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Topological Spaces Introduction

From Metric to Topological Spaces

In the context of metric spaces, the various topological concepts such
as continuity, neighborhood, and so on, may be characterized by
means of open sets.

Discarding the distance function and retaining the open sets of a
metric space gives rise to a topological space.

The topological concepts that we studied before must be reintroduced
in the context of topological spaces.

To formulate the definition of a term in a topological space, we find,
in a metric space, the characterization of the term by means of open
sets, using in most cases what is a theorem in a metric space as a
definition in a topological space.

There are other ways of introducing topological spaces.
E.g., if we discard the distance function of a metric space, but retain
the systems of neighborhoods of the points, we obtain what we call a
neighborhood space.
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Topological Spaces Topological Spaces

Topological Spaces

Definition (Topological Space)

Let X be a non-empty set and T a collection of subsets of X such that:

O1. X ∈ T .

O2. ∅ ∈ T .

O3. If O1,O2, . . . ,On ∈ T , then O1 ∩ O2 ∩ · · · ∩On ∈ T .

O4. If for each α ∈ I , Oα ∈ T , then
⋃

α∈I Oα ∈ T .

The pair of objects (X ,T ) is called a topological space. The set X is
called the underlying set, the collection T is called the topology on the
set X , and the members of T are called open sets.

If T is the collection of open sets of a metric space (X , d), then
(X ,T ) is a topological space. It is called the topological space

associated with the metric space (X , d). The metric space (X , d)
is said to give rise to the topological space (X ,T ).
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Topological Spaces Topological Spaces

Examples of Topological Spaces I

For each metric space, its associated topological space is an example
of a topological space.

On the other hand, any set X and collection T of subsets satisfying
O1, O2, O3, O4 is an example of a topological space, and we shall
see that not every such example arises from a metric space.

1. The real line is the topological space that arises from the metric
space consisting of the real number system and the distance function
d(a, b) = |a − b|.

2. The topological space that arises from the metric space (Rn, d). We
shall call this topological space Euclidean n-space with the usual

topology.

3. Let X be an arbitrary set. Let T = {∅,X}. Then (X ,T ) is a
topological space.
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Topological Spaces Topological Spaces

Examples of Topological Spaces II

4. Let X be a set containing precisely two distinct elements a and b. Let
T1 = {∅,X}, T2 = {∅, {a},X}, T3 = {∅, {b},X}, T4 = {∅, {a}, {b},
X}. Then (X ,Ti ), i = 1, 2, 3, 4, are four distinct topological spaces
with the same underlying set.

5. Let X be an arbitrary set. Let T be the collection of all subsets of X ,
i.e., T = P(X ). Then (X ,T ) is a topological space. Of all the
various topologies that one may place on a set X , this one contains
the largest number of elements. It is called the discrete topology.

6. Let X be an arbitrary set. Let T be the collection of all subsets of X
whose complements are either finite or all of X . Then (X ,T ) is a
topological space.

7. Let Z be the set of positive integers. For each positive integer n, let
On = {n, n + 1, n + 2, . . .}. Let T = {∅,O1,O2, . . . ,On, . . .}. Then
(Z ,T ) is a topological space.
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Topological Spaces Topological Spaces

Verifying the Topology Axioms

To verify that (X ,T ) is a topological space, one verifies that T is a
topology, i.e., that it satisfies conditions O1, O2, O3, O4.
Example: We show that, given an arbitrary subset X , and T the
collection of all subsets of X whose complements are either finite or
all of X , T is a topology.
O1. X ∈ T , for its complement ∅ = C (X ) is certainly finite.
O2. ∅ ∈ T , since C (∅) = X .
O3. Let O1,O2, . . . ,On be subsets of X , each of whose complements is

finite or all of X . To show that O1 ∩O2 ∩ · · · ∩ On ∈ T , we must show
that C (O1 ∩ O2 ∩ · · · ∩ On) is either finite or all of X . But
C (O1 ∩ O2 ∩ · · · ∩ On) = C (O1) ∪ C (O2) ∪ · · · ∪ C (On).

Either this set is a union of finite sets and hence finite.
or for some i , C(Oi) = X and the union is all of X .

O4. Finally, for each α ∈ I , let Oα ∈ T , so that C (Oα) is either finite or X .
Then C (

⋃

α∈I Oα) =
⋂

α∈I C (Oα).
Either each of the sets C(Oα) = X , in which case the intersection is X ,
or at least one of them is finite, in which case the intersection is a
subset of a finite set and hence finite.
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Topological Spaces Topological Spaces

Relation Between Metric and Topological Spaces

The relationship between the totality of metric spaces and the totality
of topological spaces is

Two distinct metric spaces (X , d) and
(X , d ′) may give rise to the same
topological space (X ,T ).

Also there are topological spaces
(X ,T ), such as Example 7 above,
which could not have arisen from a
metric space.

The subcollection of topological spaces that arise from metric spaces
is called the collection of metrizable topological spaces.

In passing from a metric space to its associated topological space, we
may say that the “open” sets have been “preserved”.
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Topological Spaces Topological Spaces

Neighborhoods

Definition (Neighborhood)

Given a topological space (X ,T ), a subset N of X is called a
neighborhood of a point a ∈ X if N contains an open set that contains a.

So a subset N of a metric space (X , d) is a neighborhood of a point
a ∈ X if and only if N is a neighborhood of a in the associated
topological space.

Thus, in passing from a metric space to a topological space,
neighborhoods have also been “preserved”.
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Topological Spaces Topological Spaces

Open Sets In Terms of Neighborhoods and Closed Sets

Corollary

Let (X ,T ) be a topological space. A subset O of X is open if and only if
O is a neighborhood of each of its points.

First, suppose that O is open. Then, for each x ∈ O, O contains an
open set containing x , namely, O itself.

Conversely, suppose O is a neighborhood of each of its points. Then
for each x ∈ O, there is an open set Ox , such that x ∈ Ox ⊆ O.
Consequently, O =

⋃

x∈O Ox is a union of open sets and hence is
open.

Definition (Closed Set)

Given a topological space (X ,T ), a subset F of X is called a closed set if
the complement, C (F ), is an open set.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Subsection 3

Neighborhoods and Neighborhood Spaces
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Topological Spaces Neighborhoods and Neighborhood Spaces

Properties of Neighborhoods

Theorem

Let (X ,T ) be a topological space.

N1. For each point x ∈ X , there is at least one neighborhood N of x .

N2. For each point x ∈ X and each neighborhood N of x , x ∈ N.

N3. For each point x ∈ X , if N is a neighborhood of x and N ′ ⊇ N, then
N ′ is a neighborhood of x .

N4. For each point x ∈ X and each pair N,M of neighborhoods of x ,
N ∩M is also a neighborhood of x .

N5. For each point x ∈ X and each neighborhood N of x , there exists a
neighborhood O of x , such that O ⊆ N and O is a neighborhood of
each of its points.

For each point x ∈ X , X is a neighborhood of x .
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Topological Spaces Neighborhoods and Neighborhood Spaces

Properties of Neighborhoods (Cont’d)

N2 and N3 follow easily from the definition of neighborhood in a
topological space.

To verify N4, let N,M be neighborhoods of x . Then there are open
sets O and O ′, such that N ⊇ O and M ⊇ O ′. Thus, N ∩M contains
the open set O ∩O ′, which contains x , and, consequently, N ∩M is a
neighborhood of x .

Finally, for a point x ∈ X , let N be a neighborhood of x . Then N
contains an open set O containing x . In particular,

O is a neighborhood of x ;
By the preceding corollary, O is a neighborhood of each of its points.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Complete System of Neighborhoods at a Point

Definition (Complete System of Neighborhoods at a Point)

For each point x in a topological space (X ,T ), the collection Nx of all
neighborhoods of x is called a complete system of neighborhoods at

the point x .

One may paraphrase the properties N1-N5 of neighborhoods in terms
of the complete system of neighborhoods Nx at the points x ∈ X :

N1. For each x ∈ X , Nx 6= ∅;
N2. For each x ∈ X and N ∈ Nx , x ∈ N ;
N3. For each x ∈ X and N ∈ Nx , if N

′ ⊇ N , then N ′ ∈ Nx ;
N4. For each x ∈ X and N ,M ∈ Nx , N ∩M ∈ Nx ;
N5. For each x ∈ X and N ∈ Nx , there exists an O ∈ Nx , such that

O ⊆ N and O ∈ Ny for each y ∈ O.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Differences Between Metric and Topological Spaces

It is not always true that statements about neighborhoods that are
true in a metric space are also true in a topological space:

Example: Given two distinct points x and y in a metric space (X , d),
there are neighborhoods N and M of x and y , respectively, such that
N ∩M = ∅.

This statement is false in many topological spaces.
Let Y = {a, b}, a 6= b. Let T = {∅, {a},Y}. Then (Y , T ) is a
topological space.

The only neighborhood of b is Y .
Thus, for each neighborhood N of a and each neighborhood M of b,
N ∩M = N ∩ Y = N 6= ∅.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Hausdorff Spaces

Definition

A topological space (X ,T ) is called a Hausdorff space or is said to satisfy
the Hausdorff axiom, if for each pair a, b of distinct points of X , there
are neighborhoods N and M of a and b respectively, such that N ∩M = ∅.

Some authors use the term “separated space” instead of Hausdorff
space.

Many of the significant topological spaces are Hausdorff spaces.

For this reason, certain authors require a topological space to be a
Hausdorff space and use the two terms synonymously.

I.e., they add to the list O1-O4 of properties of open sets in the
definition of a topological space, the property:

For each pair x , y of distinct points there are open sets Ox and Oy

containing x and y respectively, such that Ox ∩ Oy = ∅.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Neighborhoods Spaces

Suppose we have a metric space (X , d) and we discard the distance
function, retaining only the neighborhoods of the points in X .
Then for each point x ∈ X , we have a collection of subsets of X ;
namely the complete system of neighborhoods at x .
We select some of the properties that neighborhoods satisfy and use
them as a set of axioms for “neighborhood spaces”.

Definition

Let X be a set. For each x ∈ X , let there be given a collection Nx of
subsets of X (called the neighborhoods of x), satisfying the conditions
N1-N5 of the preceding theorem. This object is called a neighborhood

space.

Definition

In a neighborhood space, a subset O is said to be open if it is a
neighborhood of each of its points.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Open Sets in Neighborhood Spaces

Lemma

In a neighborhood space:

the empty set and the whole space are open;

a finite intersection of open sets is open;

an arbitrary union of open sets is open.

We may use only the properties N1-N5 of neighborhoods and the
definition of open sets.

The empty set is open, for in order for it not to be open it would have
to contain a point x of which it was not a neighborhood.
Given a point x , there is some neighborhood N of x . So, by N3, the
whole space is a neighborhood of x . Thus, the whole space is a
neighborhood of each of its points. Hence, it is open.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Open Sets in Neighborhood Spaces (Cont’d)

If O and O ′ are open, then O ∩ O ′ is also open, for, by N4, given
x ∈ O ∩ O ′, O and O ′ are neighborhoods of x , hence so is O ∩ O ′.

Thus the intersection of two open sets is a neighborhood of each of
its points.

By induction, any finite intersection of open sets is open.

Finally, suppose for each α ∈ I , Oα is open. If x ∈
⋃

α∈I Oα, then
x ∈ Oβ for some β ∈ I . But Oβ is a neighborhood of x and
Oβ ⊆

⋃

α∈I Oα. Thus, by N3,
⋃

α∈I Oα is a neighborhood of x . It is
therefore open.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Topological to Neighborhood to Topological

If we start with a topological space and define neighborhoods, the
underlying set and the complete systems of neighborhoods of the
points of the set yield a neighborhood space.

If we start with a neighborhood space and define open sets, we obtain
a topological space.
If we have a topological space (X ,T ),

use the neighborhoods of (X , T ) to form a neighborhood space;
then use the open sets in this neighborhood space to create a
topological space (X , T ′),

we end up with our original topological space (X ,T ).
To prove this, we must show that T = T ′.

If O ∈ T , O is a neighborhood of each of its points, from which it
follows that O ∈ T ′.
Conversely, if O ∈ T ′, then O is a neighborhood of each of its points.
But the neighborhoods of the neighborhood space we have created are
the neighborhoods of (X , T ), so that O is open in (X , T ) or O ∈ T .
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Topological Spaces Neighborhoods and Neighborhood Spaces

Neighborhoods in terms of Open Sets

Lemma

In a neighborhood space, a subset N is a neighborhood of a point x if and
only if N contains an open set containing x .

First, let N contain an open set O containing x . Then O is a
neighborhood of x . By N3, N is a neighborhood of x .

Conversely, if N is a neighborhood of x , then by N5, N contains a
neighborhood O of x (by N2, O contains x), such that O is a
neighborhood of each of its points.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Neighborhood to Topological to Neighborhood

To denote a neighborhood space, let us use the symbol (X ,N), where
for each x ∈ X , Nx is the collection of neighborhoods of x .

Now suppose that we start with a neighborhood space (X ,N).

We define open sets, thus obtaining a topological space (X , T ).
In the topological space (X , T ), we define neighborhood to obtain a
neighborhood space (X ,N′).

If N ∈ Nx , by the lemma, N contains an open set O containing x , so
that N is a neighborhood of x in (X ,T ), or N ∈ N′

x .

Conversely, if N ∈ N′
x , then N contains a set O ∈ T , and x ∈ O.

Since O ∈ T , O is open in the neighborhood space (X ,N) and so N

is a neighborhood of x .
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Topological Spaces Neighborhoods and Neighborhood Spaces

Topological Spaces and Neighborhood Spaces

Collecting together the results on the correspondence between
topological spaces and neighborhood spaces, we get:

Theorem

Let neighborhood in a topological space and open set in a neighborhood
space be defined as before. Then:

The neighborhoods of a topological space (X , T ) give rise to a
neighborhood space (X ,N) = A(X , T ).

The open sets of a neighborhood space (Y ,N′) give rise to a topological
space (Y , T ′) = A′(Y ,N′).

For each topological space (X , T ), (X , T ) = A′(A(X , T )).

For each neighborhood space (X ,N), (X ,N) = A(A′(X ,N)).

This establishes a one-one correspondence between the collection of all
topological spaces and the collection of all neighborhood spaces.
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Topological Spaces Neighborhoods and Neighborhood Spaces

Illustration of Correspondence

The preceding theorem justifies the specification of a topological
space by defining for a given set X what subsets of X are to be the
neighborhoods of a point, i.e., by specifying the corresponding
neighborhood space.

Example: Let X be the set of positive integers.

Given a point n ∈ X , and a subset U of X , let us call U a
neighborhood of n if for each integer m ≥ n, m ∈ U.

Verifying that these neighborhoods satisfy conditions N1-N5, we have
a neighborhood space.

Consequently, exploiting the preceding correspondence, we also have a
topological space.
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Subsection 4

Closure, Interior, Boundary
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Topological Spaces Closure, Interior, Boundary

Closeness in Topological Spaces

Lemma

In a metric space (X , d), for a given point x and a given subset A,
d(x ,A) = 0 if and only if each neighborhood N of x contains a point of A.

First, suppose that each neighborhood N of x contains a point of A.
In particular, for each ǫ > 0, there is a point of A in B(x ; ǫ). Thus,
g.l.b.a∈A{d(x , a)} < ǫ, for each ǫ > 0. Consequently,
d(x ,A) = g.l.b.a∈A{d(x , a)} = 0.

Conversely, suppose that there is a neighborhood N of x that does
not contain a point of A. Since N is a neighborhood of x in a metric
space, there is an ǫ > 0, such that B(x ; ǫ) ⊆ N. It follows that a ∈ A

implies that d(x , a) ≥ ǫ. Thus, d(x ,A) ≥ ǫ.

In a topological space, the points of a subset A are arbitrarily close to
a given point x , if each neighborhood of x contains a point of A.

George Voutsadakis (LSSU) Topology June 2019 28 / 87



Topological Spaces Closure, Interior, Boundary

Closure of a Set

Given a subset A, the collection of points that are arbitrarily close to
A is called the closure of A.

Definition

Let A be a subset of a topological space. A point x is said to be in the

closure of A if, for each neighborhood N of x , N ∩ A 6= ∅. The closure of
A is denoted by A.

A description of the closure of a subset in terms of closed sets:

Lemma

Given a subset A of a topological space and a closed set F containing A,
A ⊆ F .

Suppose x 6∈ F , then x is in the open set C (F ). Also, F ⊇ A implies
C (F ) ⊆ C (A). Thus, C (F )∩A = ∅. Since C (F ) is a neighborhood of
x , x 6∈ A. We have thus shown that C (F ) ⊆ C (A) or A ⊆ F .
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Topological Spaces Closure, Interior, Boundary

Closure and Closed Sets

Lemma

Given a subset A of a topological space and a point x 6∈ A, then x 6∈ F , for
some closed set F containing A.

If x 6∈ A, then there is a neighborhood and hence an open set O
containing x , such that O ∩ A = ∅. Let F = C (O). Then F is closed
and F = C (O) ⊇ A. But x ∈ O and, therefore, x 6∈ F .

Combining these two lemmas, we obtain:

Theorem

Given a subset A of a topological space, A =
⋂

α∈I Fα, where {Fα}α∈I is
the family of all closed sets containing A.

By the pre-preceding lemma, A ⊆
⋂

α∈I Fα, since A ⊆ Fα, for each
α ∈ I . By the preceding lemma, x ∈ Fα, for each α ∈ I , implies that
x ∈ A, or

⋂

α∈I Fα ⊆ A. Thus, A =
⋂

α∈I Fα.
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Topological Spaces Closure, Interior, Boundary

Closed Sets in terms of Closure

Another possible description of the closure A of a subset A is the
characterization of A as the smallest closed set containing A.

A is contained in each closed set containing A. Moreover, A, being
the intersection of closed sets, is itself a closed set.

The next theorem characterizes closed sets in terms of closure.

Theorem

A is closed if and only if A = A.

We have just seen that A is closed. So, if A = A, then A is closed.

Conversely, suppose A is closed. In this event A itself is a closed set
containing A. Therefore, A ⊆ A. On the other hand, for an arbitrary
subset A, we have A ⊆ A, for if x ∈ A, then each neighborhood N of
x contains a point of A; namely x itself.

Thus, if A is closed, A = A.
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Topological Spaces Closure, Interior, Boundary

Properties of Closure

The act of taking the closure of a set associates to each subset A of a
topological space a new subset A.

This operation satisfies the following five properties:

Theorem

In a topological space (X ,T ),

CL1. ∅ = ∅;

CL2. X = X ;

CL3. For each subset A of X , A ⊆ A;

CL4. For each pair of subsets A,B of X , A ∪ B = A ∪ B.

CL5. For each subset A of X , A = A.

The property CL3 has already been established.

CL2 follows from CL3.
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Topological Spaces Closure, Interior, Boundary

Properties of Closure (Cont’d)

CL1 is true, for given a point x ∈ X and a neighborhood N of x ,
N ∩ ∅ = ∅. Thus, there are no points in ∅.

To prove CL5 we note that A is closed, so, A = A.

It remains for us to prove CL4. Suppose x ∈ A, then each
neighborhood N of x contains points of A and hence points of A ∪ B .
Thus, A ⊆ A ∪ B . Similarly, B ⊆ A ∪ B, and, consequently,
A ∪ B ⊆ A ∪ B. On the other hand, A ⊆ A and B ⊆ B, so
A∪B ⊆ A∪B. Thus, A∪B is a closed set containing A∪B , whence
A ∪ B ⊆ A ∪ B.

One may use the properties CL1-CL5 as a set of axioms for what we
will call a closure space.

Then one proves that there is a “natural” one-one correspondence
between the collection of topological spaces and the collection of
closure spaces.
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Topological Spaces Closure, Interior, Boundary

The Interior of a Set

Definition (Interior)

Given a subset A of a topological space, a point x is said to be in the

interior of A if A is a neighborhood of x . Int(A) denotes the interior of A.

Lemma

Given a subset A of a topological space and open O ⊆ A, O ⊆ Int(A).

If x ∈ O, then A is a neighborhood of x , since O is open and O ⊆ A.
Thus x ∈ Int(A) and O ⊆ Int(A).

Lemma

Given a subset A of a topological space, if x ∈ Int(A), then x ∈ O, for
some open set O ⊆ A.

If x ∈ Int(A), then A is a neighborhood of x , whence A contains an
open set O containing x .
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Topological Spaces Closure, Interior, Boundary

Interior and Closure

The preceding two lemmas combine to yield:

Theorem

Given a subset A of a topological space, Int(A) =
⋃

α∈I Oα, where
{Oα}α∈I is the family of all open sets contained in A.

Thus, Int(A), being the union of open sets, is itself open, and is the
largest open set contained in A.

If {Oα}α∈I is the family of open sets contained in a given set A, then
{C (Oα)}α∈I is the family of closed sets containing C (A):

Theorem

C (Int(A)) = C (A).

Corollary

Int(A) = C (C (A)) and C (A) = Int(C (A)).
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Topological Spaces Closure, Interior, Boundary

Boundary of a Set

For a given subset A, the set of points that are arbitrarily close to
both A and C (A) is called the “boundary” of A.

Definition (Boundary)

Given a subset A of a topological space, a point x is said to be in the

boundary of A if x is in both the closure of A and the closure of the
complement of A. The boundary of A is denoted by Bdry(A).

Thus, Bdry(A) = A ∩ C (A).

Note Bdry(C (A)) = C (A) ∩ C (C (A)) = C (A) ∩ A = Bdry(A).

A point x is in the boundary of a set A if and only if each
neighborhood N of x contains both points of A and points of the
complement of A.

Corollary

For each subset A, Bdry(A) is closed.

The boundary of A is the intersection of two closed sets.
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Subsection 5

Functions, Continuity, Homeomorphism
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Topological Spaces Functions, Continuity, Homeomorphism

Continuous Functions

Definition (Function Between Topological Spaces)

A function f from a topological space (X ,T ) to a topological space
(Y ,T ′) is a function f : X → Y .

If f is a function from a topological space (X ,T ) to a topological
space (Y ,T ′) we shall write f : (X ,T ) → (Y ,T ′).

If the topologies on X and Y need not be explicitly mentioned, we
may abbreviate this notation by f : X → Y or simply f .

Definition (Continuous Function)

A function f : (X ,T ) → (Y ,T ′) is said to be continuous at a point

a ∈ X if for each neighborhood N of f (a), f −1(N) is a neighborhood of a.
f is said to be continuous if f is continuous at each point of X .
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Topological Spaces Functions, Continuity, Homeomorphism

Functions Between Topological and Metric Spaces

Let (X , d) and (Y , d ′) be metric spaces and let their associated
topological spaces be (X ,T ) and (Y ,T ′), respectively.

Given a function f from the first metric space to the second, we also
have a function, which we still denote by f , from the first topological
space to the second.

For each point a ∈ X , a function f : (X , d) → (Y , d ′) is continuous
at a if and only if f : (X ,T ) → (Y ,T ′) is continuous at a.

Theorem

A function f : (X ,T ) → (Y ,T ′) is continuous if and only if for each open
subset O of Y , f −1(O) is an open subset of X .
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Proof of the Theorem

Theorem

A function f : (X ,T ) → (Y ,T ′) is continuous if and only if for each open
subset O of Y , f −1(O) is an open subset of X .

First, suppose that f is continuous. Let O is an open subset of Y .
Suppose a ∈ f −1(O). Then O is a neighborhood of f (a). So f −1(O)
is a neighborhood of a. Thus, f −1(O) is a neighborhood of each of
its points. Hence f −1(O) is an open subset of X .

Conversely, suppose that for each open subset O of Y , f −1(O) is an
open subset of X . Let a ∈ X and a neighborhood N of f (a) be given.
N contains an open set O containing f (a), so, by our hypothesis,
f −1(N) contains the open set f −1(O) containing a. Thus, f −1(N) is
a neighborhood of a. We conclude that f is continuous at a. Since a

was arbitrary, f is continuous.
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Continuity In Terms of Closed Sets

For any set X , given a collection E of subsets of X , let C ′(E ) denote
the collection of subsets of X that are complements of members of E .

Given f : X → Y and a collection E of subsets of Y , let f −1(E ) be
the collection of subsets of X of the form f −1(E ) for some E ∈ E .

The theorem states that f : (X ,T ) → (Y ,T ′) is continuous if and
only if f −1(T ′) ⊆ T . Let F = C ′(T ) and F ′ = C ′(T ′) be the closed
subsets of X and Y , respectively.

If F ∈ F ′, f −1(C (F )) = C (f −1(F )). so f −1(F ′) = C ′(f −1(T ′)).
Thus, f −1(T ′) ⊆ T is equivalent to f −1(F ′) ⊆ F :

Theorem

A function f : (X ,T ) → (Y ,T ′) is continuous if and only if, for each
closed subset F of Y , f −1(F ) is a closed subset of X .
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Continuous versus Open Mappings

It is important to remember that the theorem says that a function f

is continuous if and only if the inverse image of each open set is open.

This should not be confused with another property that a function
may or may not possess, the property that the image of each open set
is an open set (such functions are called open mappings).

There are many situations in which a function f : (X ,T ) → (Y ,T ′)
has the property that for each open subset A of X , the set f (A) is an
open subset of Y , and yet f is not continuous.

Example: Let Y be a set containing two distinct elements a and b

and let each subset of Y be an open set. Let R be the real line and
define f : R→ Y by f (x) = a, for x ≥ 0 and f (x) = b for x < 0.
Every subset of Y is open, so, in particular, for each open subset U of
R, f (U) is an open subset of Y . On the other hand {a} is an open
subset of Y but f −1({a}), the set of non-negative real numbers, is
not an open subset of the reals.
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Continuity and Closure

Theorem

f : (X ,T ) → (Y ,T ′) is continuous if and only if for each subset A of X ,
f (A) ⊆ f (A).

First suppose that f is continuous. Given a subset A of X ,
f (A) ⊆ f (A), whence A ⊆ f −1(f (A)) ⊆ f −1(f (A)). The set
f −1(f (A)) is closed. So A ⊆ f −1(f (A)). Thus f (A) ⊆ f (A).

Conversely, suppose that for each subset A of X , f (A) ⊆ f (A). Let F
be a closed subset of Y . Then f (f −1(F )) ⊆ f (f −1(F )) ⊆ F = F .
Thus f −1(F ) ⊆ f −1(F ). Since it is always the case that
f −1(F ) ⊆ f −1(F ), we have f −1(F ) = f −1(F ). consequently, f −1(F )
is closed. So f is continuous.
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Continuity of Composition

Theorem

Let f : (X ,T ) → (Y ,T ′) be continuous at a point a ∈ X and let
g : (Y ,T ′) → (Z ,T ′′) be continuous at f (a). Then the composite
function gf : (X ,T ) → (Z ,T ′′) is continuous at a.

Let N be a neighborhood of (gf )(a) = g(f (a)). Then
(gf )−1(N) = f −1(g−1(N)). But g−1(N) is a neighborhood of f (a),
since g is continuous at f (a), and, therefore, f −1(g−1(N)) is a
neighborhood of a, since f is continuous at a.
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Homeomorphism

Definition (Homeomorphism)

Topological spaces (X ,T ) and (Y ,T ′) are called homeomorphic if there
exist inverse functions f : X → Y and g : Y → X , such that f and g are
continuous. In this event the functions f and g are said to be
homeomorphisms and we say that f and g define a homeomorphism

between (X ,T ) and (Y ,T ′).

Homeomorphism is the translation from metric spaces to topological
spaces of the concept of topological equivalence.

Corollary

Let (X , d) and (Y , d ′) be metric spaces. Let (X ,T ) and (Y ,T ′) be the
topological spaces associated with (X , d) and (Y , d ′), respectively. Then
the metric spaces (X , d) and (Y , d ′) are topologically equivalent if and
only if the topological spaces (X ,T ) and (Y ,T ′) are homeomorphic.
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Characterization of Homeomorphism

Theorem

A necessary and sufficient condition that two topological spaces (X ,T )
and (Y ,T ′) be homeomorphic is that there exist a function f : X → Y ,
such that:

1. f is one-one;

2. f is onto;

3. A subset O of X is open if and only if f (O) is open.

Suppose that (X ,T ) and (Y ,T ′) are homeomorphic. Let the
homeomorphism be defined by inverse functions f : X → Y and
g : Y → X . f is invertible and consequently one-one and onto.
Furthermore, given an open set O in X , the set f (O) = g−1(O) is
open in Y , since g is continuous. On the other hand, if f (O) = O ′ is
an open subset of Y , then O = f −1(O ′) is open in X .

George Voutsadakis (LSSU) Topology June 2019 46 / 87



Topological Spaces Functions, Continuity, Homeomorphism

Characterization of Homeomorphism: The Converse

Now, suppose that a function f : X → Y with the prescribed
properties exists. Then f is invertible, Define g : Y → X by

g(b) = a if f (a) = b.

Then f and g are inverse functions.
If O is an open subset of X , then f (O) = g−1(O) is open in Y . So g

is continuous.
Also, if O ′ is an open subset of Y , then f −1(O ′) = O is an open
subset of X . Hence f is continuous.
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Subsection 6

Subspaces
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Subspaces

Definition (Subspace)

Let (X ,T ) and (Y ,T ′) be topological spaces. The topological space Y is
called a subspace of the topological space X if Y ⊆ X and if the open
subsets of Y are precisely the subsets O ′ of the form O ′ = O ∩ Y , for
some open subset O of X .

In the event that Y is a subspace of X , we may say that each open
subset O ′ of Y is the restriction to Y of an open subset O of X .

A subset O ′ that is open in Y is often called relatively open in Y or
simply relatively open.

A subset O of X that is open in X and is contained in Y is
necessarily relatively open in Y , but the relatively open subsets of Y
are in general not open in X .
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Nonempty Subsets and Subspaces

There are as many subspaces of a topological space X as there are
non-empty subsets Y of X .

Proposition

Let (X ,T ) be a topological space and let Y be a subset of X . Define the
collection T ′ of subsets of Y as the collection of subsets O ′ of Y of the
form O ′ = O ∩ Y , where O ∈ T . Then (Y ,T ′) is a topological space and
therefore a subspace of (X ,T ) provided Y 6= ∅.

We must prove that T ′ is a topology.
∅ = ∅ ∩ Y and Y = X ∩ Y . So ∅,Y ∈ T ′.
Suppose O ′

1,O
′

2, . . . ,O
′

n ∈ T ′, so that, for i = 1, 2, . . . , n, O ′

i = Oi ∩Y ,
for some Oi ∈ T . Then O ′

1 ∩O ′

2 ∩ · · · ∩O ′

n = (O1 ∩O2 ∩ · · · ∩On)∩ Y

is in T ′, since O1 ∩ O2 ∩ · · · ∩ On is open in X .
Finally, suppose that for each α ∈ I , O ′

α ∈ T ′. Thus, for each α ∈ I ,
O ′

α = Oα ∩ Y , for some Oα ∈ T . But
⋃

α∈I O
′

α =
⋃

α∈I (Oα ∩ Y ) =
(
⋃

α∈I Oα) ∩ Y is in T ′, since
⋃

α∈I Oα is open in X .
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Relative Neighborhoods

Given a subset Y of a topological space (X ,T ), the preceding
topology T ′ of Y is said to be induced by the topology T on X and
is called the relative topology on Y . The neighborhoods in T ′ are
called neighborhoods in Y or relative neighborhoods.

Theorem

Let Y be a subspace of a topological space X and let a ∈ Y . Then a
subset N ′ of Y is a relative neighborhood of a if and only if N ′ = N ∩ Y ,
where N is a neighborhood of a in X .

If N ′ is a relative neighborhood of a, N ′ contains a relatively open set
O ′, which contains a. Let O ′ = O ∩ Y , where O is an open subset of
X . Then N = N ′ ∩ O is a neighborhood of a in X and
N ∩ Y = (N ′ ∪O) ∩ Y = N ′ ∪ (O ∩ Y ) = N ′.

Conversely, if N ′ = N ∩ Y , where N is a neighborhood of a in X , N
contains an open set O containing a. So N ′ contains the relatively
open set O ′ = O ∩ Y containing a. So N ′ is a relative nbhd of a.
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Example I: Closed Interval [a, b]

The closed interval [a, b] of the real line with induced topology is a
subspace of the real line.

A relative neighborhood of the point a is any subset N of [a, b] that
contains a half-open interval [a, c), where a < c .

Similarly, a relative neighborhood of the point b is any subset M of
[a, b] that contains a half-open interval (c , b], where c < b.

If d is such that a < d < b, then a relative neighborhood of d is any
subset U of [a, b] that is a neighborhood of d in the real line R.
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Metric and Topological Subspaces

The relationship of subspace is “preserved” in passing from metric
spaces to topological spaces.

Lemma

Let (X , d) be a metric space and let (Y , d ′) be a subspace of (X , d). If
(X ,T ) and (Y ,T ′) are the topological spaces associated with (X , d) and
(Y , d ′), respectively, then (Y ,T ′) is a subspace of (X ,T ).

Since d ′ is the restriction of d , an open ball in (Y , d ′) is the
restriction of an open ball in (X , d) to Y . Consequently, a subset O ′

of Y is open in Y if and only if, for each y ∈ O ′, there is an ǫy > 0,
such that B(y ; ǫy) ∩ Y ⊆ O ′. Let O =

⋃

y∈O′ B(y ; ǫy). Then O is
open in X and O ′ = O ∩ Y . Thus, O ′ ∈ T ′.

Conversely, if O ′ ∈ T ′, then O ′ = O ∩ Y , for some O ∈ T . For each
y ∈ O ′, we have y ∈ O, and O is open. So there is an ǫy such that
B(y ; ǫy) ⊆ O. It follows that B(y ; ǫy ) ∩ Y ⊆ O ′, and, hence, O ′ is
open in (Y , d ′).
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Example II: A Subset of Rn+1

Let A be the subset of Rn+1 consisting of all points
x = (x1, x2, . . . , xn+1), such that xn+1 = 0.

Let Rn+1 have the usual topology and let A have the induced
topology so that A is a subspace of Rn+1.

Claim: The topological space A is homeomorphic to Rn.

To prove this, we use the fact that the relationship of subspace is
“preserved” in passing from metric spaces to topological spaces.

Define f : Rn → A by setting f (x1, x2, . . . , xn) = (x1, x2, . . . , xn, 0).
f is one-one, onto. Its inverse is the function g : A → R

n defined by
g(x1, x2, . . . , xn, 0) = (x1, x2, . . . , xn).
f : (Rn, d) → (A, d ′) is continuous.
g : (A, d ′) → (Rn, d) is also continuous.

So f and g are continuous functions defined on the topological spaces
R

n and A, where A is considered as a subspace of Rn+1, and define a
homeomorphism.
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Relatively Closed Sets

Given a subspace (Y ,T ′) of a topological space (X ,T ), the closed
subsets of the topological space (Y ,T ′) are called relatively closed

in Y or simply relatively closed.

Again, the relatively closed subsets are the restriction to Y of the
closed subsets of X .

Theorem

Let (Y ,T ′) be a subspace of the topological space (X ,T ). A subset F ′ of
Y is relatively closed in Y if and only if F ′ = F ∩ Y , for some closed
subset F of X .

Let F ′ be relatively closed. Then CY (F
′) is relatively open. Thus,

CY (F
′) = O ∩ Y , where O is open in X . But then F ′ = CY (O ∩ Y )

= CY (O) = CX (O) ∩ Y , where CX (O) is a closed subset of X .

Conversely, suppose F ′ = F ∩ Y , where F is a closed subset of X .
Then, CY (F

′) = CX (F ) ∩ Y . Hence CY (F
′) is relatively open in Y .

Therefore F ′ is relatively closed.
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Example: A Relatively Open and Relatively Closed Subset

Let a < b < c < d . Let Y = [a, b] ∪ (c , d) be considered as a
subspace of the real line. Then the subset [a, b] of Y is both
relatively open and relatively closed.

Note that [a, b] = [a, b] ∩ Y so that [a, b] is relatively closed.
On the other hand, for 0 < ǫ < c − b, [a, b] = (a− ǫ, b + ǫ) ∩ Y so
that [a, b] is relatively open.

Since (c , d) is the complement in Y of a relatively open and relatively
closed subset of Y , (c , d) is also relatively open and relatively closed
in Y .
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Inclusion Mappings

Theorem

Let the topological space Y be a subspace of the topological space X .
Then the inclusion mapping i : Y → X is continuous.

For each subset A of X , i−1(A) = A ∩ Y . Thus, if O is an open
subset of X , i−1(O) = O ∩ Y is a relatively open subset of Y .

Definition (Weaker Topology)

Let T1 and T2 be two topologies on a set Y . The topology T1 is said to be
weaker than T2 if T1 ⊆ T2.

If Y is a subset of a topological space (X ,T ), then the relative
topology T ′ on Y is the weakest topology such that the inclusion
map i : Y → X is continuous:

Suppose T1 is another topology on Y , such that i : (Y ,T1) → (X ,T )
is continuous. Let O ′ ∈ T ′. Then O ′ = i−1(O), with O ∈ T . Thus
O ′ ∈ T1. We conclude that T ′ ⊆ T1.
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Restricting the Codomain of a Continuous Function

Let X and Y be topological spaces and f : Y → X be a function
which is not necessarily continuous. The function f induces a
function f ′ : Y → f (Y ) which agrees with f and is onto. Viewing
f (Y ) as a subspace of X we have:

Lemma

f : Y → X is continuous if and only if f ′ : Y → f (Y ) is continuous.

The inclusion map i : f (Y ) → X is continuous. Thus, the continuity
of f ′ yields the continuity of f = if ′.

Conversely, if O ′ is a relatively open set in f (Y ), then
O ′ = O ∩ f (Y ), where O is open in X . If f is continuous, then
f −1(O) = f ′−1(O ′) is open in Y . Therefore, f ′ is continuous.
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Subsection 7

Products
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Endowing a Product with a Topology

Throughout this section let (X1,T1), (X2,T2), . . . , (Xn,Tn) be
topological spaces and let X =

∏n
i=1 Xi .

We wish to define a topology on X that may be regarded as the
product of the topologies on the factors of X .

Our guide is the corresponding situation in metric spaces.

If these topological spaces were metrizable, then there is a standard
procedure for converting the product of the corresponding metric
spaces into a metric space.
In this resulting metric space, the open subsets of X are the unions of
sets of the form O1 × O2 × · · · × On, where each Oi is an open subset
of Xi .
In the general situation, where the topological spaces may not be
metrizable, one can show that the unions of the products of open sets
will constitute a topology.
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The Basis Lemma

Lemma

Let B be a collection of subsets of a set X with the property that ∅ ∈ B,
X ∈ B and a finite intersection of elements of B is again in B. Then the
collection T of all subsets of X which are unions of elements of B is a
topology.

We verify the topology axioms:

Clearly ∅ and X are in T .
Suppose O and O ′ are in T . Then O =

⋃

α∈I Bα, O
′ =

⋃

β∈J Bβ ,
where Bα ∈ B, for α ∈ I , and Bβ ∈ B, for β ∈ J. Thus, for
(α, β) ∈ I × J, Bα ∩ Bβ ∈ B. It follows that
O ∩ O ′ =

⋃

(α,β)∈I×J(Bα ∩ Bβ) is in T .
Finally a union of sets each of which is a union of sets of B is again a
union of sets of B.
We conclude that T is a topology.
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Product Topological Space

Since in the product set X the collection of subsets of X that are
unions of sets of the form O1 ×O2 × · · · ×On, where each Oi an open
subset of Xi , satisfies the conditions of this lemma we may state:

Definition (Product Space)

The topological space (X ,T ), where T is the collection of subsets of X
that are unions of sets of the form O1 × O2 × · · · × On, where each Oi an
open subset of Xi , is called the product of the topological spaces (Xi ,Ti),
i = 1, 2, . . . , n.

We often denote a topological space (X ,T ) simply by X .

When we say “let X1,X2, . . . ,Xn be topological spaces and
X =

∏n
i=1Xi”, we mean that X is considered as the product of the

topological spaces.
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Basis of a Topological Space

The sets of the form O1 × O2 × · · · × On, Oi open in Xi , have been
used as a “basis” for the open sets of X .

Definition (Basis)

Let X be a topological space and {Oα}α∈I a collection of open sets in X .
{Oα}α∈I is called a basis for the open sets of X if each open set is a
union of members of {Oα}α∈I .

The next proposition characterizes the neighborhoods in the product
space.

Proposition

In a topological space X =
∏n

i=1Xi , a subset N is a neighborhood of a
point a = (a1, a2, . . . , an) ∈ N if and only if N contains a subset of the
form N1 × N2 × · · · × Nn, where each Ni is a neighborhood of ai .

George Voutsadakis (LSSU) Topology June 2019 63 / 87



Topological Spaces Products

Proof of the Proposition

First suppose that N1 × N2 × · · · × Nn ⊆ N, where each Ni is a
neighborhood of ai . By the definition of neighborhood in a
topological space, each Ni contains an open set Oi containing ai ,
hence, N contains the open set O1 ×O2 × · · · ×On containing a, and,
therefore, N is a neighborhood of a.

Conversely, suppose N is a neighborhood of a. Then N contains an
open set O containing a. Since O is an open subset of the product
space X =

∏n
i=1 Xi , we may write O =

⋃

α∈I Oα,1×Oα,2×· · ·×Oα,n,
where for each i and each α ∈ I , Oα,i is an open subset of Xi . Since
a ∈ O, a ∈ Oβ,1 ×Oβ,2 × · · · ×Oβ,n, for some β ∈ I , hence ai ∈ Oβ,i ,
for i = 1, 2, . . . , n. But Oβ,i is open. Thus, if we set Ni = Oβ,i ,
i = 1, 2, . . . , n, Ni is a neighborhood of ai and
N1 × N2 × · · · × Nn ⊆ O ⊆ N.
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Basis for the Neighborhoods at a Point

Definition (Basis for the Neighborhoods at a Point)

Let X be a topological space and a ∈ X . A collection Na of
neighborhoods of a is called a basis for the neighborhoods at a if each
neighborhood N of a contains a member of Na.

Thus, if a = (a1, a2, . . . , an) ∈ X =
∏n

i=1 Xi , a basis for the
neighborhoods at a is the collection consisting of all subsets of the
form N1 × N2 × · · · × Nn, where each Ni is a neighborhood of ai .

In a product space the ith projection pi : X → Xi is the function such
that pi (a) = ai . If Oi ∈ Ti , then
p−1
i (Oi) = X1 × · · · × Xi−1 × Oi × Xi+1 × · · · × Xn. Since this set is

an open subset of X the projection maps are continuous.

A subset O1 × O2 × · · · × On of X can be written as
p−1
1 (O1) ∩ · · · ∩ p−1

n (On), so that we have a guide to the appropriate
topology on an arbitrary product of topological spaces.
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Arbitrary Topological Products

Definition (Topological Product)

Let {(Xα,Tα)}α∈A be an indexed family of topological spaces. The
topological product of this family is the set X =

∏

α∈A Xα, with the
topology T consisting of all unions of sets of the form
p−1
α1

(Oα1) ∩ · · · ∩ p−1
αk

(Oαk
), where Oαi

∈ Tαi
, i = 1, . . . , k .

This collection is a topology that makes the projections continuous.

Since any topology on X which makes the projection maps continuous
must contain the sets of this form, the product topology is the
weakest topology consistent with the continuity of the projections.

A basis for the neighborhoods at a point x is the collection of sets of
the form p−1

α1
(Nα1) ∩ · · · ∩ p−1

αk
(Nαk

), where Nαi
is a neighborhood of

pαi
(x) = x(αi ) ∈ Xαi

, for i = 1, . . . , k .

In the product X , a point y is in a given neighborhood of x (close to
x) if there is finite {α1, . . . , αk}, such that y(αi ) is close to x(αi ).
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Subsection 8

Identification Topologies
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Identifications

Let R be the real line and S the unit circle defined by
S = {(x , y) ∈ R2 : x2 + y2 = 1}.

The function p : R→ S , defined by p(t) = (cos 2πt, sin 2πt) maps R
continuously onto S so that p(t) = p(t ′), provided t − t ′ is an integer.

One may think of p as wrapping the real line around the circle so that
the points which differ by an integer are identified or superimposed on
each other.

Furthermore, we shall see that the topology of S may be obtained
from the topology of R in such a way as to make the mapping p an
identification.

Definition (Identification)

Let p : E → B be a continuous function mapping the topological space E

onto the topological space B . p is called an identification if for each
subset U of B , p−1(U) open in E implies that U is open in B .
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Factoring Through an Identification

If p : E → B is an identification and g : B → Y is continuous on B ,
then g induces a continuous function gp : E → Y .

It turns out that frequently the reverse is true, that is, a continuous
function G : E → Y will induce a continuous function g : B → Y .

Theorem

Let p : E → B be an identification and let G : E → Y be a continuous
function such that for each x , x ′ ∈ E , with p(x) = p(x ′), we also have
G (x) = G (x ′). Then, for each b ∈ B , we may choose any x ∈ p−1({b}),
define g(b) = G (x), and the resulting function g is continuous.

First, g(b) does not depend on the choice of x ∈ p−1({b}): If
x ′ ∈ p−1({b}), then p(x) = p(x ′) and G (x) = G (x ′). g is defined so
that gp = G . Hence G−1 = p−1g−1. If O is an open subset of Y ,
then G−1(O) is open in E . But G−1(O) = p−1(g−1(O)). Since p is
an identification, g−1(O) is open in B . Therefore, g is continuous.
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Topological Spaces Identification Topologies

Identification Topology Determined by a Function

The hypothesis on the function G is that Gp−1

be well-defined. The conclusion is then that the
function g may be inserted in the following dia-
gram and that commutativity will hold:

E

Y

G
✲

B

p
❄

g
✲

One may use an onto function p : X → Y from a topological space X

to a set Y (without a topology) to construct a topology for Y so that
p becomes an identification.

Definition (Identification Topology Determined by a Function)

Let p : X → Y be a function from a topological space X onto a set Y .
The identification topology on Y determined by p consists of those
sets U such that p−1(U) is open in X .

We can verify that this collection of sets is a topology.

Once Y has been given the identification topology determined by p, p
is an identification.
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Topological Spaces Identification Topologies

Factoring Through a Quotient

Let f : X → Y be a function from a set X to a set Y . Let ∼f be the
relation defined on X by x ∼f x

′ if f (x) = f (x ′). ∼f is an
equivalence relation. Let X/∼f be the collection of equivalence sets
under this relation and let πf : X → X/∼f be the function which
maps each x ∈ X into its equivalence class. πf is an onto function.
Now suppose that X is a topological space and give X/∼f the
identification topology determined by πf .

Let Y also be a topological space.

Since πf (x) = πf (x
′) if and only if f (x) =

f (x ′), f induces a continuous function f ∗ :
X/∼f → Y , such that f = f ∗πf .

X

X/∼f
f ∗

✲

πf
✛

Y

f
✲

Furthermore, f ∗ is one-one: If f ∗(u) = f ∗(u′), with u, u′ ∈ X/∼f ,
then for x ∈ π−1

f ({u}), x ′ ∈ π−1
f ({u′}), f (x) = f (x ′). Thus x ∼f x

′

or u = πf (x) = πf (x
′) = u′.
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Topological Spaces Identification Topologies

Topology Induced by Quotient

Let T be the topology on X/∼f and let S be
the topology on Y . Since f ∗ is continuous,
f ∗−1(S) ⊆ T , or, equivalently, since f ∗ is
one-one, S ⊆ f ∗(T ).

X

X/∼f
f ∗

✲

πf
✛

Y

f
✲

If S ′ were some other topology on Y so that f were continuous we
would again have S ′ ⊆ f ∗(T ). Thus, the topology carried over to Y

by f ∗ is the weakest or smallest topology such that f is continuous.

Introducing the topologies into the pre-
ceding diagram we obtain the one on
the right in which the inclusion map i :
(Y , f ∗(T )) → (Y ,S) is continuous.

X

(Y , f ∗(T ))

f
✲

X/∼f

f

✛
(Y ,S)

i

❄
f ∗

✲
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Topological Spaces Identification Topologies

The Covering of the Circle by the Real Line

Let p(t) = (cos 2πt, sin 2πt) so that p : R→ S is a continuous
mapping of the real line onto the circle.

Claim: p is an identification mapping, i.e., if U ⊆ S is such that
p−1(U) is open, then U is open.

Let x ∈ p−1(U) and s = p(x).

x is the center of an open interval O ⊆ p−1(U) of length 2ǫ < 1.

Under p, O is mapped into an arc of S centered at s of length 4πǫ
and contained in U.

This arc is an open ball in S with center s.

Hence U is open.
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Topological Spaces Identification Topologies

The Covering of the Circle (Cont’d)

The function g(t) = (cos 2πt, sin 2πt, t) is a homeomorphism of the
real line with a helix H in R3.

Let S = {(x , y , z) ∈ R3 : x2 + y2 = 1, z = 0}.

The projection of H onto S defined by

(cos 2πt, sin 2πt, t) 7→ (cos 2πt, sin 2πt, 0)

is also an identification.

Let f be continuous onR. f is called periodic
of period 1 if f (t + 1) = f (t) for all t ∈ R.
It follows that f (t) = f (t ′), provided t − t ′ is
an integer.

R

S .....................
f ∗

✲

p

✛

R

f
✲

Hence f induces a continuous function f ∗, defined on the circle S ,
such that f ∗(p(t)) = f (t).
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Topological Spaces Identification Topologies

Shrinking a Subset to a Point

Let X be a topological space and A a non-empty subset of X .

Define a new untopologized set X/A as the union of X − A and a
new point a∗.

Define a function f : X → X/A by

f (x) =

{

x , for x ∈ X − A

a∗, for x ∈ A
.

Now give X/A the identification topology determined by f .

This space is the space obtained by shrinking A to a point.
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Topological Spaces Identification Topologies

Example of Shrinking a Subset to a Point

Let
◦

I = {0, 1} be the boundary of the unit interval I = [0, 1].

Claim: I/
◦

I is homeomorphic to a circle.

The function
p(t) = (cos 2πt, sin 2πt), t ∈ I ,

must induce a continuous function p∗ : I/
◦

I → S .

p∗ is one-one.

Moreover, a basis for the open sets containing a∗ is the totality of
images of sets of the form [0, ǫ) ∪ (1− ǫ, 1].

Shrinking the boundary of I to a point amounts to pasting the two
end points together to make the single point a∗ out of the boundary.
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Topological Spaces Identification Topologies

Attaching a Space X to a Space Y

Let X and Y be topological spaces and let A be a non-empty closed
subset of X . Assume that X and Y are disjoint and that a continuous
function f : A → Y is given.

Form the set (X − A) ∪ Y and define a function
ϕ : X ∪ Y → (X − A) ∪ Y by

ϕ(x) =

{

f (x), if x ∈ A

x , if x ∈ (X − A) ∪ Y
.

Give X ∪Y the topology in which a set is open (or closed) if and only
if its intersections with both X and Y are open (or closed).

ϕ is onto.

Let X ∪f Y be the set (X − A) ∪ Y with the identification topology
determined by ϕ.
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Topological Spaces Identification Topologies

Attaching a Space X to a Space Y : Special Case

If Y is a single point a∗, then attaching X to a∗ by a function
f : A → a∗ is the same as shrinking A to a point.

Let I 2 be the unit square in R2.

Let A be the union of its two vertical edges so that

A = {(x , y) ∈ R2 : x = 0, 0 ≤ y ≤ 1 or x = 1, 0 ≤ y ≤ 1}.

Let Y = [0, 1] be the unit interval.

Define f : A → Y by f (x , y) = y .

Then I 2 ∪f Y is a cylinder formed by identifying the two vertical
edges of I 2.
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Topological Spaces Categories and Functors

Subsection 9

Categories and Functors
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Topological Spaces Categories and Functors

Categories

When considering a collection of topological spaces and collections of
continuous mappings between these spaces the following abstract
structure is involved:

Definition (Category)

A category C is a collection of objects A whose members are called the
objects of the category and, for each ordered pair (X ,Y ) of objects of the
category, a set H(X ,Y ), called the maps of X into Y , together with a
rule of composition which associates to each f ∈ H(X ,Y ), g ∈ H(Y ,Z )
a map gf ∈ H(X ,Z ). This composition is:

associative, that is, if f ∈ H(X ,Y ), g ∈ H(Y ,Z ) and h ∈ H(Z ,W ), then
h(gf ) = (hg)f ;

identities exist, that is, for each object X ∈ A, there is an element
1X ∈ H(X ,X ), such that for all g ∈ H(X ,Y ), g1X = g and, for all
h ∈ H(W ,X ), 1Xh = h.
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Topological Spaces Categories and Functors

Category of Sets and Subcategories

We know the category CS of sets and functions:

AS is the class of all sets;
for X ,Y ∈ AS , H(X ,Y ) is the set of all functions from X to Y .

For X ∈ AS , 1X is the identity mapping of X onto itself.

Composition is the ordinary composition of functions.

One may obtain subcategories C ′ of CS by taking:

as objects A′ some specified collection of sets;
for X ,Y ∈ A′, H ′(X ,Y ) to be some specified set of functions from X
to Y provided that:

we always include the identity mapping 1X in H(X ,X ) for each X ∈ A′;
for each ordered pair (X ,Y ) of A′ include in H ′(X ,Y ) all functions f
which can be written in the form hg for g ∈ H ′(X ,W ) and
h ∈ H ′(W ,Y ).
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Topological Spaces Categories and Functors

Examples

A′ might be all finite sets and H ′(X ,Y ) all functions from X to Y .

In particular A’ could contain a single set X and H’(X, X) could be all
invertible functions.

Another category is the category CM of all metric spaces and
continuous functions.

Another is the category CT of all topological spaces and continuous
mappings.
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Topological Spaces Categories and Functors

Groups and Group Homomorphisms

Definition (Group)

A group G is a set G together with a function which associates to each
ordered pair g1, g2 of elements of G an element g1g2 ∈ G , such that:

(i) g1(g2g3) = (g1g2)g3 for g1, g2, g3 ∈ G ;

(ii) there is an element e ∈ G , called the identity such that, for all
g ∈ G , eg = ge = g ;

(iii) for each g ∈ G , there is an element g−1 ∈ G , called the inverse of g ,
such that gg−1 = g−1g = e.

A homomorphism f from a group G to a group K is a function
f : G → K , such that:

f (e) = e′ if e and e′ are identities in G and K , respectively;

for all g , g ′ ∈ G , f (gg ′) = f (g)f (g ′).
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Topological Spaces Categories and Functors

The Category of Groups

Let G be a collection of groups and for G ,K ∈ G, let H(G ,K ) be the
set of all homomorphisms of G into K .

Use the ordinary composition of functions to define for f ∈ H(G ,K )
and g ∈ H(K , L), an element gf ∈ H(G , L).

K

G
gf

✲

f
✲

L

g

✲

It is easily verified that we have constructed a category CG of groups
in G and homomorphisms.
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Topological Spaces Categories and Functors

Functors

A transformation from one category to another which preserves the
structure of a category is called a “functor”.

Definition

Let C and C ′ be categories with objects A and A′ respectively. A functor
F : C → C ′ is a pair of functions F1 and F2 such that:

F1 : A → A′ and

for each ordered pair X ,Y of objects of A,
F2 : H(X ,Y ) → H ′(F1(X ),F1(Y )), so that:

F2(1X ) = 1F1(X ) and
F2(gf ) = F2(g)F2(f ), for f ∈ H(X ,Y ), g ∈ H(Y ,Z ).
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Topological Spaces Categories and Functors

Functors Diagrammatically

Denote an element f ∈ H(X ,Y ) by X
f
→ Y .

If F : C → C ′ is a functor, we have:

F1(X )
F2(f )

✲ F1(Y )

F2 preserves identities

F1(X )
F2(1X ) = 1F1(X )

✲ F1(X )

If the diagram on the left

X
f
✲ Y

Z

g
❄

h ✲

F1(X )
F2(f )

✲ F1(Y )

F1(Z )

F2(g)
❄F2(h)

✲

is commutative, then so is the one on the right, i.e., F carries
commutative diagrams into commutative diagrams.
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Topological Spaces Categories and Functors

Examples of Functors

The passage from a metric space (X , d) to its associated topological
space (X ,T ) is an example of a functor from CM to CT .

A functor from CT to itself: Let Z be a fixed topological space.

To each topological space X ∈ CT associate the topological space
F1(X ) = X × Z .
To each continuous function f ∈ H(X ,Y ) associate the function F2(f )
defined by

(F2(f ))(x , z) = (f (x), z), for (x , z) ∈ F1(X ).

X × Z
F2(f )

✲ Y × Z
(x , z) ✲ (f (x), z)

Then F2(f ) : F1(X ) → F1(Y ) is continuous.

It can be verified that F = (F1,F2) is a functor.
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