College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) Applications of Trigonometry

- The Law of Sines
- The Law of Cosines and Area
- Vectors

Subsection 1

The Law of Sines

Law of Sines

- Consider an arbitrary triangle $\triangle A B C$;
- Let $C Z$ be the perpendicular from C on $A B$;
- By right triangle trigonometry, we have $\sin A=\frac{\ell}{b}$ and $\sin B=\frac{\ell}{a}$;

- Therefore, $\ell=b \sin A=a \sin B$, showing that

$$
\frac{a}{\sin A}=\frac{b}{\sin B}
$$

The Law of Sines

If A, B, C are the measures of the angles of a triangle and a, b, c the lengths of the sides opposite to those angles, respectively, then

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Solving a Triangle: The ASA Case

- Solve the triangle $\triangle A B C$, if $A=42^{\circ}, B=63^{\circ}$ and $c=18 \mathrm{~cm}$. Since the sum of all three angles of a triangle is 180°, we get that

$$
C=180^{\circ}-(A+B)=180^{\circ}-42^{\circ}-63^{\circ}=75^{\circ} ;
$$

Now the Law of Sines yields:

$$
\frac{a}{\sin A}=\frac{c}{\sin C} \Rightarrow a=\frac{c \sin A}{\sin C}=\frac{18 \cdot \sin 42^{\circ}}{\sin 75^{\circ}} \mathrm{cm} ;
$$

One more application of the Law of Sines yields

$$
\frac{b}{\sin B}=\frac{c}{\sin C} \Rightarrow b=\frac{c \sin B}{\sin C}=\frac{18 \cdot \sin 63^{\circ}}{\sin 75^{\circ}} \mathrm{cm}
$$

Solving a Triangle: The SSA Case

- Suppose we know sides a and c and angle A;
- Solving $\triangle A B C$ may result into none, one or two solutions, depending on the relationship between the height of the triangle from angle B and the lengths of a, c;
- If $\angle A$ is acute, then
- $a<h$: there is no solution;
- $a=h$: there is a single solution; a right triangle;
- $h<a<c$: there are two possible triangles;
- $a \geq c$: there is a single solution, not a right triangle;
- If $\angle A$ is obtuse, then
- $a \leq c$: no solution;
- $a>c$: one solution;

Example

- Suppose that $A=32^{\circ}, c=42$ and $a=30$; Find the measure of C; Note that for the height h corresponding to angle B we have

$$
\sin A=\frac{h}{c} \quad \Rightarrow \quad h=c \sin A=42 \sin 32^{\circ} \approx 22.26
$$

Therefore, $h<a<c$, which means that there are two solutions for $\triangle A B C$:

Two Solutions

For $\angle C$, we have, using the Law of Sines:

$$
\begin{aligned}
& \frac{c}{\sin C}=\frac{a}{\sin A} \Rightarrow \sin C=\frac{c \sin A}{a}=\frac{42 \sin 32^{\circ}}{30} \approx 0.742 \\
& \quad \Rightarrow \quad C \approx \sin ^{-1} 0.742 \text { or } 180^{\circ}-\sin ^{-1} 0.742 \\
& \quad \Rightarrow C \approx 47.89^{\circ} \text { or } 132.11^{\circ}
\end{aligned}
$$

An Application: A Radio Antenna

An 85 feet high antenna is at the top of an office building; At distance AD from the base of the building, the angle of elevation to the top of the antenna is 26° and the angle of elevation to the bottom of the antenna is 16°; What is the height of the building?

We first use Law of Sines to calculate the distance $A C$ from the point A of the observer to the top of the building:

$$
\frac{B C}{\sin \beta}=\frac{A C}{\sin B} \Rightarrow A C=\frac{B C \sin B}{\sin \beta}=\frac{85 \cdot \sin 64^{\circ}}{\sin 10^{\circ}}
$$

Finally, we apply right triangle trigonometry to compute h :

$$
\sin 16^{\circ}=\frac{h}{A C} \quad \Rightarrow \quad h=A C \sin 16^{\circ}=\frac{85 \sin 64^{\circ} \sin 16^{\circ}}{\sin 10^{\circ}} \approx 121 \text { feet; }
$$

Definition of Heading and Bearing

An Application: Navigation

A ship with a heading of 330° first sighted a lighthouse at a bearing of $\mathrm{N} 65^{\circ} \mathrm{E}$; After traveling 8.5 miles, the ship observed the lighthouse at a bearing of $S 50^{\circ} \mathrm{E}$; Find the distance from the ship to the lighthouse when the first sighting was made. In $\triangle A B C$ we know the measures of all angles:

$$
\begin{aligned}
& \angle C A B=65^{\circ}+30^{\circ}=95^{\circ} ; \\
& \angle B C A=50^{\circ}-30^{\circ}=20^{\circ} ; \\
& B
\end{aligned}=180^{\circ}-95^{\circ}-20^{\circ}=65^{\circ} ; ~ \$
$$

Thus, we may apply the Law of Sines to calculate the distance c from the ship to the lighthouse at the moment of the first sighting:

$$
\frac{b}{\sin B}=\frac{c}{\sin C} \quad \Rightarrow \quad c=\frac{b \sin C}{\sin B}=\frac{8.5 \cdot \sin 20^{\circ}}{\sin 65^{\circ}} \approx 3.2 \text { miles; }
$$

Subsection 2

The Law of Cosines and Area

The Law of Cosines

- Consider an arbitrary triangle $\triangle A B C$;
- By right triangle trigonometry, we have $\sin A=\frac{C Z}{b}$ and $\cos A=\frac{A Z}{b}$;
- Therefore, $C Z=b \sin A$ and $B Z=A B-A Z=c-b \cos A ;$

- Therefore, we get

$$
\begin{aligned}
& a^{2}=(b \sin A)^{2}+(c-b \cos A)^{2}= \\
& b^{2} \sin ^{2} A+c^{2}-2 b c \cos A+b^{2} \cos ^{2} A= \\
& b^{2}\left(\sin ^{2} A+\cos ^{2} A\right)+c^{2}-2 b c \cos A=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

The Law of Cosines

If A, B, C are the measures of the angles of a triangle and a, b, c the lengths of the sides opposite to those angles, respectively, then $a^{2}=b^{2}+c^{2}-2 b c \cos A, b^{2}=a^{2}+c^{2}-2 a c \cos B$ and $c^{2}=a^{2}+b^{2}-2 a b \cos C$.

Solving Triangles

- The SAS Case: In $\triangle A B C, B=110^{\circ}, a=10 \mathrm{~cm}$ and $c=15 \mathrm{~cm}$; Find the size b;

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos B=10^{2}+15^{2}-2 \cdot 10 \cdot 15 \cdot \cos 110^{\circ}= \\
& 100+225-300 \cdot \cos 110^{\circ} \approx 427.606 \\
& \quad \Rightarrow \quad b \approx \sqrt{427.606} \approx 20.68
\end{aligned}
$$

- The SSS Case: In $\triangle A B C, a=32$ feet, $b=20$ feet and $c=40$ feet; Find B;

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \cos B \\
& \Rightarrow \quad \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}=\frac{32^{2}+40^{2}-20^{2}}{2 \cdot 32 \cdot 40}=0.86875 \\
& \Rightarrow \quad B=\cos ^{-1} 0.86875 \approx 29.69^{\circ}
\end{aligned}
$$

Application: Navigation

A boat sailed 3 miles at a heading of 78° and then turned to a heading of 138° and sailed another 4.3 miles; Find the distance and the bearing of the boat from the starting point;
In $\triangle A B C$ we have: $B=78^{\circ}+\left(180^{\circ}-\right.$ 138°) $=120^{\circ}$;

Thus, we may apply the Law of Cosines to calculate b and, then A :

$$
b=\sqrt{a^{2}+c^{2}-2 a c \cos B}=\sqrt{4.3^{2}+3^{2}-2 \cdot 4.3 \cdot 3 \cdot \cos 120^{\circ}} \approx 6.4 \text { miles }
$$

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \approx \frac{6.4^{2}+3^{2}-4.3^{2}}{2 \cdot 6.4 \cdot 3} \approx 0.82
$$

$$
\Rightarrow \quad A \approx \cos ^{-1} 0.82 \approx 34.96^{\circ}
$$

Therefore the bearing from the starting point is

$$
\alpha \approx 180^{\circ}-\left(78^{\circ}+34.96^{\circ}\right) \approx 67.04^{\circ}, \text { i.e., S67.04} \mathrm{E}
$$

Law of Sines or Law of Cosines?

- The Law of Sines is used for the following cases:
- ASA: Measures of two angles and length of included side known;
- AAS: Measures of two angles and length of a side opposite one of these angles known;
- SSA: The lengths of two sides and the measure of an angle opposite one of these sides known (ambiguous case);
- The Law of Cosines is used for the following cases:
- SSS: The lengths of all three sides known;
- SAS: Lengths of two sides and measure of the included angle known;

Area of a Triangle

- Consider an arbitrary triangle $\triangle A B C$;
- Let h be the length of the height to side $A C$;

- Notice $\sin A=\frac{h}{c}$, whence $h=c \sin A$;
- Thus, the area K of the triangle is given by $K=\frac{1}{2} b h=\frac{1}{2} b c \sin A$;

Area of a Triangle

The area K of $\triangle A B C$ is one half the product of the lengths of any two sides and the sine of the included angle:

$$
K=\frac{1}{2} b c \sin A=\frac{1}{2} a b \sin C=\frac{1}{2} a c \sin B ;
$$

Examples

- Given $A=62^{\circ}, b=12$ meters and $c=5$ meters, find the area of $\triangle A B C$;

$$
K=\frac{1}{2} b c \sin A=\frac{1}{2} \cdot 12 \cdot 5 \cdot \sin 62^{\circ} \approx 26.49
$$

- Given $A=32^{\circ}, C=77^{\circ}$ and $a=14$ inches, find the area of $\triangle A B C$; Using the Law of Sines, we get

$$
\frac{b}{\sin B}=\frac{a}{\sin A} \Rightarrow b=\frac{a \sin B}{\sin A}
$$

Therefore, for the area K we obtain

$$
\begin{aligned}
K & =\frac{1}{2} a b \sin C=\frac{1}{2} a \frac{a \sin B}{\sin A} \sin C=\frac{1}{2} a^{2} \frac{\sin B \sin C}{\sin A} \\
& \Rightarrow \quad K=\frac{1}{2} \cdot 14^{2} \cdot \frac{\sin 71^{\circ} \sin 77^{\circ}}{\sin 32^{\circ}} \approx 170.38
\end{aligned}
$$

Heron's Formula for the Area

Heron's Formula for the Area of a Triangle

If a, b and c are the lengths of the sides of a triangle, then the area K of the triangle is given by

$$
K=\sqrt{s(s-a)(s-b)(s-c)}, \text { where } s=\frac{1}{2}(a+b+c) .
$$

- Example: Find the area of the triangle with $a=7$ meters, $b=15$ meters and $c=12$ meters;

$$
\begin{aligned}
& s=\frac{1}{2}(a+b+c)=\frac{1}{2}(7+15+12)=17 \\
& K=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{17 \cdot 10 \cdot 2 \cdot 5}= \\
& \sqrt{1700}=10 \sqrt{17} \mathrm{~m}^{2}
\end{aligned}
$$

Application: Las Vegas Luxury

Each face of Luxor Hotel in Las Vegas is an isosceles triangle with a base of 646 feet and sides of length 576 feet; If the glass on the exterior costs $\$ 35$ per square foot, what is the cost of the glass for one of the triangular faces of the hotel?

$$
\begin{aligned}
& s=\frac{1}{2}(a+b+c)=\frac{1}{2}(646+576+576)=899 \\
& K=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{899 \cdot 253 \cdot 323 \cdot 323}= \\
& \quad \sqrt{23,729,318,063} \approx 154,043 \mathrm{ft}^{2}
\end{aligned}
$$

Therefore, the cost of the glass for one face is

$$
C=\$ 35 / \mathrm{ft}^{2} \cdot 154,043 \mathrm{ft}^{2}=\$ 5,391,505 ;
$$

Subsection 3

Vectors

Vectors

- Vector quantities have a magnitude and a direction;

- Examples are force, velocity, displacement etc.;

Definition of a Vector

A vector is a directed line segment; The length of the line segment is the magnitude of the vector and the direction is measured by an angle.

- The starting point A is called the initial point or tail and the ending point B is called the terminal point or the head of the vector;
- A vector with tail A and head B is denoted $\overrightarrow{A B}$ or $\mathbf{A B}$;
- The magnitude of this vector is denoted $\|\overrightarrow{A B}\|=\|\mathbf{A B}\|$;

Equivalence and Scalar Multiplication

- Two vectors are equivalent if they have the same magnitude and the same direction;
- Scalar multiplication is the multiplication of a vector by a real number; If the real number is positive, then the magnitude changes but the direction does not; If the number is negative then the magnitude changes and the direction is reversed;

Sum or Resultant Vector

- The resultant or sum of two vectors is the vector that has the same effect as the combined application of the two vectors;
- The resultant can be computed using
- the triangle method; or
- the parallelogram method;

Standard Position

- A vector can be moved in the plane as long as its magnitude and direction are not changed;
- For instance, the vector $\mathbf{A B}$ with $A(2,-1)$ and $B(-3,4)$ may be moved so that its initial point is at the origin O; Then its terminal point becomes $P(-5,5)$;

- Because OP and $\mathbf{A B}$ have same magnitude and direction, they are equivalent: $\mathbf{O P}=\mathbf{A B}$;

Standard Position and Components

- When a vector is placed with initial point at the origin O it is said to be in standard position;
- Then, the coordinates of its terminal point P are its components;
- Consider the vector $\mathbf{P}_{1} \mathbf{P}_{2}$, with $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$;

Its components a, b are given by

$$
a=x_{2}-x_{1} \quad \text { and } \quad b=y_{2}-y_{1}
$$

Then one uses the notation

$$
\mathbf{P}_{1} \mathbf{P}_{\mathbf{2}}=\langle a, b\rangle ;
$$

Vector Operations Using Components

Definitions of Fundamental Vector Operations

If $\mathbf{v}=\langle a, b\rangle$ and $\mathbf{w}=\langle c, d\rangle$ are two vectors and k a real number, then
(1) $\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}}$;
(2) $\mathbf{v}+\mathbf{w}=\langle a, b\rangle+\langle c, d\rangle=\langle a+c, b+d\rangle$;

- $k \mathbf{v}=k\langle a, b\rangle=\langle k a, k b\rangle$;
- Example: Let $\mathbf{v}=\langle-2,3\rangle$ and $\mathbf{w}=\langle 4,-1\rangle$; Find

$$
\begin{aligned}
& \|\mathbf{w}\|=\sqrt{4^{2}+(-1)^{2}}=\sqrt{17} ; \\
& \mathbf{v}+\mathbf{w}=\langle-2,3\rangle+\langle 4,-1\rangle=\langle-2+4,3-1\rangle=\langle 2,2\rangle ; \\
& -3 \mathbf{v}=-3\langle-2,3\rangle=\langle 6,-9\rangle ; \\
& 2 \mathbf{v}-3 \mathbf{w}=2\langle-2,3\rangle-3\langle 4,-1\rangle=\langle-4,6\rangle-\langle 12,-3\rangle=\langle-16,9\rangle ;
\end{aligned}
$$

Unit Vectors

- A unit vector is one whose magnitude is 1 ;
- Example: Verify that $\mathbf{v}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle$ is a unit vector;

We have

$$
\|\mathbf{v}\|=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(-\frac{4}{5}\right)^{2}}=\sqrt{\frac{9}{25}+\frac{16}{25}}=\sqrt{1}=1
$$

Unit Vector in a Given Direction

- Example: Find a unit vector \mathbf{u} in the direction of the vector $\mathbf{v}=\langle-4,2\rangle$;

$$
\mathbf{u}=\frac{1}{\|\mathbf{v}\|} \mathbf{v}=\frac{1}{\sqrt{(-4)^{2}+2^{2}}}\langle-4,2\rangle=\left\langle-\frac{4}{\sqrt{20}}, \frac{2}{\sqrt{20}}\right\rangle=\left\langle-\frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5}\right\rangle
$$

Unit Vectors \mathbf{i} and \mathbf{j}

Definitions of Vectors \mathbf{i} and \mathbf{j}

$$
\mathbf{i}=\langle 1,0\rangle, \quad \mathbf{j}=\langle 0,1\rangle
$$

- Example: Write the vector $\langle 3,7\rangle$ in terms of the unit vectors \mathbf{i} and \mathbf{j};

$$
\langle 3,7\rangle=\langle 3,0\rangle+\langle 0,7\rangle=3\langle 1,0\rangle+7\langle 0,1\rangle=3 \mathbf{i}+7 \mathbf{j} ;
$$

Representation of a Vector in Terms of \mathbf{i} and \mathbf{j}
If \mathbf{v} is a vector and $\mathbf{v}=\left\langle a_{1}, a_{2}\right\rangle$, then $\mathbf{v}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$.

- Example: Given $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$ and $\mathbf{w}=5 \mathbf{i}+3 \mathbf{j}$, find $3 \mathbf{v}-2 \mathbf{w}$;

$$
\begin{aligned}
& 3 \mathbf{v}-2 \mathbf{w}=3(3 \mathbf{i}-4 \mathbf{j})-2(5 \mathbf{i}+3 \mathbf{j})=(9 \mathbf{i}-12 \mathbf{j})-(10 \mathbf{i}+6 \mathbf{j})= \\
& (9-10) \mathbf{i}+(-12-6) \mathbf{j}=-\mathbf{i}-18 \mathbf{j} ;
\end{aligned}
$$

Horizontal and Vertical Components

- Consider the vector $\mathbf{v}=\left\langle a_{1}, a_{2}\right\rangle$;

- Its magnitude is $\|\mathbf{v}\|=\sqrt{a_{1}^{2}+a_{2}^{2}}$;
- Recall the definitions of sine and cosine of the angle θ with initial side the positive x-axis and terminal side the vector \mathbf{v} :

$$
\cos \theta=\frac{a_{1}}{\|\mathbf{v}\|} \quad \text { and } \quad \sin \theta=\frac{a_{2}}{\|\mathbf{v}\|}
$$

- Thus, we obtain $a_{1}=\|\mathbf{v}\| \cos \theta$ and $a_{2}=\|\mathbf{v}\| \sin \theta$;

Horizontal and Vertical Components of a Vector

If $\mathbf{v}=\left\langle a_{1}, a_{2}\right\rangle$, with $\mathbf{v} \neq \mathbf{0}$, then

$$
a_{1}=\|\mathbf{v}\| \cos \theta \quad \text { and } \quad a_{2}=\|\mathbf{v}\| \sin \theta
$$

The horizontal component of \mathbf{v} is $\|\mathbf{v}\| \cos \theta$ and the vertical component is $\|\mathbf{v}\| \sin \theta$.

Application: Air Speed

An airplane is traveling with an airspeed of 320 mph and a heading of 62°; A wind of 42 mph is blowing at a heading of 125°; Find the ground speed and the course of the airplane;

$\mathbf{A B}=320 \cos 28^{\circ} \mathbf{i}+320 \sin 28^{\circ} \mathbf{j}$;
$\mathbf{A D}=42 \cos \left(-35^{\circ}\right) \mathbf{i}+42 \sin \left(-35^{\circ}\right) \mathbf{j}$;
$\mathbf{A C}=\left[320 \cos 28^{\circ}+42 \cos \left(-35^{\circ}\right)\right] \mathbf{i}+\left[320 \sin 28^{\circ}+42 \sin \left(-35^{\circ}\right)\right] \mathbf{j} \approx$ $(282.5+34.4) \mathbf{i}+(150.2-24.1) \mathbf{j}=316.9 \mathbf{i}+126.1 \mathbf{j}$;

Therefore,

$$
\begin{aligned}
& \|\mathbf{A C}\|=\sqrt{(316.9)^{2}+(126.1)^{2}} \approx 340 \\
& \alpha=90^{\circ}-\theta \approx 90^{\circ}-\tan ^{-1} \frac{126.1}{316.9} \approx 68^{\circ} ;
\end{aligned}
$$

Application: Force

The car of the picture weighs 2855 pounds; What magnitude force is needed to keep the car from rolling down the ramp? What magnitude force does the car exert against the
 ramp?

$$
\sin 15^{\circ}=\frac{\left\|\mathbf{F}_{\mathbf{1}}\right\|}{\|\mathbf{w}\|} \quad \Rightarrow \quad\left\|\mathbf{F}_{\mathbf{1}}\right\|=\|\mathbf{w}\| \sin 15^{\circ}=
$$

$$
2855 \sin 15^{\circ} \approx 739 \text { pounds; }
$$

$$
\cos 15^{\circ}=\frac{\left\|\mathbf{F}_{\mathbf{2}}\right\|}{\|\mathbf{w}\|} \quad \Rightarrow \quad\left\|\mathbf{F}_{\mathbf{2}}\right\|=\|\mathbf{w}\| \cos 15^{\circ}=
$$

$2855 \cos 15^{\circ} \approx 2758$ pounds;

Dot Product

Definition of Dot Product

Given $\mathbf{v}=\langle a, b\rangle$ and $\mathbf{w}=\langle c, d\rangle$, the dot product of \mathbf{v} and \mathbf{w} is given by $\mathbf{v} \cdot \mathbf{w}=a c+b d$.

- Example: Find the dot product of $\mathbf{v}=\langle 6,-2\rangle$ and $\mathbf{w}=\langle-3,4\rangle$;

$$
\mathbf{v} \cdot \mathbf{w}=6 \cdot(-3)+(-2) \cdot 4=-18-8=-26
$$

Properties of the Dot Product

In the following \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors and a is a scalar:
(1) $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$;
(3) $\mathbf{0} \cdot \mathbf{v}=0$;
(2) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$;
(ㄱ) $\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=1$;
$a(\mathbf{u} \cdot \mathbf{v})=(a \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(a \mathbf{v})$;
$\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{i}=0$;
(-) $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$;

Magnitude, Angle and the Dot Product

Magnitude of a Vector in Terms of the Dot Product
If $\mathbf{v}=\langle a, b\rangle$, then $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Alternative Formula for the Dot Product

If \mathbf{v} and \mathbf{w} are two nonzero vectors and α is the smallest nonnegative angle between \mathbf{v} and \mathbf{w}, then $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \alpha$.

Angle Between Two Vectors

Angle Between Two Vectors

If \mathbf{v} and \mathbf{w} are two nonzero vectors and α is the smallest nonnegative angle between \mathbf{v} and \mathbf{w}, then $\cos \alpha=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}$ and $\alpha=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)$.

- Example: Find the measure of the smallest nonnegative angle between the vectors $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{w}=-\mathbf{i}+5 \mathbf{j}$;

$$
\begin{gathered}
\cos \alpha=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{2 \cdot(-1)+(-3) \cdot 5}{\sqrt{2^{2}+(-3)^{2}} \sqrt{(-1)^{2}+5^{2}}}= \\
\frac{-17}{\sqrt{13} \sqrt{26}}=\frac{-17}{13 \sqrt{2}}=-\frac{17 \sqrt{2}}{26} \\
\alpha=\cos ^{-1}\left(-\frac{17 \sqrt{2}}{26}\right) \approx 157.6^{\circ}
\end{gathered}
$$

Scalar Projection

Scalar Projection of vonto w

If \mathbf{v} and \mathbf{w} are two nonzero vectors and α is the angle between \mathbf{v} and \mathbf{w}, then the scalar projection of \mathbf{v} onto $\mathbf{w}, \operatorname{proj}_{\mathbf{w}} \mathbf{v}$, is given by

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\|\mathbf{v}\| \cos \alpha ;
$$

- Since $\cos \alpha=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}$, we also get $\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}$;

Example

Given $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{w}=-2 \mathbf{i}+8 \mathbf{j}$, find $\operatorname{proj}_{w} \mathbf{v}$;

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}=\frac{2 \cdot(-2)+4 \cdot 8}{\sqrt{(-2)^{2}+8^{2}}}=\frac{28}{\sqrt{68}}=\frac{28}{2 \sqrt{17}}=\frac{14 \sqrt{17}}{17}
$$

Parallel and Perpendicular Vectors

- Two vectors are parallel when the angle α between them is 0° or 180°;
- Two vectors are perpendicular or orthogonal when the angle between them is 90°;
- Two nonzero vectors \mathbf{v} and \mathbf{w} are parallel if and only if there exists a real number c, such that $\mathbf{w}=c \mathbf{v}$;
- Two nonzero vectors \mathbf{v} and \mathbf{w} are orthogonal if and only if $\mathbf{v} \cdot \mathbf{w}=0$.

Application: Work

Definition of Work

The work W done by a force \mathbf{F} applied along a displacement \mathbf{s} is

$$
W=\mathbf{F} \cdot \mathbf{s}=\|\mathbf{F}\|\|\mathbf{s}\| \cos \alpha, \alpha \text { angle between } \mathbf{F} \text { and } \mathbf{s} ;
$$

- If the child pulls the sled a horizontal distance of 7 feet, what is the work done?

$$
\begin{aligned}
& W=\mathbf{F} \cdot \mathbf{s}=\|\mathbf{F}\|\|\mathbf{s}\| \cos \alpha= \\
& 25 \cdot 7 \cdot \cos 37^{\circ} \approx 140 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

- What is the work done in moving the box 15 feet along the ramp?

$$
\begin{aligned}
& W=\mathbf{F} \cdot \mathbf{s}=\|\mathbf{F}\|\|\mathbf{s}\| \cos \alpha= \\
& 50 \cdot 15 \cdot \cos 27^{\circ} \approx 670 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

