College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) Trigonometric Functions

- Angles and Arcs
- Right Triangle Trigonometry
- Trigonometric Functions of Any Angle
- Trigonometric Functions of Real Numbers
- Graphs of the Sine and Cosine Functions
- Graphs of the Other Trigonometric Functions
- Graphing Techniques

Subsection 1

Angles and Arcs

Terminology on Angles

- The two parts into which a point P on a line separates the line are called half-lines or rays;
- The half-line formed by P that includes a point A on the line is denoted by $\overrightarrow{P A} ; P$ is the endpoint of $\overrightarrow{P A}$;

Definition of Angle

An angle is formed by rotating a given ray about its endpoint to some terminal position; The original ray is called the initial side of the angle and the second ray is the terminal side; The common endpoint is the vertex of the angle.

- Angles formed by a counterclockwise rotation are positive angles and those formed by a clockwise rotation are negative angles;
- Notation for angles:

$$
\begin{aligned}
& \angle \alpha=\angle A O B ; \angle \beta= \\
& \angle C P D ; \angle \gamma=\angle F Q E
\end{aligned}
$$

Degree Measure

Degree Measure

An angle formed by rotating the initial side counterclockwise exactly once until it coincides with itself is defined to have a measure of 360 degrees, written 360°; Therefore, one degree is the measure of an angle formed by rotating a ray $\frac{1}{360}$ of a complete revolution and it is written 1°;

- Angles are classified according to their degree measure:

obtuse angle $90^{\circ}<\mathrm{v}<180^{\circ}$

Standard Position, Complementary and Supplementary

- An angle superimposed in a Cartesian coordinate system is in standard position if its vertex is at the origin and its initial side is on the positive x-axis:

> Standard Position

- Two angles are coterminal if they share the same terminal side when placed in standard position;

- Two positive angles are complementary if the sum of their measures is 90° and they are supplementary if the sum of their measures is 180°;

complementary angles

supplementary angles

Simple Examples

- Find, if possible the measure of the complement and the supplement of $\theta=40^{\circ}$;

$$
\begin{aligned}
& \operatorname{Comp}(\theta)=90^{\circ}-40^{\circ}=50^{\circ} \\
& \operatorname{Supp}(\theta)=180^{\circ}-40^{\circ}=140^{\circ}
\end{aligned}
$$

- Find, if possible the measure of the complement and the supplement of $\theta=125^{\circ}$;
- θ does not have a complement since it is an angle with measure greater than 90°;
- $\operatorname{Supp}(\theta)=180^{\circ}-125^{\circ}=55^{\circ}$;
- Are the two acute angles of any right triangle complementary angles? Yes! because their sum is 90°;

Quadrantal Angles

- An angle is a quadrantal angle if its terminal side in standard position lies on a coordinate axis;

For instance, the $90^{\circ}, 180^{\circ}$ and 270° angles are all quadrantal angles;

- Recall that two angles are coterminal if they share the same terminal side when placed in standard position;

Measures of Coterminal Angles

Given an angle $\angle \theta$ in standard position with measure x°, then the measures of the angles that are coterminal with $\angle \theta$ are given by $x^{\circ}+k \cdot 360^{\circ}$, where k is an integer.

An Example

- Assume that the following angles are in standard position; Determine the measure of the positive angle with measure less than 360° that is coterminal with the given angle and classify the angle by quadrant;
- $\alpha=550^{\circ}$;

We have $\alpha=550^{\circ}=360^{\circ}+190^{\circ}$; Therefore, α is coterminal with the 190° angle and the terminal side lies in Quadrant III;

- $\beta=-255^{\circ}$;

We have $\beta=-255^{\circ}=-360^{\circ}+105^{\circ}$; Therefore, β is coterminal with the 105° angle and the terminal side lies in Quadrant II;

- $\gamma=1105^{\circ}$;

We have $\gamma=1105^{\circ}=3 \cdot 360^{\circ}+25^{\circ}$; Therefore, γ is coterminal with the 25° angle and the terminal side lies in Quadrant I;

Decimal Degrees and DMS (Degree, Minute, Second)

- To represent a fractional part of a degree, there are two popular methods:
- The decimal degree method uses a decimal number; For instance, 34.42° means 34° plus 42 hundredths of 1°;
- The DMS (Degree, Minute, Second) method subdivides a degree into 60 minutes $\left(1^{\circ}=60^{\prime}\right)$ and each minute into 60 seconds $\left(1^{\prime}=60^{\prime \prime}\right)$;
- Example: Write $126^{\circ} 12^{\prime} 27^{\prime \prime}$ as a decimal degree;

$$
\begin{aligned}
& 126^{\circ} 12^{\prime} 27^{\prime \prime}=\left(126+\frac{12}{60}+\frac{27}{3600}\right)^{\circ}= \\
& (126+0.2+0.0075)^{\circ}=126.2075^{\circ}
\end{aligned}
$$

Central Angles and the Radian

- Consider a circle of radius r and two radii $O A$ and $O B$;
- The angle θ formed by $O A$ and $O B$ is called a central angle;
- The portion of the arc between A and B is an arc of the circle and is denoted by $A B$;
- The arc $\overparen{A B}$ is said to subtend the angle θ;

Definition of a Radian

One radian is defined to be the measure of the central angle subtended by an arc of length r on a circle of radius r;

Radian Measure of an Angle

Definition of Radian Measure

Given an arc of length s on a circle of radius r, the measure of the central angle subtended by the arc is $\theta=\frac{s}{r}$ radians.

- Example: Suppose an arc has length 15 cm on a circle of radius 5 cm . What is the radian measure of the central angle subtended by the arc?

$$
\theta=\frac{s}{r}=\frac{15}{5}=3 \text { radians; }
$$

- Example: An arc of length 12 cm has radian measure $\frac{4}{3}$ radians; What is the radius of the corresponding circle?

$$
\theta=\frac{s}{r} \Rightarrow r=\frac{s}{\theta} \Rightarrow r=\frac{12}{4 / 3}=9 \mathrm{~cm}
$$

Conversion Between Radians and Degrees

Radian-Degree Conversions

- To convert from radians to degrees, multiply by $\frac{180^{\circ}}{\pi \text { rads }}$;
- To convert from degrees to radians, multiply by $\frac{\pi \text { rads }}{180^{\circ}}$;
- Example: Convert from degrees to radians:
- $60^{\circ}=60^{\circ} \cdot \frac{\pi \text { rads }}{180^{\circ}}=\frac{\pi}{3}$ rads;
- $315^{\circ}=315^{\circ} \cdot \frac{\pi \mathrm{rads}}{180^{\circ}}=\frac{7 \pi}{4} \mathrm{rads} ;$
$-150^{\circ}=-150^{\circ} \cdot \frac{\pi \mathrm{rads}}{180^{\circ}}=-\frac{5 \pi}{6} \mathrm{rads} ;$
- Example: Convert from radians to degrees:
- $\frac{3 \pi}{4}$ rads $=\frac{3 \pi}{4}$ rads $\cdot \frac{180^{\circ}}{\pi \text { rads }}=135^{\circ}$;
- $1 \mathrm{rad}=1 \mathrm{rad} \cdot \frac{180^{\circ}}{\pi_{5} \mathrm{rads}}=\frac{180^{\circ}}{\pi}$;
$-\frac{5 \pi}{2}$ rads $=-\frac{5 \pi}{2}$ rads $\cdot \frac{180^{\circ}}{\pi \mathrm{rads}}=-450^{\circ}$;

Arc and Arc Length

The length s of the arc subtending a central angle of nonnegative radian measure θ of a circle of radius r is given by

$$
s=r \theta
$$

- Example: What is the length of the arc that subtends a central angle of 120° in a circle of radius 10 cm ?
First, convert degrees to radians:

$$
120^{\circ}=120^{\circ} \cdot \frac{\pi \mathrm{rads}}{180^{\circ}}=\frac{2 \pi}{3} \mathrm{rads} ;
$$

Then, use the formula:

$$
s=r \theta=10 \mathrm{~cm} \cdot \frac{2 \pi}{3} \mathrm{rad}=\frac{20 \pi}{3} \mathrm{~cm} ;
$$

A More Challenging Application

A pulley with a radius of 10 inches uses a belt to drive a pulley with a radius of 4 inches; Find the angle through which the smaller pulley turns as the 10 -inch pulley makes
 one full revolution; State answer in both radians and degrees;
For the large pulley, through one revolution we obtain $s_{1}=r_{1} \theta_{1}=10$ in $\cdot 2 \pi$ rads $=20 \pi$ in;
During that revolution, since the two pulleys are connected through the belt, we get $s_{2}=s_{1}$; Therefore, $s_{1}=r_{2} \theta_{2} \Rightarrow \theta_{2}=\frac{s_{1}}{r_{2}}=\frac{20 \pi}{4}=5 \pi$ rads; In degrees 5π rads $=5 \pi$ rads $\cdot \frac{180^{\circ}}{\pi \text { rads }}=900^{\circ}$;

Linear and Angular Speed and Their Relation

Definition of Linear and Angular Speed

Suppose that a point moves on a circular path of radius r at a constant rate of θ radians per unit of time t; If s is the distance that the point travels, then $s=r \theta$; The linear speed of the point is $v=\frac{s}{t}$; The angular speed of the point is $\omega=\frac{\theta}{t}$;

- To reveal the relation between the linear and the angular speeds, note that

$$
v=\frac{s}{t}=\frac{r \theta}{t}=r \frac{\theta}{t}=r \omega ;
$$

- Example: A hard disk rotates at 7200 revolutions per minute; What is its angular speed in radians per second?

$$
7200 \mathrm{rev} / \mathrm{min}=7200 \frac{\mathrm{rev}}{\mathrm{~min}} \cdot \frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=240 \pi \mathrm{rad} / \mathrm{sec} ;
$$

Another Example

A windmill has blades that are 12 feet in length; If it is rotating at 3 revolutions per second, what is the linear speed in feet per second of the tips of the blades;

The angular speed of the point is:

$$
\omega=3 \frac{\mathrm{rev}}{\mathrm{sec}} \cdot 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}=6 \pi \frac{\mathrm{rad}}{\mathrm{sec}} .
$$

Thus, the linear speed is

$$
v=r \omega=12 \mathrm{ft} \cdot 6 \pi \frac{\mathrm{rad}}{\mathrm{sec}}=72 \pi \mathrm{ft} / \mathrm{sec} ;
$$

Subsection 2

Right Triangle Trigonometry

Definitions of Trigonometric Functions

- Consider an acute angle θ of a right triangle; We refer to the vertical side opposite and the vertical side adjacent to the angle θ;

Definition of Trigonometric Functions of θ

The values of the trigonometric functions of θ are defined as follows:

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opp }}{\text { hyp }} & \cos \theta=\frac{\text { adj }}{\text { hyp }} \\
\tan \theta=\frac{\text { opp }}{\text { adj }} & \cot \theta=\frac{\text { adj }}{\text { opp }} \\
\sec \theta=\frac{\text { hyp }}{\text { adj }} & \csc \theta=\frac{\text { hyp }}{\text { opp }}
\end{array}
$$

Computing Trig Functions

- Find the values of the trig functions of the angle θ of the triangle given in the figure

First, compute the length c of the hypothenuse using the Pythagorean Theorem:

$$
c^{2}=a^{2}+b^{2}=3^{2}+4^{2}=25 \Rightarrow c=5
$$

Now set up the trig functions of θ :

$$
\begin{aligned}
& \sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{3}{5} ; \quad \cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{4}{5} ; \quad \tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{3}{4} ; \\
& \cot \theta=\frac{\mathrm{adj}}{\mathrm{opp}}=\frac{4}{3} ; \quad \sec \theta=\frac{\text { hyp }}{\mathrm{adj}}=\frac{5}{4} ; \quad \csc \theta=\frac{\text { hyp }}{\mathrm{opp}}=\frac{5}{3} ;
\end{aligned}
$$

A More Challenging Example

- Given that θ is an acute angle and $\cos \theta=\frac{5}{8}$, compute $\tan \theta$;

Since $\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{5}{8}$, we get the following diagram:

Now, compute the length a of the opposite side to θ using the Pythagorean Theorem:

$$
a^{2}=c^{2}-b^{2}=8^{2}-5^{2}=64-25=39 ; \quad \Rightarrow \quad a=\sqrt{39} ;
$$

Therefore, we obtain

$$
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}=\frac{\sqrt{39}}{5} ;
$$

Trigonometric Numbers of $\theta=45^{\circ}$

- We compute the trigonometric numbers of a 45° angle;

Since a right triangle having a 45° angle is isosceles, we get the following diagram:

Therefore, for the trigonometric numbers, we get:

$$
\begin{array}{ll}
\sin 45^{\circ}=\frac{\text { opp }}{\text { hyp }}=\frac{x}{\sqrt{2} x}=\frac{\sqrt{2}}{2} ; & \cos 45^{\circ}=\frac{\text { adj }}{\text { hyp }}=\frac{x}{\sqrt{2} x}=\frac{\sqrt{2}}{2} ; \\
\tan 45^{\circ}=\frac{\text { opp }}{\text { adj }}=\frac{x}{x}=1 ; & \cot 45^{\circ}=\frac{\text { adj }}{\text { opp }}=\frac{x}{x}=1 ; \\
\sec 45^{\circ}=\frac{\text { hyp }}{\text { adj }}=\frac{\sqrt{2} x}{x}=\sqrt{2} ; & \csc 45^{\circ}=\frac{\text { hyp }}{\text { opp }}=\frac{\sqrt{2} x}{x}=\sqrt{2} ;
\end{array}
$$

Trigonometric Numbers of $\theta=30^{\circ}$ and $\theta=60^{\circ}$

- We compute the trigonometric numbers of a 30° and of a 60° angle;

Since a right triangle having a 60° angle is "half" of an equilateral triangle, we get the following diagram:

Therefore, for the trigonometric numbers, we get:
$\sin 30^{\circ}=\cos 60^{\circ}=\frac{x}{2 x}=\frac{1}{2}$; $\cos 30^{\circ}=\sin 60^{\circ}=\frac{\sqrt{3} x}{2 x}=\frac{\sqrt{3}}{2} ;$
$\tan 30^{\circ}=\cot 60^{\circ}=\frac{x}{\sqrt{3} x}=\frac{\sqrt{3}}{3} ;$
$\cot 30^{\circ}=\tan 60^{\circ}=\frac{\sqrt{3} x}{x}=\sqrt{3} ;$
$\sec 30^{\circ}=\csc 60^{\circ}=\frac{2 x}{\sqrt{3} x}=\frac{2 \sqrt{3}}{3}$;
$\csc 30^{\circ}=\sec 60^{\circ}=\frac{2 x}{x}=2 ;$

Table of Trigonometric Numbers of $30^{\circ}, 45^{\circ}$ and 60°

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
$30^{\circ} ; \frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$45^{\circ} ; \frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$60^{\circ} ; \frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Evaluating Expressions

- Find the exact value of the following expressions:

$$
\begin{aligned}
& \sin ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}=\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \\
& 2 \csc \frac{\pi}{4}-\sec \frac{\pi}{3} \cos \frac{\pi}{6}=2 \cdot \sqrt{2}-2 \cdot \frac{\sqrt{3}}{2}=2 \sqrt{2}-\sqrt{3}
\end{aligned}
$$

Reciprocal Identities

- Recall that we have

$$
\begin{aligned}
& \sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \tan \theta=\frac{\text { opp }}{\text { adj }} \\
& \csc \theta=\frac{\text { hyp }}{\text { opp }} \quad \sec \theta=\frac{\text { hyp }}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}
\end{aligned}
$$

These imply the following important reciprocal identities:

$\sin \theta=\frac{1}{\csc \theta}$	$\cos \theta=\frac{1}{\sec \theta}$	$\tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta}$	$\sec \theta=\frac{1}{\cos \theta}$	$\cot \theta=\frac{1}{\tan \theta}$

Application: Angle of Elevation

- From a point 115 feet from the base of a tree, the angle of elevation to the top of the tree is 64.3°; What is the height of the tree?

$$
\begin{aligned}
\tan 64.3^{\circ} & =\frac{\mathrm{opp}}{\mathrm{adj}}=\frac{h}{115} \\
\Rightarrow \quad h & =115 \cdot \tan 64.3^{\circ} \approx 238.95 \mathrm{ft} .
\end{aligned}
$$

Application: Angle of Depression

- Suppose the direct distance of a fighter jet from the landing deck of an aircraft carrier is 10 miles and the angle of depression is 33°; Find the horizontal ground distance from the jet to the car-
 rier;

$$
\begin{aligned}
& \cos 33^{\circ}=\frac{\operatorname{adj}}{\text { hyp }}=\frac{x}{10} \\
& \Rightarrow \quad x=10 \cdot \cos 33^{\circ} \approx 8.387 \text { miles; }
\end{aligned}
$$

Application: Angle of Elevation Revisited

- An observer notes that the angle of elevation from a point A to the top of the Eiffel tower is 70°; From another point 210 feet further from the base of the tower, the angle of elevation is 60°; Find the height of the Eiffel tower;

Moreover,

$$
\begin{aligned}
& \operatorname{swer} ; 0^{\circ}=\frac{h}{x} \quad \Rightarrow \quad x=\frac{h}{\tan 70^{\circ}}=h \cot 70^{\circ} ;
\end{aligned}
$$

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{h}{x+210}=\frac{h}{h \cot 70^{\circ}+210} \\
& \Rightarrow \quad h=\left(\tan 60^{\circ}\right)\left(h \cot 70^{\circ}+210\right) \\
& \Rightarrow \quad h=h \tan 60^{\circ} \cot 70^{\circ}+210 \tan 60^{\circ} \\
& \Rightarrow \quad h-h \tan 60^{\circ} \cot 70^{\circ}=210 \tan 60^{\circ} \\
& \Rightarrow \quad h=\frac{210 \tan 60^{\circ}}{1-\tan 60^{\circ} \cot 70^{\circ}} \approx 984.16 \text { feet; }
\end{aligned}
$$

Subsection 3

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

Suppose $P(x, y)$ is a point different from the origin on the terminal side of an angle θ in standard position, such that $r=\sqrt{x^{2}+y^{2}}$ is the distance from the origin to P;

The six trigonometric functions of θ are defined as follows:

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} ; & \cos \theta=\frac{x}{r} ; & \tan \theta=\frac{y}{x}, x \neq 0 ; \\
\csc \theta=\frac{r}{y}, y \neq 0 ; & \sec \theta=\frac{r}{x}, x \neq 0 ; & \cot \theta=\frac{x}{y}, y \neq 0 ;
\end{array}
$$

Evaluating Trigonometric Functions I

- Find the exact value of the six trigonometric functions of the angle θ in standard position whose terminal side contains the point $P(-3,-2)$;

We get $x=-3, y=-2$ and $r=\sqrt{(-3)^{2}+(-2)^{2}}=\sqrt{13}$; Thus,

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r}=\frac{-2}{\sqrt{13}}=-\frac{2 \sqrt{13}}{13} ; & \cos \theta=\frac{x}{r}=\frac{-3}{\sqrt{13}}=-\frac{3 \sqrt{13}}{13} \\
\tan \theta=\frac{y}{x}=\frac{-2}{-3}=\frac{2}{3} ; & \csc \theta=-\frac{\sqrt{13}}{2} ; \\
\sec \theta=-\frac{\sqrt{13}}{3} ; & \cot \theta=\frac{3}{2}
\end{array}
$$

Quadrantal Angles and Signs of Functions

Values of Trigonometric Functions of Quadrantal Angles:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0°	0	1	0	0	1	0
90°	1	0	0	1	0	0
180°	0	-1	0	0	-1	0
270°	-1	0	0	-1	0	0

Signs of Trigonometric Functions:

Sign of	Quadrant I	Quadrant II	Quadrant III	Quadrant IV
$\sin \theta$ and $\csc \theta$	+	+	-	-
$\cos \theta$ and $\sec \theta$	+	-	-	+
$\tan \theta$ and $\cot \theta$	+	-	+	-

Evaluating Trigonometric Functions II

- Given $\tan \theta=-\frac{7}{5}$ and $\sin \theta<0$, find $\cos \theta$ and $\csc \theta$;

Since $\tan \theta=-\frac{7}{5}$ and $\sin \theta<0$, we get $\frac{y}{x}=-\frac{7}{5}$ and $y<0$;
Therefore $y=-7$ and $x=5$;
These imply that $r=\sqrt{5^{2}+(-7)^{2}}=\sqrt{74}$;
Therefore

$$
\cos \theta=\frac{x}{r}=\frac{5}{\sqrt{74}}=\frac{5 \sqrt{74}}{74}
$$

and

$$
\csc \theta=\frac{r}{y}=-\frac{\sqrt{74}}{7}
$$

The Reference Angle

- Given $\angle \theta$ in standard position, its reference angle θ^{\prime} is the acute angle formed by the terminal side of $\angle \theta$ and the x-axis;
- Example: Find the measure of the reference angle θ^{\prime} for each of the following:
- $\theta=120^{\circ}$;

Since $120^{\circ}=180^{\circ}-60^{\circ}$, we have $\theta^{\prime}=60^{\circ}$;

- $\theta=345^{\circ}$;

Since $345^{\circ}=360^{\circ}-15^{\circ}$, we have $\theta^{\prime}=15^{\circ}$;

- $\theta=\frac{7 \pi}{4}$;

Since $\frac{7 \pi}{4}=2 \pi-\frac{\pi}{4}$, we have $\theta^{\prime}=\frac{\pi}{4}$;

- $\theta=\frac{13 \pi}{6}$;

Since $\frac{13 \pi}{6}=2 \pi+\frac{\pi}{6}$, we have $\theta^{\prime}=\frac{\pi}{6}$;

Using the Reference Angle

Reference Angle Theorem

To evaluate $\sin \theta$, determine $\sin \theta^{\prime}$; Then use either $\sin \theta^{\prime}$ or $-\sin \theta^{\prime}$, depending on which of the two has the correct sign.

- Example: Determine the exact value of
- $\sin 210^{\circ}$;

We have $\theta^{\prime}=30^{\circ}$ and 210° is in Quadrant III; Thus, $\sin 210^{\circ}=-\sin 30^{\circ}=-\frac{1}{2} ;$

- $\cos 405^{\circ}$;

We have $\theta^{\prime}=45^{\circ}$ and 405° is in Quadrant I; Thus,
$\cos 405^{\circ}=\cos 45^{\circ}=\frac{\sqrt{2}}{2} ;$

- $\tan \frac{5 \pi}{3}$;

We have $\theta^{\prime}=\frac{\pi}{3}$ and $\frac{5 \pi}{3}$ is in Quadrant IV; Thus,
$\tan \frac{5 \pi}{3}=-\tan \frac{\pi}{3}=-\sqrt{3} ;$

Subsection 4

Trigonometric Functions of Real Numbers

Wrapping Function

- Consider the unit circle, i.e., the circle of radius 1 centered at the origin;
- The wrapping function has domain all real numbers and maps a real number t to a point $W(t)=P(x, y)$ on the unit circle such that the length of the arc AP is $|t|$, where $A(1,0)$;
- Since $r=1$, we have $s=1 \cdot \theta$, i.e., the length s of the arc equals the measure θ of the central angle subtended by the arc!

- This allows one to associate an angle with any given real number t using the wrapping function and passing through the arc on the unit circle starting from A and having length $|t|$ (clockwise if $t<0$ and counterclockwise if $t>0$);

An Example of Evaluating the Wrapping Function

- Evaluate $W\left(\frac{2 \pi}{3}\right)$;

We have $\cos \frac{2 \pi}{3}=\frac{x}{r} \Rightarrow-\cos \frac{\pi}{3}=\frac{x}{1} \Rightarrow$ $x=-\frac{1}{2}$;
Similarly,

$$
\sin \frac{2 \pi}{3}=\frac{y}{r} \Rightarrow \sin \frac{\pi}{3}=\frac{y}{1} \Rightarrow y=\frac{\sqrt{3}}{2}
$$

Therefore, the point $W\left(\frac{2 \pi}{3}\right)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$;

Trigonometric Functions of Any Real Number

- Use the wrapping function on the unit circle to map a real number t,
- first to the arc AP of length $|t|$ (counterclockwise for $t>0$ and clockwise for $t<0$)
- then to the central angle of measure t subtended by the arc $\overparen{\mathrm{AP}}$;
- We define the trigonometric functions of the real number t as the trigonometric functions of the angle corresponding to t, which (because $r=1$) has measure t radians;

Trigonometric Functions of Real Numbers

Let t be a real number and $W(t)=P(x, y)$; Then, we define

$$
\begin{array}{lll}
\sin t=y, & \cos t=x, & \tan t=\frac{y}{x}, x \neq 0 \\
\csc t=\frac{1}{y}, y \neq 0, & \sec t=\frac{1}{x}, x \neq 0, & \cot t=\frac{x}{y}, y \neq 0
\end{array}
$$

Evaluating Trigonometric Functions

- Find the exact value of each function:
- $\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} ;$
- $\sin \left(-\frac{7 \pi}{6}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} ;$
- $\tan \left(-\frac{5 \pi}{4}\right)=-\tan \left(\frac{\pi}{4}\right)=-1$;
- $\sec \left(\frac{5 \pi}{3}\right)=\sec \left(\frac{\pi}{3}\right)=2$;

Application: The Millenium Ferris Wheel in London

The Millenium Wheel has a diameter of 450 feet and completes one revolution every 30 minutes; Suppose that the height h in feet above the Thames River of a person riding on the Wheel can be estimated by

$$
h(t)=255-225 \cos \left(\frac{\pi}{15} t\right)
$$

where t in minutes is time since person started the ride;

- How high is the person at the start of the ride?

$$
h(0)=255-225 \cos 0=255-225 \cdot 1=30 \text { feet; }
$$

- How high is the person after 18 minutes?

$$
h(18)=255-225 \cos \left(\frac{18 \pi}{15}\right)=255-225 \cos \left(\frac{6 \pi}{5}\right) \approx 437 \text { feet; }
$$

Domains and Ranges of Trigonometric Functions

- The domain and ranges of the trigonometric functions:

Function	Domain	Range
$y=\sin t$	\mathbb{R}	$\{y:-1 \leq y \leq 1\}$
$y=\cos t$	\mathbb{R}	$\{y:-1 \leq y \leq 1\}$
$y=\tan t$	$\left\{t: t \neq \frac{(2 k+1) \pi}{2}\right\}$	\mathbb{R}
$y=\csc t$	$\{t: t \neq k \pi\}$	$\{y: y \leq-1$ or $y \geq 1\}$
$y=\sec t$	$\left\{t: t \neq \frac{(2 k+1) \pi}{2}\right\}$	$\{y: y \leq-1$ or $y \geq 1\}$
$y=\cot t$	$\{t: t \neq k \pi\}$	\mathbb{R}

Even and Odd Trigonometric Functions

- The four trigonometric functions

$$
y=\sin t, \quad y=\csc t, \quad y=\tan t, \quad y=\cot t
$$

are all odd functions;

- The two trigonometric functions

$$
y=\cos t, \quad y=\sec t
$$

are both even functions;

- These statements imply the following even-odd identities:

$$
\begin{array}{lll}
\sin (-t)=-\sin t & \cos (-t)=\cos t & \tan (-t)=-\tan t \\
\csc (-t)=-\csc t & \sec (-t)=\sec t & \cot (-t)=-\cot t
\end{array}
$$

- Example: Is $f(x)=x-\tan x$ even, odd or neither?

$$
\begin{aligned}
& f(-x)=(-x)-\tan (-x)=-x-(-\tan x)= \\
& -x+\tan x=-(x-\tan x)=-f(x)
\end{aligned}
$$

Therefore, $f(x)$ is an odd function;

Periodicity

- A function f is periodic if there exists a positive constant p, such that

$$
f(t+p)=f(t)
$$

for all t in the domain of f; The smallest such positive p for which f is periodic is called the period of f;

- The functions

$$
y=\sin t, \quad y=\cos t, \quad y=\csc t, \quad y=\sec t
$$ are periodic with period 2π;

- The functions

$$
y=\tan t, \quad y=\cot t
$$ are periodic with period π;

- These statements imply the following periodic identities:

$$
\begin{array}{lll}
\sin (t+2 k \pi)=\sin t & \cos (t+2 k \pi)=\cos t & \tan (t+k \pi)=\tan t \\
\csc (t+2 k \pi)=\csc t & \sec (t+2 k \pi)=\sec t & \cot (t+k \pi)=\cot t
\end{array}
$$

Trigonometric Identities

Reciprocal Identities

$$
\sin t=\frac{1}{\csc t}, \quad \cos t=\frac{1}{\sec t}, \quad \tan t=\frac{1}{\cot t}
$$

Ratio Identities

$$
\tan t=\frac{\sin t}{\cos t} ; \quad \cot t=\frac{\cos t}{\sin t}
$$

Pythagorean Identities

$$
\cos ^{2} t+\sin ^{2} t=1, \quad 1+\tan ^{2} t=\sec ^{2} t, \quad 1+\cot ^{2} t=\csc ^{2} t
$$

Example I

- Use the unit circle and the definitions of trigonometric functions to show that $\sin (t+\pi)=-\sin t$;
If $W(t)=(x, y)$, then $W(t+\pi)=(-x,-y)$;

Therefore $\sin (t+\pi)=-y=-\sin t$;

Example II

- Write the expression $\frac{1}{\sin ^{2} t}+\frac{1}{\cos ^{2} t}$ as a single term;

$$
\begin{aligned}
\frac{1}{\sin ^{2} t}+\frac{1}{\cos ^{2} t} & =\frac{\cos ^{2} t}{\sin ^{2} t \cos ^{2} t}+\frac{\sin ^{2} t}{\sin ^{2} t \cos ^{2} t} \\
& =\frac{\cos ^{2} t+\sin ^{2} t}{\sin ^{2} t \cos ^{2} t} \\
& =\frac{1}{\sin ^{2} t \cos ^{2} t} \\
& =\frac{1}{\sin ^{2} t \cdot \frac{1}{\cos ^{2} t}} \\
& =\csc ^{2} t \sec ^{2} t
\end{aligned}
$$

Example III

- For $\frac{\pi}{2}<t<\pi$, write $\tan t$ in terms of only $\sin t$;

$$
\begin{aligned}
& \cos ^{2} t+\sin ^{2} t=1 \Rightarrow \cos ^{2} t=1-\sin ^{2} t \\
& \Rightarrow \quad \cos t= \pm \sqrt{1-\sin ^{2} t} \\
& \stackrel{\pi}{2}<t<\pi \\
& \Rightarrow \quad \cos t=-\sqrt{1-\sin ^{2} t}
\end{aligned}
$$

Therefore, we get

$$
\tan t=\frac{\sin t}{\cos t}=-\frac{\sin t}{\sqrt{1-\sin ^{2} t}}
$$

Subsection 5

Graphs of the Sine and Cosine Functions

Graph of $y=\sin x$

- We create a small table of values:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
$y=\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0

x	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$	2π
$y=\sin x$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0

- We plot the points and connect:

Basic Properties of $y=\sin x$

- Extending the previous graph by periodicity, we get

- This graph has the following basic properties:
- Domain: All real numbers;
- Range: $\{y:-1 \leq y \leq 1\}$;
- Period: 2π;
- Symmetry: With respect to the origin (Odd);
- x-Intercepts: $k \pi$;

Graph of $y=a \sin x$

- The amplitude of a graph with maximum value $y=M$ and minimum value $y=m$ is defined by $A=\frac{1}{2}(M-m)$;
- Example: $y=\sin x$ has $M=1$ and $m=-1$; Thus, it has amplitude $A=\frac{1}{2}(1-(-1))=1 ;$

Amplitude of $y=a \sin x$

The amplitude of $y=a \sin x$ is $|a|$.

- Example: Graph $y=-2 \sin x$;

To graph this function, we start from $y=\sin x$, obtain $y=2 \sin x$ by a vertical stretch by a factor of 2 and then obtain $y=-2 \sin x$ by flipping with respect to the x-axis;

Graph of $y=\sin b x$

Period of $y=\sin b x$

The period of $y=\sin b x$ is $\frac{2 \pi}{|b|}$.

- Example: Find the amplitude and periods of the following functions:

Function	$y=a \sin b x$	$y=3 \sin (-2 x)$	$y=-\sin \frac{x}{3}$	$y=-2 \sin \frac{3 x}{4}$
Amplitude	$\|a\|$	$\|3\|=3$	$\|-1\|=1$	$\|-2\|=2$
Period	$\frac{2 \pi}{\|b\|}$	$\frac{2 \pi}{2}=\pi$	$\frac{2 \pi}{1 / 3}=6 \pi$	$\frac{2 \pi}{3 / 4}=\frac{8 \pi}{3}$

- Example: Graph $y=3 \sin \pi x$;

To graph this function, we start from $y=\sin x$, obtain $y=\sin \pi x$ by a horizontal compression by a factor of π and then obtain $y=3 \sin \pi x$ by a vertical stretch by a factor of 3 ;

Graph of $y=a \sin b x$

- Example: Graph $y=-\frac{1}{2} \sin \frac{x}{3}$;

To graph this function, we start from $y=\sin x$, obtain $y=\sin \frac{x}{3}$ by a horizontal stretching by a factor of 3 , then obtain $y=\frac{1}{2} \sin \frac{1}{3}$ by a vertical compression by a factor of 2 and, finally, obtain $y=-\frac{1}{2} \sin \frac{x}{3}$ by a flipping with respect to the x-axis;

Graph of $y=\cos x$

- We create a small table of values:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
$y=\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1

x	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$	2π
$y=\cos x$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1

- We plot the points and connect:

Basic Properties of $y=\cos x$

- Extending the previous graph by periodicity, we get

- This graph has the following basic properties:
- Domain: All real numbers;
- Range: $\{y:-1 \leq y \leq 1\}$;
- Period: 2π;
- Symmetry: With respect to the y-axis (Even);
- x-Intercepts: $(2 k+1) \frac{\pi}{2}$;

Graph of $y=a \cos x$

- Recall that the amplitude of a graph is defined by $A=\frac{1}{2}(M-m)$;
- Example: $y=\cos x$ has $M=1$ and $m=-1$; Thus, it has amplitude

$$
A=\frac{1}{2}(1-(-1))=1
$$

Amplitude of $y=a \cos x$

The amplitude of $y=a \cos x$ is $|a|$.

- Example: Graph $y=-\frac{5}{2} \sin x$;

To graph this function, we start from $y=\cos x$, obtain $y=\frac{5}{2} \cos x$ by a vertical stretch by a factor of $\frac{5}{2}$ and then obtain $y=-\frac{5}{2} \cos x$ by flipping with respect to the x-axis;

Graph of $y=\cos b x$

Period of $y=\cos b x$

The period of $y=\cos b x$ is $\frac{2 \pi}{|b|}$.

- Example: Find the amplitude and periods of the following functions:

Function	$y=a \cos b x$	$y=2 \cos 3 x$	$y=-3 \cos \frac{2 x}{3}$
Amplitude	$\|a\|$	$\|2\|=2$	$\|-3\|=3$
Period	$\frac{2 \pi}{\|b\|}$	$\frac{2 \pi}{3}$	$\frac{2 \pi}{2 / 3}=3 \pi$

- Example: Graph $y=\frac{3}{2} \cos \frac{2 \pi}{3} x$;

To graph this function, we start from $y=\cos x$, obtain $y=\cos \frac{2 \pi}{3} x$ by a horizontal compression by a factor of $\frac{2 \pi}{3}$ and then obtain
by a vertical stretch by a factor of $\frac{3}{2}$;

Graph of $y=a \cos b x$

- Example: Graph $y=-2 \cos \frac{\pi x}{4}$;

To graph this function, we start from $y=\cos x$, obtain $y=\cos \frac{\pi x}{4}$ by a horizontal stretching by a factor of $\frac{4}{\pi}$, then obtain by a vertical stretching by a factor of 2 and, finally, obtain $y=-2 \cos \frac{\pi x}{4}$ by a flipping with respect to the x-axis;

Finding an Equation for a Graph I

- The graph on the right shows a single cycle of a graph of a sine or cosine function; Find an equation for the graph;

The graph has

- Amplitude $|a|=2$;
- Period $T=6 \Rightarrow \frac{2 \pi}{|b|}=6 \Rightarrow|b|=\frac{2 \pi}{6}=\frac{\pi}{3} \Rightarrow b= \pm \frac{\pi}{3}$;

Since at $x=0$, it has value $y=+2$, we get an equation

$$
y=a \cos b x=2 \cos \frac{\pi}{3} x
$$

Finding an Equation for a Graph II

- The graph on the right shows a single cycle of a graph of a sine or cosine function; Find an equation for the graph;

The graph has

- Amplitude $|a|=\frac{3}{2}$;
- Period $T=\frac{4 \pi}{3} \Rightarrow \frac{2 \pi}{|b|}=\frac{4 \pi}{3} \Rightarrow|b|=\frac{2 \pi}{4 \pi / 3}=\frac{3}{2} \Rightarrow b= \pm \frac{3}{2}$;

Since at $x=\frac{\pi}{3}$, it has value $y=-\frac{3}{2}$, we get an equation

$$
y=a \sin b x=-\frac{3}{2} \sin \frac{3}{2} x
$$

Subsection 6

Graphs of the Other Trigonometric Functions

Graph of $y=\tan x$

- We create a small table of values:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$y=\tan x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	4

- We plot the points, connect and use the odd property:

Basic Properties of $y=\tan x$

- Extending the previous graph by periodicity, we get

- This graph has the following basic properties:
- Domain: $\mathbb{R}-\left\{(2 k+1) \frac{\pi}{2}: k \in \mathbb{Z}\right\}$;
- Range: All reals;
- Period: π;
- Symmetry: With respect to the origin (Odd);
- x-Intercepts: $k \pi$;
- Vertical Asymptotes: $x=(2 k+1) \frac{\pi}{2}$;

Graph of $y=a \tan x$

- The graph of $y=a \tan x$ does not have an amplitude since it does not have a maximum or minimum value;
- It just represents either a vertical stretching or a vertical compression of the graph of $y= \pm \tan x$;
- Example: Graph $y=-\frac{1}{5} \tan x$; To graph this function, we start from $y=\tan x$, obtain $y=\frac{1}{5} \tan x$ by a vertical compression by a factor of 5 and then obtain $y=-\frac{1}{5} \tan x$ by flipping with respect to the x-axis;

Graph of $y=\tan b x$

Period of $y=\tan b x$

The period of $y=\tan b x$ is $\frac{\pi}{|b|}$.

- Example: Graph $y=2 \tan \pi x$;

To graph this function, we start from $y=\tan x$, obtain $y=\tan \pi x$ by a horizontal compression by a factor of π and then obtain by a vertical stretch by a factor of 2 ;

Graph of $y=a \tan b x$

- Example: Graph $y=-\frac{1}{3} \tan \frac{x}{2}$;

To graph this function, we start from $y=\tan x$, obtain $y=\tan \frac{x}{2}$ by a horizontal stretching by a factor of 2 , then obtain by a vertical compression by a factor of 3 and, finally, obtain $y=$ $-\frac{1}{3} \tan \frac{x}{2}$ by a flipping with respect to the x-axis;

Graph of $y=\cot x$

- We create a small table of values:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$y=\cot x$		$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

- We plot the points, connect and use the odd property:

Basic Properties of $y=\cot x$

- Extending the previous graph by periodicity, we get

- This graph has the following basic properties:
- Domain: $\mathbb{R}-\{k \pi: k \in \mathbb{Z}\}$;
- Range: All reals;
- Period: π;
- Symmetry: With respect to the origin (Odd);
- x-Intercepts: $(2 k+1) \frac{\pi}{2}$;
- Vertical Asymptotes: $x=k \pi$;

Graph of $y=a \cot b x$

Period of $y=a \cot b x$

The period of $y=a \cot b x$ is $\frac{\pi}{|b|}$.

- Example: Graph $y=2 \cot \frac{x}{3}$;

To graph this function, we start from $y=\cot x$, obtain $y=\cot \frac{x}{3}$ by a horizontal stretching by a factor of 3 and then obtain $y=2 \cot \frac{x}{3}$ by a vertical stretch by a factor of 2 ;

Graph of $y=\csc x$

- We create a small table of values:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
$y=\csc x$	2	$\sqrt{2}$	$\frac{2 \sqrt{3}}{3}$	1	$\frac{2 \sqrt{3}}{3}$	$\sqrt{2}$	2	0	

- We plot the points, connect and use the odd property:

Basic Properties of $y=\csc x$

- Extending the previous graph by periodicity, we get

- This graph has the following basic properties:
- Domain: $\mathbb{R}-\{k \pi: k \in \mathbb{Z}\}$;
- Range: $\{y: y \leq-1$ or $y \geq 1\}$;
- Period: 2π;
- Symmetry: With respect to the origin (Odd);
- x-Intercepts: None;
- Vertical Asymptotes: $x=k \pi$;

Graph of $y=a \csc b x$

Period of $y=a \csc b x$

The period of $y=a \csc b x$ is $\frac{2 \pi}{|b|}$.

- Example: Graph $y=\frac{1}{3} \csc \frac{\pi x}{2}$;

To graph this function, we start from $y=\csc x$, obtain $y=\csc \frac{\pi x}{2}$ by a horizontal compression by a factor of $\frac{\pi}{2}$ and then obtain $y=\frac{1}{3} \csc \frac{\pi x}{2}$ by
a vertical compression by a factor of 3;

Graph of $y=\sec x$

- We create a small table of values:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
$y=\sec x$	1	$\frac{2 \sqrt{3}}{3}$	$\sqrt{2}$	2	,	-2	$-\sqrt{2}$	$-\frac{2 \sqrt{3}}{3}$	-1

- We plot the points and connect:

Basic Properties of $y=\sec x$

- Extending the previous graph by symmetry and periodicity, we get

- This graph has the following basic properties:
- Domain: $\mathbb{R}-\left\{(2 k+1) \frac{\pi}{2}: k \in \mathbb{Z}\right\}$;
- Range: $\{y: y \leq-1$ or $y \geq 1\}$;
- Period: 2π;
- Symmetry: With respect to the x-axis (Even);
- x-Intercepts: None;
- Vertical Asymptotes: $x=(2 k+1) \frac{\pi}{2}$;

Graph of $y=a \sec b x$

Period of $y=a \sec b x$

The period of $y=a \sec b x$ is $\frac{2 \pi}{|b|}$.

- Example: Graph $y=-3 \sec \frac{x}{2}$;

To graph this function, we start from $y=\sec x$, obtain $y=\sec \frac{x}{2}$ by a horizontal stretching by a factor of 2, then obtain by a vertical stretching by a factor of 3 and, finally, $y=-3 \sec \frac{x}{2}$ by flipping with respect to the x-axis;

Subsection 7

Graphing Techniques

Amplitude, Period and Phase Shift of Sinusoidal Graphs

Graphs of $y=a \sin (b x+c)$ and $y=a \cos (b x+c)$

The graphs of $y=a \sin (b x+c)$ and $y=a \cos (b x+c)$ have

$$
\text { Amplitude : }|a|, \quad \text { Period }: \frac{2 \pi}{|b|}, \quad \text { Phase Shift : }-\frac{c}{b}
$$

- The graph $y=a \sin (b x+c)$ shifts the graph of $y=a \sin b x$ horizontally $-\frac{c}{b}$ units;
- The graph $y=a \cos (b x+c)$ shifts the graph of $y=a \cos b x$ horizontally $-\frac{c}{b}$ units;
- Example: What is the phase shift of $y=3 \sin \left(\frac{1}{2} x-\frac{\pi}{6}\right)$?

$$
\phi=-\frac{c}{b}=-\frac{-\pi / 6}{1 / 2}=\frac{\pi}{3}
$$

Using Amplitudes, Periods and Phase Shifts to Graph

- Find the amplitude, period and phase shift of $y=3 \cos \left(2 x+\frac{\pi}{3}\right)$ and use them to sketch the graph;

Amplitude: $|a|=3 ; \quad$ Period: $T=\frac{2 \pi}{|b|}=\frac{2 \pi}{2}=\pi ;$
Phase Shift: $\phi=-\frac{c}{b}=-\frac{\pi / 3}{2}=-\frac{\pi}{6}$;

Period and Phase Shift of Tangent and Cotangent

Graphs of $y=a \tan (b x+c)$ and $y=a \cot (b x+c)$

The graphs of $y=a \tan (b x+c)$ and $y=a \cot (b x+c)$ have

$$
\text { Period : } \frac{\pi}{|b|}, \quad \text { Phase Shift }:-\frac{c}{b}
$$

- The graph $y=a \tan (b x+c)$ shifts the graph of $y=a \tan b x$ horizontally $-\frac{c}{b}$ units;
- The graph $y=a \cot (b x+c)$ shifts the graph of $y=a \cot b x$ horizontally $-\frac{c}{b}$ units;
- Example: graph one period of $y=2 \cot (3 x-2)$; Since the period is $T=\frac{\pi}{|b|}=\frac{\pi}{3}$ and the phase shift is $\phi=-\frac{c}{b}=-\frac{-2}{3}=\frac{2}{3}$, we start the graph at $x=\frac{2}{3}$ and end it at $x=\frac{2}{3}+\frac{\pi}{3}=\frac{\pi+2}{3}$;

Using Amplitudes, Periods and Shifts to Graph I

- Graph $y=\frac{1}{2} \sin \left(x-\frac{\pi}{4}\right)-2$;

Amplitude: $|a|=\frac{1}{2} ; \quad$ Period: $T=\frac{2 \pi}{|b|}=\frac{2 \pi}{1}=2 \pi$;
Phase Shift: $\phi=-\frac{c}{b}=-\frac{-\pi / 4}{1}=\frac{\pi}{4} ; \quad$ Vertical Shift: $y_{0}=-2$;

Using Amplitudes, Periods and Shifts to Graph II

- Find the amplitude, period and phase shift of $y=-2 \cos \left(\pi x+\frac{\pi}{2}\right)+1$ and used them to sketch the graph;

$$
\text { Amplitude: }|a|=2 ; \quad \text { Period: } T=\frac{2 \pi}{|b|}=\frac{2 \pi}{\pi}=2
$$

Phase Shift: $\phi=-\frac{c}{b}=-\frac{\pi / 2}{\pi}=-\frac{1}{2} ; \quad$ Vertical Shift: $y_{0}=1$;

