College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) Functions and Graphs

- Equations and Inequalities
- Inverse Functions

Subsection 1

Equations and Inequalities

Solving a Linear Equation

- Solve $5 x-11=3$;

$$
\begin{aligned}
& 5 x-11=3 \\
& \Rightarrow \quad 5 x-11+11=3+11 \\
& \Rightarrow \quad 5 x=14 \\
& \Rightarrow \quad \frac{1}{5} \cdot 5 x=\frac{1}{5} \cdot 14 \\
& \Rightarrow \quad x=\frac{14}{5}
\end{aligned}
$$

Solving a Literal Equation

- Solve $\frac{b y}{c-y}=a x$ for y;

$$
\begin{aligned}
& \frac{b y}{c-y}=a x \\
& \Rightarrow \quad b y=a x(c-y) \\
& \Rightarrow \quad b y=a c x-a x y \\
& \Rightarrow \quad a x y+b y=a c x \\
& \Rightarrow \quad y(a x+b)=a c x \\
& \Rightarrow \quad y=\frac{a c x}{a x+b}
\end{aligned}
$$

Quadratic Equations and the Quadratic Formula

- A quadratic equation is one of the form

$$
a x^{2}+b x+c=0, \quad a \neq 0
$$

- The solution of $a x^{2}+b x+c=0$, with $a \neq 0$, is given by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} ;
$$

Example: Solve the equation $2 x^{2}-4 x+1=0$ using the quadratic formula;
We have $a=2, \quad b=-4, \quad c=1$; Therefore,

$$
\begin{aligned}
x= & \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-4) \pm \sqrt{(-4)^{2}-4 \cdot 2 \cdot 1}}{2 \cdot 2}= \\
& \frac{4 \pm \sqrt{8}^{2}}{4}=\frac{4 \pm 2 \sqrt{2}}{4}=\frac{2(2 \pm \sqrt{2})}{4}=\frac{2 \pm \sqrt{2}}{2} ;
\end{aligned}
$$

The Zero Factor Property (Zero Product Principle)

- If a and b are algebraic expressions, then

$$
a b=0 \text { if and only if } a=0 \text { or } b=0 ;
$$

- The Zero-Factor Property may be used to solve equations by factoring;
Example: Solve $2 x^{2}+x-6=0$;

$$
\begin{aligned}
& 2 x^{2}+x-6=0 \\
& \Rightarrow \quad(x+2)(2 x-3)=0 \\
& \Rightarrow \quad x+2=0 \text { or } 2 x-3=0 \\
& \Rightarrow \quad x=-2 \text { or } x=\frac{3}{2}
\end{aligned}
$$

Applying the Zero-Factor Property

- Example: Solve $(2 x-1)(x-3)=x^{2}+x-4$;

$$
\begin{aligned}
& (2 x-1)(x-3)=x^{2}+x-4 \\
& \Rightarrow \quad 2 x^{2}-6 x-x+3=x^{2}+x-4 \\
& \Rightarrow \quad 2 x^{2}-7 x+3=x^{2}+x-4 \\
& \Rightarrow \quad x^{2}-8 x+7=0 \\
& \Rightarrow \quad(x-1)(x-7)=0 \\
& \Rightarrow \quad x-1=0 \text { or } x-7=0 \\
& \Rightarrow \quad x=1 \text { or } x=7 ;
\end{aligned}
$$

Solving Linear Inequalities

- The following properties are used to solve inequalities:

Addition Property: $a<b \Rightarrow a+c<b+c$; Multiplication Property: $a<b \Rightarrow \begin{cases}a c<b c, & \text { if } c>0 ; \\ a c>b c, & \text { if } c<0 ;\end{cases}$

- Example: Solve the inequality $2(x+3)<4 x+10$ and write the solution set in interval notation;

$$
\begin{aligned}
& 2(x+3)<4 x+10 \\
& \Rightarrow \quad 2 x+6<4 x+10 \\
& \Rightarrow \quad-2 x<4 \\
& \Rightarrow \quad x>-2
\end{aligned}
$$

In interval notation, we get: x in $(-2, \infty)$;

Solving Polynomial Inequalities

The Sign Property for Polynomials

Nonzero polynomials have the property that for any value of x between two consecutive real zeros, either all values of the polynomial are positive or all values of the polynomial are negative.

- Example: Solve the inequality $x^{2}+3 x-4<0$;

First find the critical points by solving the equation:

$$
x^{2}+3 x-4=0 \Rightarrow(x+4)(x-1)=0 \Rightarrow x=-4 \text { or } x=1
$$

Then, form the sign table for $f(x)=x^{2}+3 x-4$ as follows:

	$x<-4$	$-4<x<1$	$x>1$
	$f(-5)=6>0$	$f(0)=-4<0$	$f(2)=6>0$
$f(x)$	+	-	+

Since we want $f(x)<0$, we must pick the interval with the "-"; So the solution set is $-4<x<1$ or in interval notation: x in $(-4,1)$;

One More Example

- Example: Solve the inequality $12 x^{2}+8 x \geq 15$;

We must solve $12 x^{2}+8 x \geq 15 \Rightarrow 12 x^{2}+8 x-15 \geq 0$; First find the critical points by solving the equation:

$$
\begin{aligned}
& 12 x^{2}+8 x-15=0 \Rightarrow(2 x+3)(6 x-5)=0 \\
& \Rightarrow 2 x+3=0 \text { or } 6 x-5=0 \Rightarrow x=-\frac{3}{2} \text { or } x=\frac{5}{6}
\end{aligned}
$$

Then, form the sign table for $f(x)=12 x^{2}+8 x-15$ as follows:

	$x<-\frac{3}{2}$	$-\frac{3}{2}<x<\frac{5}{6}$	$x>\frac{5}{6}$
	$f(-2)=17>0$	$f(0)=-15<0$	$f(1)=5>0$
$f(x)$	+	-	+

Since we want $f(x) \geq 0$, we must pick the intervals with the " + " including endpoints! So the solution set is $x \leq-\frac{3}{2}$ or $x \geq \frac{5}{6}$ or in interval notation: x in $\left(-\infty,-\frac{3}{2}\right] \cup\left[\frac{5}{6}, \infty\right)$;

Method for Solving Polynomial Inequalities

Summary of the Method

(1) Rewrite the inequality so that one side is a nonzero polynomial and the other side is zero;
(2) Find the real zeros of the polynomial; These are the critical values of the inequality;

- Use test points to determine the sign of the polynomial in each of the intervals formed by the critical values;
- Include either the intervals signed " + " if the polynomial is to be >0 or those signed "-" if the polynomial is to be <0;
(3) Include endpoints in the solution set if the polynomial can be ≥ 0 or ≤ 0;

Absolute Value Inequalities

Properties of Absolute Value Inequalities

Suppose E is a variable expression and k a nonnegative real number;

- $|E| \leq k$ if and only if $-k \leq E \leq k$;
- $|E| \geq k$ if and only if $E \leq-k$ or $E \geq k$;
- Example: Solve the inequality $|2-3 x|<7$;

$$
\begin{aligned}
& |2-3 x|<7 \\
& \Rightarrow \quad-7<2-3 x<7 \\
& \Rightarrow \quad-9<-3 x<5 \\
& \Rightarrow \\
& \stackrel{(-3)}{\Rightarrow} \quad 3>x>-\frac{5}{3}
\end{aligned}
$$

Therefore, in interval notation, x in $\left(-\frac{5}{3}, 3\right)$;

An Additional Example

- Example: Solve the inequality $|4 x-3| \geq 5$;

$$
\begin{aligned}
& |4 x-3| \geq 5 \\
& \Rightarrow \quad 4 x-3 \leq-5 \text { or } 4 x-3 \geq 5 \\
& \stackrel{+3}{\Rightarrow} \quad 4 x \leq-2 \text { or } 4 x \geq 8 \\
& \stackrel{4}{\Rightarrow} \quad x \leq-\frac{1}{2} \text { or } x \geq 2
\end{aligned}
$$

Therefore, in interval notation, x in $\left(-\infty,-\frac{1}{2}\right] \cup[2, \infty)$;

Subsection 2

Inverse Functions

Intuition Behind Inverse Functions

- Consider $f(x)=2 x+3$; "Multiply by 2 and add 3 "; For instance $f(0)=3$ and $f(1)=5$;
- Now consider $g(x)=\frac{x-3}{2}$; "Subtract 3 and divide by 2 "; For instance $g(3)=0$ and $g(5)=1$;

- We now compute

$$
\begin{aligned}
& g(f(x))=g(2 x+3)=\frac{(2 x+3)-3}{2}=\frac{2 x}{2}=x \\
& f(g(x))=f\left(\frac{x-3}{2}\right)=2 \cdot \frac{x-3}{2}+3=x-3+3=x
\end{aligned}
$$

- It is clear that g undoes what f does and vice-versa!

Inverse Functions

- The function g is called the inverse function of the function f and denoted $g=f^{-1}$ if

$$
f(x)=y \text { if and only if } f^{-1}(y)=x
$$

- Note that this is the same as saying that

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(y)\right)=y ;
$$

- Since $x \stackrel{f}{\mapsto} y$ is equivalent to $y \stackrel{f-1}{\mapsto} x$ a point (x, y) is on the graph of f if and only if (y, x) is on the graph of f^{-1}; This implies symmetry of the graphs with respect to the line $y=x$!
- Note, also, that $\operatorname{Dom}\left(f^{-1}\right)=\operatorname{Ran}(f)$ and $\operatorname{Ran}\left(f^{-1}\right)=\operatorname{Dom}(f)$;

Summary of Properties of Inverse Functions

- Application of $f^{-1}(y)$ reverses the effect of $f(x)$ and viceversa;

Graphs of f and f^{-1} are symmetric with respect to $y=x$;

Domain of f becomes range of f^{-1} and vice-versa;

Do All Functions Have Inverses?

- If the graph of a function $y=f(x)$ does not pass the horizontal line test, then its symmetric graph with respect to $y=x$ does not pass the vertical line text! Thus, such a function cannot have an inverse!
- To fix this, we "cut" $f(x)$ by changing its domain to force its graph to pass the horizontal line test! Then, e.g., $f(x)=x^{2}$ with domain $[0, \infty)$ does have an inverse: The function $f^{-1}(x)=\sqrt{x}$ with domain $[0, \infty)$ also!

Condition for Existence of an Inverse Function

A function f has an inverse if and only if it is one-to-one, i.e., its graph passes the horizontal line test.

How to Find an Inverse Function

- To find a formula for the inverse $f^{-1}(x)$ of a given function $f(x)$:
(3) Substitute y in for $f(x)$;
- Interchange x and y;
(3) Solve, if possible for y in terms of x;
- Substitute $f^{-1}(x)$ in for y;
- Example: Find a formula for the inverse $f^{-1}(x)$ if $f(x)=3 x+2$;

$$
\begin{aligned}
& f(x)=3 x+2 \\
& \Rightarrow \quad y=3 x+2 \\
& \Rightarrow \quad x=3 y+2 \\
& \Rightarrow \quad 3 y=x-2 \quad \Rightarrow \quad y=\frac{x-2}{3} \\
& \Rightarrow \quad f^{-1}(x)=\frac{x-2}{3}
\end{aligned}
$$

Finding an Inverse

- Example: Find a formula for the inverse $f^{-1}(x)$ if $f(x)=\frac{2 x+1}{x}$, with $x \neq 0$;

$$
\begin{aligned}
& f(x)=\frac{2 x+1}{x} \\
& \Rightarrow \quad y=\frac{2 x+1}{x} \\
& \Rightarrow \quad x=\frac{2 y+1}{y} \\
& \Rightarrow \quad y x=2 y+1 \\
& \Rightarrow \quad y x-2 y=1 \\
& \Rightarrow \quad y(x-2)=1 \\
& \Rightarrow \quad y=\frac{1}{x-2} \\
& \Rightarrow \quad f^{-1}(x)=\frac{1}{x-2}, x \neq 2
\end{aligned}
$$

Finding an Inverse of a Function with a Restricted Domain

- Example: Find a formula for the inverse $f^{-1}(x)$ if $f(x)=x^{2}+4 x+3$, with $x \geq-2$;

$$
\begin{aligned}
& f(x)=x^{2}+4 x+3 \\
& \Rightarrow \quad y=x^{2}+4 x+3 \\
& \Rightarrow \quad x=y^{2}+4 y+3 \\
& \Rightarrow \quad x=(y+2)^{2}-1 \\
& \Rightarrow \quad x+1=(y+2)^{2} \\
& \Rightarrow \quad y+2= \pm \sqrt{x+1} \\
& \Rightarrow \quad y= \pm \sqrt{x+1}-2 \\
& \Rightarrow \quad f^{-1}(x)=\sqrt{x+1}-2, \\
& \\
& \\
& \\
& x \neq-1
\end{aligned}
$$

An Application: Retail Pricing

- Suppose $S(x)=\frac{4}{3} x+100$ determines the retail price of a gold bracelet when the whole sale price is x;
- If the merchant paid $\$ 672$ wholesale, what is the retail price?

$$
S(672)=\frac{4}{3} \cdot 672+100=896+100=\$ 996 ;
$$

- Find S^{-1} and use it to determine the merchant's wholesale price for a bracelet that retails at $\$ 1,596$;

$$
\begin{aligned}
& S(x)=\frac{4}{3} x+100 \quad \Rightarrow \quad y=\frac{4}{3} x+1003 \quad \Rightarrow \quad x=\frac{4}{3} y+100 \\
& \Rightarrow \quad \frac{4}{3} y=x-100 \quad \Rightarrow \quad y=\frac{3}{4}(x-100) \quad \Rightarrow \quad y=\frac{3}{4} x-75 \\
& \Rightarrow \quad S^{-1}(x)=\frac{3}{4} x-75 ;
\end{aligned}
$$

So $S^{-1}(1596)=\frac{3}{4} \cdot 1596-75=1197-75=\$ 1,122$;

