College Trigonometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 131

George Voutsadakis (LSSU)

Applications of Trigonometry

- The Law of Sines
- The Law of Cosines and Area
- Vectors

Subsection 1

The Law of Sines

Law of Sines

- Consider an arbitrary triangle $\triangle ABC$;
- Let *CZ* be the perpendicular from *C* on *AB*;
- By right triangle trigonometry, we have $\sin A = \frac{\ell}{b}$ and $\sin B = \frac{\ell}{a}$;

• Therefore,
$$\ell = b \sin A = a \sin B$$
, showing that

$$\frac{a}{\sin A} = \frac{b}{\sin B};$$

The Law of Sines

If A, B, C are the measures of the angles of a triangle and a, b, c the lengths of the sides opposite to those angles, respectively, then

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C};$$

Solving a Triangle: The ASA Case

• Solve the triangle $\triangle ABC$, if $A = 42^{\circ}$, $B = 63^{\circ}$ and c = 18 cm. Since the sum of all three angles of a triangle is 180° , we get that

$$C = 180^{\circ} - (A + B) = 180^{\circ} - 42^{\circ} - 63^{\circ} = 75^{\circ};$$

Now the Law of Sines yields:

$$\frac{a}{\sin A} = \frac{c}{\sin C} \quad \Rightarrow \quad a = \frac{c \sin A}{\sin C} = \frac{18 \cdot \sin 42^{\circ}}{\sin 75^{\circ}} \text{ cm};$$

One more application of the Law of Sines yields

$$\frac{b}{\sin B} = \frac{c}{\sin C} \quad \Rightarrow \quad b = \frac{c \sin B}{\sin C} = \frac{18 \cdot \sin 63^{\circ}}{\sin 75^{\circ}} \text{ cm};$$

Solving a Triangle: The SSA Case

- Suppose we know sides *a* and *c* and angle *A*;
- Solving △ABC may result into none, one or two solutions, depending on the relationship between the height of the triangle from angle B and the lengths of a, c;
 - If $\angle A$ is acute, then
 - *a* < *h*: there is no solution;
 - a = h: there is a single solution; a right triangle;
 - *h* < *a* < *c*: there are two possible triangles;
 - $a \ge c$: there is a single solution, not a right triangle;
 - If $\angle A$ is obtuse, then
 - $a \le c$: no solution;
 - a > c: one solution;

Example

 Suppose that A = 32°, c = 42 and a = 30; Find the measure of C; Note that for the height h corresponding to angle B we have

$$\sin A = \frac{h}{c} \Rightarrow h = c \sin A = 42 \sin 32^{\circ} \approx 22.26;$$

Therefore, h < a < c, which means that there are two solutions for $\triangle ABC$: Two Solutions

For $\angle C$, we have, using the Law of Sines:

$$\frac{c}{\sin C} = \frac{a}{\sin A} \implies \sin C = \frac{c \sin A}{a} = \frac{42 \sin 32^{\circ}}{30} \approx 0.742$$
$$\implies C \approx \sin^{-1} 0.742 \text{ or } 180^{\circ} - \sin^{-1} 0.742$$
$$\implies C \approx 47.89^{\circ} \text{ or } 132.11^{\circ};$$

An Application: A Radio Antenna

An 85 feet high antenna is at the top of an office building; At distance AD from the base of the building, the angle of elevation to the top of the antenna is 26° and the angle of elevation to the bottom of the antenna is 16° ; What is the height of the building?

We first use Law of Sines to calculate the distance *AC* from the point *A* of the observer to the top of the building:

$$\frac{BC}{\sin\beta} = \frac{AC}{\sin B} \quad \Rightarrow \quad AC = \frac{BC\sin B}{\sin\beta} = \frac{85 \cdot \sin 64^{\circ}}{\sin 10^{\circ}};$$

Finally, we apply right triangle trigonometry to compute *h*:

$$\sin 16^\circ = \frac{h}{AC} \Rightarrow h = AC \sin 16^\circ = \frac{85 \sin 64^\circ \sin 16^\circ}{\sin 10^\circ} \approx 121$$
 feet;

Definition of Heading and Bearing

An Application: Navigation

A ship with a heading of 330° first sighted a lighthouse at a bearing of N65°E; After traveling 8.5 miles, the ship observed the lighthouse at a bearing of S50°E; Find the distance from the ship to the lighthouse when the first sighting was made. In $\triangle ABC$ we know the measures of all angles:

Thus, we may apply the Law of Sines to calculate the distance c from the ship to the lighthouse at the moment of the first sighting:

$$\frac{b}{\sin B} = \frac{c}{\sin C} \quad \Rightarrow \quad c = \frac{b \sin C}{\sin B} = \frac{8.5 \cdot \sin 20^{\circ}}{\sin 65^{\circ}} \approx 3.2 \text{ miles};$$

Subsection 2

The Law of Cosines and Area

The Law of Cosines

- Consider an arbitrary triangle $\triangle ABC$;
- By right triangle trigonometry, we have $\sin A = \frac{CZ}{b}$ and $\cos A = \frac{AZ}{b}$;
- Therefore, $CZ = b \sin A$ and $BZ = AB - AZ = c - b \cos A;$
- Therefore, we get $a^2 = (b \sin A)^2 + (c - b \cos A)^2 =$ $b^2 \sin^2 A + c^2 - 2bc \cos A + b^2 \cos^2 A =$ $b^2 (\sin^2 A + \cos^2 A) + c^2 - 2bc \cos A = b^2 + c^2 - 2bc \cos A;$

The Law of Cosines

If A, B, C are the measures of the angles of a triangle and a, b, c the lengths of the sides opposite to those angles, respectively, then $a^2 = b^2 + c^2 - 2bc \cos A$, $b^2 = a^2 + c^2 - 2ac \cos B$ and $c^2 = a^2 + b^2 - 2ab \cos C$.

Solving Triangles

• The SAS Case: In $\triangle ABC$, $B = 110^{\circ}$, a = 10 cm and c = 15 cm; Find the size b;

$$b^{2} = a^{2} + c^{2} - 2ac \cos B = 10^{2} + 15^{2} - 2 \cdot 10 \cdot 15 \cdot \cos 110^{\circ} = 100 + 225 - 300 \cdot \cos 110^{\circ} \approx 427.606$$

$$\Rightarrow b \approx \sqrt{427.606} \approx 20.68;$$

• The SSS Case: In $\triangle ABC$, a = 32 feet, b = 20 feet and c = 40 feet; Find B;

$$p^{2} = a^{2} + c^{2} - 2ac \cos B$$

$$\Rightarrow \quad \cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac} = \frac{32^{2} + 40^{2} - 20^{2}}{2 \cdot 32 \cdot 40} = 0.86875$$

$$\Rightarrow \quad B = \cos^{-1} 0.86875 \approx 29.69^{\circ};$$

Application: Navigation

A boat sailed 3 miles at a heading of 78° and then turned to a heading of 138° and sailed another 4.3 miles; Find the distance and the bearing of the boat from the starting point;

In
$$\triangle ABC$$
 we have: $B = 78^{\circ} + (180^{\circ} - 138^{\circ}) = 120^{\circ}$;

Thus, we may apply the Law of Cosines to calculate b and, then A:

 $b = \sqrt{a^2 + c^2 - 2ac \cos B} = \sqrt{4.3^2 + 3^2 - 2 \cdot 4.3 \cdot 3 \cdot \cos 120^\circ} \approx 6.4 \text{ miles}$ $\cos A = \frac{b^2 + c^2 - a^2}{2bc} \approx \frac{6.4^2 + 3^2 - 4.3^2}{2 \cdot 6.4 \cdot 3} \approx 0.82$ $\Rightarrow A \approx \cos^{-1} 0.82 \approx 34.96^\circ;$

Therefore the bearing from the starting point is $\alpha \approx 180^{\circ} - (78^{\circ} + 34.96^{\circ}) \approx 67.04^{\circ}$, i.e., S67.04°E;

Law of Sines or Law of Cosines?

• The Law of Sines is used for the following cases:

- ASA: Measures of two angles and length of included side known;
- AAS: Measures of two angles and length of a side opposite one of these angles known;
- SSA: The lengths of two sides and the measure of an angle opposite one of these sides known (ambiguous case);
- The Law of Cosines is used for the following cases:
 - SSS: The lengths of all three sides known;
 - SAS: Lengths of two sides and measure of the included angle known;

Area of a Triangle

- Consider an arbitrary triangle $\triangle ABC$;
- Let *h* be the length of the height to side *AC*;

• Notice $\sin A = \frac{h}{c}$, whence $h = c \sin A$;

• Thus, the area K of the triangle is given by $K = \frac{1}{2}bh = \frac{1}{2}bc \sin A$;

Area of a Triangle

The area K of $\triangle ABC$ is one half the product of the lengths of any two sides and the sine of the included angle:

$$K = \frac{1}{2}bc\sin A = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B;$$

Examples

• Given $A = 62^{\circ}$, b = 12 meters and c = 5 meters, find the area of $\triangle ABC$;

$$K = \frac{1}{2}bc\sin A = \frac{1}{2} \cdot 12 \cdot 5 \cdot \sin 62^{\circ} \approx 26.49;$$

• Given $A = 32^{\circ}$, $C = 77^{\circ}$ and a = 14 inches, find the area of $\triangle ABC$; Using the Law of Sines, we get

$$\frac{b}{\sin B} = \frac{a}{\sin A} \quad \Rightarrow \quad b = \frac{a \sin B}{\sin A};$$

Therefore, for the area K we obtain

$$K = \frac{1}{2}ab\sin C = \frac{1}{2}a\frac{a\sin B}{\sin A}\sin C = \frac{1}{2}a^2\frac{\sin B\sin C}{\sin A}$$
$$\Rightarrow \quad K = \frac{1}{2} \cdot 14^2 \cdot \frac{\sin 71^\circ \sin 77^\circ}{\sin 32^\circ} \approx 170.38;$$

Heron's Formula for the Area

Heron's Formula for the Area of a Triangle

If a, b and c are the lengths of the sides of a triangle, then the area K of the triangle is given by

$$\mathcal{K} = \sqrt{s(s-a)(s-b)(s-c)}, ext{ where } s = rac{1}{2}(a+b+c).$$

• Example: Find the area of the triangle with *a* = 7 meters, *b* = 15 meters and *c* = 12 meters;

$$s = \frac{1}{2}(a + b + c) = \frac{1}{2}(7 + 15 + 12) = 17;$$

$$\mathcal{K} = \sqrt{s(s - a)(s - b)(s - c)} = \sqrt{17 \cdot 10 \cdot 2 \cdot 5} = \sqrt{1700} = 10\sqrt{17} \text{ m}^2;$$

Application: Las Vegas Luxury

Each face of Luxor Hotel in Las Vegas is an isosceles triangle with a base of 646 feet and sides of length 576 feet; If the glass on the exterior costs \$35 per square foot, what is the cost of the glass for one of the triangular faces of the hotel?

$$s = \frac{1}{2}(a + b + c) = \frac{1}{2}(646 + 576 + 576) = 899;$$

$$K = \sqrt{s(s - a)(s - b)(s - c)} = \sqrt{899 \cdot 253 \cdot 323 \cdot 323} = \frac{\sqrt{23,729,318,063}}{\sqrt{23,729,318,063}} \approx 154,043 \text{ ft}^2;$$

Therefore, the cost of the glass for one face is

$$C = \frac{35}{\text{ft}^2} \cdot 154,043 \text{ ft}^2 = \frac{5,391,505}{5};$$

Subsection 3

Vectors

Vectors

• Vector quantities have a magnitude and a direction;

• Examples are force, velocity, displacement etc.;

Definition of a Vector

A vector is a directed line segment; The length of the line segment is the **magnitude** of the vector and the **direction** is measured by an angle.

- The starting point A is called the **initial point** or **tail** and the ending point B is called the **terminal point** or the **head** of the vector;
- A vector with tail A and head B is denoted \overrightarrow{AB} or **AB**;
- The magnitude of this vector is denoted $\|\overrightarrow{AB}\| = \|\mathbf{AB}\|$;

Equivalence and Scalar Multiplication

- Two vectors are **equivalent** if they have the same magnitude and the same direction;
- Scalar multiplication is the multiplication of a vector by a real number; If the real number is positive, then the magnitude changes but the direction does not; If the number is negative then the magnitude changes and the direction is reversed;

Sum or Resultant Vector

- The resultant or sum of two vectors is the vector that has the same effect as the combined application of the two vectors;
- The resultant can be computed using
 - the triangle method; or
 - the parallelogram method;

Standard Position

- A vector can be moved in the plane as long as its magnitude and direction are not changed;
- For instance, the vector **AB** with A(2, -1) and B(-3, 4) may be moved so that its initial point is at the origin O; Then its terminal point becomes P(-5, 5);

 Because OP and AB have same magnitude and direction, they are equivalent: OP = AB;

Standard Position and Components

- When a vector is placed with initial point at the origin *O* it is said to be in **standard position**;
- Then, the coordinates of its terminal point *P* are its **components**;
- Consider the vector $\mathbf{P_1P_2}$, with $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$;

Its components a, b are given by

$$a = x_2 - x_1$$
 and $b = y_2 - y_1$;

Then one uses the notation

 $\mathsf{P_1P_2} = \langle a, b
angle;$

Vector Operations Using Components

Definitions of Fundamental Vector Operations

If $\mathbf{v} = \langle a, b \rangle$ and $\mathbf{w} = \langle c, d \rangle$ are two vectors and k a real number, then **()** $\|\mathbf{v}\| = \sqrt{a^2 + b^2};$ $\mathbf{Q} \mathbf{v} + \mathbf{w} = \langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle;$ $\bigcirc k\mathbf{v} = k\langle a, b \rangle = \langle ka, kb \rangle;$

Unit Vectors

- A **unit vector** is one whose magnitude is 1;
- Example: Verify that $\mathbf{v} = \langle \frac{3}{5}, -\frac{4}{5} \rangle$ is a unit vector;

Unit Vector in a Given Direction

Example: Find a unit vector \mathbf{u} in the direction of the vector 0 $\mathbf{v} = \langle -4, 2 \rangle;$

Unit Vectors i and j

Definitions of Vectors **i** and **j**

$$\mathbf{i} = \langle 1, 0 \rangle, \qquad \mathbf{j} = \langle 0, 1 \rangle$$

• Example: Write the vector (3,7) in terms of the unit vectors **i** and **j**;

$$\langle 3,7
angle = \langle 3,0
angle + \langle 0,7
angle = 3\langle 1,0
angle + 7\langle 0,1
angle = 3\mathbf{i} + 7\mathbf{j};$$

Representation of a Vector in Terms of i and j

If **v** is a vector and $\mathbf{v} = \langle a_1, a_2 \rangle$, then $\mathbf{v} = a_1 \mathbf{i} + a_2 \mathbf{j}$.

• Example: Given $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$ and $\mathbf{w} = 5\mathbf{i} + 3\mathbf{j}$, find $3\mathbf{v} - 2\mathbf{w}$;

$$3\mathbf{v} - 2\mathbf{w} = 3(3\mathbf{i} - 4\mathbf{j}) - 2(5\mathbf{i} + 3\mathbf{j}) = (9\mathbf{i} - 12\mathbf{j}) - (10\mathbf{i} + 6\mathbf{j}) = (9 - 10)\mathbf{i} + (-12 - 6)\mathbf{j} = -\mathbf{i} - 18\mathbf{j};$$

Horizontal and Vertical Components

• Consider the vector $\mathbf{v} = \langle a_1, a_2 \rangle$;

- Its magnitude is $\|\mathbf{v}\| = \sqrt{a_1^2 + a_2^2};$
- Recall the definitions of sine and cosine of the angle θ with initial side the positive x-axis and terminal side the vector v:

$$\cos \theta = \frac{a_1}{\|\mathbf{v}\|}$$
 and $\sin \theta = \frac{a_2}{\|\mathbf{v}\|}$;

• Thus, we obtain $a_1 = \|\mathbf{v}\| \cos \theta$ and $a_2 = \|\mathbf{v}\| \sin \theta$;

Horizontal and Vertical Components of a Vector

If $\mathbf{v} = \langle a_1, a_2 \rangle$, with $\mathbf{v} \neq \mathbf{0}$, then

$$a_1 = \|\mathbf{v}\| \cos \theta$$
 and $a_2 = \|\mathbf{v}\| \sin \theta$;

The horizontal component of v is $\|v\| \cos \theta$ and the vertical component is $\|v\| \sin \theta$.

Application: Air Speed

An airplane is traveling with an airspeed of 320 mph and a heading of 62° ; A wind of 42 mph is blowing at a heading of 125° ; Find the ground speed and the course of the airplane;

$$\mathbf{AB} = 320 \cos 28^{\circ} \mathbf{i} + 320 \sin 28^{\circ} \mathbf{j}; \\ \mathbf{AD} = 42 \cos (-35^{\circ}) \mathbf{i} + 42 \sin (-35^{\circ}) \mathbf{j}; \\ \mathbf{AC} = [320 \cos 28^{\circ} + 42 \cos (-35^{\circ})] \mathbf{i} + [320 \sin 28^{\circ} + 42 \sin (-35^{\circ})] \mathbf{j} \approx \\ (282.5 + 34.4) \mathbf{i} + (150.2 - 24.1) \mathbf{j} = 316.9 \mathbf{i} + 126.1 \mathbf{j};$$

Therefore,

$$\|\mathbf{AC}\| = \sqrt{(316.9)^2 + (126.1)^2} \approx 340;$$

$$\alpha = 90^\circ - \theta \approx 90^\circ - \tan^{-1} \frac{126.1}{316.9} \approx 68^\circ;$$

Application: Force

The car of the picture weighs 2855 pounds; What magnitude force is needed to keep the car from rolling down the ramp? What magnitude force does the car exert against the ramp?

$$\sin 15^{\circ} = \frac{\|\mathbf{F}_1\|}{\|\mathbf{w}\|} \Rightarrow \|\mathbf{F}_1\| = \|\mathbf{w}\| \sin 15^{\circ} = 2855 \sin 15^{\circ} \approx 739 \text{ pounds};$$
$$\cos 15^{\circ} = \frac{\|\mathbf{F}_2\|}{\|\mathbf{w}\|} \Rightarrow \|\mathbf{F}_2\| = \|\mathbf{w}\| \cos 15^{\circ} = 2855 \cos 15^{\circ} \approx 2758 \text{ pounds};$$

Dot Product

Definition of Dot Product

Given $\mathbf{v} = \langle a, b \rangle$ and $\mathbf{w} = \langle c, d \rangle$, the **dot product** of \mathbf{v} and \mathbf{w} is given by $\mathbf{v} \cdot \mathbf{w} = ac + bd$.

• Example: Find the dot product of $\mathbf{v} = \langle 6, -2 \rangle$ and $\mathbf{w} = \langle -3, 4 \rangle$;

$$\mathbf{v} \cdot \mathbf{w} = 6 \cdot (-3) + (-2) \cdot 4 = -18 - 8 = -26$$

Properties of the Dot Product

In the following \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors and a is a scalar:

 $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v};$ $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w};$ $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = 1;$ $a(\mathbf{u} \cdot \mathbf{v}) = (a\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (a\mathbf{v});$ $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0;$ $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2;$

Magnitude, Angle and the Dot Product

Magnitude of a Vector in Terms of the Dot Product

If $\mathbf{v} = \langle a, b \rangle$, then $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Alternative Formula for the Dot Product

If **v** and **w** are two nonzero vectors and α is the smallest nonnegative angle between **v** and **w**, then $\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \alpha$.

Angle Between Two Vectors

Angle Between Two Vectors

If **v** and **w** are two nonzero vectors and α is the smallest nonnegative angle between **v** and **w**, then $\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$ and $\alpha = \cos^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}\right)$.

Example: Find the measure of the smallest nonnegative angle 0 between the vectors $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j}$ and $\mathbf{w} = -\mathbf{i} + 5\mathbf{j}$;

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{2 \cdot (-1) + (-3) \cdot 5}{\sqrt{2^2 + (-3)^2} \sqrt{(-1)^2 + 5^2}} = \frac{-17}{\sqrt{13}\sqrt{26}} = \frac{-17}{13\sqrt{2}} = -\frac{17\sqrt{2}}{26};$$

$$\alpha = \cos^{-1}\left(-\frac{17\sqrt{2}}{26}\right) \approx 157.6^{\circ};$$

Scalar Projection

Scalar Projection of v Onto w

If **v** and **w** are two nonzero vectors and α is the angle between **v** and **w**, then the scalar projection of **v** onto **w**, proj_w**v**, is given by

$$\operatorname{proj}_{\mathbf{w}}\mathbf{v} = \|\mathbf{v}\|\coslpha;$$

• Since
$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$$
, we also get $\operatorname{proj}_{\mathbf{w}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}$;

Example

Given
$$\mathbf{v} = 2\mathbf{i} + 4\mathbf{j}$$
 and $\mathbf{w} = -2\mathbf{i} + 8\mathbf{j}$,
find proj_w**v**;

$$\operatorname{proj}_{\mathbf{w}}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|} = \frac{2 \cdot (-2) + 4 \cdot 8}{\sqrt{(-2)^2 + 8^2}} = \frac{28}{\sqrt{68}} = \frac{28}{2\sqrt{17}} = \frac{14\sqrt{17}}{17};$$

Parallel and Perpendicular Vectors

- Two vectors are **parallel** when the angle α between them is 0° or 180°;
- Two vectors are **perpendicular** or **orthogonal** when the angle between them is 90°;
- Two nonzero vectors v and w are parallel if and only if there exists a real number c, such that w = cv;
- Two nonzero vectors \mathbf{v} and \mathbf{w} are orthogonal if and only if $\mathbf{v} \cdot \mathbf{w} = 0$.

Application: Work

Definition of Work

The work W done by a force **F** applied along a displacement **s** is

 $W = \mathbf{F} \cdot \mathbf{s} = \|\mathbf{F}\| \|\mathbf{s}\| \cos \alpha$, α angle between **F** and **s**;

• If the child pulls the sled a horizontal distance of 7 feet, what is the work done?

 $W = \mathbf{F} \cdot \mathbf{s} = \|\mathbf{F}\| \|\mathbf{s}\| \cos \alpha = 25 \cdot 7 \cdot \cos 37^{\circ} \approx 140 \text{ ft-lb;}$

• What is the work done in moving the box 15 feet along the ramp?

$$W = \mathbf{F} \cdot \mathbf{s} = \|\mathbf{F}\| \|\mathbf{s}\| \cos \alpha = 50 \cdot 15 \cdot \cos 27^{\circ} \approx 670 \text{ ft-lb;}$$

