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Theory of Sets Introduction

The Peano Axioms for the Natural Numbers

The set of positive integers or natural numbers is a collection of
objects N on which there is defined a function s, called the successor
function, satisfying the conditions:

1. For each x in N, there is one and only one y in N such that y = s(x);
2. Given objects x and y in N such that s(x) = s(y), then x = y ;
3. There is one and only one object in N, denoted by 1, which is not the

successor of an object in N, i.e., 1 6= s(x), for each x in N;
4. Given a collection T of objects in N, such that:

1 is in T and
for each x in T , s(x) is also in T ,

then T = N.

The four conditions are the Peano’s axioms for the natural numbers.

The fourth is called the Principle of Mathematical Induction.
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Theory of Sets Introduction

Commutative Fields

A commutative field is a collection of objects F and two functions
that associate to each pair a, b of objects from F

an element a+ b of F, called their sum;
an element a · b of F, called their product,

satisfying the conditions:
1. For each a, b in F, a+ b = b + a;
2. For each a, b, c in F, a + (b + c) = (a+ b) + c ;
3. There is a unique object in F, denoted by 0, such that

a+ 0 = 0 + a = a, for each a in F;
4. For each a in F, there is a unique object a′ in F, such that

a+ a′ = a′ + a = 0;
5. For each a, b in F, a · b = b · a;
6. For each a, b, c in F, a · (b · c) = (a · b) · c ;
7. There is a unique object in F, different from 0, denoted by 1, such that

a · 1 = 1 · a = a for each a in F;
8. For each a in F, if a is different from 0, there is a unique object a∗ in

F such that a · a∗ = a∗ · a = 1;
9. For each a, b, c in F, a · (b + c) = a · b + a · c .
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Theory of Sets Introduction

Linearly Ordered and Complete Fields

A field F is called linearly ordered if it has as additional structure a
relation “<” which satisfies the conditions:

1. For each pair of objects x , y in F, one and only one of the three
statements, x < y , x = y , y < x , is true;

2. For each object z in F, x < y implies x + z < y + z ;
3. For each object z in F such that 0 < z , x < y implies x · z < y · z .

Let T be a subcollection of objects from a linearly ordered field F.

An object b in F is called an upper bound of T if for each x in T ,
either x < b or x = b.
An object a in F is called a least upper bound of T , if a is an upper
bound of T and if a < b, for any other upper bound b of T .

A linearly ordered field F is called complete if every non-empty
subcollection T of F that has an upper bound also has a least upper
bound.
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Theory of Sets Introduction

The Real Number System

The real number system is a collection R of objects together with
operations of addition and multiplication and a relation < such that
the collection R, together with this structure, is a complete, linearly
ordered, commutative field.

Even though there are many real number systems, it is implicitly
asserted that the conditions imposed on the collection R are
categorical:

Any two instances of the real number system are indistinguishable,
apart from the names or notation used to denote the objects.
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Theory of Sets Sets and Subsets

Subsection 2

Sets and Subsets
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Theory of Sets Sets and Subsets

Objects, Sets and Membership

We assume that the terms “object”, “set” and the relation “is a
member of” are familiar concepts.

We use these concepts in a manner that is in agreement with the
ordinary usage of these terms.

If an object A belongs to a set S , we write A ∈ S (read, “A in S”).

If an object A does not belong to a set S , we write A 6∈ S (read, “A
not in S”).

If A1, . . . ,An are objects, the set consisting of precisely these objects
will be written {A1, . . . ,An}.
It is necessary to distinguish the set {A}, consisting of precisely one
object A, from the object A itself.

A ∈ {A} is a true statement;
A = {A} is a false statement.

We stipulate that there exists a set that has no members, the
so-called null or empty set. The symbol for this set is ∅.
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Theory of Sets Sets and Subsets

Subsets

Let A and B be sets. If, for each object x ∈ A, it is true that x ∈ B ,
we say that A is a subset of B . In this event, we shall also say that A
is contained in B , which we write A ⊆ B . Equivalently, B contains

A, which we write B ⊇ A.

In accordance with the definition of subset:
A set A is always a subset of itself: A ⊆ A;
The empty set is a subset of A: ∅ ⊆ A.

These two subsets, A and ∅, of A are called improper subsets.

Any other subset is called a proper subset.

Example: For each pair of real numbers a, b with a < b,
the set of all real numbers x , such that a ≤ x ≤ b is called the closed

interval from a to b and is denoted by [a, b];
the set of all real numbers x , such that a < x < b is called the open

interval from a to b and is denoted by (a, b).

We thus have (a, b) ⊆ [a, b] ⊆ R, where R is the set of real numbers.
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Theory of Sets Sets and Subsets

Equality and Powersets

Two sets are identical if they have precisely the same members.
Thus, if A and B are sets, A = B if and only if A ⊆ B and B ⊆ A.

Sets may themselves be objects belonging to other sets.
Example: {{1, 3, 5, 7}, {2, 4, 6}} is a set to which there belong two
objects, these two objects being

the set of odd positive integers less than 8 and
the set of even positive integers less than 8.

If A is any set, the collection of subsets of A consists of objects that
may be used to constitute a new set.

In particular, for each set A, there is a set, denoted by P(A) or 2A,
called the powerset of A, whose members are the subsets of A.

Thus, for each set A, we have

B ∈ P(A) if and only if B ⊆ A.
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Theory of Sets Set Operations

Subsection 3
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Theory of Sets Set Operations

Intersection and Union

If x is an object, A a set and x ∈ A, we shall say that x is an
element, member, or point of A.

Let A and B be sets. The intersection of the sets A and B is the set
whose members are those objects x , such that x ∈ A and x ∈ B . The
intersection of A and B is denoted by A ∩ B (read, “A intersect B”).

The union of the sets A and B is the set whose members are those
objects x , such that x belongs to at least one of the two sets A,B ,
i.e., x ∈ A or x ∈ B . The union of A and B is denoted by A ∪ B

(read, “A union B”).
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Theory of Sets Set Operations

Complement

Let A ⊆ S . The complement of A in S is the set of elements that
belong to S but not to A. The complement of A in S is denoted by
CS(A) or by S − A.

The set S may be fixed throughout a given discussion, in which case
the complement of A in S may simply be called the complement of

A and denoted by C (A).

C (A) is again a subset of S and one may take its complement. The
complement of the complement of A is A, i.e., C (C (A)) = A.
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Theory of Sets Set Operations

DeMorgan’s Laws

Theorem (DeMorgan’s Laws)

Let A ⊆ S , B ⊆ S . Then

C (A ∪ B) = C (A) ∩ C (B) and C (A ∩ B) = C (A) ∪ C (B).

Suppose x ∈ C (A∪B). Then x ∈ S and x 6∈ A ∪B . Thus, x 6∈ A and
x 6∈ B , or x ∈ C (A) and x ∈ C (B). Therefore x ∈ C (A) ∩ C (B) and,
consequently, C (A ∪ B) ⊆ C (A) ∩ C (B)

Conversely, suppose x ∈ C (A) ∩ C (B). Then x ∈ S and x ∈ C (A)
and x ∈ C (B). Thus, x 6∈ A and x 6∈ B , and, therefore, x 6∈ A ∪ B . It
follows that x ∈ C (A ∪ B) and, thus, C (A) ∩ C (B) ⊆ C (A ∪ B).

We have shown that C (A) ∩ C (B) = C (A ∪ B).

For the second identity, apply the preceding one to the two subsets
C (A) and C (B) of S :
C (C (A) ∪ C (B)) = C (C (A)) ∩ C (C (B)) = A ∩ B . Taking
complements, C (A) ∪ C (B) = C (C (C (A) ∪ C (B))) = C (A ∩ B).
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Theory of Sets Indexed Families of Sets
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Theory of Sets Indexed Families of Sets

Indexed Families of Sets

Let I be a set. For each α ∈ I , let Aα be a subset of a given set S .
We call I an indexing set and the collection of subsets of S indexed
by the elements of I is called an indexed family of subsets of S . We
denote this indexed family of subsets of S by (Aα)α∈I .

Indexed families of subsets allow for a more general formation of
unions and intersections of sets.

Let (Aα)α∈I be an indexed family of subsets of a set S .

The union of this indexed family, written
⋃

α∈I Aα, is the set of all
elements x ∈ S , such that x ∈ Aβ , for at least one index β ∈ I .
The intersection of this indexed family, written

⋂
α∈I Aα, is the set of

all elements x ∈ S , such that x ∈ Aβ , for all β ∈ I .

Note that
⋃

α∈I Aα =
⋃

γ∈I Aγ , for which reason the two occurrences
of “α” in the expression

⋃
α∈I Aα are referred to as dummy indices.

George Voutsadakis (LSSU) Topology June 2019 17 / 55



Theory of Sets Indexed Families of Sets

Example and Special Cases

Let A1,A2,A3,A4 be respectively the set of freshmen, sophomores,
juniors, and seniors in some specified college.

Here we have I = {1, 2, 3, 4} as an indexing set.⋃
α∈I Aα is the set of undergraduates;⋂
α∈I Aα = ∅.

If the indexing set I contains precisely two distinct indices, then the
union (intersection) over α in I of Aα is the same as the union
(intersection) of two sets, i.e.,

⋃

α∈{i ,j}

Aα = Ai ∪ Aj and
⋂

α∈{i ,j}

Aα = Ai ∩ Aj .

In case I = ∅, we get
⋃

α∈∅

Aα = ∅ and
⋂

α∈∅

An = S .
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Theory of Sets Indexed Families of Sets

Generalized DeMorgan’s Laws

Theorem

Let (Aα)α∈I be an indexed family of subsets of a set S . Then

C (
⋃

α∈I

Aα) =
⋂

α∈I

C (Aα) and C (
⋂

α∈I

Aα) =
⋃

α∈I

C (Aα).

Suppose x ∈ C (
⋃

α∈I Aα). Then x 6∈
⋃

α∈I Aα, i.e., x 6∈ Aβ, for each
index β ∈ I . Thus x ∈ C (Aβ), for each index β ∈ I , and
x ∈

⋂
α∈I C (Aα). Therefore, C (

⋃
α∈I Aα) ⊆

⋂
α∈I C (Aα).

Conversely, suppose that x ∈
⋂

α∈I C (Aα). Then x ∈ C (Aβ), for each
index β ∈ I . Thus x 6∈ Aβ, for each index β ∈ I , i.e., x 6∈

⋃
α∈I Aα.

Therefore, x ∈ C (
⋃

α∈I Aα) and
⋂

α∈I C (Aα) ⊆ C (
⋃

α∈I Ai ).

The second law can be proved similarly.
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Theory of Sets Indexed Families of Sets

Unions and Intersections of Indexed Families

Given any collection of subsets of a set S , the concept of indexed
family of subsets allows us to define the union or intersection of these
subsets by constructing some convenient indexing set.

If the collection of subsets is finite, the finite set {1, 2, . . . , n} of
integers is a convenient indexing set.

Given subsets A1,A2, . . . ,An of S , we write A1 ∪ A2 ∪ · · · ∪ An or⋃n

i=1 Ai for
⋃

α∈{1,2,...,n} Aα.

Similarly, A1 ∩ A2 ∩ · · · ∩ An or
⋂n

i=1 Ai are used in place of⋂
α∈{1,2,...,n} Aα.
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Theory of Sets Products of Sets
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Theory of Sets Products of Sets

Ordered Pairs and Cartesian Products

Let x and y be objects. The ordered pair (x , y) is a sequence of two
objects,

the first object of the sequence being x ;
the second object of the sequence being y .

Let A and B be sets. The Cartesian product of A and B , written
A× B , (read “A cross B”) is the set whose elements are all the
ordered pairs (x , y), such that x ∈ A and y ∈ B .

Examples:

1. The coordinate plane of analytical geometry is the Cartesian product of
two lines.

2. The possible outcomes of the throw of a pair of dice is the Cartesian
product of two sets, each of which is comprised of the numbers
1, 2, 3, 4, 5, 6.

The two Cartesian products A× B and B × A are distinct unless
A = B .
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Theory of Sets Products of Sets

Direct Product of a Sequence of Sets

A generalization of the Cartesian product of two sets is the direct
product of a sequence of sets.

Let A1,A2, . . . ,An be a finite sequence of sets, indexed by
{1, 2, . . . , n}. The direct product of A1,A2, . . . ,An, written

n∏

i=1

Ai ,

is the set consisting of all sequences (a1, a2, . . . , an), such that
a1 ∈ A1, a2 ∈ A2, . . ., an ∈ An.

As a particular case,
∏2

i=1Ai = A1 × A2.

For this reason we often write A1 × A2 × · · · × An for
∏n

i=1 Ai .
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Theory of Sets Products of Sets

Direct Products of Infinite Sequences of Sets

The concept of direct product may be extended to an infinite
sequence A1,A2, . . . ,An, . . . of sets, indexed by the positive integers.

The direct product of A1,A2, . . . ,An, . . ., written
∏∞

i=1 Ai or
A1 × A2 × · · · × An × · · ·, is the set whose elements are all infinite
sequences (a1, a2, . . . , an, . . .), such that ai ∈ Ai , for each positive
integer i .

Example: The set of points of Euclidean n-space yields an example of
a direct product of sets. If for i = 1, 2, . . . , n, we have Ai = R, where
R is the set of real numbers, then R

n =
∏n

i=1 Ai is the set of points
of a Euclidean n-space. An element x ∈ R

n is a sequence
x = (x1, x2, . . . , xn) of real numbers.

In general, if the sets A1,A2, . . . ,An are all equal to the same set A,
we write An =

∏n
i=1 Ai and call an element a = (a1, a2, . . . , an) ∈ An

an n-tuple.

George Voutsadakis (LSSU) Topology June 2019 24 / 55



Theory of Sets Functions
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Theory of Sets Functions

Functions and Graphs

Definition (Function)

Let A and B be sets. A correspondence that associates with each element
x ∈ A an element f (x) ∈ B is called a function from A to B . We write

f : A → B or A
f
→ B to denote the function.

Definition (Graph of a Function)

Let f : A → B . The subset Γf ⊆ A× B , which consists of all ordered pairs
of the form (a, f (a)), is called the graph of f : A → B .

Let A and B be sets. Given a subset Γ of A× B , there is a function
f : A → B , such that Γ is the graph of f : A → B , if, for each x ∈ A,
there is one and only one element of the form (x , y) ∈ Γ.
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Theory of Sets Functions

Image, Inverse Image, Domain and Range

Definition (Image and Inverse Image)

Let f : A → B be given. For each subset X of A, the subset of B whose
elements are the points f (x), such that x ∈ X , is denoted by f (X ). f (X )
is called the image of X .
For each subset Y of B , the subset of A whose elements are the points
x ∈ A, such that f (x) ∈ Y is denoted by f −1(Y ). f −1(Y ) is called the
inverse image of Y or f inverse of Y .

Definition (Domain and Range)

Let f : A → B be given.
A is called the domain of f .
f (A) is called the range of f .
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Theory of Sets Functions

An Example

Let f : R → R, R the set of real numbers, be the function such that,
for each x ∈ R,

f (x) = x2 − x − 2.

If X is the closed interval [1, 2], then
f (X ) = [−2, 0].

If Z is the open interval (−1, 1), then
f (Z ) = [− 9

4 , 0).

f −1([−2, 0]) = [1, 2] ∪ [−1, 0].

f −1({0}) = {2,−1} is the set of roots
of the polynomial x2 − x − 2.

f −1([−5,−4]) = ∅.
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Theory of Sets Functions

A Mapping or Transformation in Pictures

A function f : A → B is also called
a mapping or transformation of
A into B . We may think of such
a function as carrying each point
x ∈ A into its corresponding point
f (x) ∈ B :

f : A → B carries each subset X of A onto the subset f (X ) of B

f −1 of a subset Y of B is the set of all x ∈ A that are carried into
points of Y .
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Theory of Sets Functions

One-to-One and Onto Functions

Definition (One-to-One Function)

A function f : A → B is called one-one if whenever f (a) = f (a′), for
a, a′ ∈ A, then a = a′.

Thus, f : A → B is one-one if, for each b ∈ f (A), there is only one
a ∈ A, such that f (a) = b.

Equivalently, by contraposition, f : A → B is one-one if, for all
a, a′ ∈ A, if a 6= a′ then f (a) 6= f (a′).

Definition (Onto Function)

A function f : A → B is called onto if B = f (A).
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Theory of Sets Functions

Constant and Identity Functions

Certain particular types of functions are frequently considered:

Definition (Constant Function)

A function f : A → B is called a constant function if there is a point
b ∈ B , such that f (x) = b, for all x ∈ A.

Definition (Identity Function)

A function f : A → A is called the identity function (on A) if f (x) = x ,
for all x ∈ A.
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Theory of Sets Relations

Relations

A function may be viewed as a special case of what is called a relation.

E.g., to say that the number 2 is less than the number 3, or 2 < 3, is
to say that (2, 3) is one of the number pairs (x , y) for which the
relation “less than” is true.

Definition (Relation)

A relation R from the elements of a set A to the elements of a set B is a
subset of A× B .
A relation R on a set E is a subset of E × E .

If (x , y) ∈ R ⊆ A× B , one frequently writes a R b.
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Theory of Sets Relations

Reflexivity, Symmetry and Transitivity

We define certain properties that a relation on a set E may or may
not have:

Definition (Reflexivity, Symmetry and Transitivity)

A relation R on a set E is called

reflexive if a R a is true for all a ∈ E ;

symmetric if, whenever a R b, also b R a;

transitive if, whenever a R b and b R c , then a R c .

Example:
Let < be the pairs of real numbers (x , y), such that x < y . Then < is
a transitive relation on the set E of real numbers, but < is not reflexive
and not symmetric.
Let R be the pairs of real numbers (x , y), such that |x − y | < 1. Then
R is reflexive and symmetric, but not transitive.
Let Λ be the pairs of real numbers (x , y), such that x − y is an integer.
Then Λ is reflexive, symmetric, and transitive.
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Theory of Sets Relations

Equivalence Relations and Equivalence Classes

Definition (Equivalence Relation)

A relation R on a set E which is reflexive, symmetric, and transitive is
called an equivalence relation.

Definition (Equivalence Class)

Let R be an equivalence relation on a set E . For each a ∈ E , the
equivalence class of a, denoted by π(a), is the subset of E consisting of
all x , such that a R x .

Two equivalence classes are either disjoint or identical.

Lemma

Let R be an equivalence relation on a set E and let π(a) ∩ π(b) 6= ∅, for
a, b ∈ E . Then π(a) = π(b).
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Theory of Sets Relations

Quotients and Projections

Lemma

Let R be an equivalence relation on a set E and let π(a) ∩ π(b) 6= ∅, for
a, b ∈ E . Then π(a) = π(b).

Let c ∈ π(a) ∩ π(b). Then a R c and b R c . Suppose x ∈ π(a) so
that a R x . c R a by symmetry, so c R x by transitivity. Another
application of transitivity yields b R x , so x ∈ π(b). Thus
π(a) ⊆ π(b). Similarly, π(b) ⊆ π(a).

By the reflexive property, a ∈ π(a) is always true.

So the equivalence classes are non-empty and disjoint.

Let E/R be the set of equivalence classes. Then π : E → E/R is an
onto function. E/R is sometimes called the quotient of E by the

relation R , and π is called the projection.
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Theory of Sets Composition and Diagrams
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Theory of Sets Composition and Diagrams

Composition of Functions

Definition (Composition)

Let f : A → B and g : B → C be given. The composition of f : A → B

and g : B → C is the correspondence that associates with each element
a ∈ A, the element g(f (a)) ∈ C . This function is written gf : A → C , or

A
gf
→ C

A function h : A → C is, therefore, the composition of f : A → B and
g : B → C , abbreviated h = gf , if for each a ∈ A, h(a) = g(f (a)).
I.e., h = gf when these functions behave as follows:
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Theory of Sets Composition and Diagrams

Composition of a Finite Number of Functions

Definition

Let f1 : A1 → A2, f2 : A2 → A3, . . . , fn : An → An+1 be given. The
composition of f1 : A1 → A2, f2 : A2 → A3, . . . , fn : An → An+1 is the
correspondence that associates with each element x ∈ A1 the element
fn(· · · f2(f1(x)) · · · ) ∈ An+1. We write fn · · · f2f1 : A1 → An+1 or

A1
fn···f2f1−→ An+1 for this function.

Given f : A → B , g : B → C and h : C → D, consider:
hgf : A → D;
gf : A → C composed with h : C → D: h(gf ) : A → D.
Similarly, (hg)f : A → D.

We compute:
(hgf )(x) = h(g(f (x)));
(h(gf ))(x) = h((gf )(x)) = h(g(f (x)));
((hg)f )(x) = (hg)(f (x)) = h(g(f (x))).

Since the three functions are equal, parenthesis may be dropped.
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Theory of Sets Composition and Diagrams

Triangles

Suppose we are given three functions f : A → B , g : B → C and
k : A → C .

The existence of these three functions may be indicated by a
diagram:

A
k

✲ C

B

g

✲

f ✲

The letters A,B ,C stand for the various sets, and an arrow leading
from one set to another indicates a function from the first set to the
second.

The fact that we may form the composition of two functions (such as
gf : A → C in the above diagram) is represented by a path in the
direction of the arrows that goes from one set to a second and from
the second set to a third.
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Theory of Sets Composition and Diagrams

Diagrams and Functions

By a diagram we shall mean a figure consisting of several symbols
denoting sets and arrows leading from one symbol to another, each
arrow leading from a set X to a set Y having an associated symbol t,
the arrow and its symbol representing a given function t : X → Y .

Example:

A
f

✲ B

C

g
❄

h
✲ D

k
❄

This diagram indicates the existence of given
functions f : A → B , g : A → C , k : B →
D, h : C → D. The diagram shows that
by composing functions we may obtain two
functions from A to D kf , hg : A → D.

In any diagram, a path from X to Y consisting of a sequence of
arrows leading from X to Y indicates the existence of a function from
X to Y obtained by composing the functions represented by these
arrows in the order of their occurrence, starting at X and terminating
at Y .
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Commutative Diagrams

In the diagram

A
f

✲ B

C

g
❄

h
✲ D

k
❄

it may or may not be true that kf = hg .
In the event that kf = hg we say that the
diagram (or the rectangle) commutes or is
commutative.

In general, a diagram is said to commute or to be commutative if
for each X and Y in the diagram that represent sets, and for any two
paths in the diagram beginning at X and ending at Y , the two
functions from X to Y so represented are equal.

Example: Consider he diagram

D

A
f
✲

h ✲

B

j
❄

g
✲ C

k
✲

The statement that “this diagram is com-
mutative” means that: f = jh; k = gj ;
kh = gjh = gf .

It is worth noting that the first two equalities imply the third.
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Diagrams with Multiple Occurrences of a Set

A given set A may occur more than once in a diagram.

Example: Let A be the set of positive real numbers and R the set of
real numbers. Let f : A → R be defined by the correspondence

f (x) = ln x , x ∈ A,

and let g : R → A be defined by the correspondence

g(x) = ex , x ∈ R.

Let iA : A → A be the identity function. Then, since
(gf )(x) = e ln x = x = iA(x), the following diagram is commutative:

A
iA

✲ A

R

g

✲

f ✲
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Subsection 9

Inverse Functions, Extensions and Restrictions
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Inverse Functions

Definition (Inverse Functions)

Let f : A → B and g : B → A be given. The function f : A → B is called
the inverse of g : B → A and the function g : B → A is called the inverse

of f : A → B if g(f (a)) = a, for each a ∈ A, and f (g(b)) = b, for each
b ∈ B .
In this event we also say that f : A → B and g : B → A are inverse

functions and that each of them is invertible.

Let iA : A → A and iB : B → B be identity functions. The statement
that f : A → B and g : B → A are inverse functions is equivalent to
the statement that the two diagrams

A
iA

✲ A

B
g

✲

f ✲

B
iB

✲ B

A
f

✲

g ✲

are commutative.
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Invertibility Implies Bijectivity

Theorem

If f : A → B and g : B → A are inverse functions, then both functions are
one-one and onto.

Suppose f (x) = f (y). Then x = g(f (x)) = g(f (y)) = y . Therefore,
f is one-one.

To show that f is onto, let b ∈ B . We have f (g(b)) = b. Therefore,
if we set a = g(b), we have b = f (a) and f is onto.

The roles of the two functions may be interchanged, since the
definition of inverse functions imposes conditions symmetrical with
regard to the two functions.

Therefore, g : B → A is also one-one and onto.
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Bijectivity Implies Invertibility

We have shown that, given a function h : X → Y , a necessary
condition that this function be invertible is that the function be
one-one and onto. This condition is also sufficient.

Theorem

Let f : A → B be one-one and onto. Then there exists a function
g : B → A, such that these two functions are inverse functions.

We shall first define g : B → A. Given b ∈ B , we may write b = f (a),
for some a ∈ A, since f is onto. Furthermore, since f is one-one,
there is only one element such that f (a) = b. We define g(b) = a.

The correspondence that associates with each b ∈ B the element
a ∈ A, as defined above, is a function g : B → A.

We have f (g(b)) = b, for each b ∈ B , by the definition of g : B → A.

Given a ∈ A, let a′ = g(f (a)). Then f (a′) = f (g(f (a))) = f (a), by
the remark just made. Since f : A → B is one-one, a = a′ = g(f (a)).
Thus, f : A → B and g : B → A are inverse functions.
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Uniqueness of Inverses

If a function f : A → B has an inverse g : B → A, the function
g : B → A is uniquely determined.

Theorem

Let f : A → B , g : B → A be inverse functions and let f : A → B and
g ′ : B → A be inverse functions. Then g : B → A and g ′ : B → A are
equal.

We show g(b) = g ′(b), for each b ∈ B . We know b = f (g(b)). Thus,
g ′(b) = g ′(f (g(b))) = g(b).

The proof of this last theorem may also be viewed as a direct
consequence of the commutativity of the diagram

B
iB

✲ B

A
iA

✲

f

✲

g ✲

A

g ′

✲

It yields g ′(b) = g ′(iB(b)) =
g ′(f (g(b))) = iA(g(b)) = g(b).
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Extensions and Restrictions

Definition (Extensions and Restrictions)

Let A ⊆ X . Let f : A → Y and F : X → Y . If for each x ∈ A,
f (x) = F (x), we say that F is an extension of f to X or that f is a
restriction of F to A. In this event we shall write f = F |A.

Example: Let A be the open interval (0, π2 ). For each θ ∈ A, let ∆θ

be a right triangle one of whose acute angles is θ radians, and let
f (θ) = y

r
be the ratio of the length y of the side of this triangle

opposite the angle of magnitude θ to the length r of the hypotenuse
of ∆θ. Thus, f : A → R.
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Example of an Extension (Cont’d)

For each θ ∈ R, let (a, b)θ be the point of
the plane R

2 whose distance from the origin
is 1 and such that the rotation about the ori-
gin of the line segment whose end points are
the origin and (1, 0) to the position of the
line segment whose end points are the origin
and (a, b)θ represents an angle of magnitude
θ radians.

Define F (θ) = b. Then F : R → R. F is an extension of f to R as is
easily seen if one recognizes:

f : A → R as the sine function, defined for acute angles by means of
right triangles;
F : R → R as the sine function defined for angles of arbitrary
magnitude by means of the unit circle.
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Inclusion Mappings

Definition (Inclusion Mapping)

Let A ⊆ X . The function i : A → X , defined by the correspondence
i(x) = x , for each x ∈ A, is called an inclusion mapping or function.

Let A ⊆ X and F : X → Y . Then F is an extension of f if and only if
the diagram

A
f

✲ Y

X
F

✲

i ✲

is commutative, where i : A → X is an inclusion mapping.

Given F : X → Y , there are as many restrictions of F : X → Y as
there are subsets of X . Given a subset A ⊆ X , we may obtain the
restriction of F to A by forming the composition of the inclusion
mapping i : A → X and F : X → Y . Thus, we have F |A = Fi .
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Points in Product Spaces Viewed as Functions

Let X1, . . . ,Xn be sets.

We have defined a point x = (x1, . . . , xn) ∈
∏n

i=1 Xi as an ordered
sequence such that xi ∈ Xi .

Given such a point, by setting x(i) = xi we obtain a function x which
associates to each integer i , 1 ≤ i ≤ n, the element x(i) ∈ Xi .
Conversely, given a function x which associates to each integer
i , 1 ≤ i ≤ n, an element x(i) ∈ Xi , we obtain the point
(x(1), . . . , x(n)) ∈

∏n

i=1 Xi .

It is easily seen that this correspondence between points of
∏n

i=1 Xi

and functions of the above type is one-one and onto.

Thus, a point of
∏n

i=1 Xi may also be defined as a function x which
associates to each integer i , 1 ≤ i ≤ n, a point x(i) ∈ Xi .

The advantage of this second point of view is that it allows us to
define the product of an arbitrary family of sets.
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Product of Indexed Family of Sets

Definition (Product of an Indexed Family of Sets)

Let {Xα}α∈I be an indexed family of sets. The product of the sets
{Xα}α∈I , written

∏
α∈I Xα, consists of all functions x , with domain the

indexing set I , having the property that for each α ∈ I , x(α) ∈ Xα.

Given a point x ∈
∏

α∈I Xα, one may refer to x(α) as the αth
coordinate of x .

Unless the indexing set has been ordered in some fashion, there is no
first coordinate, second coordinate, and so on.

Definition (Projections)

Let x ∈
∏

α∈I Xα. The function pα :
∏

α∈I Xα → Xα, defined by
pα(x) = x(α), is called the αth projection.

Clearly two points x , x ′ ∈
∏

α∈I Xα are identical if and only if, for
each α ∈ I , pα(x) = pα(x

′), i.e., x(α) = x ′(α).
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Axiom of Choice and Surjectivity of Projections

In dealing with product spaces, we use the Axiom of Choice:
Axiom of Choice: If, for all α ∈ I , we can choose xα ∈ Xα, then we
may construct a point (function) x ∈

∏
α∈I Xα by setting x(α) = xα.

This is equivalent to the statement:
The product of non-empty sets is non-empty.

Using the axiom of choice we may prove:

Proposition (Projections of Nonempty Products are Onto)

If for each α ∈ I , Xα is non-empty, then each of the projection maps
pα :

∏
α∈I Xα → Xα is onto.

Let xα ∈ Xα be given. Set x(α) = xα. Suppose β ∈ I , β 6= α. Since
Xβ is non-empty, choose a point x(β) ∈ Xβ. Then x ∈

∏
α∈I Xα and

pα(x) = x(α) = xα. Hence pα is onto.

If B ⊆ Xα, then x ∈ p−1
α (B) means that the αth coordinate of x lies

in B with all other coordinates unrestricted.
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