangle=\int_{m^{-}}^{M} f(\lambda) d w(\lambda), \quad w(\lambda)=\left\langle E_{\lambda} x, y\right\rangle
$$

at its points of continuity and at m^{-}and M.
Now we have:

- $\left\langle E_{M} x, y\right\rangle=\langle x, y\rangle$, since $E_{M}=1$;
- $\left(E_{\lambda}\right)$ is continuous from the right.

It follows $w(\lambda)$ is uniquely determined everywhere.

Properties of $f(T)$

- The properties of $p(T)$, listed in a previous theorem, extend to $f(T)$.

Theorem (Properties of $f(T)$)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Let f, f_{1} and f_{2} be continuous real-valued functions on $[m, M]$. Then:
(a) $f(T)$ is self-adjoint.
(b) If $f(\lambda)=\alpha f_{1}(\lambda)+\beta f_{2}(\lambda)$, then $f(T)=\alpha f_{1}(T)+\beta f_{2}(T)$.
(c) If $f(\lambda)=f_{1}(\lambda) f_{2}(\lambda)$, then $f(T)=f_{1}(T) f_{2}(T)$.
(d) If $f(\lambda) \geq 0$, for all $\lambda \in[m, M]$, then $f(T) \geq 0$.
(e) If $f_{1}(\lambda) \leq f_{2}(\lambda)$, for all $\lambda \in[m, M]$, then $f_{1}(T) \leq f_{2}(T)$.
(f) $\|f(T)\| \leq \max _{\lambda \in J}|f(\lambda)|$, where $J=[m, M]$.
(g) If a bounded linear operator commutes with T, it also commutes with $f(T)$.

Subsection 11

Properties of Spectral Family of a Bounded Self-Adjoint Operator

Eigenvalues

Theorem (Eigenvalues)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and $\mathscr{E}=\left(E_{\lambda}\right)$ the corresponding spectral family. Then $\lambda \mapsto E_{\lambda}$ has a discontinuity at any $\lambda=\lambda_{0}$ (that is, $E_{\lambda_{0}} \neq E_{\lambda_{0}^{-}}$) if and only if λ_{0} is an eigenvalue of T. In this case, the corresponding eigenspace is

$$
\mathscr{N}\left(T-\lambda_{0} I\right)=\left(E_{\lambda_{0}}-E_{\lambda_{0}^{-}}\right)(H) .
$$

- λ_{0} is an eigenvalue of T if and only if $\mathscr{N}\left(T-\lambda_{0} I\right) \neq\{0\}$.

So the first statement follows from the displayed equation.
Hence, it suffices to prove this equation.
We set $F_{0}=E_{\lambda_{0}}-E_{\lambda_{0}^{-}}$. We must show that:
$\begin{array}{ll}\text { - } & F_{0}(H) \subseteq \mathscr{N}\left(T-\lambda_{0} I\right) \text {; } \\ \text { - } & F_{0}(H) \supseteq \mathscr{N}\left(T-\lambda_{0} I\right) \text {. }\end{array}$

Eigenvalues $F_{0}(H) \subseteq \mathscr{N}\left(T-\lambda_{0} I\right)$

- Since $\lambda_{0}-\frac{1}{n}<\lambda_{0}$, setting $\Delta_{0}=\left(\lambda_{0}-\frac{1}{n}, \lambda_{0}\right]$, we have

$$
\left(\lambda_{0}-\frac{1}{n}\right) E\left(\Delta_{0}\right) \leq T E\left(\Delta_{0}\right) \leq \lambda_{0} E\left(\Delta_{0}\right)
$$

Now let $n \rightarrow \infty$. Then $E\left(\Delta_{0}\right) \rightarrow F_{0}$.
So the preceding inequalities yield

$$
\lambda_{0} F_{0} \leq T F_{0} \leq \lambda_{0} F_{0}
$$

Hence, $T F_{0}=\lambda_{0} F_{0}$. That is, $\left(T-\lambda_{0} I\right) F_{0}=0$.

Eigenvalues $F_{0}(H) \supseteq \mathscr{N}\left(T-\lambda_{0} I\right)$

- Let $x \in \mathscr{N}\left(T-\lambda_{0} I\right)$. We show that then $x \in F_{0}(H)$.

Since F_{0} is a projection, this amounts to $F_{0} x=x$.
Suppose $\lambda_{0} \notin[m, M]$. Then $\lambda_{0} \in \rho(T)$.
Since $F_{0}(H)$ is a vector space, $\mathscr{N}\left(T-\lambda_{0} I\right)=\{0\} \subseteq F_{0}(H)$.
Suppose $\lambda_{0} \in[m, M]$. By assumption, $\left(T-\lambda_{0} I\right) x=0$.
This implies $\left(T-\lambda_{0} I\right)^{2} x=0$.
By the Spectral Representation Theorem, for $a<m$ and $b>M$,

$$
\int_{a}^{b}\left(\lambda-\lambda_{0}\right)^{2} d w(\lambda)=0, \quad w(\lambda)=\left\langle E_{\lambda} x, x\right\rangle .
$$

Here $\left(\lambda-\lambda_{0}\right)^{2} \geq 0$ and $\lambda \mapsto\left\langle E_{\lambda} x, x\right\rangle$ is monotone increasing. Hence, the integral over any subinterval of positive length must be zero.

Eigenvalues $F_{0}(H) \supseteq \mathcal{N}\left(T-\lambda_{0} I\right)($ Cont'd)

- In particular, for every $\varepsilon>0$, we must have

$$
\begin{gathered}
0=\int_{a}^{\lambda_{0}-\varepsilon}\left(\lambda-\lambda_{0}\right)^{2} d w(\lambda) \geq \varepsilon^{2} \int_{a}^{\lambda_{0}-\varepsilon} d w(\lambda)=\varepsilon^{2}\left\langle E_{\lambda_{0}-\varepsilon} x, x\right\rangle ; \\
0=\int_{\lambda_{0}+\varepsilon}^{b}\left(\lambda-\lambda_{0}\right)^{2} d w(\lambda) \geq \varepsilon^{2} \int_{\lambda_{0}+\varepsilon}^{b} d w(\lambda)=\varepsilon^{2}\langle\mid x, x\rangle-\varepsilon^{2}\left\langle E_{\lambda_{0}+\varepsilon} x, x\right\rangle .
\end{gathered}
$$

Since $\varepsilon>0$, by the Positivity Theorem,

$$
\begin{array}{rlll}
\left\langle E_{\lambda_{0}-\varepsilon} x, x\right\rangle=0 & \text { implies } & E_{\lambda_{0}-\varepsilon} x=0 \\
\left\langle x-E_{\lambda_{0}+\varepsilon} x, x\right\rangle=0 & \text { implies } & x-E_{\lambda_{0}+\varepsilon} x=0 .
\end{array}
$$

We may thus write $x=\left(E_{\lambda_{0}+\varepsilon}-E_{\lambda_{0}-\varepsilon}\right) x$.
But $\lambda \mapsto E_{\lambda}$ is continuous from the right.
So, letting $\varepsilon \mapsto 0$, we obtain $x=F_{0} x$.

Resolvent Set

Theorem (Resolvent Set)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and $\mathscr{E}=\left(E_{\lambda}\right)$ the corresponding spectral family. Then a real λ_{0} belongs to the resolvent set $\rho(T)$ of T if and only if there is a $\gamma>0$, such that $\mathscr{E}=\left(E_{\lambda}\right)$ is constant on the interval $\left[\lambda_{0}-\gamma, \lambda_{0}+\gamma\right]$.

- We prove that:
(a) The given condition is sufficient for $\lambda_{0} \in \rho(T)$;
(b) The given condition is necessary for $\lambda_{0} \in \rho(T)$.
- We use the previously shown fact that $\lambda_{0} \in \rho(T)$ if and only if there exists a $\gamma>0$, such that

$$
\left\|\left(T-\lambda_{0} I\right) x\right\| \geq \gamma\|x\|, \quad \text { for all } x \in H .
$$

Resolvent Set (Sufficiency)

(a) Suppose that λ_{0} is real, such that, for some $\gamma>0, \mathscr{E}$ is constant on $J=\left[\lambda_{0}-\gamma, \lambda_{0}+\gamma\right]$.
By a previous result,

$$
\left\|\left(T-\lambda_{0} I\right) x\right\|^{2}=\left\langle\left(T-\lambda_{0} I\right)^{2}, x\right\rangle=\int_{m^{-}}^{M}\left(\lambda-\lambda_{0}\right)^{2} d\left\langle E_{\lambda} x, x\right\rangle .
$$

Since \mathscr{E} is constant on J, integration over J yields the value zero.
Moreover, for $\lambda \notin J$, we have $\left(\lambda-\lambda_{0}\right)^{2} \geq \gamma^{2}$.
Thus, the previous equation implies

$$
\left\|\left(T-\lambda_{0} I\right) x\right\|^{2} \geq \gamma^{2} \int_{m^{-}}^{M} d\left\langle E_{\lambda} x, x\right\rangle=\gamma^{2}\langle x, x\rangle .
$$

Taking square roots, we obtain $\left\|\left(T-\lambda_{0} I\right) x\right\| \geq \gamma\|x\|$.
Hence, $\lambda_{0} \in \rho(T)$.

Resolvent Set (Necessity)

(b) Conversely, suppose that $\lambda_{0} \in \rho(T)$.

Then, for some $\gamma>0$,

$$
\left\|\left(T-\lambda_{0} I\right) x\right\| \geq \gamma\|x\|, \quad \text { for all } x \in H .
$$

So, by the equation above,

$$
\int_{m^{-}}^{M}\left(\lambda-\lambda_{0}\right)^{2} d\left\langle E_{\lambda} x, x\right\rangle \geq \gamma^{2} \int_{m^{-}}^{M} d\left\langle E_{\lambda} x, x\right\rangle .
$$

Suppose that \mathscr{E} is not constant on the interval $\left[\lambda_{0}-\gamma, \lambda_{0}+\gamma\right]$. Since $E_{\lambda} \leq E_{\mu}$, for $\lambda<\mu$, we can find a positive $\eta<\gamma$, such that

$$
E_{\lambda_{0}+\eta}-E_{\lambda_{0}-\eta} \neq 0 .
$$

Hence, there is a $y \in H$, such that $x=\left(E_{\lambda_{0}+\eta}-E_{\lambda_{0}-\eta}\right) y \neq 0$. Using this x, we get

$$
E_{\lambda} x=E_{\lambda}\left(E_{\lambda_{0}+\eta}-E_{\lambda_{0}-\eta}\right) y .
$$

Resolvent Set (Necessity Cont'd)

- Now $E_{\lambda} x=E_{\lambda}\left(E_{\lambda_{0}+\eta}-E_{\lambda_{0}-\eta}\right) y$ is:
- $\left(E_{\lambda}-E_{\lambda}\right) y=0$, when $\lambda<\lambda_{0}-\eta$;
- $\left(E_{\lambda_{0}+\eta}-E_{\lambda_{0}-\eta}\right) y$, when $\lambda>\lambda_{0}+\eta$.

So it is independent of λ. Thus, we may take $K=\left[\lambda_{0}-\eta, \lambda_{0}+\eta\right]$ as the interval of integration in the integral above.
If $\lambda \in K$, by straightforward calculation,

$$
\left\langle E_{\lambda} x, x\right\rangle=\left\langle\left(E_{\lambda}-E_{\lambda_{0}-\eta}\right) y, y\right\rangle .
$$

Hence, the inequality gives

$$
\int_{\lambda_{0}-\eta}^{\lambda_{0}+\eta}\left(\lambda-\lambda_{0}\right)^{2} d\left\langle E_{\lambda} y, y\right\rangle \geq \gamma^{2} \int_{\lambda_{0}-\eta}^{\lambda_{0}+\eta} d\left\langle E_{\lambda} y, y\right\rangle .
$$

This is impossible because the integral on the right is positive and, when $\lambda \in K$, $\left(\lambda-\lambda_{0}\right)^{2} \leq \eta^{2}<\gamma^{2}$.
Thus, \mathscr{E} must be constant on $\left[\lambda_{0}-\gamma, \lambda_{0}+\gamma\right]$.

Continuous Spectrum

Theorem (Continuous Spectrum)

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and $\mathscr{E}=\left(E_{\lambda}\right)$ the corresponding spectral family. Then a real λ_{0} belongs to the continuous spectrum $\sigma_{c}(T)$ of T if and only if \mathscr{E} is:

- Continuous at λ_{0} (thus, $E_{\lambda_{0}}=E_{\lambda_{0}^{-}}$);
- Not constant in any neighborhood of λ_{0} on \mathbb{R}.
- The preceding theorem shows that $\lambda_{0} \in \sigma(T)$ if and only if \mathscr{E} is not constant in any neighborhood of λ_{0} on \mathbb{R}. Moreover, we have:
- $\sigma_{r}(T)=\varnothing$;
- Points of $\sigma_{p}(T)$ correspond to discontinuities of \mathscr{E}.

These yield the conclusion of the theorem.

