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Metric Spaces Introduction

Metric Spaces and Closedness of Pairs of Points

A metric space is a set of points and a prescribed quantitative
measure of the degree of closeness of pairs of points in this space.

The real number system and the coordinate plane of analytic
geometry are familiar examples of metric spaces.

Starting from the vague characterization of a continuous function as
one that transforms nearby points into points that are themselves
nearby, we can, in a metric space, formulate a precise definition of
continuity.

This definition may be stated in the so-called “ǫ, δ” terminology.

Other, equivalent formulations available in a metric space include
characterizations

in terms of the behavior of a function with respect to certain subsets
called neighborhoods of a point;
with respect to certain subsets called open sets.
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Metric Spaces Metric Spaces

Distance in R

Given two real numbers a and b, there is determined a non-negative
real number |a − b|, called the distance between a and b.

Since to each ordered pair (a, b) of real numbers there is associated
the real number |a − b|, we may write this correspondence in
functional notation by setting

d(a, b) = |a − b|.

Thus, we have a function d : R×R → R.

This function has four important properties. For all x , y , z ∈ R,:
1. d(x , y) ≥ 0;
2. d(x , y) = 0 if and only if x = y ;
3. d(x , y) = d(y , x);
4. d(x , z) ≤ d(x , y) + d(y , z)

For the purposes of discussing “continuity” of functions, these four
properties of “distance” are sufficient.
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Metric Spaces

We can discuss “continuity” in a more general setting, in terms of any
set of points with a “distance function”, such as d : R×R → R.

Definition (Metric Space)

A pair of objects (X , d) consisting of a non-empty set X and a function
d : X × X → R, where R is the set of real numbers, is called a metric
space provided that:

1. d(x , y) ≥ 0, for all x , y ∈ X ;

2. d(x , y) = 0 if and only if x = y , for all x , y ∈ X ;

3. d(x , y) = d(y , x), for all x , y ∈ X ;

4. d(x , z) ≤ d(x , y) + d(y , z), for all x , y , z ∈ X .

The function d is called a distance function or metric on X and the set
X is called the underlying set.
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Remarks

A more precise notation that (X , d) for a metric space would be
(X , d : X × X → R) and for a distance function d : X × X → R, but
we frequently delete the sets and arrow in the symbol for a function,
when, in a given context, it is clear which sets are involved.

We may think of the distance function d as providing a quantitative
measure of the degree of closeness of two points.
The inequality d(x , z) ≤ d(x , y) + d(y , z), thus, asserts the
transitivity of closeness:

If x is close to y and y is close to z , then x is close to z .

Let a, b ∈ R, where R is the set of real numbers. The verification
that the function d(a, b) = |a − b| satisfies the four properties in the
definition establishes:

Theorem

(R, d) is a metric space, where d is the function defined by

d(a, b) = |a − b|, for all a, b ∈ R.
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The Maximum Metric

Given a finite collection (X1, d1), (X2, d2), . . . , (Xn, dn) of metric
spaces, there is a procedure for converting the set X =

∏n
i=1 Xi into a

metric space, i.e., for defining a distance function on X .

Theorem

Let (X1, d1), (X2, d2), . . . , (Xn, dn) be metric spaces and set X =
∏n

i=1 Xi .
For each pair of points x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X , let
d : X × X → R be the function defined by the correspondence
d(x , y) = max1≤i≤n {di (xi , yi )}. Then (X , d) is a metric space.

With x and y as above, di (xi , yi ) ≥ 0, for 1 ≤ i ≤ n, and therefore
d(x , y) ≥ 0.

If d(x , y) = 0, then di (xi , yi ) = 0, for 1 ≤ i ≤ n, and therefore
xi = yi , for each i . Consequently, x = y . Conversely, if x = y , then
di(xi , yi ) = 0, for each i , and d(x , y) = 0.

Since di (xi , yi ) = di(yi , xi ), for 1 ≤ i ≤ n, d(x , y) = d(y , x).
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Showing the Triangle Inequality

Finally, let z = (z1, . . . , zn) ∈ X . Let j and k be integers such that
d(x , y) = dj(xj , yj) and d(y , z) = dk(yk , zk). Then, for 1 ≤ i ≤ n,

di (xi , yi ) ≤ dj(xj , yj ) and di(yi , zi) ≤ dk(yk , zk).

Thus,
di (xi , zi) ≤ di (xi , yi ) + di(yi , zi )

≤ dj(xj , yj ) + dk(yk , zk)
= d(x , y) + d(y , z).

Therefore, d(x , z) = max1≤≤n {di (xi , zi)} ≤ d(x , y) + d(y , z).

As an immediate application of this theorem, we have:

Corollary

(Rn, d) is a metric space, where d : Rn ×Rn → R is the function defined
by d((x1, . . . , xn), (y1, . . . , yn)) = max1≤i≤n {|xi − yi |}, for all
(x1, . . . , xn), (y1, . . . , yn) ∈ Rn.

George Voutsadakis (LSSU) Topology May 2014 10 / 75



Metric Spaces Metric Spaces

Two Metric Spaces on R2

It is interesting to compare the metric space (R2, d) with what might
be considered a more natural model of the coordinate plane:

In (R2, d), the distance from the point (1, 2) to the point (3, 1) is 2,
since max {|1− 3|, |2− 1|} = 2.
The distance function d ′ used in analytic geometry would yield

d ′((1, 2), (3, 1)) =
√

(1− 3)2 + (2 − 1)2 =
√
5.

If, for each pair of points (x1, x2), (y1, y2) ∈ R2, we define

d ′((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2,

then we are constructing a new metric space (R2, d ′) (provided, of
course, that d ′ is a distance function), which must be distinguished
from the metric space (R2, d), where

d((x1, x2), (y1, y2)) = max {|x1 − y1|, |x2 − y2|}.
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Illustration of the Metric Spaces

In (R2, d) the set M of points x , such that d(x , a) ≤ 1 for a fixed
point a ∈ R2 is a square of width 2 whose center is at a and whose
sides are parallel to the coordinate axes:

In (R2, d ′) the set of points x , such that d ′(x , a) ≤ 1, for a fixed
point a ∈ R2 is a circular disc whose center is a and whose radius is 1.
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Two Metric Spaces on Rn

The formula used to define the function d ′ may be generalized to
yield the Euclidean distance function for Rn:

Theorem (Euclidean Metric on Rn)

(Rn, d ′) is a metric space, where d ′ is the function defined by the
correspondence

d ′(x , y) =

√

√

√

√

n
∑

i=1

(xi − yi )2,

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

The proof is postponed for later.

The fact that we have metric spaces (Rn, d) and (Rn, d ′), with d and
d ′ defined as above, serves to emphasize the fact that a metric space
consists of two objects, a set and a distance function.

Two metric spaces may be distinct even though the underlying sets of
points of the two spaces are the same.
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Metric Spaces Continuity

Towards a Formal Definition of Continuity

A distance function for the real numbers R provides a measure of the
degree of closeness of two numbers.

To capture “the function f : R → R is continuous at a point a ∈ R”,
we must formalize the statement “a number f (x) will be close to the
number f (a) whenever the number x is close to a”.

We require that, no matter what choice is made for the degree of
closeness of f (x) to f (a), we can find a corresponding degree of
closeness so that whenever x is within this corresponding degree of
closeness to a, then f (x) is within the prescribed degree of closeness
to f (a).

We thus obtain that “the function f : R → R is continuous at the
number a ∈ R, if given a prescribed degree of closeness, f (x) will be
within this prescribed degree of closeness to f (a), whenever x is
within some corresponding degree of closeness to a”.
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Real Continuous Functions

To put the statement in its final form, we substitute:

for “a prescribed degree of closeness” the symbol “ǫ”;
for the phrase “some corresponding degree of closeness” the symbol
“δ” and use the distance function to measure the degree of closeness.

Definition (Continuous Real Function)

Let f : R → R. The function f is said to be continuous at the point

a ∈ R, if, given ǫ > 0, there is a δ > 0, such that

|f (x)− f (a)| < ǫ, whenever |x − a| < δ.

The function f is continuous if it is continuous at each point of R.
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Continuity in Metric Spaces

We may easily devise a definition of “continuity” applicable to metric
spaces in general:

Definition

Let (X , d) and (Y , d ′) be metric spaces, and let a ∈ X . A function
f : X → Y is said to be continuous at the point a ∈ X if, given ǫ > 0,
there is a δ > 0, such that

d ′(f (x), (a)) < ǫ whenever x ∈ X and d(x , a) < δ.

The function f : X → Y is continuous if it is continuous at each point of
X .

Definitions are created to serve two purposes:
They are abbreviations. Thus, “given ǫ > 0, there is . . .” is replaced by
the shorter statement, “f : X → Y is continuous at the point a ∈ X”.
They are attempts to formulate precise characterizations of significant
properties, e.g., the property of being continuous at a point.
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Continuity of Constant and Identity Functions

Theorem (Continuity of Constant Functions)

Let (X , d) and (Y , d ′) be metric spaces. Let f : X → Y be a constant
function. Then f is continuous.

Let a point a ∈ X and ǫ > 0 be given. Choose any δ > 0, say δ = 1.
Then, whenever d(x , a) < δ, we have d ′(f (x), f (a)) = 0 < ǫ.

Theorem (Continuity of Identities)

Let (X , d) be a metric space. Then the identity function iX : X → X is
continuous.

Suppose a ∈ X . Let ǫ > 0 be given. Choose δ = ǫ. Then, whenever
d(x , a) < δ, we have d(iX (x), iX (a)) = d(x , a) < ǫ.

In the last proof, δ could be any positive number, provided only that
δ ≤ ǫ. The choice of δ need not be a very efficient choice as long as
it “does the job”.
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Avoiding Ambiguities

There is one situation we shall have to consider for which the
notation f : X → Y that we have adopted for a function from a
metric space (X , d) into a metric space (Y , d ′) is ambiguous.

Consider metric spaces (X , d) and (X , d ′) with the same underlying
set. If we simply write f : X → X for a function, it is impossible to
tell which metric space is denoted by the first occurrence of X and
which by the second.

For this reason, when considering one set X with two different
distance functions, we shall write

f : (X , d) → (X , d ′)

if we intend to think of f : X → X as a function from the metric
space (X , d) into the metric space (X , d ′).
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Metric Spaces Continuity

A Representative Theorem

Theorem

Let i : Rn → Rn be the identity function. Then i : (Rn, d) → (Rn, d ′) and
i : (Rn, d ′) → (Rn, d) are continuous, where the distance function d is the
“max distance” and d ′ is the Euclidean distance.

Let a = (a1, a2, . . . , an) ∈ Rn.
We prove i : (Rn, d) → (Rn, d ′) is continuous. Let ǫ > 0 be given.
Choose δ = ǫ√

n
. Suppose x = (x1, x2, . . . , xn) is such that d(x , a) < δ,

i.e., max1≤i≤n {|ai − xi |} < δ. Then d ′(x , a) =
√

∑n

i=1(ai − xi )2

<
√
nδ2 =

√
ǫ2 = ǫ. Therefore, given ǫ > 0, there is a a δ > 0, such

that d ′(i(x), i(a)) < ǫ whenever d(x , a) < δ.
We prove i : (Rn, d ′) → (Rn, d) is continuous. Let ǫ > 0 be given.
Choose δ = ǫ. Let x = (x1, x2, . . . , xn) be such that d ′(x , a) < δ. Then
∑n

i=1(ai − xi )
2 < δ2 and, therefore, for each i , (ai − xi )

2 < δ2, or
|ai − xi | < δ = ǫ. Consequently, d(x , a) < ǫ. Thus, given ǫ > 0, there
is a δ > 0, such that d(i(x), i(a)) < ǫ whenever d ′(x , a) < δ.
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Metric Spaces Continuity

Composition of Continuous Functions

The composition of two continuous functions is continuous.

Theorem

Let (X , d), (Y , d ′), (Z , d ′′) be metric spaces. Let f : X → Y be
continuous at the point a ∈ X and let g : Y → Z be continuous at the
point f (a) ∈ Y . Then gf : X → Z is continuous at the point a ∈ X .

Let ǫ > 0 be given. We must find a δ > 0, such that whenever x ∈ X

and d(x , a) < δ, then d ′′(g(f (x)), g(f (a))) < ǫ. Since g is
continuous at f (a), there is an η > 0, such that whenever y ∈ Y and
d ′(y , f (a)) < η, then d ′′(g(y), g(f (a))) < ǫ. Since f is continuous at
a, given η > 0, there is a δ > 0, such that x ∈ X and d(x , a) < δ

imply that d ′(f (x), f (a)) < η and, hence, d ′′(g(f (x)), g(f (a))) < ǫ.

Corollary

Let (X , d), (Y , d ′), (Z , d ′′) be metric spaces. Let f : X → Y and
g : Y → Z be continuous. Then gf : X → Z is continuous.
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Open Balls in Metric Spaces

Open balls will enable us to cast the definition of continuity in a more
compact form.

Definition (Open Ball)

Let (X , d) be a metric space. Let a ∈ X and δ > 0 be given. The subset
of X consisting of those points x ∈ X , such that d(a, x) < δ, is called the
open ball about a of radius δ and is denoted by B(a; δ).

Thus, x ∈ B(a; δ) if and only if x ∈ X and d(x , a) < δ.

Similarly, if (Y , d ′) is another metric space and f : X → Y , we have
y ∈ B(f (a); ǫ) if and only if y ∈ Y and d ′(y , f (a)) < ǫ.
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Continuity in terms of Open Balls

Thus, we have the following:

Theorem

A function f : (X , d) → (Y , d ′) is continuous at a point a ∈ X if and only
if, given ǫ > 0, there is a δ > 0, such that f (B(a; δ)) ⊆ B(f (a); ǫ).

For a function f : X → Y we have f (U) ⊆ V if and only if
U ⊆ f −1(V ), where U and V are subsets of X and Y , respectively.

Thus, we also obtain

Theorem

A function f : (X , d) → (Y , d ′) is continuous at a point a ∈ X if and only
if, given ǫ > 0, there is a δ > 0, such that B(a; δ) ⊆ f −1(B(f (a); ǫ)).
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Neighborhoods of Points in Metric Spaces

Given a point a in a metric space (X , d), the subset B(a; δ) of X , for
each δ > 0, is an example of the type of subset of X that is called a
neighborhood of a:

Definition (Neighborhood)

Let (X , d) be a metric space and a ∈ X . A subset N of X is called a
neighborhood of a if there is a δ > 0, such that B(a; δ) ⊆ N. The
collection Na of all neighborhoods of a point a ∈ X is called a complete

system of neighborhoods of the point a.

A neighborhood of a point a ∈ X may be thought of as containing all
the points of X that are sufficiently close to a or as “enclosing” a by
virtue of the fact that it contains some open ball about a.

In particular, for each δ > 0, B(a; δ) is a neighborhood of a.
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Open Balls Neighborhoods of All Their Points

The open balls B(a; δ) have the property that they are neighborhoods
of each of their points.

Lemma

Let (X , d) be a metric space and a ∈ X . For each δ > 0, the open ball
B(a; δ) is a neighborhood of each of its points.

Let b ∈ B(a; δ).
In order to show that B(a; δ) is a neighborhood
of b we must show that there is an η > 0, such
that B(b; η) ⊆ B(a; δ). Since b ∈ B(a; δ),
d(a, b) < δ. Choose η < δ − d(a, b). If
x ∈ B(b; η), then we obtain

d(a, x) ≤ d(a, b) + d(b, x) < d(a, b) + η < d(a, b) + δ − d(a, b) = δ.
Therefore, x ∈ B(a; δ). Thus, B(b; η) ⊆ B(a; δ) and B(a; δ) is a
neighborhood of b.
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Continuity in Terms of Complete Neighborhood Systems

The complete system of neighborhoods of a point may be used to
characterize continuity of a function at a point.

Theorem

Let f : (X , d) → (Y , d ′). f is continuous at a point a ∈ X if and only if
for each neighborhood M of f (a) there is a corresponding neighborhood N

of a, such that f (N) ⊆ M or equivalently, N ⊆ f −1(M).

First suppose that f is continuous at the point a ∈ X . We must show
that, given a neighborhood M of f (a), we can find a neighborhood N

of a such that f (N) ⊆ M.

Since M is a neighborhood of
f (a), there is an ǫ > 0, such that
B(f (a); ǫ) ⊆ M. Since f is con-
tinuous at a, there is a
δ > 0, such that f (B(a; δ)) ⊆ B(f (a); ǫ). But N = B(a; δ) is a
neighborhood of a, whence f (N) = f (B(a; δ)) ⊆ B(f (a); ǫ) ⊆ M.
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Proof of the Converse

Conversely, suppose that for each neighborhood M of f (a), there is a
corresponding neighborhood N of a, such that f (N) ⊆ M. Let ǫ > 0
be given. To prove that f is continuous at a, we must show that
there is a δ > 0, such that

f (B(a; δ)) ⊆ B(f (a); ǫ). But
B(f (a); ǫ) = M is a neighbor-
hood of f (a) whence there is a
neighborhood N of a, such that
f (N) ⊆ M. Since N is a neighborhood of a, there is a δ > 0, such
that B(a; δ) ⊆ N. Therefore, f (B(a; δ)) ⊆ f (N) ⊆ M = B(f (a); ǫ).

If N is a neighborhood of a in (X , d) and N ⊆ N ′, then N ′ is also a
neighborhood of a. Therefore, we obtain:

Theorem

Let f : (X , d) → (Y , d ′). f is continuous at a point a ∈ X if and only if
for each neighborhood M of f (a), f −1(M) is a neighborhood of a.
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Properties of Neighborhoods

The collections of neighborhoods of points in a metric space possess
five important properties:

Theorem

Let (X , d) be a metric space.

N1. For each point a ∈ X , there exists at least one neighborhood of a.

N2. For each point a ∈ X and each neighborhood N of a, a ∈ N .

N3. For each point a ∈ X , if N is a neighborhood of a and N ′ ⊇ N , then N ′ is a
neighborhood of a.

N4. For each point a ∈ X and each pair N ,M of neighborhoods of a, N ∩M is
also a neighborhood of a.

N5. For each point a ∈ X and each neighborhood N of a, there exists a
neighborhood O of a, such that O ⊆ N and O is a neighborhood of each of
its points.
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Proof of the Properties of Neighborhoods

For a ∈ X , X is a neighborhood of a, thus N1 is true.

N2 is trivial

N3 has already been discussed.

To prove N4, let N and M be neighborhoods of a. Then N and M

contain open balls B(a; δ1) and B(a; δ2), respectively, and, therefore,
N ∩M contains the open ball B(a; δ), where δ = min {δ1, δ2}.
To prove N5, let N be a neighborhood of a. Then N contains an
open ball B(a; δ) and, hence, O = B(a; δ) is a neighborhood of each
of its points.
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Basis for Neighborhood System

For a given point a in a metric space X , the collection of open balls
with center a has been used to generate the complete system of
neighborhoods at a, in the sense that the neighborhoods of a are
precisely those subsets of X which contain one of these open balls.

Definition (Basis for Neighborhood System)

Let a be a point in a metric space X . A collection Ba of neighborhoods of
a is called a basis for the neighborhood system at a if every
neighborhood N of a contains some element B of Ba.

Example: If a is a point on the real line R, a basis for the
neighborhood system at a is the collection of open intervals
containing a.
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Limit of a Sequence in R

Recall the concept of limit of a sequence of real numbers:

Definition (Limit of a Sequence in R)

Let a1, a2, . . . be a sequence of real numbers. A real number a is said to
be the limit of the sequence a1, a2, . . . if, given ǫ > 0, there is a positive
integer N, such that, whenever n > N, |a − an| < ǫ. In this event we shall
also say that the sequence a1, a2, . . . converges to a and write limn an = a.

Interpreting ǫ as an “arbitrary degree of closeness” and N as
“sufficiently far out in the sequence”, we see that we have defined
limn an = a in the event that an may be made arbitrarily close to a by
requiring that an be sufficiently far out in the sequence.
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Limit of a Sequence in a Metric Space

Suppose we have a metric space (X , d) and a sequence a1, a2, . . . of
points of X . Given a point a ∈ X we measure the distance from a to
the successive points of the sequence, by the sequence of real
numbers d(a, a1), d(a, a2), . . ..

It is natural to say that the limit of the sequence a1, a2, . . . of points
of X is the point a if the limit of the sequence of real numbers
d(a, a1), d(a, a2), . . . is the real number 0.

Definition (Limit of a Sequence in a Metric Space)

Let (X , d) be a metric space. Let a1, a2, . . . be a sequence of points of X .
A point a ∈ X is said to be the limit of the sequence a1, a2, . . . if
limn d(a, an) = 0. Again, in this event, we shall say that the sequence
a1, a2, . . . converges to a and write limn an = a.
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Limit of a Sequence in Terms of Neighborhoods

Corollary

Let (X , d) be a metric space and a1, a2, . . . be a sequence of points of X .
Then limn an = a, for a point a ∈ X , if and only if, for each neighborhood
V of a, there is an integer N, such that an ∈ V whenever n > N.

Let V be a neighborhood of a. For some ǫ > 0, a ∈ B(a; ǫ) ⊆ V .
Thus, if limn an = a, there is an integer N such that, whenever
n > N, d(a, an) < ǫ and hence an ∈ V .

Conversely, given ǫ > 0, B(a; ǫ) is a neighborhood of a. If there is an
integer N, such that for n > N, an ∈ B(a; ǫ), then d(a, an) < ǫ and
limn an = a.

If S is a set of infinite points, and there is at most a finite number of
elements of S for which a certain statement is false, then the
statement is said to be true for almost all the elements of S .

Thus, limn an = a if, for each neighborhood V of a almost all the
points an are in V .
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Continuity in Terms of Limits

Continuity may be characterized in terms of limits of sequences:

Theorem

Let (X , d), (Y , d ′) be metric spaces. A function f : X → Y is continuous
at a point a ∈ X if and only if, whenever limn an = a for a sequence
a1, a2, . . . of points of X , limn f (an) = f (a).

Suppose f is continuous at a and limn an = a. Let V be a
neighborhood of f (a). Then f −1(V ) is a neighborhood of a. By the
preceding corollary, there is an integer N, such that an ∈ f −1(V ),
whenever n > N. Consequently, f (an) ∈ V , whenever n > N. Thus,
for each neighborhood V of f (a), there is an integer N, such that
f (an) ∈ V , whenever n > N, and again, by the corollary,
limn f (an) = f (a).
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Continuity in Terms of Limits: The Converse

To prove the “if” part, we show that if f is not continuous at a, then
there is at least one sequence a1, a2, . . . of points of X , such that
limn an = a, but limn f (an) = f (a) is false. Since f is not continuous
at a, there is a neighborhood V of f (a), such that for each
neighborhood U of a, f (U) * V . In particular, for each neighborhood

B(a; 1
n
), n = 1, 2, . . ., f (B(a; 1

n
)) * V . Thus, for each positive integer

n, there is a point an, with an ∈ B(a; 1
n
) and f (an) 6∈ V . Now we

have:
d(a, an) <

1
n
and, therefore, limn an = a;

On the other hand, limn f (an) = f (a) is impossible, since f (an) 6∈ V ,
for all n.

If limn an = a, limn f (an) = f (a) can be written as

lim
n

f (an) = f (lim
n

an).

We may therefore describe a continuous function as one that
commutes with the operation of taking limits.
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Bounds and Completeness of R

Recall some facts about the real number system.

Definition

Let A be a set of real numbers. A number b is called an upper bound of
A if x ≤ b, for each x ∈ A. A number c is called a lower bound of A if
c ≤ x , for each x ∈ A. If A has both an upper and lower bound, A is said
to be bounded.
An upper bound b∗ of A is called a least upper bound (abbreviated
l.u.b.) of A if for each upper bound b of A, b∗ ≤ b. A lower bound c∗ of
A is called a greatest lower bound (abbreviated g.l.b.) of A if for each
lower bound c of A, c ≤ c∗.

Not every set of real numbers has an upper bound.

One of the properties of the real number system, usually referred to
as the completeness postulate, is that a non-empty set A of real
numbers which has an upper bound necessarily has a l.u.b.
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More on Bounds in R

Given a non-empty set B of real numbers which has a lower bound,
the set of negatives of elements of B has an upper bound, hence a
l.u.b. whose negative is a g.l.b. of B .

It follows that every non-empty set B of real numbers which has a
lower bound has a g.l.b.

The g.l.b. of a set A in R may or may not be an element of A.

Example: 0 is a g.l.b. of [0, 1] and 0 ∈ [0, 1], whereas 0 is also a g.l.b.
of (0, 1) but 0 6∈ (0, 1).

The g.l.b. of a set in R must be arbitrarily close to that set.

Lemma

Let b be a greatest lower bound of the non-empty subset A. Then, for
each ǫ > 0, there is an element x ∈ A, such that x − b < ǫ.

Suppose there were an ǫ > 0, such that x − b ≥ ǫ, for each x ∈ A.
Then b + ǫ ≤ x , for each x ∈ A and b + ǫ would be a lower bound of
A. Since b is a g.l.b. of A, we obtain the contradiction.
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Distance Between Point and Set

Corollary

Let b be a greatest lower bound of the non-empty subset A of real
numbers. Then there is a sequence a1, a2, . . . of real numbers such that
an ∈ A, for each n, and limn an = b.

For ǫ = 1
n
, we obtain an element an ∈ A, such that an − b < 1

n
. Since

b is a lower bound of A, 0 ≤ an − b. Therefore, limn an = b.

Definition

Let (X , d) be a metric space. Let a ∈ X and A 6= ∅ a subset of X . The
greatest lower bound of the set of numbers of the form d(a, x) for x ∈ A is
called the distance between a and A and is denoted by d(a,A).

From the preceding corollary we obtain:

Corollary

Let (X , d) be a metric space, a ∈ X , and A 6= ∅ a subset of X . Then there
is a sequence a1, a2, . . . of points of A such that limn d(a, an) = d(a,A).
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Subsection 6

Open Sets and Closed Sets
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Open Sets in Metric Spaces

Definition (Open Set)

A subset O of a metric space is said to be open if O is a neighborhood of
each of its points.

Open sets may be characterized in terms of open balls.

Theorem

A subset O of a metric space (X , d) is an open set if and only if it is a
union of open balls.

Suppose O is open. Then for each a ∈ O, there is an open ball
B(a; δa) ⊆ O. Therefore O =

⋃

a∈O B(a; δa) is a union of open balls.

Conversely, if O is a union of open balls, then using the centers of
these balls as the elements of an indexing set we can write
O =

⋃

a∈I B(a; δa). If x ∈ O, then x ∈ B(a; δa), for some a ∈ I .
B(a; δa) is a neighborhood of x and, since B(a; δa) ⊆ O, by N3, O is
a neighborhood of x . Thus O is a neighborhood of each of its points.
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Continuity in terms of Open Sets

Open sets provide a simple characterization of continuity.

Theorem

Let f : (X , d) → (Y , d ′). Then f is continuous if and only if for each open
set O of Y , the subset f −1(O) is an open subset of X .

First, suppose f is continuous. Let O ⊆ Y be open. We must show
that f −1(O) is open, i.e., f −1(O) is a neighborhood of each of its
points. To this end, let a ∈ f −1(O), then f (a) ∈ O and O is a
neighborhood of f (a). Since f is continuous at a, f −1(O) is a
neighborhood of a.

Conversely, suppose for each open set O ⊆ Y , f −1(O) is open. Let
a ∈ X and let M be a neighborhood of f (a). Then, there is an ǫ > 0,
such that B(f (a); ǫ) ⊆ M. But B(f (a); ǫ) is open and therefore
f −1(B(f (a); ǫ)) is open. Since a ∈ f −1(B(f (a); ǫ)), this subset is a
neighborhood of a. Therefore f −1(M) contains a neighborhood of a
and f is continuous at a. Since a was arbitrary, f is continuous.
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Properties of Open Sets in Metric Spaces

The collection of open sets in a metric space satisfy some important
properties.

Theorem

Let (X , d) be a metric space.

O1. The empty set is open.

O2. X is open.

O3. If O1,O2, . . . ,On are open, then O1 ∩ O2 ∩ · · · ∩ On is open.

O4. If for each α ∈ I , Oα is an open set, then
⋃

α∈I Oα is open.

O1. The empty set is open, for in order for it not to be open there would
have to be a point x ∈ ∅.

O2. Given a point a ∈ X , for any δ > 0, B(a; δ) ⊆ X , and, therefore, X is
a neighborhood of each of its points, i.e., X is open.
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Proofs of O3 and O4

O3. To prove O3, let a ∈ O1 ∩ · · · ∩ On, where for i = 1, . . . , n, Oi is
open. Then each Oi is a neighborhood of a. By N4, the intersection
of two neighborhoods of a is again a neighborhood of a, and, hence,
by induction, the intersection of a finite number of neighborhoods of
a is again a neighborhood of a. Therefore O1 ∩ · · · ∩ On is a
neighborhood of each of its points.

O4. Finally, to prove O4, let a ∈ ⋃

α∈I Oα, where for each α ∈ I , Oα is
open. Then α ∈ Oβ, for some β ∈ I , and Oβ is a neighborhood of a.
Since Oβ ⊆ O, by N3, O is a neighborhood of a. Therefore O is a
neighborhood of each of its points.
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Closed Sets in Metric Spaces

Definition (Closed Set)

A subset F of a metric space is said to be closed if its complement, C (F ),
is open.

In the real number system, a closed interval [a, b] is a closed set, for
its complement is the union of the two open sets O1 and O2, where

O1 is the set of real numbers x , such that x < a;
O2 is the set of real numbers x , such that x > b.

A set can be both open and closed:

In any metric space (X , d), the two sets ∅ and X are open, and
therefore their complements X and ∅ are closed. Thus, X and also ∅
are both open and both closed.

A set may also be neither open nor closed.
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Limit Points

Definition (Limit Point)

Let A be a subset of a metric space X . A point b ∈ X is called a limit

point of A if every neighborhood of b contains a point of A different from
b.

If b is a limit point of A, then each of the open balls B(b; 1
n
) contains

a pointan ∈ A and limnan = b.

Thus a limit point of a set is the limit of a convergent sequence of
points of A.

The converse is false, for the point b may be a point of A while for
some δ, B(b; δ) contains no point of A other than b. Thus b is not a
limit point of A although the sequence b, b, . . . converges to b.

In this latter case b is called an isolated point of A.
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Limit Points and Closed Sets

Theorem

In a metric space X , a set F ⊆ X is closed if and only if F contains all its
limit points.

Let F ′ denote the set of limit points of F .

First suppose F is closed and consequently C (F ) is open. Choose a
point b 6∈ F . Since C (F ) is open, there is a δ > 0, such that
B(b; δ) ⊆ C (F ) or B(b; δ) ∩ F = ∅. Hence b 6∈ F ′ and F ′ ⊆ F .

Conversely, suppose F ′ ⊆ F , or equivalently, C (F ) ⊆ C (F ′). If
b ∈ C (F ), then b 6∈ F ′. It follows that for some δ > 0,
B(b; δ) ∩ F = ∅, or B(b; δ) ⊆ C (F ). Hence C (F ) is open and F is
closed.
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Closed Sets in terms of Limit Points

Theorem

In a metric space (X , d), a set F ⊆ X is closed if and only if for each
sequence a1, a2, . . . of points of F that converges to a point a ∈ X , we
have a ∈ F .

First, let F be closed. Suppose limn an = a and an ∈ F , for
n = 1, 2, . . ..

If the set of points {a1, a2, . . .} is infinite then every neighborhood of a
contains infinitely many points of F , a is a limit point of F , whence, by
the preceding theorem, a ∈ F .
If this set of points is finite, then for some integer N , an = am,
whenever n,m > N . Since limn an = a, d(an, a) = 0, for n > N or
an = a, whence a ∈ F .

Conversely, suppose that F is a set such that for each sequence with
limn an = a and an ∈ F , for all n, we have a ∈ F . If b is a limit point
of F , then b is the limit of a convergent sequence of points of F and
b ∈ F . Thus, by the preceding theorem, F is closed.
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Closed Sets in terms of Distance

We characterize closed sets in terms of distance from a point to a set.

Theorem

A subset F of a metric space (X , d) is closed if and only if for each point
x ∈ X , d(x ,F ) = 0 implies x ∈ F .

First, suppose F is closed. Let x ∈ X be such that d(x ,F ) = 0.
Then, there is a sequence of points of F , such that limn d(x , an) = 0.
Thus, every neighborhood of x contains points of F .

If some an = x , x is in F .
Otherwise, each an is different from x , so that x is a limit point of the
sequence and hence of F . Thus, by the preceding theorem, x ∈ F .

Conversely, suppose that F is such that d(x ,F ) = 0 implies x ∈ F . If
x is a limit point of F then d(x ,F ) = 0. Thus, in this case F

contains all its limit points and is closed.
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Continuity in terms of Closed Sets

Continuity may be characterized by means of closed sets.

Theorem

Let (X , d), (Y , d ′) be metric spaces. A function f : X → Y is continuous
if and only if for each closed subset A of Y , the set f −1(A) is a closed
subset of X .

For A ⊆ Y , we have C (f −1(A)) = f −1(C (A)). But f is continuous if
and only if the inverse image of each open set is an open set, and this
is true if and only if the inverse image of each closed set is a closed
set.
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Properties of Closed Sets

We record the following facts about closed sets.

Theorem

Let (X , d) be a metric space.

C1. X is closed.

C2. ∅ is closed.

C3. The union of a finite collection of closed sets is closed.

C4. The intersection of a family of closed sets is closed.

C1 and C2 have already been discussed.

C3 and C4 follow from the application of DeMorgans formulas to the
corresponding properties O3 and O4 of open sets.

The union of closed sets need not, in general, be a closed set.

Example: For each positive integer n let Fn be the closed interval
[ 1
n
, 1]. Then

⋃∞
n=1 Fn = (0, 1], where (0, 1] is the set of real numbers

x , such that 0 < x ≤ 1. The set (0, 1] is not closed, for 0 is a limit
point of the set but is not in the set.
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Subsection 7

Subspaces and Equivalence of Metric Spaces
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Subspaces

Let (X , d) be a metric space.

Given a non-empty subset Y of X , we may convert Y into a metric
space by restricting the distance function d to Y × Y .

In this manner each non-empty subset Y of X gives rise to a new
metric space (Y , d |Y×Y ).

On the other hand, we may be given two metric spaces (X , d) and
(Y , d ′). If Y ⊆ X , it makes sense to ask whether or not d ′ is the
restriction of d .

Definition (Subspace)

Let (X , d) and (Y , d ′) be metric spaces. We say that (Y , d ′) is a
subspace of (X , d) if:

1. Y ⊆ X ;

2. d ′ = d |Y×Y .
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Subspaces in terms of Diagrams

Let Y ⊆ X and i : Y → X be an inclusion mapping.

Denote by i × i : Y × Y → X × X the inclusion mapping defined by

(i × i)(y1, y2) = (y1, y2).

Then (Y , d ′) is a subspace of (X , d) if the diagram

Y × Y

R

d ′

✲

X × X

i × i
❄

d

✲

is commutative.

There are as many subspaces of a metric space (X , d) as there are
non-empty subsets of X .
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Examples I

Let Q be the set of rational numbers. Define dQ : Q×Q → R by

dQ(a, b) = |a − b|.

Then (Q, dQ) is a subspace of (R, d).

Let In (the unit n-cube) be the set of all n-tuples (x1, x2, . . . , xn) of
real numbers such that 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n. Define
dc : In × In → R by

dc((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = max
1≤i≤n

{|xi − yi |}.

Then (In, dc) is a subspace of (Rn, d).
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Examples II

Let Sn (the n-sphere) be the set of all (n + 1)-tuples
(x1, x2, . . . , xn+1) of real numbers such that x21 + x22 + · · ·+ x2n+1 = 1.
Define dS : Sn × Sn → R by

dS((x1, . . . , xn+1), (y1, . . . , yn+1)) =

√

√

√

√

n+1
∑

i=1

(xi − yi)2.

Then (Sn, dS ) is a subspace of the Euclidean space (Rn+1, d ′).

Let A be the set of all (n + 1)-tuples (x1, x2, . . . , xn+1) of real
numbers such that xn+1 = 0. Define dA : A× A → R by

dA((x1, . . . , xn, 0), (y1, . . . , yn, 0)) = max
1≤i≤n

{|xi − yi |}.

Then (A, dA) is a subspace of (Rn+1, d).
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Continuity of Subspace Inclusion Map

Theorem

Let (Y , d ′) be a subspace of (X , d). Then the inclusion mapping
i : Y → X is continuous.

Given a ∈ Y and ǫ > 0, choose δ = ǫ. If d ′(a, y) < δ, then
d(i(a), i(y)) = d(a, y) = d ′(a, y) < δ = ǫ.
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Metric Equivalences or Isometries

The metric space (A, dA) of the last example is in most respects a
copy of the metric space (Rn, d), the only distinction being that a
point of Rn is an n-tuple of real numbers, whereas a point of A is an
(n + 1)-tuple of real numbers of which the last one is zero.

This relationship is called “metric equivalence” or “isometry”.

Definition (Isometry)

Two metric spaces (A, dA) and (B , dB) are said to be metrically
equivalent or isometric if there are inverse functions f : A → B and
g : B → A, such that:

for each x , y ∈ A, dB(f (x), f (y)) = dA(x , y);

for each u, v ∈ B, dA(g(u), g(v)) = dB(u, v).

In this event we shall say that the metric equivalence or isometry is

defined by f and g .
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Characterization of Metric Equivalence

Theorem

A necessary and sufficient condition that two metric spaces (A, dA) and
(B , dB) be metrically equivalent is that there exist a function f : A → B ,
such that:
1. f is one-one;
2. f is onto;
3. for each x , y ∈ A, dB(f (x), f (y)) = dA(x , y).

The stated conditions are necessary, for if (A, dA) and (B , dB) are
metrically equivalent, there are inverse functions f : A → B and
g : B → A, and therefore f is one-one and onto.

Conversely, suppose f : A → B with the stated properties exists.
Then f is invertible and the function g : B → A, such that f and g

are inverse functions is determined by setting g(b) = a if f (a) = b.
For u, v ∈ B , let x = g(u), y = g(v). Then
dA(g(u), g(v)) = dA(x , y) = dB(f (x), f (y)) = dB(u, v).
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Distance Preservation in terms of Diagrams

Given metric spaces (A, dA) and (B , dB) and functions f : A → B and
g : B → A, let us denote by f × f : A× A → B × B the function
defined by setting

(f × f )(x , y) = (f (x), f (y)), for x , y ∈ A.

Similarly, let g × g : B × B → A× A be defined by setting

(g × g)(u, v) = (g(u), g(v)), for u, v ∈ B .

The statement that dB(f (x), f (y)) = dA(x , y), for x , y ∈ A, is
equivalent to the statement that the diagram

A× A

R

dA
✲

B × B

f × f
❄

dB

✲

is commutative. One may also describe this relation by saying that
the function f : A → B is “distance preserving”.
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Metric Equivalence in terms of Diagrams

The statement that (A, dA) and (B , dB) are metrically equivalent is
the statement that there exist functions f : A → B , g : B → A, such
that the four diagrams

A
iA

✲ A

B g
✲

f
✲

B
iB

✲ B

A f
✲

g
✲

A× A

R

dA
✲

B × B

f × f
❄

dB

✲

B × B

R

dB
✲

A× A

g × g
❄

dA

✲

are commutative.
The first two diagrams say that f and g are inverse functions.
The last two diagrams say that f and g “preserve distances”.

Since the distance between x and y in A is the same as the distance
between f (x) and f (y) in B , f is continuous and, similarly, g is
continuous:

Lemma

Let a metric equivalence between (A, dA) and (B , dB) be defined by inverse
functions f : A → B and g : B → A. Then both f and g are continuous.
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Topological Equivalence

From the point of view of continuity, the relationship of metric
equivalence is too narrow.

We define a broader concept of equivalence in which we drop the
requirement of “preservation of distance” and only require that the
first two diagrams be commutative and the functions in these
diagrams be continuous.

Definition (Topological Equivalence)

Two metric spaces (A, dA) and (B , dB) are said to be topologically

equivalent if there are inverse functions f : A → B and g : B → A, such
that f and g are continuous. In this event we say that the topological

equivalence is defined by f and g .
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Metric versus Topological Equivalence

As a corollary to the preceding lemma we obtain:

Corollary

Two metric spaces that are metrically equivalent are topologically
equivalent.

The converse of this corollary is false, i.e., there are metric spaces
that are topologically equivalent, but are not metrically equivalent.

Example: A circle of radius 1 is topologically equivalent to a circle of
radius 2 (considered as subspaces of (R2, d)), but the two are not
metrically equivalent.
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Topological Equivalence of Two Metric over X

Lemma

Let (X , d1) and (X , d2) be two metric spaces. If there exists a number
K > 0, such that for each x , y ∈ X , d2(x , y) ≤ Kd1(x , y), then the
identity mapping i : (X , d1) → (X , d2) is continuous.

Given ǫ > 0 and a ∈ X , set δ = ǫ
K
. If d1(x , a) < δ, then

d2(i(x), i(a)) = d2(x , a) ≤ K · d1(x , a) < Kδ = ǫ.

Corollary

Let (X , d) and (X , d ′) be two metric spaces with the same underlying set.
If there exist positive numbers K and K ′, such that for each x , y ∈ X ,

d ′(x , y) ≤ K · d(x , y) and d(x , y) ≤ K ′ · d ′(x , y),

then the identity mappings define a topological equivalence between
(X , d) and (X , d ′).
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An Example of Topological Equivalence

Consider the two metric spaces (Rn, d) and (Rn, d ′), where:

the distance function d is the maximum distance between coordinates;
the distance function d ′ is the Euclidean distance function.

For each pair of points x , y ∈ Rn, the following inequality holds:

d(x , y) ≤ d ′(x , y) ≤ √
nd(x , y).

It therefore follows from the corollary that the metric spaces (Rn, d)
and (Rn, d ′) are topologically equivalent.
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Continuity of Inverse Functions

Theorem

Let (X , d) and (Y , d ′) be two metric spaces. Let f : X → Y and
g : Y → X be inverse functions. Then the following four statements are
equivalent:

1. f and g are continuous;

2. A subset O of X is open if and only if f (O) is an open subset of Y ;

3. A subset F of X is closed if and only if f (F ) is a closed subset of Y ;

4. For each and subset N of X , N is a neighborhood of a if and only if
f (N) is a neighborhood of f (a).

1⇒2 Let O be an open subset of X . Then f (O) = g−1(O) is open since g

is continuous.

Conversely, if f (O) is an open subset of Y , then f −1(f (O)) = O is
open, since f is continuous.
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Continuity of Inverse Functions (Cont’d)

2⇒4 For each a ∈ X and N ⊆ X , N is a neighborhood of a if and only if N
contains an open set O containing a if and only if f (N) contains an
open set O ′ = f (O) containing f (a) if and only if f (N) is a
neighborhood of f (a).

4⇒1 Let a ∈ X and let U be a neighborhood of f (a). Then f −1(U) is a
neighborhood of a, for U = f (f −1(U)) is a neighborhood of f (a).
Thus f is continuous. Similarly, let b ∈ Y and let V be a
neighborhood of g(b). Then g−1(V ) = f (V ) is a neighborhood of
f (g(b)) = b, and g is continuous.

We showed Statements 1, 2, and 4 equivalent. We leave equivalence
of Statements 2 and 3 as an exercise.
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Comments on Topological Equivalence

Statement 1 in the preceding theorem is the statement that the
metric spaces (X , d) and (Y , d ′) are topologically equivalent.

Thus, the theorem asserts that two metric spaces are topologically
equivalent if and only if there exist inverse functions that establish

a one-one correspondence between the open sets of the two spaces, or
a one-one correspondence between the closed sets of the two spaces, or
a one-one correspondence between the complete systems of
neighborhoods of the two spaces.

Both metrically equivalent and topologically equivalent are
equivalence relations defined on a collection of metric spaces.

Since metric equivalence implies topological equivalence, each
equivalence class of metrically equivalent metric spaces is contained in
an equivalence class of topologically equivalent metric spaces.
Distinguishing which topologically equivalent equivalence class a metric
space belongs to is a coarser, but consequently more fundamental,
distinction.
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Subsection 8

An Infinite Dimensional Euclidean Space
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The Hilbert Space

In this section we shall define a metric space H, called Hilbert space,
which contains as subspaces isometric copies of the various Euclidean
spaces (Rn, d ′).

A point u of H is a sequence u1, u2, . . . of real numbers such that the
series

∑∞
i=1 u

2
i is convergent.

Let u = (u1, u2, . . .) and v = (v1, v2, . . .) be in H. The intention is to
define a metric on H by setting

d(u, v) =

[

∞
∑

i=1

(ui − vi)
2

]1/2

.

To do this, we must first know that the series in brackets converges.

We make use of the following result, known as Schwarz’s Lemma or
Cauchy’s Inequality.
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The Cauchy-Schwarz Inequality

Lemma (Cauchy-Schwarz Inequality)

Let (u1, u2, . . . , un), (v1, v2, . . . , vn) be n-tuples of real numbers. Then
n

∑

i=1

uivi ≤
[

n
∑

i=1

u2i

]1/2 [ n
∑

i=1

v2i

]1/2

.

It suffices to prove that (
∑n

i=1 uivi )
2 ≤ (

∑n
i=1 u

2
i )(

∑n
i=1 v

2
i ).

Consider, for an arbitrary λ ∈ R, the expression
∑n

i=1(ui + λvi )
2. We

have 0 ≤ ∑n
i=1(ui + λvi )

2 =
∑n

i=1 u
2
i + 2λ

∑n
i=1 uivi + λ2

∑n
i=1 v

2
i .

Therefore, the quadratic equation in λ

0 =
n

∑

i=1

u2i + 2λ
n

∑

i=1

uivi + λ2
n

∑

i=1

v2i

can have at most one real solution. Hence, its discriminant is
nonpositive: (

∑n
i=1 uivi)

2 − (
∑n

i=1 u
2
i )(

∑n
i=1 v

2
i ) ≤ 0, or,

equivalently, (
∑n

i=1 uivi)
2 ≤ (

∑n
i=1 u

2
i )(

∑n
i=1 v

2
i ).
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The Series of Products of Coordinates

Corollary

Let u = (u1, u2, . . .), v = (v1, v2, . . .) be in H with U =
∑∞

i=1 u
2
i ,

V =
∑∞

i=1 v
2
i . Than the series

∑∞
i=1 uivi is absolutely convergent and

∞
∑

i=1

|uivi | ≤ U1/2V 1/2.

For each positive integer n,

∑n
i=1 |uivi | =

∑n
i=1 |ui ||vi |

≤
[
∑n

i=1 |ui |2
]1/2 [∑n

i=1 |vi |2
]1/2

≤ U1/2V 1/2.

Thus the partial sums of this series of positive terms are bounded and
the series converges to a limit not greater than U1/2V 1/2.
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Linear Combinations in H

If α, β ∈ R and we set αu + βv = (αu1 + βv1, αu2 + βv2, . . .), then
αu + βv is also in H for

∑∞
i=1(αui + βvi)

2 is the sum of three
absolutely convergent series.

In particular u + v ∈ H and

∑∞
i=1(ui + vi )

2 =
∑∞

i=1 |u2i + 2uivi + v2i |
≤ ∑∞

i=1 u
2
i + 2

∑∞
i=1 |uivi |+

∑∞
i=1 v

2
i

≤ U + 2U1/2V 1/2 + V = (U1/2 + V 1/2)2.

Taking square roots we obtain

Corollary
[
∑∞

i=1(ui + vi )
2
]1/2 ≤ U1/2 + V 1/2.
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The Space (H , d) and the Space (Rn
, d

′)

Theorem

(H, d) is a metric space, where d(u, v) =
[
∑∞

i=1(ui − vi)
2
]1/2

.

It is obvious that d satisfies all the properties of a distance except
d(a, b) ≤ d(a, c) + d(c , b), for a, b, c ∈ H. Let a = (a1, a2, . . .),
b = (b1, b2, . . .), c = (c1, c2, . . .). Set u = a − c , v = c − b, so that
ui = ai − ci , vi = ci − bi . Then ui + vi = ai − bi and the preceding
corollary yields the desired inequality.
Let En be the collection of points u = (u1, u2, . . .) ∈ H, such that
uj = 0, for j > n. To each point a = (a1, a2, . . . , an) ∈ Rn, we can
associate the point h(a) = (a1, . . . , an, 0, 0, . . .) ∈ En

h is a one-one mapping of Rn onto the subspace E n of H .

Using d ′(a, b) =
[
∑n

i=1(ai − bi)
2
]1/2

in Rn, d ′(a, b) = d(h(a), h(b)).

Since En is a metric space, (Rn, d ′) is a metric space and h is an
isometry of (Rn, d ′) with (En, d |En).
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