College Trigonometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 131

George Voutsadakis (LSSU)

Trigonometric Functions

- Angles and Arcs
- Right Triangle Trigonometry
- Trigonometric Functions of Any Angle
- Trigonometric Functions of Real Numbers
- Graphs of the Sine and Cosine Functions
- Graphs of the Other Trigonometric Functions
- Graphing Techniques

Subsection 1

Angles and Arcs

Terminology on Angles

- The two parts into which a point *P* on a line separates the line are called **half-lines** or **rays**;
- The half-line formed by P that includes a point A on the line is denoted by PA; P is the endpoint of PA;

Definition of Angle

An **angle** is formed by rotating a given ray about its endpoint to some terminal position; The original ray is called the **initial side** of the angle and the second ray is the **terminal side**; The common endpoint is the **vertex** of the angle.

- Angles formed by a counterclockwise rotation are positive angles and those formed by a clockwise rotation are negative angles;
- Notation for angles:

 $\angle \alpha = \angle AOB; \ \angle \beta = \angle CPD; \ \angle \gamma = \angle FQE;$

Degree Measure

Degree Measure

An angle formed by rotating the initial side counterclockwise exactly once until it coincides with itself is defined to have a measure of 360 degrees, written 360°; Therefore, **one degree** is the measure of an angle formed by rotating a ray $\frac{1}{360}$ of a complete revolution and it is written 1°;

 Angles are classified according to their degree measure:

Standard Position, Complementary and Supplementary

- An angle superimposed in a Cartesian coordinate system is in standard position if its vertex is at the origin and its initial side is on the positive x-axis:
- Two angles are coterminal if they share the same terminal side when placed in standard position;
- Two positive angles are **complementary** if the sum of their measures is 90° and they are **supplementary** if the sum of their measures is 180°;

initial sid

120°

Coterminal Angles

Standard Position

Simple Examples

 Find, if possible the measure of the complement and the supplement of θ = 40°;

Comp
$$(\theta) = 90^{\circ} - 40^{\circ} = 50^{\circ};$$

Supp $(\theta) = 180^{\circ} - 40^{\circ} = 140^{\circ};$

- Find, if possible the measure of the complement and the supplement of $\theta = 125^{\circ}$;
 - θ does not have a complement since it is an angle with measure greater than 90°;
 - Supp $(\theta) = 180^{\circ} 125^{\circ} = 55^{\circ};$
- Are the two acute angles of any right triangle complementary angles? Yes! because their sum is 90°;

Quadrantal Angles

• An angle is a **quadrantal angle** if its terminal side in standard position lies on a coordinate axis;

For instance, the $90^\circ, 180^\circ$ and 270° angles are all quadrantal angles;

• Recall that two angles are coterminal if they share the same terminal side when placed in standard position;

Measures of Coterminal Angles

Given an angle $\angle \theta$ in standard position with measure x° , then the measures of the angles that are coterminal with $\angle \theta$ are given by $x^{\circ} + k \cdot 360^{\circ}$, where k is an integer.

An Example

- Assume that the following angles are in standard position; Determine the measure of the positive angle with measure less than 360° that is coterminal with the given angle and classify the angle by quadrant;
 - α = 550°;

We have $\alpha = 550^{\circ} = 360^{\circ} + 190^{\circ}$; Therefore, α is coterminal with the 190° angle and the terminal side lies in Quadrant III;

•
$$\beta = -255^{\circ};$$

We have $\beta = -255^{\circ} = -360^{\circ} + 105^{\circ}$; Therefore, β is coterminal with the 105° angle and the terminal side lies in Quadrant II;

•
$$\gamma = 1105^{\circ}$$
;

We have $\gamma = 1105^{\circ} = 3 \cdot 360^{\circ} + 25^{\circ}$; Therefore, γ is coterminal with the 25° angle and the terminal side lies in Quadrant I;

Decimal Degrees and DMS (Degree, Minute, Second)

- To represent a fractional part of a degree, there are two popular methods:
 - The **decimal degree method** uses a decimal number; For instance, 34.42° means 34° plus 42 hundredths of 1°;
 - The DMS (Degree, Minute, Second) method subdivides a degree into 60 minutes (1° = 60′) and each minute into 60 seconds (1′ = 60″);
- Example: Write 126°12′27″ as a decimal degree;

$$126^{\circ}12'27'' = (126 + \frac{12}{60} + \frac{27}{3600})^{\circ} = (126 + 0.2 + 0.0075)^{\circ} = 126.2075^{\circ};$$

Central Angles and the Radian

- Consider a circle of radius *r* and two radii *OA* and *OB*;
- The angle *θ* formed by *OA* and *OB* is called a **central angle**;
- The portion of the arc between A and B is an **arc** of the circle and is denoted by AB;
- The arc \overrightarrow{AB} is said to **subtend** the angle θ ;

Definition of a Radian

One **radian** is defined to be the measure of the central angle subtended by an arc of length r on a circle of radius r;

Radian Measure of an Angle

Definition of Radian Measure

Given an arc of length s on a circle of radius r, the measure of the central angle subtended by the arc is $\theta = \frac{s}{r}$ radians.

• Example: Suppose an arc has length 15 cm on a circle of radius 5 cm. What is the radian measure of the central angle subtended by the arc? $\theta = \frac{s}{r} = \frac{15}{5} = 3 \text{ radians};$

• Example: An arc of length 12 cm has radian measure $\frac{4}{3}$ radians; What is the radius of the corresponding circle?

$$\theta = \frac{s}{r} \Rightarrow r = \frac{s}{\theta} \Rightarrow r = \frac{12}{4/3} = 9 \text{ cm};$$

Conversion Between Radians and Degrees

Radian-Degree Conversions

- To convert from radians to degrees, multiply by $\frac{180^{\circ}}{\pi \text{ rads}}$;
- To convert from degrees to radians, multiply by $\frac{\pi \text{ rads}}{180^{\circ}}$;
- Example: Convert from degrees to radians:

•
$$60^{\circ} = 60^{\circ} \cdot \frac{\pi \text{ rads}}{180^{\circ}} = \frac{\pi}{3} \text{ rads};$$

• $315^{\circ} = 315^{\circ} \cdot \frac{\pi \text{ rads}}{180^{\circ}} = \frac{7\pi}{4} \text{ rads};$
• $-150^{\circ} = -150^{\circ} \cdot \frac{\pi \text{ rads}}{180^{\circ}} = -\frac{5\pi}{6} \text{ rads};$
• Example: Convert from radians to degrees:
• $\frac{3\pi}{4} \text{ rads} = \frac{3\pi}{4} \text{ rads} \cdot \frac{180^{\circ}}{\pi \text{ rads}} = 135^{\circ};$
• $1 \text{ rad} = 1 \text{ rad} \cdot \frac{180^{\circ}}{\pi \text{ rads}} = \frac{180^{\circ}}{\pi};$
• $-\frac{5\pi}{2} \text{ rads} = -\frac{5\pi}{2} \text{ rads} \cdot \frac{180^{\circ}}{\pi \text{ rads}} = -450^{\circ};$

Arc and Arc Length

The length s of the arc subtending a central angle of nonnegative radian measure θ of a circle of radius r is given by

$$s = r\theta;$$

• Example: What is the length of the arc that subtends a central angle of 120° in a circle of radius 10 cm? First, convert degrees to radians:

$$120^{\circ} = 120^{\circ} \cdot \frac{\pi \text{ rads}}{180^{\circ}} = \frac{2\pi}{3} \text{ rads};$$

Then, use the formula:

$$s = r\theta = 10 \text{ cm} \cdot \frac{2\pi}{3} \text{ rad} = \frac{20\pi}{3} \text{ cm};$$

A More Challenging Application

A pulley with a radius of 10 inches uses a belt to drive a pulley with a radius of 4 inches; Find the angle through which the smaller pulley turns as the 10-inch pulley makes one full revolution; State answer in both radians and degrees;

For the large pulley, through one revolution we obtain $s_1 = r_1\theta_1 = 10$ in $\cdot 2\pi$ rads $= 20\pi$ in; During that revolution, since the two pulleys are connected through the belt, we get $s_2 = s_1$; Therefore, $s_1 = r_2\theta_2 \Rightarrow \theta_2 = \frac{s_1}{r_2} = \frac{20\pi}{4} = 5\pi$ rads; In degrees 5π rads $= 5\pi$ rads $\cdot \frac{180^\circ}{\pi \text{ rads}} = 900^\circ$;

Linear and Angular Speed and Their Relation

Definition of Linear and Angular Speed

Suppose that a point moves on a circular path of radius r at a constant rate of θ radians per unit of time t; If s is the distance that the point travels, then $s = r\theta$; The **linear speed** of the point is $v = \frac{s}{t}$; The **angular speed** of the point is $\omega = \frac{\theta}{t}$;

- To reveal the relation between the linear and the angular speeds, note that $v = \frac{s}{t} = \frac{r\theta}{t} = r\frac{\theta}{t} = r\omega;$
- Example: A hard disk rotates at 7200 revolutions per minute; What is its angular speed in radians per second?

7200 rev/min = 7200
$$\frac{\text{rev}}{\text{min}} \cdot \frac{2\pi \text{ rad}}{1 \text{ rev}} \cdot \frac{1 \text{ min}}{60 \text{ sec}} = 240\pi \text{ rad/sec};$$

Another Example

A windmill has blades that are 12 feet in length; If it is rotating at 3 revolutions per second, what is the linear speed in feet per second of the tips of the blades;

The angular speed of the point is:

$$\omega = 3\frac{\text{rev}}{\text{sec}} \cdot 2\pi \frac{\text{rad}}{\text{rev}} = 6\pi \frac{\text{rad}}{\text{sec}}.$$

Thus, the linear speed is

$$v = r\omega = 12 \text{ ft} \cdot 6\pi \frac{\text{rad}}{\text{sec}} = 72\pi \text{ ft/sec};$$

Subsection 2

Right Triangle Trigonometry

Definitions of Trigonometric Functions

Consider an acute angle θ of a right triangle; We refer to the vertical side **opposite** and the vertical side **adjacent** to the angle θ;

Definition of Trigonometric Functions of θ

The values of the trigonometric functions of θ are defined as follows:

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} \qquad \qquad \cos \theta = \frac{\text{adj}}{\text{hyp}}$$
$$\tan \theta = \frac{\text{opp}}{\text{adj}} \qquad \qquad \cot \theta = \frac{\text{adj}}{\text{opp}}$$
$$\sec \theta = \frac{\text{hyp}}{\text{adj}} \qquad \qquad \csc \theta = \frac{\text{hyp}}{\text{opp}}$$

Computing Trig Functions

 Find the values of the trig functions of the angle θ of the triangle given in the figure

First, compute the length c of the hypothenuse using the Pythagorean Theorem:

$$c^{2} = a^{2} + b^{2} = 3^{2} + 4^{2} = 25 \Rightarrow c = 5;$$

Now set up the trig functions of θ :

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{3}{5}; \quad \cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{4}{5}; \quad \tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{3}{4};$$
$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{4}{3}; \quad \sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{5}{4}; \quad \csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{5}{3};$$

A More Challenging Example

• Given that θ is an acute angle and $\cos \theta = \frac{5}{8}$, compute $\tan \theta$;

Since
$$\cos \theta = \frac{\operatorname{adj}}{\operatorname{hyp}} = \frac{5}{8}$$
, we get the following diagram:

Now, compute the length *a* of the opposite side to θ using the Pythagorean Theorem:

$$a^2 = c^2 - b^2 = 8^2 - 5^2 = 64 - 25 = 39; \Rightarrow a = \sqrt{39};$$

Therefore, we obtain

$$\tan \theta = \frac{\mathsf{opp}}{\mathsf{adj}} = \frac{\sqrt{39}}{5};$$

Trigonometric Numbers of $\theta = 45^{\circ}$

• We compute the trigonometric numbers of a 45° angle;

Since a right triangle having a 45° angle is isosceles, we get the following diagram:

Therefore, for the trigonometric numbers, we get:

$$\sin 45^{\circ} = \frac{\operatorname{opp}}{\operatorname{hyp}} = \frac{x}{\sqrt{2}x} = \frac{\sqrt{2}}{2}; \quad \cos 45^{\circ} = \frac{\operatorname{adj}}{\operatorname{hyp}} = \frac{x}{\sqrt{2}x} = \frac{\sqrt{2}}{2};$$
$$\tan 45^{\circ} = \frac{\operatorname{opp}}{\operatorname{adj}} = \frac{x}{x} = 1; \quad \cot 45^{\circ} = \frac{\operatorname{adj}}{\operatorname{opp}} = \frac{x}{x} = 1;$$
$$\sec 45^{\circ} = \frac{\operatorname{hyp}}{\operatorname{adj}} = \frac{\sqrt{2}x}{x} = \sqrt{2}; \quad \csc 45^{\circ} = \frac{\operatorname{hyp}}{\operatorname{opp}} = \frac{\sqrt{2}x}{x} = \sqrt{2};$$

Trigonometric Numbers of $\theta = 30^{\circ}$ and $\theta = 60^{\circ}$

• We compute the trigonometric numbers of a 30° and of a 60° angle;

Since a right triangle having a 60° angle is "half" of an equilateral triangle, we get the following diagram:

Therefore, for the trigonometric numbers, we get:

$$\sin 30^{\circ} = \cos 60^{\circ} = \frac{x}{2x} = \frac{1}{2}; \qquad \cos 30^{\circ} = \sin 60^{\circ} = \frac{\sqrt{3}x}{2x} = \frac{\sqrt{3}}{2};$$
$$\tan 30^{\circ} = \cot 60^{\circ} = \frac{x}{\sqrt{3}x} = \frac{\sqrt{3}}{3}; \qquad \cot 30^{\circ} = \tan 60^{\circ} = \frac{\sqrt{3}x}{x} = \sqrt{3};$$
$$\sec 30^{\circ} = \csc 60^{\circ} = \frac{2x}{\sqrt{3}x} = \frac{2\sqrt{3}}{3}; \qquad \csc 30^{\circ} = \sec 60^{\circ} = \frac{2x}{x} = 2;$$

Table of Trigonometric Numbers of 30°, 45° and 60°

θ	$\sin heta$	$\cos heta$	an heta	$\csc \theta$	$\sec heta$	$\cot \theta$
30°;	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
45°;	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$60^{\circ}; \frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Evaluating Expressions

• Find the exact value of the following expressions:

•
$$\sin^2 45^\circ + \cos^2 60^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4};$$

• $2\csc\frac{\pi}{4} - \sec\frac{\pi}{3}\cos\frac{\pi}{6} = 2\cdot\sqrt{2} - 2\cdot\frac{\sqrt{3}}{2} = 2\sqrt{2} - \sqrt{3};$

Reciprocal Identities

Recall that we have

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} \quad \cos \theta = \frac{\text{adj}}{\text{hyp}} \quad \tan \theta = \frac{\text{opp}}{\text{adj}}$$
$$\csc \theta = \frac{\text{hyp}}{\text{opp}} \quad \sec \theta = \frac{\text{hyp}}{\text{adj}} \quad \cot \theta = \frac{\text{adj}}{\text{opp}}$$

These imply the following important reciprocal identities:

$$\sin \theta = \frac{1}{\csc \theta} \quad \cos \theta = \frac{1}{\sec \theta} \quad \tan \theta = \frac{1}{\cot \theta}$$
$$\csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$$

Application: Angle of Elevation

• From a point 115 feet from the base of a tree, the angle of elevation to the top of the tree is 64.3°; What is the height of the tree?

$$\tan 64.3^{\circ} = \frac{\text{opp}}{\text{adj}} = \frac{h}{115}$$
$$\Rightarrow \quad h = 115 \cdot \tan 64.3^{\circ} \approx 238.95 \text{ ft}$$

Application: Angle of Depression

 Suppose the direct distance of a fighter jet from the landing deck of an aircraft carrier is 10 miles and the angle of depression is 33°; Find the horizontal ground distance from the jet to the carrier;

$$\cos 33^{\circ} = \frac{\text{adj}}{\text{hyp}} = \frac{x}{10}$$
$$\Rightarrow \quad x = 10 \cdot \cos 33^{\circ} \approx 8.387 \text{ miles};$$

Application: Angle of Elevation Revisited

An observer notes that the angle of elevation from a point A to the top of the Eiffel tower is 70°; From another point 210 feet further from the base of the tower, the angle of elevation is 60°; Find the height of the Eiffel tower: tan $70^\circ = \frac{h}{x} \Rightarrow x = \frac{h^{20}}{\tan 70^\circ}$ $= h \cot 70^{\circ};$ Moreover, $\tan 60^\circ = \frac{h}{x+210} = \frac{h}{h \cot 70^\circ + 210}$ \Rightarrow h = (tan 60°)(h cot 70° + 210) \Rightarrow $h = h \tan 60^{\circ} \cot 70^{\circ} + 210 \tan 60^{\circ}$ \Rightarrow $h-h \tan 60^\circ \cot 70^\circ = 210 \tan 60^\circ$ $\Rightarrow h = \frac{210 \tan 60^{\circ}}{1 - \tan 60^{\circ} \cot 70^{\circ}} \approx 984.16 \text{ feet;}$

Subsection 3

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

Suppose P(x, y) is a point different from the origin on the terminal side of an angle θ in standard position, such that $r = \sqrt{x^2 + y^2}$ is the distance from the origin to P;

The six trigonometric functions of θ are defined as follows:

$$\sin \theta = \frac{y}{r}; \qquad \cos \theta = \frac{x}{r}; \qquad \tan \theta = \frac{y}{x}, x \neq 0;$$
$$\csc \theta = \frac{r}{y}, y \neq 0; \qquad \sec \theta = \frac{r}{x}, x \neq 0; \qquad \cot \theta = \frac{x}{y}, y \neq 0;$$

Evaluating Trigonometric Functions I

Find the exact value of the six trigonometric functions of the angle θ in standard position whose terminal side contains the point P(-3, -2);

We get
$$x = -3$$
, $y = -2$ and $r = \sqrt{(-3)^2 + (-2)^2} = \sqrt{13}$; Thus,
 $\sin \theta = \frac{y}{r} = \frac{-2}{\sqrt{13}} = -\frac{2\sqrt{13}}{13}$; $\cos \theta = \frac{x}{r} = \frac{-3}{\sqrt{13}} = -\frac{3\sqrt{13}}{13}$;
 $\tan \theta = \frac{y}{x} = \frac{-2}{-3} = \frac{2}{3}$; $\csc \theta = -\frac{\sqrt{13}}{2}$;
 $\sec \theta = -\frac{\sqrt{13}}{3}$; $\cot \theta = \frac{3}{2}$;

Quadrantal Angles and Signs of Functions

Values of Trigonometric Functions of Quadrantal Angles:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc\theta$	$\sec\theta$	$\cot \theta$
0°	0	1	0	X 60	1	¥6
90°	1	0	X 🔞	1	®¥(0
180°	0	- 1	0	X 60	- 1	¥6
270°	- 1	0	Xe	- 1	X	0

Signs of Trigonometric Functions:

Sign of	Quadrant I	Quadrant II	Quadrant III	Quadrant IV
$\sin \theta$ and $\csc \theta$	+	+	—	—
$\cos \theta$ and $\sec \theta$	+	—	—	+
$\tan \theta$ and $\cot \theta$	+	_	+	—

Evaluating Trigonometric Functions II

• Given
$$\tan \theta = -\frac{7}{5}$$
 and $\sin \theta < 0$, find $\cos \theta$ and $\csc \theta$;
Since $\tan \theta = -\frac{7}{5}$ and $\sin \theta < 0$, we get $\frac{y}{x} = -\frac{7}{5}$ and $y < 0$;
Therefore $y = -7$ and $x = 5$;
These imply that $r = \sqrt{5^2 + (-7)^2} = \sqrt{74}$;
Therefore

$$\cos \theta = \frac{x}{r} = \frac{5}{\sqrt{74}} = \frac{5\sqrt{74}}{74}$$

and

$$\csc\theta=\frac{r}{y}=-\frac{\sqrt{74}}{7};$$

The Reference Angle

- Given ∠θ in standard position, its reference angle θ' is the acute angle formed by the terminal side of ∠θ and the x-axis;
- Example: Find the measure of the reference angle θ' for each of the following:
 - $\theta = 120^{\circ}$; Since $120^{\circ} = 180^{\circ} - 60^{\circ}$, we have $\theta' = 60^{\circ}$; • $\theta = 345^{\circ}$; Since $345^{\circ} = 360^{\circ} - 15^{\circ}$, we have $\theta' = 15^{\circ}$; • $\theta = \frac{7\pi}{4}$; Since $\frac{7\pi}{4} = 2\pi - \frac{\pi}{4}$, we have $\theta' = \frac{\pi}{4}$; • $\theta = \frac{13\pi}{6}$; Since $\frac{13\pi}{6} = 2\pi + \frac{\pi}{6}$, we have $\theta' = \frac{\pi}{6}$;

Using the Reference Angle

Reference Angle Theorem

To evaluate $\sin \theta$, determine $\sin \theta'$; Then use either $\sin \theta'$ or $-\sin \theta'$, depending on which of the two has the correct sign.

- Example: Determine the exact value of
 - sin 210°: We have $\theta' = 30^{\circ}$ and 210° is in Quadrant III; Thus, $\sin 210^\circ = -\sin 30^\circ = -\frac{1}{2};$ • cos 405°; We have $\theta' = 45^{\circ}$ and 405° is in Quadrant I: Thus, $\cos 405^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2};$ • $\tan \frac{5\pi}{3}$; We have $\theta' = \frac{\pi}{3}$ and $\frac{5\pi}{3}$ is in Quadrant IV; Thus, $\tan \frac{5\pi}{3} = -\tan \frac{\pi}{3} = -\sqrt{3};$
Subsection 4

Trigonometric Functions of Real Numbers

Wrapping Function

- Consider the **unit circle**, i.e., the circle of radius 1 centered at the origin;
- The wrapping function has domain all real numbers and maps a real number t to a point W(t) = P(x, y) on the unit circle such that the length of the arc AP is |t|, where A(1,0);
- Since r = 1, we have s = 1 · θ, i.e., the length s of the arc equals the measure θ of the central angle subtended by the arc!

An Example of Evaluating the Wrapping Function

• Evaluate
$$W(\frac{2\pi}{3})$$
;
We have $\cos \frac{2\pi}{3} = \frac{x}{r} \Rightarrow -\cos \frac{\pi}{3} = \frac{x}{1} \Rightarrow$
 $x = -\frac{1}{2}$;
Similarly,
 $\sin \frac{2\pi}{3} = \frac{y}{r} \Rightarrow \sin \frac{\pi}{3} = \frac{y}{1} \Rightarrow y = \frac{\sqrt{3}}{2}$;
Therefore, the point $W(\frac{2\pi}{3}) = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$;

Α

 $\theta = 2\pi/3$

Trigonometric Functions of Any Real Number

- Use the wrapping function on the unit circle to map a real number t,
 - first to the arc AP of length |t| (counterclockwise for t > 0 and clockwise for t < 0)
 - then to the central angle of measure t subtended by the arc AP;
- We define the trigonometric functions of the real number t as the trigonometric functions of the angle corresponding to t, which (because r = 1) has measure t radians;

Trigonometric Functions of Real Numbers

Let t be a real number and W(t) = P(x, y); Then, we define

$$\sin t = y,$$
 $\cos t = x,$ $\tan t = \frac{y}{x}, x \neq 0,$ $\csc t = \frac{1}{y}, y \neq 0,$ $\sec t = \frac{1}{x}, x \neq 0,$ $\cot t = \frac{x}{y}, y \neq 0;$

Evaluating Trigonometric Functions

• Find the exact value of each function:

•
$$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2};$$

• $\sin \left(-\frac{7\pi}{6}\right) = \sin \left(\frac{\pi}{6}\right) = \frac{1}{2};$
• $\tan \left(-\frac{5\pi}{4}\right) = -\tan \left(\frac{\pi}{4}\right) = -1;$
• $\sec \left(\frac{5\pi}{3}\right) = \sec \left(\frac{\pi}{3}\right) = 2;$

Application: The Millenium Ferris Wheel in London

The Millenium Wheel has a diameter of 450 feet and completes one revolution every 30 minutes; Suppose that the height h in feet above the Thames River of a person riding on the Wheel can be estimated by

$$h(t) = 255 - 225 \cos\left(\frac{\pi}{15}t\right),$$

where *t* in minutes is time since person started the ride;

• How high is the person at the start of the ride?

$$h(0) = 255 - 225 \cos 0 = 255 - 225 \cdot 1 = 30$$
 feet;

• How high is the person after 18 minutes?

$$h(18) = 255 - 225 \cos\left(\frac{18\pi}{15}\right) = 255 - 225 \cos\left(\frac{6\pi}{5}\right) \approx 437$$
 feet;

Domains and Ranges of Trigonometric Functions

• The domain and ranges of the trigonometric functions:

Function	Domain	Range
$y = \sin t$	\mathbb{R}	$\{y: -1 \le y \le 1\}$
$y = \cos t$	\mathbb{R}	$\{y: -1 \le y \le 1\}$
y = tan t	$\{t:t\neq\frac{(2k+1)\pi}{2}\}$	R
$y = \csc t$	$\{t:t eq k\pi\}$	$\{y: y \leq -1 \text{ or } y \geq 1\}$
$y = \sec t$	$\{t:t\neq\frac{(2k+1)\pi}{2}\}$	$\{y: y \le -1 \text{ or } y \ge 1\}$
$y = \cot t$	$\{t:t \neq k\pi\}$	\mathbb{R}

Even and Odd Trigonometric Functions

• The four trigonometric functions

 $y = \sin t$, $y = \csc t$, $y = \tan t$, $y = \cot t$ are all odd functions;

• The two trigonometric functions

$$y = \cos t$$
, $y = \sec t$

are both even functions;

• These statements imply the following even-odd identities:

$$\sin(-t) = -\sin t \quad \cos(-t) = \cos t \quad \tan(-t) = -\tan t$$
$$\csc(-t) = -\csc t \quad \sec(-t) = \sec t \quad \cot(-t) = -\cot t$$

• Example: Is $f(x) = x - \tan x$ even, odd or neither?

$$f(-x) = (-x) - \tan(-x) = -x - (-\tan x) = -x + \tan x = -(x - \tan x) = -f(x);$$

Therefore, f(x) is an odd function;

Periodicity

• A function f is **periodic** if there exists a positive constant p, such that f(t + p) = f(t)

for all t in the domain of f; The smallest such positive p for which f is periodic is called the **period** of f;

The functions

 $y = \sin t$, $y = \cos t$, $y = \csc t$, $y = \sec t$

are periodic with period 2π ;

The functions

$$y = \tan t, \quad y = \cot t$$

are periodic with period π ;

• These statements imply the following periodic identities:

$$\sin(t + 2k\pi) = \sin t \quad \cos(t + 2k\pi) = \cos t \quad \tan(t + k\pi) = \tan t$$
$$\csc(t + 2k\pi) = \csc t \quad \sec(t + 2k\pi) = \sec t \quad \cot(t + k\pi) = \cot t$$

Trigonometric Identities

Reciprocal Identities

$$\sin t = \frac{1}{\csc t}, \quad \cos t = \frac{1}{\sec t}, \quad \tan t = \frac{1}{\cot t};$$

Ratio Identities

$$\tan t = \frac{\sin t}{\cos t}; \qquad \cot t = \frac{\cos t}{\sin t};$$

Pythagorean Identities

$$\cos^2 t + \sin^2 t = 1$$
, $1 + \tan^2 t = \sec^2 t$, $1 + \cot^2 t = \csc^2 t$

Example I

 Use the unit circle and the definitions of trigonometric functions to show that sin (t + π) = - sin t;

If W(t) = (x, y), then $W(t + \pi) = (-x, -y)$;

Therefore $\sin(t + \pi) = -y = -\sin t$;

Example II

Write the expression
$$\frac{1}{\sin^2 t} + \frac{1}{\cos^2 t}$$
 as a single term;

$$\frac{1}{\sin^2 t} + \frac{1}{\cos^2 t} = \frac{\cos^2 t}{\sin^2 t \cos^2 t} + \frac{\sin^2 t}{\sin^2 t \cos^2 t}$$

$$= \frac{\cos^2 t + \sin^2 t}{\sin^2 t \cos^2 t}$$

$$= \frac{1}{\sin^2 t \cos^2 t}$$

$$= \frac{1}{\sin^2 t} \cdot \frac{1}{\cos^2 t}$$

$$= \csc^2 t \sec^2 t;$$

Example III

• For
$$\frac{\pi}{2} < t < \pi$$
, write $\tan t$ in terms of only $\sin t$;
 $\cos^2 t + \sin^2 t = 1 \implies \cos^2 t = 1 - \sin^2 t$
 $\implies \cos t = \pm \sqrt{1 - \sin^2 t}$
 $\stackrel{\frac{\pi}{2} < t < \pi}{\implies} \cos t = -\sqrt{1 - \sin^2 t}$;

Therefore, we get

$$\tan t = \frac{\sin t}{\cos t} = -\frac{\sin t}{\sqrt{1-\sin^2 t}};$$

Subsection 5

Graphs of the Sine and Cosine Functions

Graph of $y = \sin x$

• We create a small table of values:

X	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π
$y = \sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0

X	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$y = \sin x$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0

• We plot the points and connect:

Basic Properties of $y = \sin x$

• Extending the previous graph by periodicity, we get

• This graph has the following basic properties:

- Domain: All real numbers;
- **Range**: $\{y : -1 \le y \le 1\};$
- Period: 2π;
- Symmetry: With respect to the origin (Odd);
- *x*-Intercepts: $k\pi$;

Graph of $y = a \sin x$

- The **amplitude** of a graph with maximum value y = M and minimum value y = m is defined by $A = \frac{1}{2}(M m)$;
- Example: $y = \sin x$ has M = 1 and m = -1; Thus, it has amplitude $A = \frac{1}{2}(1 (-1)) = 1$;

Amplitude of $y = a \sin x$

The amplitude of $y = a \sin x$ is |a|.

• Example: Graph $y = -2\sin x$;

To graph this function, we start from $y = \sin x$, obtain $y = 2\sin x$ by a vertical stretch by a factor of 2 and then obtain $y = -2\sin x$ by flipping with respect to the *x*-axis;

Graph of $y = \sin bx$

Period of $y = \sin bx$

The period of $y = \sin bx$ is $\frac{2\pi}{|b|}$.

• Example: Find the amplitude and periods of the following functions:

Function	$y = a \sin bx$	$y=3\sin\left(-2x\right)$	$y = -\sin\frac{x}{3}$	$y = -2\sin\frac{3x}{4}$
Amplitude	a	3 = 3	-1 = 1	-2 = 2
Period	$\frac{2\pi}{ b }$	$\frac{2\pi}{2} = \pi$	$\frac{2\pi}{1/3} = 6\pi$	$\frac{2\pi}{3/4} = \frac{8\pi}{3}$

• Example: Graph $y = 3 \sin \pi x$;

To graph this function, we start from $y = \sin x$, obtain $y = \sin \pi x$ by a horizontal compression by a factor of π and then obtain $y = 3 \sin \pi x$ by a vertical stretch by a factor of 3;

Graph of $y = a \sin bx$

• Example: Graph $y = -\frac{1}{2}\sin\frac{x}{3}$;

To graph this function, we start from $y = \sin x$, obtain $y = \sin \frac{x}{3}$ by a horizontal stretching by a factor of 3, then obtain $y = \frac{1}{2} \sin \frac{x}{3}$ by a vertical compression by a factor of 2 and, finally, obtain $y = -\frac{1}{2} \sin \frac{x}{3}$ by a flipping with respect to the x-axis;

Graph of $y = \cos x$

• We create a small table of values:

X	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π
$y = \cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1

X	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$y = \cos x$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1

• We plot the points and connect:

Basic Properties of $y = \cos x$

• Extending the previous graph by periodicity, we get

• This graph has the following basic properties:

- Domain: All real numbers;
- **Range**: $\{y : -1 \le y \le 1\};$
- **Period**: 2*π*;
- Symmetry: With respect to the y-axis (Even);
- *x*-Intercepts: $(2k+1)\frac{\pi}{2}$;

Graph of $y = a \cos x$

- Recall that the *amplitude* of a graph is defined by $A = \frac{1}{2}(M m)$;
- Example: $y = \cos x$ has M = 1 and m = -1; Thus, it has amplitude $A = \frac{1}{2}(1 (-1)) = 1$;

Amplitude of $y = a \cos x$

The amplitude of $y = a \cos x$ is |a|.

• Example: Graph $y = -\frac{5}{2} \sin x$; To graph this function, we start from $y = \cos x$, obtain $y = \frac{5}{2} \cos x$ by a vertical stretch by a factor of $\frac{5}{2}$ and then obtain $y = -\frac{5}{2} \cos x$ by flipping with respect to the x-axis;

Graph of $y = \cos bx$

Period of $y = \cos bx$

The period of $y = \cos bx$ is $\frac{2\pi}{|b|}$.

• Example: Find the amplitude and periods of the following functions:

Function	$y = a \cos bx$	$y = 2\cos 3x$	$y = -3\cos\frac{2x}{3}$
Amplitude	a	2 = 2	-3 = 3
Period	$\frac{2\pi}{ b }$	$\frac{2\pi}{3}$	$\frac{2\pi}{2/3} = 3\pi$

• Example: Graph $y = \frac{3}{2}\cos\frac{2\pi}{3}x$; To graph this function, we start from $y = \cos x$, obtain $y = \cos\frac{2\pi}{3}x$ by a horizontal compression by a factor of $\frac{2\pi}{3}$ and then obtain $y = \frac{3}{2}\cos\frac{2\pi}{3}x$ by a vertical stretch by a factor of $\frac{3}{2}$;

Graph of $y = a \cos bx$

• Example: Graph
$$y = -2\cos\frac{\pi x}{4}$$
;

To graph this function, we start from $y = \cos x$, obtain $y = \cos \frac{\pi x}{4}$ by a horizontal stretching by a factor of $\frac{4}{\pi}$, then obtain $y = 2\cos \frac{\pi x}{4}$ by a vertical stretching by a factor of 2 and, finally, obtain $y = -2\cos \frac{\pi x}{4}$ by a flipping with respect to the x-axis;

Finding an Equation for a Graph I

 The graph on the right shows a single cycle of a graph of a sine or cosine function; Find an equation for the graph;

The graph has

• Amplitude |a| = 2; • Period $T = 6 \Rightarrow \frac{2\pi}{|b|} = 6 \Rightarrow |b| = \frac{2\pi}{6} = \frac{\pi}{3} \Rightarrow b = \pm \frac{\pi}{3}$;

Since at x = 0, it has value y = +2, we get an equation

$$y = a\cos bx = 2\cos\frac{\pi}{3}x;$$

Finding an Equation for a Graph II

 The graph on the right shows a single cycle of a graph of a sine or cosine function; Find an equation for the graph;

The graph has

• Amplitude
$$|a| = \frac{3}{2}$$
;
• Period $T = \frac{4\pi}{3} \Rightarrow \frac{2\pi}{|b|} = \frac{4\pi}{3} \Rightarrow |b| = \frac{2\pi}{4\pi/3} = \frac{3}{2} \Rightarrow b = \pm \frac{3}{2}$;
Since at $x = \frac{\pi}{3}$, it has value $y = -\frac{3}{2}$, we get an equation
 $y = a \sin bx = -\frac{3}{2} \sin \frac{3}{2}x$;

Subsection 6

Graphs of the Other Trigonometric Functions

Graph of $y = \tan x$

• We create a small table of values:

Х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$y = \tan x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	X 🔞

• We plot the points, connect and use the odd property:

Basic Properties of $y = \tan x$

• Extending the previous graph by periodicity, we get

- This graph has the following basic properties:
 - **Domain**: $\mathbb{R} \{(2k+1)\frac{\pi}{2} : k \in \mathbb{Z}\};$
 - Range: All reals;
 - Period: π;
 - Symmetry: With respect to the origin (Odd);
 - *x*-Intercepts: $k\pi$;
 - Vertical Asymptotes: $x = (2k+1)\frac{\pi}{2}$;

Graph of $y = a \tan x$

- The graph of $y = a \tan x$ does not have an amplitude since it does not have a maximum or minimum value;
- It just represents either a vertical stretching or a vertical compression of the graph of y = ± tan x;

• Example: Graph
$$y = -\frac{1}{5} \tan x$$
;
To graph this function, we start from $y = \tan x$, obtain $y = \frac{1}{5} \tan x$ by a vertical compression by a factor of 5 and then obtain $y = -\frac{1}{5} \tan x$ by flipping with respect to the x-axis;

Graph of $y = \tan bx$

Period of $y = \tan bx$

The period of $y = \tan bx$ is $\frac{\pi}{|b|}$.

Example: Graph y = 2 tan πx;
 To graph this function, we start from y = tan x, obtain y = tan πx by a horizontal compression by a factor of π and then obtain y = 2 tan πx by a vertical stretch by a factor of 2;

Graph of $y = a \tan bx$

• Example: Graph $y = -\frac{1}{3} \tan \frac{x}{2}$;

To graph this function, we start from $y = \tan x$, obtain $y = \tan \frac{x}{2}$ by a horizontal stretching by a factor of 2, then obtain $y = \frac{1}{3} \tan \frac{x}{2}$ by a vertical compression by a factor of 3 and, finally, obtain $y = -\frac{1}{3} \tan \frac{x}{2}$ by a flipping with respect to the *x*-axis;

Graph of $y = \cot x$

• We create a small table of values:

• We plot the points, connect and use the odd property:

Basic Properties of $y = \cot x$

• Extending the previous graph by periodicity, we get

- This graph has the following basic properties:
 - **Domain**: $\mathbb{R} \{k\pi : k \in \mathbb{Z}\};$
 - Range: All reals;
 - **Period**: *π*;
 - Symmetry: With respect to the origin (Odd);
 - x-Intercepts: $(2k+1)\frac{\pi}{2}$;
 - Vertical Asymptotes: $\overline{x} = k\pi$;

Graph of $y = a \cot bx$

Period of $y = a \cot bx$

The period of $y = a \cot bx$ is $\frac{\pi}{|b|}$.

 Example: Graph y = 2 cot ^x/₃; To graph this function, we start from y = cot x, obtain y = cot ^x/₃ by a horizontal stretching by a factor of 3 and then obtain y = 2 cot ^x/₃ by a vertical stretch by a factor of 2;

Graph of $y = \csc x$

We create a small table of values:

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$y = \csc x$	69 X	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	1	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	X

• We plot the points, connect and use the odd property:

Basic Properties of $y = \csc x$

• Extending the previous graph by periodicity, we get

• This graph has the following basic properties:

- **Domain**: $\mathbb{R} \{k\pi : k \in \mathbb{Z}\};$
- **Range**: $\{y : y \le -1 \text{ or } y \ge 1\};$
- **Period**: 2*π*;
- Symmetry: With respect to the origin (Odd);
- x-Intercepts: None;
- Vertical Asymptotes: $x = k\pi$;

Graph of $y = a \csc bx$

Period of $y = a \csc bx$

The period of $y = a \csc bx$ is $\frac{2\pi}{|b|}$.

• Example: Graph $y = \frac{1}{3} \csc \frac{\pi x}{2}$; To graph this function, we start from $y = \csc x$, obtain $y = \csc \frac{\pi x}{2}$ by a horizontal compression by a factor of $\frac{\pi}{2}$ and then obtain $y = \frac{1}{3} \csc \frac{\pi x}{2}$ by a vertical compression by a factor of 3;

Graph of $y = \sec x$

• We create a small table of values:

• We plot the points and connect:

Basic Properties of $y = \sec x$

• Extending the previous graph by symmetry and periodicity, we get

- This graph has the following basic properties:
 - Domain: $\mathbb{R} \{(2k+1)\frac{\pi}{2} : k \in \mathbb{Z}\};$
 - **Range**: $\{y : y \le -1 \text{ or } y \ge 1\};$
 - Period: 2π;
 - Symmetry: With respect to the x-axis (Even);
 - x-Intercepts: None;
 - Vertical Asymptotes: $x = (2k+1)\frac{\pi}{2}$;

Graph of $y = a \sec bx$

Period of $y = a \sec bx$

The period of $y = a \sec bx$ is $\frac{2\pi}{|b|}$.

• Example: Graph $y = -3 \sec \frac{x}{2}$; To graph this function, we start from $y = \sec x$, obtain $y = \sec \frac{x}{2}$ by a horizontal stretching by a factor of 2, then obtain $y = 3 \sec \frac{x}{2}$ by a vertical stretching by a factor of 3 and, finally, $y = -3 \sec \frac{x}{2}$ by flipping with respect to the x-axis;

Subsection 7

Graphing Techniques

Amplitude, Period and Phase Shift of Sinusoidal Graphs

Graphs of $y = a \sin(bx + c)$ and $y = a \cos(bx + c)$

The graphs of $y = a \sin(bx + c)$ and $y = a \cos(bx + c)$ have

Amplitude :
$$|a|$$
, Period : $\frac{2\pi}{|b|}$, Phase Shift : $-\frac{c}{b}$;

- The graph $y = a \sin(bx + c)$ shifts the graph of $y = a \sin bx$ horizontally $-\frac{c}{b}$ units;
- The graph $y = a \cos(bx + c)$ shifts the graph of $y = a \cos bx$ horizontally $-\frac{c}{b}$ units;

• Example: What is the phase shift of $y = 3 \sin(\frac{1}{2}x - \frac{\pi}{6})$?

$$\phi = -\frac{c}{b} = -\frac{-\pi/6}{1/2} = \frac{\pi}{3};$$

Using Amplitudes, Periods and Phase Shifts to Graph

• Find the amplitude, period and phase shift of $y = 3\cos(2x + \frac{\pi}{3})$ and use them to sketch the graph;

Amplitude:
$$|a| = 3$$
; Period: $T = \frac{2\pi}{|b|} = \frac{2\pi}{2} = \pi$;
Phase Shift: $\phi = -\frac{c}{b} = -\frac{\pi/3}{2} = -\frac{\pi}{6}$;

Period and Phase Shift of Tangent and Cotangent

Graphs of $y = a \tan(bx + c)$ and $y = a \cot(bx + c)$

The graphs of
$$y = a \tan(bx + c)$$
 and $y = a \cot(bx + c)$ have
Period : $\frac{\pi}{|b|}$, Phase Shift : $-\frac{c}{b}$;

- The graph $y = a \tan(bx + c)$ shifts the graph of $y = a \tan bx$ horizontally $-\frac{c}{b}$ units;
- The graph y = a cot (bx + c) shifts the graph of y = a cot bx horizontally ^c/_b units;

• Example: graph one period of

$$y = 2 \cot (3x - 2)$$
; Since the period
is $T = \frac{\pi}{|b|} = \frac{\pi}{3}$ and the phase shift is
 $\phi = -\frac{c}{b} = -\frac{-2}{3} = \frac{2}{3}$, we start the
graph at $x = \frac{2}{3}$ and end it at
 $x = \frac{2}{3} + \frac{\pi}{3} = \frac{\pi+2}{3}$;

Using Amplitudes, Periods and Shifts to Graph I

• Graph
$$y = \frac{1}{2} \sin(x - \frac{\pi}{4}) - 2;$$

Amplitude:
$$|a| = \frac{1}{2}$$
; Period: $T = \frac{2\pi}{|b|} = \frac{2\pi}{1} = 2\pi$;
Phase Shift: $\phi = -\frac{c}{b} = -\frac{-\pi/4}{1} = \frac{\pi}{4}$; Vertical Shift: $y_0 = -2$;

George Voutsadakis (LSSU)

Using Amplitudes, Periods and Shifts to Graph II

• Find the amplitude, period and phase shift of $y = -2\cos(\pi x + \frac{\pi}{2}) + 1$ and used them to sketch the graph;

Amplitude:
$$|a| = 2$$
; Period: $T = \frac{2\pi}{|b|} = \frac{2\pi}{\pi} = 2$;
Phase Shift: $\phi = -\frac{c}{b} = -\frac{\pi/2}{\pi} = -\frac{1}{2}$; Vertical Shift: $y_0 = 1$;