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Trigonometric Functions Angles and Arcs

Subsection 1

Angles and Arcs
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Trigonometric Functions Angles and Arcs

Terminology on Angles

The two parts into which a point P on a line separates the line are
called half-lines or rays;

The half-line formed by P that includes a point A on the line is

denoted by
−→
PA; P is the endpoint of

−→
PA;

Definition of Angle

An angle is formed by rotating a given ray about its endpoint to some
terminal position; The original ray is called the initial side of the angle
and the second ray is the terminal side; The common endpoint is the
vertex of the angle.

Angles formed by a counterclockwise rotation are positive angles

and those formed by a clockwise rotation are negative angles;

Notation for angles:

∠α = ∠AOB; ∠β =
∠CPD; ∠γ = ∠FQE ;
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Trigonometric Functions Angles and Arcs

Degree Measure

Degree Measure

An angle formed by rotating the initial side counterclockwise exactly once
until it coincides with itself is defined to have a measure of 360 degrees,
written 360◦; Therefore, one degree is the measure of an angle formed by
rotating a ray 1

360 of a complete revolution and it is written 1◦;

Angles are
classified
according to their
degree measure:
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Trigonometric Functions Angles and Arcs

Standard Position, Complementary and Supplementary

An angle superimposed in a Cartesian
coordinate system is in standard position

if its vertex is at the origin and its initial
side is on the positive x-axis:

Two angles are coterminal if they share
the same terminal side when placed in
standard position;

Two positive angles are
complementary if the sum of
their measures is 90◦ and they
are supplementary if the sum
of their measures is 180◦;

George Voutsadakis (LSSU) Trigonometry January 2015 6 / 83



Trigonometric Functions Angles and Arcs

Simple Examples

Find, if possible the measure of the complement and the supplement
of θ = 40◦;

Comp(θ) = 90◦ − 40◦ = 50◦;
Supp(θ) = 180◦ − 40◦ = 140◦;

Find, if possible the measure of the complement and the supplement
of θ = 125◦;

θ does not have a complement since it is an angle with measure greater
than 90◦;
Supp(θ) = 180◦ − 125◦ = 55◦;

Are the two acute angles of any right triangle complementary angles?
Yes! because their sum is 90◦;
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Trigonometric Functions Angles and Arcs

Quadrantal Angles

An angle is a quadrantal angle if its terminal side in standard
position lies on a coordinate axis;

For instance, the 90◦, 180◦ and 270◦ angles are all quadrantal angles;

Recall that two angles are coterminal if they share the same terminal
side when placed in standard position;

Measures of Coterminal Angles

Given an angle ∠θ in standard position with measure x◦, then the
measures of the angles that are coterminal with ∠θ are given by
x◦ + k · 360◦, where k is an integer.
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Trigonometric Functions Angles and Arcs

An Example

Assume that the following angles are in standard position; Determine
the measure of the positive angle with measure less than 360◦ that is
coterminal with the given angle and classify the angle by quadrant;

α = 550◦;
We have α = 550◦ = 360◦ + 190◦; Therefore, α is coterminal with the
190◦ angle and the terminal side lies in Quadrant III;
β = −255◦;
We have β = −255◦ = − 360◦ + 105◦; Therefore, β is coterminal with
the 105◦ angle and the terminal side lies in Quadrant II;
γ = 1105◦;
We have γ = 1105◦ = 3 · 360◦ + 25◦; Therefore, γ is coterminal with
the 25◦ angle and the terminal side lies in Quadrant I;
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Trigonometric Functions Angles and Arcs

Decimal Degrees and DMS (Degree, Minute, Second)

To represent a fractional part of a degree, there are two popular
methods:

The decimal degree method uses a decimal number;
For instance, 34.42◦ means 34◦ plus 42 hundredths of 1◦;
The DMS (Degree, Minute, Second) method subdivides a degree into
60 minutes (1◦ = 60′) and each minute into 60 seconds (1′ = 60′′);

Example: Write 126◦12′27′′ as a decimal degree;

126◦12′27′′ = (126 +
12

60
+

27

3600
)◦ =

(126 + 0.2 + 0.0075)◦ = 126.2075◦ ;
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Trigonometric Functions Angles and Arcs

Central Angles and the Radian

Consider a circle of radius r and two radii
OA and OB ;

The angle θ formed by OA and OB is called
a central angle;

The portion of the arc between A and B is
an arc of the circle and is denoted by AB

⌢
;

The arc AB
⌢

is said to subtend the angle θ;

Definition of a Radian

One radian is defined to be the measure of the central
angle subtended by an arc of length r on a circle of
radius r ;
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Trigonometric Functions Angles and Arcs

Radian Measure of an Angle

Definition of Radian Measure

Given an arc of length s on a circle of radius
r , the measure of the central angle subtended
by the arc is θ = s

r
radians.

Example: Suppose an arc has length 15 cm on a circle of radius 5 cm.
What is the radian measure of the central angle subtended by the
arc?

θ =
s

r
=

15

5
= 3 radians;

Example: An arc of length 12 cm has radian measure 4
3 radians;

What is the radius of the corresponding circle?

θ =
s

r
⇒ r =

s

θ
⇒ r =

12

4/3
= 9 cm;
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Trigonometric Functions Angles and Arcs

Conversion Between Radians and Degrees

Radian-Degree Conversions

To convert from radians to degrees, multiply by 180◦

π rads
;

To convert from degrees to radians, multiply by π rads
180◦ ;

Example: Convert from degrees to radians:

60◦ = 60◦ · π rads

180◦
=

π

3
rads;

315◦ = 315◦ · π rads

180◦
=

7π

4
rads;

−150◦ = − 150◦ · π rads

180◦
= − 5π

6
rads;

Example: Convert from radians to degrees:
3π

4
rads =

3π

4
rads · 180◦

π rads
= 135◦;

1 rad = 1 rad · 180◦

π rads
=

180

π

◦

;

−5π

2
rads = − 5π

2
rads · 180◦

π rads
= − 450◦;
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Trigonometric Functions Angles and Arcs

Arc and Arc Length

The length s of the arc subtending a central
angle of nonnegative radian measure θ of a circle
of radius r is given by

s = rθ;

Example: What is the length of the arc that subtends a central angle
of 120◦ in a circle of radius 10 cm?
First, convert degrees to radians:

120◦ = 120◦ · π rads

180◦
=

2π

3
rads;

Then, use the formula:

s = rθ = 10 cm · 2π
3

rad =
20π

3
cm;
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Trigonometric Functions Angles and Arcs

A More Challenging Application

A pulley with a radius of 10 inches
uses a belt to drive a pulley with a
radius of 4 inches; Find the angle
through which the smaller pulley
turns as the 10-inch pulley makes
one full revolution; State answer
in both radians and degrees;

For the large pulley, through one revolution we obtain
s1 = r1θ1 = 10 in · 2π rads = 20π in;
During that revolution, since the two pulleys are connected through the

belt, we get s2 = s1; Therefore, s1 = r2θ2 ⇒ θ2 =
s1

r2
=

20π

4
= 5π rads;

In degrees 5π rads = 5π rads · 180◦

π rads
= 900◦;
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Trigonometric Functions Angles and Arcs

Linear and Angular Speed and Their Relation

Definition of Linear and Angular Speed

Suppose that a point moves on a circular path of radius r at a constant
rate of θ radians per unit of time t; If s is the distance that the point

travels, then s = rθ; The linear speed of the point is v =
s

t
; The angular

speed of the point is ω =
θ

t
;

To reveal the relation between the linear and the angular speeds, note
that

v =
s

t
=

rθ

t
= r

θ

t
= rω;

Example: A hard disk rotates at 7200 revolutions per minute; What is
its angular speed in radians per second?

7200 rev/min = 7200
rev

min
· 2π rad

1 rev
· 1 min

60 sec
= 240π rad/sec;
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Trigonometric Functions Angles and Arcs

Another Example

A windmill has blades that are 12 feet in length; If
it is rotating at 3 revolutions per second, what is
the linear speed in feet per second of the tips of the
blades;

The angular speed of the point is:

ω = 3
rev

sec
· 2π rad

rev
= 6π

rad

sec
.

Thus, the linear speed is

v = rω = 12 ft · 6π rad
sec

= 72π ft/sec;
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Trigonometric Functions Right Triangle Trigonometry

Subsection 2

Right Triangle Trigonometry
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Trigonometric Functions Right Triangle Trigonometry

Definitions of Trigonometric Functions

Consider an acute angle θ of a
right triangle; We refer to the
vertical side opposite and the
vertical side adjacent to the
angle θ;

Definition of Trigonometric Functions of θ

The values of the trigonometric functions of θ are defined as follows:

sin θ =
opp

hyp
cos θ =

adj

hyp

tan θ =
opp

adj
cot θ =

adj

opp

sec θ =
hyp

adj
csc θ =

hyp

opp
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Trigonometric Functions Right Triangle Trigonometry

Computing Trig Functions

Find the values of the trig
functions of the angle θ of the
triangle given in the figure

First, compute the length c of the hypothenuse using the Pythagorean
Theorem:

c2 = a2 + b2 = 32 + 42 = 25 ⇒ c = 5;

Now set up the trig functions of θ:

sin θ =
opp

hyp
=

3

5
; cos θ =

adj

hyp
=

4

5
; tan θ =

opp

adj
=

3

4
;

cot θ =
adj

opp
=

4

3
; sec θ =

hyp

adj
=

5

4
; csc θ =

hyp

opp
=

5

3
;
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Trigonometric Functions Right Triangle Trigonometry

A More Challenging Example

Given that θ is an acute angle and cos θ =
5

8
, compute tan θ;

Since cos θ =
adj

hyp
=

5

8
, we get the

following diagram:

Now, compute the length a of the opposite side to θ using the
Pythagorean Theorem:

a2 = c2 − b2 = 82 − 52 = 64− 25 = 39; ⇒ a =
√
39;

Therefore, we obtain

tan θ =
opp

adj
=

√
39

5
;
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Trigonometric Functions Right Triangle Trigonometry

Trigonometric Numbers of θ = 45◦

We compute the trigonometric numbers of a 45◦ angle;

Since a right triangle having a 45◦

angle is isosceles, we get the follow-
ing diagram:

Therefore, for the trigonometric numbers, we get:

sin 45◦ =
opp

hyp
=

x√
2x

=

√
2

2
; cos 45◦ =

adj

hyp
=

x√
2x

=

√
2

2
;

tan 45◦ =
opp

adj
=

x

x
= 1; cot 45◦ =

adj

opp
=

x

x
= 1;

sec 45◦ =
hyp

adj
=

√
2x

x
=

√
2; csc 45◦ =

hyp

opp
=

√
2x

x
=

√
2;
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Trigonometric Functions Right Triangle Trigonometry

Trigonometric Numbers of θ = 30◦ and θ = 60◦

We compute the trigonometric numbers of a 30◦ and of a 60◦ angle;

Since a right triangle having a 60◦ angle is
“half” of an equilateral triangle, we get the
following diagram:

Therefore, for the trigonometric numbers, we get:

sin 30◦ = cos 60◦ =
x

2x
=

1

2
; cos 30◦ = sin 60◦ =

√
3x

2x
=

√
3

2
;

tan 30◦ = cot 60◦ =
x√
3x

=

√
3

3
; cot 30◦ = tan 60◦ =

√
3x

x
=

√
3;

sec 30◦ = csc 60◦ =
2x√
3x

=
2
√
3

3
; csc 30◦ = sec 60◦ =

2x

x
= 2;
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Trigonometric Functions Right Triangle Trigonometry

Table of Trigonometric Numbers of 30◦, 45◦ and 60◦

θ sin θ cos θ tan θ csc θ sec θ cot θ

30◦;
π

6

1

2

√
3

2

√
3

3
2

2
√
3

3

√
3

45◦;
π

4

√
2

2

√
2

2
1

√
2

√
2 1

60◦;
π

3

√
3

2

1

2

√
3

2
√
3

3
2

√
3

3
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Trigonometric Functions Right Triangle Trigonometry

Evaluating Expressions

Find the exact value of the following expressions:

sin2 45◦ + cos2 60◦ =

(√
2

2

)

2 +

(

1

2

)

2 =
1

2
+

1

4
=

3

4
;

2 csc
π

4
− sec

π

3
cos

π

6
= 2 ·

√
2− 2 ·

√
3

2
= 2

√
2−

√
3;
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Trigonometric Functions Right Triangle Trigonometry

Reciprocal Identities

Recall that we have

sin θ =
opp

hyp
cos θ =

adj

hyp
tan θ =

opp

adj

csc θ =
hyp

opp
sec θ =

hyp

adj
cot θ =

adj

opp

These imply the following important reciprocal identities:

sin θ =
1

csc θ
cos θ =

1

sec θ
tan θ =

1

cot θ

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ
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Trigonometric Functions Right Triangle Trigonometry

Application: Angle of Elevation

From a point 115 feet from the base
of a tree, the angle of elevation to
the top of the tree is 64.3◦; What
is the height of the tree?

tan 64.3◦ =
opp

adj
=

h

115

⇒ h = 115 · tan 64.3◦ ≈ 238.95 ft.
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Trigonometric Functions Right Triangle Trigonometry

Application: Angle of Depression

Suppose the direct distance of a
fighter jet from the landing deck
of an aircraft carrier is 10 miles
and the angle of depression is
33◦; Find the horizontal ground
distance from the jet to the car-
rier;

cos 33◦ =
adj

hyp
=

x

10

⇒ x = 10 · cos 33◦ ≈ 8.387 miles;
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Trigonometric Functions Right Triangle Trigonometry

Application: Angle of Elevation Revisited

An observer notes that the angle of
elevation from a point A to the top
of the Eiffel tower is 70◦; From an-
other point 210 feet further from
the base of the tower, the angle of
elevation is 60◦; Find the height of
the Eiffel tower;

tan 70◦ =
h

x
⇒ x =

h

tan 70◦
= h cot 70◦;

Moreover,

tan 60◦ =
h

x + 210
=

h

h cot 70◦ + 210
⇒ h = (tan 60◦)(h cot 70◦ + 210)
⇒ h = h tan 60◦ cot 70◦ + 210 tan 60◦

⇒ h− h tan 60◦ cot 70◦ = 210 tan 60◦

⇒ h =
210 tan 60◦

1− tan 60◦ cot 70◦
≈ 984.16 feet;
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Trigonometric Functions Trigonometric Functions of Any Angle

Subsection 3

Trigonometric Functions of Any Angle
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Trigonometric Functions Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

Suppose P(x , y) is a point different from the ori-
gin on the terminal side of an angle θ in standard
position, such that r =

√

x2 + y2 is the distance
from the origin to P ;

The six trigonometric functions of θ are defined
as follows:

sin θ =
y

r
; cos θ =

x

r
; tan θ =

y

x
, x 6= 0;

csc θ =
r

y
, y 6= 0; sec θ =

r

x
, x 6= 0; cot θ =

x

y
, y 6= 0;
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Trigonometric Functions Trigonometric Functions of Any Angle

Evaluating Trigonometric Functions I

Find the exact value of the six trigono-
metric functions of the angle θ in standard
position whose terminal side contains the
point P(−3,−2);

We get x = − 3, y = − 2 and r =
√

(−3)2 + (−2)2 =
√
13; Thus,

sin θ =
y

r
=

−2√
13

= − 2
√
13

13
; cos θ =

x

r
=

−3√
13

= − 3
√
13

13
;

tan θ =
y

x
=

−2

−3
=

2

3
; csc θ = −

√
13

2
;

sec θ = −
√
13

3
; cot θ =

3

2
;
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Trigonometric Functions Trigonometric Functions of Any Angle

Quadrantal Angles and Signs of Functions

Values of Trigonometric Functions of Quadrantal Angles:

θ sin θ cos θ tan θ csc θ sec θ cot θ

0◦ 0 1 0 A 1 A

90◦ 1 0 A 1 A 0

180◦ 0 − 1 0 A − 1 A

270◦ − 1 0 A − 1 A 0

Signs of Trigonometric Functions:

Sign of Quadrant I Quadrant II Quadrant III Quadrant IV

sin θ and csc θ + + − −
cos θ and sec θ + − − +

tan θ and cot θ + − + −
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Trigonometric Functions Trigonometric Functions of Any Angle

Evaluating Trigonometric Functions II

Given tan θ = −7

5
and sin θ < 0, find cos θ and csc θ;

Since tan θ = −7

5
and sin θ < 0, we get

y

x
= − 7

5
and y < 0;

Therefore y = − 7 and x = 5;
These imply that r =

√

52 + (−7)2 =
√
74;

Therefore

cos θ =
x

r
=

5√
74

=
5
√
74

74

and

csc θ =
r

y
= −

√
74

7
;
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Trigonometric Functions Trigonometric Functions of Any Angle

The Reference Angle

Given ∠θ in standard position, its reference angle θ′ is the acute

angle formed by the terminal side of ∠θ and the x-axis;

Example: Find the measure of the reference angle θ′ for each of the
following:

θ = 120◦;
Since 120◦ = 180◦ − 60◦, we have θ′ = 60◦;
θ = 345◦;
Since 345◦ = 360◦ − 15◦, we have θ′ = 15◦;

θ =
7π

4
;

Since
7π

4
= 2π − π

4
, we have θ′ =

π

4
;

θ =
13π

6
;

Since
13π

6
= 2π +

π

6
, we have θ′ =

π

6
;
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Trigonometric Functions Trigonometric Functions of Any Angle

Using the Reference Angle

Reference Angle Theorem

To evaluate sin θ, determine sin θ′; Then use either sin θ′ or − sin θ′,
depending on which of the two has the correct sign.

Example: Determine the exact value of

sin 210◦;
We have θ′ = 30◦ and 210◦ is in Quadrant III; Thus,

sin 210◦ = − sin 30◦ = − 1

2
;

cos 405◦;
We have θ′ = 45◦ and 405◦ is in Quadrant I; Thus,

cos 405◦ = cos 45◦ =

√
2

2
;

tan
5π

3
;

We have θ′ =
π

3
and

5π

3
is in Quadrant IV; Thus,

tan
5π

3
= − tan

π

3
= −

√
3;
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Trigonometric Functions Trigonometric Functions of Real Numbers

Subsection 4

Trigonometric Functions of Real Numbers
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Trigonometric Functions Trigonometric Functions of Real Numbers

Wrapping Function

Consider the unit circle, i.e., the circle of
radius 1 centered at the origin;

The wrapping function has domain all real
numbers and maps a real number t to a
point W (t) = P(x , y) on the unit circle
such that the length of the arc AP

⌢
is |t|,

where A(1, 0);

Since r = 1, we have s = 1 · θ, i.e., the
length s of the arc equals the measure θ of
the central angle subtended by the arc!

This allows one to associate an angle with any given real number t
using the wrapping function and passing through the arc on the unit
circle starting from A and having length |t| (clockwise if t < 0 and
counterclockwise if t > 0);
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Trigonometric Functions Trigonometric Functions of Real Numbers

An Example of Evaluating the Wrapping Function

Evaluate W (
2π

3
);

We have cos
2π

3
=

x

r
⇒ − cos

π

3
=

x

1
⇒

x = −1
2 ;

Similarly,

sin
2π

3
=

y

r
⇒ sin

π

3
=

y

1
⇒ y =

√
3

2
;

Therefore, the point W (
2π

3
) = (−1

2
,

√
3

2
);
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Trigonometric Functions Trigonometric Functions of Real Numbers

Trigonometric Functions of Any Real Number

Use the wrapping function on the unit circle to map a real number t,

first to the arc AP
⌢

of length |t| (counterclockwise for t > 0 and
clockwise for t < 0)
then to the central angle of measure t subtended by the arc AP

⌢
;

We define the trigonometric functions of the real number t as the
trigonometric functions of the angle corresponding to t, which
(because r = 1) has measure t radians;

Trigonometric Functions of Real Numbers

Let t be a real number and W (t) = P(x , y); Then, we define

sin t = y , cos t = x , tan t =
y

x
, x 6= 0,

csc t =
1

y
, y 6= 0, sec t =

1

x
, x 6= 0, cot t =

x

y
, y 6= 0;
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Trigonometric Functions Trigonometric Functions of Real Numbers

Evaluating Trigonometric Functions

Find the exact value of each function:

cos
π

4
=

√
2

2
;

sin

(

−7π

6

)

= sin
(π

6

)

=
1

2
;

tan

(

−5π

4

)

= − tan
(π

4

)

= − 1;

sec

(

5π

3

)

= sec
(π

3

)

= 2;
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Trigonometric Functions Trigonometric Functions of Real Numbers

Application: The Millenium Ferris Wheel in London

The Millenium Wheel has a diameter of 450 feet
and completes one revolution every 30 minutes;
Suppose that the height h in feet above the
Thames River of a person riding on the Wheel
can be estimated by

h(t) = 255 − 225 cos
( π

15
t
)

,

where t in minutes is time since person started
the ride;

How high is the person at the start of the ride?

h(0) = 255 − 225 cos 0 = 255− 225 · 1 = 30 feet;

How high is the person after 18 minutes?

h(18) = 255 − 225 cos

(

18π

15

)

= 255− 225 cos

(

6π

5

)

≈ 437 feet;
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Trigonometric Functions Trigonometric Functions of Real Numbers

Domains and Ranges of Trigonometric Functions

The domain and ranges of the trigonometric functions:

Function Domain Range

y = sin t R {y : −1 ≤ y ≤ 1}
y = cos t R {y : −1 ≤ y ≤ 1}

y = tan t {t : t 6= (2k + 1)π

2
} R

y = csc t {t : t 6= kπ} {y : y ≤ −1 or y ≥ 1}

y = sec t {t : t 6= (2k + 1)π

2
} {y : y ≤ −1 or y ≥ 1}

y = cot t {t : t 6= kπ} R
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Trigonometric Functions Trigonometric Functions of Real Numbers

Even and Odd Trigonometric Functions

The four trigonometric functions

y = sin t, y = csc t, y = tan t, y = cot t

are all odd functions;

The two trigonometric functions

y = cos t, y = sec t

are both even functions;

These statements imply the following even-odd identities:

sin (−t) = − sin t cos (−t) = cos t tan (−t) = − tan t

csc (−t) = − csc t sec (−t) = sec t cot (−t) = − cot t

Example: Is f (x) = x − tan x even, odd or neither?

f (−x) = (−x)− tan (−x) = − x − (− tan x) =
− x + tan x = − (x − tan x) = − f (x);

Therefore, f (x) is an odd function;
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Trigonometric Functions Trigonometric Functions of Real Numbers

Periodicity

A function f is periodic if there exists a positive constant p, such
that f (t + p) = f (t)

for all t in the domain of f ; The smallest such positive p for which f

is periodic is called the period of f ;

The functions

y = sin t, y = cos t, y = csc t, y = sec t

are periodic with period 2π;

The functions
y = tan t, y = cot t

are periodic with period π;

These statements imply the following periodic identities:

sin (t + 2kπ) = sin t cos (t + 2kπ) = cos t tan (t + kπ) = tan t

csc (t + 2kπ) = csc t sec (t + 2kπ) = sec t cot (t + kπ) = cot t
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Trigonometric Functions Trigonometric Functions of Real Numbers

Trigonometric Identities

Reciprocal Identities

sin t =
1

csc t
, cos t =

1

sec t
, tan t =

1

cot t
;

Ratio Identities

tan t =
sin t

cos t
; cot t =

cos t

sin t
;

Pythagorean Identities

cos2 t + sin2 t = 1, 1 + tan2 t = sec2 t, 1 + cot2 t = csc2 t;
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Trigonometric Functions Trigonometric Functions of Real Numbers

Example I

Use the unit circle and the definitions of trigonometric functions to
show that sin (t + π) = − sin t;

If W (t) = (x , y), then W (t + π) = (−x ,−y);

Therefore sin (t + π) = − y = − sin t;
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Trigonometric Functions Trigonometric Functions of Real Numbers

Example II

Write the expression
1

sin2 t
+

1

cos2 t
as a single term;

1

sin2 t
+

1

cos2 t
=

cos2 t

sin2 t cos2 t
+

sin2 t

sin2 t cos2 t

=
cos2 t + sin2 t

sin2 t cos2 t

=
1

sin2 t cos2 t

=
1

sin2 t
· 1

cos2 t

= csc2 t sec2 t;
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Trigonometric Functions Trigonometric Functions of Real Numbers

Example III

For
π

2
< t < π, write tan t in terms of only sin t;

cos2 t + sin2 t = 1 ⇒ cos2 t = 1− sin2 t

⇒ cos t = ±
√

1− sin2 t
π

2
<t<π
⇒ cos t = −

√

1− sin2 t;

Therefore, we get

tan t =
sin t

cos t
= − sin t

√

1− sin2 t
;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Subsection 5

Graphs of the Sine and Cosine Functions
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Graph of y = sin x

We create a small table of values:

x 0 π
6

π
3

π
2

2π
3

5π
6 π

y = sin x 0 1
2

√
3
2 1

√
3
2

1
2 0

x 7π
6

4π
3

3π
2

5π
3

11π
6 2π

y = sin x − 1
2 −

√
3
2 − 1 −

√
3
2 − 1

2 0

We plot the points and connect:
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Basic Properties of y = sin x

Extending the previous graph by periodicity, we get

This graph has the following basic properties:

Domain: All real numbers;
Range: {y : −1 ≤ y ≤ 1};
Period: 2π;
Symmetry: With respect to the origin (Odd);
x-Intercepts: kπ;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Graph of y = a sin x

The amplitude of a graph with maximum value y = M and minimum

value y = m is defined by A =
1

2
(M −m);

Example: y = sin x has M = 1 and m = − 1; Thus, it has amplitude

A =
1

2
(1− (−1)) = 1;

Amplitude of y = a sin x

The amplitude of y = a sin x is |a|.

Example: Graph y = −2 sin x ;

To graph this function, we start from
y = sin x , obtain y = 2 sin x by a
vertical stretch by a factor of 2 and
then obtain y = −2 sin x by flipping
with respect to the x-axis;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Graph of y = sin bx

Period of y = sin bx

The period of y = sin bx is 2π
|b| .

Example: Find the amplitude and periods of the following functions:

Function y = a sin bx y = 3 sin (−2x) y = − sin x

3 y = −2 sin 3x
4

Amplitude |a| |3| = 3 | − 1| = 1 | − 2| = 2

Period 2π
|b|

2π
2 = π 2π

1/3 = 6π 2π
3/4 = 8π

3

Example: Graph y = 3 sinπx ;

To graph this function, we start from
y = sin x , obtain y = sinπx by a
horizontal compression by a factor of
π and then obtain y = 3 sin πx by a
vertical stretch by a factor of 3;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Graph of y = a sin bx

Example: Graph y = −1

2
sin

x

3
;

To graph this function, we start from y = sin x , obtain y = sin
x

3
by a

horizontal stretching by a factor of 3, then obtain y =
1

2
sin

x

3
by a

vertical compression by a factor of 2 and, finally, obtain y = −1

2
sin

x

3
by a flipping with respect to the x-axis;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Graph of y = cos x

We create a small table of values:

x 0 π
6

π
3

π
2

2π
3

5π
6 π

y = cos x 1
√
3
2

1
2 0 − 1

2 −
√
3
2 − 1

x 7π
6

4π
3

3π
2

5π
3

11π
6 2π

y = cos x −
√
3
2 − 1

2 0 1
2

√
3
2 1

We plot the points and connect:
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Basic Properties of y = cos x

Extending the previous graph by periodicity, we get

This graph has the following basic properties:

Domain: All real numbers;
Range: {y : −1 ≤ y ≤ 1};
Period: 2π;
Symmetry: With respect to the y -axis (Even);

x-Intercepts: (2k + 1)
π

2
;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Graph of y = a cos x

Recall that the amplitude of a graph is defined by A =
1

2
(M −m);

Example: y = cos x has M = 1 and m = − 1; Thus, it has amplitude

A =
1

2
(1− (−1)) = 1;

Amplitude of y = a cos x

The amplitude of y = a cos x is |a|.

Example: Graph y = −5
2 sin x ;

To graph this function, we start from
y = cos x , obtain y = 5

2 cos x by a
vertical stretch by a factor of 5

2 and
then obtain y = −5

2 cos x by flipping
with respect to the x-axis;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Graph of y = cos bx

Period of y = cos bx

The period of y = cos bx is 2π
|b| .

Example: Find the amplitude and periods of the following functions:

Function y = a cos bx y = 2cos 3x y = −3 cos 2x
3

Amplitude |a| |2| = 2 | − 3| = 3

Period 2π
|b|

2π
3

2π
2/3 = 3π

Example: Graph y =
3

2
cos

2π

3
x ;

To graph this function, we start from

y = cos x , obtain y = cos
2π

3
x by a

horizontal compression by a factor of
2π

3
and then obtain y =

3

2
cos

2π

3
x

by a vertical stretch by a factor of 3
2 ;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Graph of y = a cos bx

Example: Graph y = −2 cos
πx

4
;

To graph this function, we start from y = cos x , obtain y = cos
πx

4

by a horizontal stretching by a factor of
4

π
, then obtain y = 2cos

πx

4
by a vertical stretching by a factor of 2 and, finally, obtain

y = −2 cos
πx

4
by a flipping with respect to the x-axis;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Finding an Equation for a Graph I

The graph on the right shows a sin-
gle cycle of a graph of a sine or co-
sine function; Find an equation for the
graph;

The graph has
Amplitude |a| = 2;

Period T = 6 ⇒ 2π

|b| = 6 ⇒ |b| = 2π

6
=

π

3
⇒ b = ±π

3
;

Since at x = 0, it has value y = + 2, we get an equation

y = a cos bx = 2cos
π

3
x ;
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Trigonometric Functions Graphs of the Sine and Cosine Functions

Finding an Equation for a Graph II

The graph on the right shows a sin-
gle cycle of a graph of a sine or co-
sine function; Find an equation for the
graph;

The graph has

Amplitude |a| = 3

2
;

Period T =
4π

3
⇒ 2π

|b| =
4π

3
⇒ |b| = 2π

4π/3
=

3

2
⇒ b = ±3

2
;

Since at x = π
3 , it has value y = − 3

2 , we get an equation

y = a sin bx = − 3

2
sin

3

2
x ;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Subsection 6

Graphs of the Other Trigonometric Functions
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = tan x

We create a small table of values:

x 0 π
6

π
4

π
3

π
2

y = tan x 0
√
3
3 1

√
3 A

We plot the points, connect and use the odd property:
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Basic Properties of y = tan x

Extending the previous graph by periodicity, we get

This graph has the following basic properties:

Domain: R− {(2k + 1)
π

2
: k ∈ Z};

Range: All reals;
Period: π;
Symmetry: With respect to the origin (Odd);
x-Intercepts: kπ;

Vertical Asymptotes: x = (2k + 1)
π

2
;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = a tan x

The graph of y = a tan x does not have an amplitude since it does
not have a maximum or minimum value;

It just represents either a vertical stretching or a vertical compression
of the graph of y = ± tan x ;

Example: Graph y = −1

5
tan x ;

To graph this function, we start from

y = tan x , obtain y =
1

5
tan x by a

vertical compression by a factor of 5

and then obtain y = −1

5
tan x by

flipping with respect to the x-axis;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = tan bx

Period of y = tan bx

The period of y = tan bx is π
|b| .

Example: Graph y = 2 tanπx ;

To graph this function, we start from
y = tan x , obtain y = tanπx by a
horizontal compression by a factor of
π and then obtain y = 2 tan πx by a
vertical stretch by a factor of 2;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = a tan bx

Example: Graph y = −1
3 tan

x

2 ;

To graph this function, we start

from y = tan x , obtain y = tan
x

2
by a horizontal stretching by a fac-

tor of 2, then obtain y =
1

3
tan

x

2
by a vertical compression by a fac-
tor of 3 and, finally, obtain y =

−1

3
tan

x

2
by a flipping with respect

to the x-axis;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = cot x

We create a small table of values:

x 0 π
6

π
4

π
3

π
2

y = cot x A

√
3 1

√
3

3
0

We plot the points, connect and use the odd property:
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Basic Properties of y = cot x

Extending the previous graph by periodicity, we get

This graph has the following basic properties:
Domain: R− {kπ : k ∈ Z};
Range: All reals;
Period: π;
Symmetry: With respect to the origin (Odd);

x-Intercepts: (2k + 1)
π

2
;

Vertical Asymptotes: x = kπ;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = a cot bx

Period of y = a cot bx

The period of y = a cot bx is π
|b| .

Example: Graph y = 2cot x

3 ;

To graph this function, we start from
y = cot x , obtain y = cot x

3 by a
horizontal stretching by a factor of 3
and then obtain y = 2cot x

3 by a
vertical stretch by a factor of 2;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = csc x

We create a small table of values:

x 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

y = csc x A 2
√
2

2
√
3

3
1

2
√
3

3

√
2 2 A

We plot the points, connect and use the odd property:
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Basic Properties of y = csc x

Extending the previous graph by periodicity, we get

This graph has the following basic properties:
Domain: R− {kπ : k ∈ Z};
Range: {y : y ≤ −1 or y ≥ 1};
Period: 2π;
Symmetry: With respect to the origin (Odd);
x-Intercepts: None;
Vertical Asymptotes: x = kπ;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = a csc bx

Period of y = a csc bx

The period of y = a csc bx is 2π
|b| .

Example: Graph y = 1
3 csc

πx
2 ;

To graph this function, we start
from y = csc x , obtain
y = csc πx

2 by a horizontal
compression by a factor of π

2
and then obtain y = 1

3 csc
πx
2 by

a vertical compression by a
factor of 3;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = sec x

We create a small table of values:

x 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

y = sec x 1
2
√
3

3

√
2 2 A − 2 −

√
2 − 2

√
3

3
− 1

We plot the points and connect:
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Basic Properties of y = sec x

Extending the previous graph by symmetry and periodicity, we get

This graph has the following basic properties:

Domain: R− {(2k + 1)
π

2
: k ∈ Z};

Range: {y : y ≤ −1 or y ≥ 1};
Period: 2π;
Symmetry: With respect to the x-axis (Even);
x-Intercepts: None;

Vertical Asymptotes: x = (2k + 1)
π

2
;
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Trigonometric Functions Graphs of the Other Trigonometric Functions

Graph of y = a sec bx

Period of y = a sec bx

The period of y = a sec bx is 2π
|b| .

Example: Graph y = −3 sec x

2 ;

To graph this function, we start
from y = sec x , obtain y = sec x

2
by a horizontal stretching by a
factor of 2, then obtain y = 3 sec x

2
by a vertical stretching by a factor
of 3 and, finally, y = −3 sec x

2 by
flipping with respect to the x-axis;
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Trigonometric Functions Graphing Techniques

Subsection 7

Graphing Techniques
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Trigonometric Functions Graphing Techniques

Amplitude, Period and Phase Shift of Sinusoidal Graphs

Graphs of y = a sin (bx + c) and y = a cos (bx + c)

The graphs of y = a sin (bx + c) and y = a cos (bx + c) have

Amplitude : |a|, Period :
2π

|b| , Phase Shift : −c

b
;

The graph y = a sin (bx + c) shifts the graph of y = a sin bx
horizontally − c

b
units;

The graph y = a cos (bx + c) shifts the graph of y = a cos bx
horizontally − c

b
units;

Example: What is the phase shift of y = 3 sin (12x − π
6 )?

φ = − c

b
= − −π/6

1/2
=

π

3
;
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Trigonometric Functions Graphing Techniques

Using Amplitudes, Periods and Phase Shifts to Graph

Find the amplitude, period and phase shift of y = 3cos (2x + π
3 ) and

use them to sketch the graph;

Amplitude:|a| = 3; Period:T =
2π

|b| =
2π

2
= π;

Phase Shift:φ = −c

b
= − π/3

2
= − π

6
;

George Voutsadakis (LSSU) Trigonometry January 2015 80 / 83



Trigonometric Functions Graphing Techniques

Period and Phase Shift of Tangent and Cotangent

Graphs of y = a tan (bx + c) and y = a cot (bx + c)

The graphs of y = a tan (bx + c) and y = a cot (bx + c) have

Period :
π

|b| , Phase Shift : −c

b
;

The graph y = a tan (bx + c) shifts the graph of y = a tan bx
horizontally − c

b
units;

The graph y = a cot (bx + c) shifts the graph of y = a cot bx
horizontally − c

b
units;

Example: graph one period of
y = 2cot (3x − 2); Since the period
is T = π

|b| =
π
3 and the phase shift is

φ = − c

b
= − −2

3 = 2
3 , we start the

graph at x = 2
3 and end it at

x = 2
3 + π

3 = π+2
3 ;
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Trigonometric Functions Graphing Techniques

Using Amplitudes, Periods and Shifts to Graph I

Graph y = 1
2 sin (x − π

4 )− 2;

Amplitude:|a| = 1
2 ; Period:T =

2π

|b| =
2π

1
= 2π;

Phase Shift:φ = −c

b
= − −π/4

1
=

π

4
; Vertical Shift:y0 = −2;
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Trigonometric Functions Graphing Techniques

Using Amplitudes, Periods and Shifts to Graph II

Find the amplitude, period and phase shift of
y = −2 cos (πx + π

2 ) + 1 and used them to sketch the graph;

Amplitude:|a| = 2; Period:T =
2π

|b| =
2π

π
= 2;

Phase Shift:φ = −c

b
= − π/2

π
= − 1

2
; Vertical Shift:y0 = 1;
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