College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) Functions and Graphs

- Complex Numbers
- Trigonometric Form of Complex Numbers
- De Moivre's Theorem

Subsection 1

Complex Numbers

Complex Numbers

- The imaginary unit i is the number such that $i^{2}=-1$;
- If a is a positive real number, then $\sqrt{-a}=\sqrt{(-1) \cdot a}=\sqrt{-1} \sqrt{a}=$ $i \sqrt{a}$. The number $i \sqrt{a}$ is called an imaginary number;
- Example:
- $\sqrt{-36}=i \sqrt{36}=6 i$;
- $\sqrt{-18}=i \sqrt{18}=3 i \sqrt{2}$;
- $\sqrt{-1}=i \sqrt{1}=i$;
- A complex number is a number of the form $a+b i$, where a and b are real numbers and $i=\sqrt{-1}$; The number a is the real part of $a+b i$ and the number b is the imaginary part;
- Example:
- $-3+5 i$ has real part -3 and imaginary part 5;
- $2-6 i$ has real part 2 and imaginary part -6 ;
- 7i has real part 0 and imaginary part 7;

Standard Form

- A complex number written in the form $a+b i$ is said to be in the standard form;
- Example: Write $7+\sqrt{-45}$ in the standard form;

$$
7+\sqrt{-45}=7+i \sqrt{45}=7+3 i \sqrt{5}
$$

- Example: Write $6-\sqrt{-1}$ in the standard form;

$$
6-\sqrt{-1}=6-i \sqrt{1}=6-i ;
$$

Addition and Subtraction of Complex Numbers

Addition and Subtraction of Complex Numbers

If $a+b i$ and $c+d i$ are complex numbers, then

$$
\begin{array}{ll}
\text { Addition: } & (a+b i)+(c+d i)=(a+c)+(b+d) i \\
\text { Subtraction: } & (a+b i)-(c+d i)=(a-c)+(b-d) i
\end{array}
$$

- Example: Simplify the expressions:

$$
\begin{aligned}
& -(7-2 i)+(-2+4 i)=(7-2)+(-2+4) i=5+2 i ; \\
& -(-9+4 i)-(2-6 i)=(-9-2)+(4-(-6)) i=-11+10 i ;
\end{aligned}
$$

Multiplication of Complex Numbers

Multiplication of Complex Numbers

If $a+b i$ and $c+d i$ are complex numbers, then

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i ;
$$

- Example: Simplify the expressions:

$$
\begin{aligned}
& -(3-4 i)(2+5 i)=6+15 i-8 i-20 i^{2}=6+15 i-8 i+20=26+7 i \text {; } \\
& (2+\sqrt{-3})(4-5 \sqrt{-3})=(2+i \sqrt{3})(4-5 i \sqrt{3})= \\
& 8-10 i \sqrt{3}+4 i \sqrt{3}+5 \cdot 3=23-6 i \sqrt{3} ;
\end{aligned}
$$

Division of Complex Numbers

- The complex number $a-b i$ is called the complex conjugate of the complex number $a+b i$;
- The product of a complex number and its conjugate is a real number:

$$
(a+b i)(a-b i)=a^{2}+b^{2} ;
$$

Division of Complex Numbers

If $a+b i$ and $c+d i \neq 0$ are complex numbers, then

$$
\frac{a+b i}{c+d i}=\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i ;
$$

- Example: Simplify the expression:

$$
\begin{aligned}
& \frac{16-11 i}{5+2 i}=\frac{(16-11 i)(5-2 i)}{(5+2 i)(5-2 i)}=\frac{80-32 i-55 i-22}{25+4}= \\
& \frac{58-87 i}{29}=\frac{58}{29}-\frac{87}{29} i=2-3 i
\end{aligned}
$$

Another Example of Division

- Simplify the expression:

$$
\begin{aligned}
\frac{8-i}{2+3 i} & =\frac{(8-i)(2-3 i)}{(2+3 i)(2-3 i)} \\
& =\frac{16-24 i-2 i-3}{4+9} \\
& =\frac{13-26 i}{13} \\
& =\frac{13}{13}-\frac{26}{13} i \\
& =1-2 i ;
\end{aligned}
$$

Powers of i

- Let us compute a few of the first powers of i :

$$
\begin{array}{llll}
i^{1}=i & i^{2}=-1 & i^{3}=-i & i^{4}=1 \\
i^{5}=i & i^{6}=-1 & i^{7}=-i & i^{8}=1 \\
i^{9}=i & i^{10}=-1 & i^{11}=-i & i^{12}=1
\end{array}
$$

Powers of i

If n is a positive integer, then $i^{n}=i^{r}$, where r is the remainder of the division of n by 4 .

- Example: Evaluate \boldsymbol{i}^{153};

$$
i^{153}=i^{4 \cdot 38+1}=i^{4 \cdot 38} \cdot i=\left(i^{4}\right)^{38} \cdot i=1^{38} \cdot i=i ;
$$

- Example: Evaluate i^{59};

$$
i^{59}=i^{4 \cdot 14+3}=i^{3}=-i ;
$$

Subsection 2

Trigonometric Form of Complex Numbers

Complex Plane

- Complex numbers can be graphed in a coordinate plane called the complex plane;
- The horizontal axis is the real axis and the vertical axis the imaginary axis;
- A complex number in the standard or rectangular form $z=a+b i$ is associated with the point $P(a, b)$;

Absolute Value of a Complex Number

Absolute Value of a Complex Number

The absolute value of a complex number $z=a+b i$, denoted by $|z|$, is

$$
|z|=|a+b i|=\sqrt{a^{2}+b^{2}} ;
$$

- Consider the complex number $z=a+b i$;
- If $P(a, b)$ is the point in the complex plane corresponding to z, then $r=|z|=\sqrt{a^{2}+b^{2}}$;

Trigonometric Form of a Complex Number

- $z=a+b i=r \cos \theta+r i \sin \theta=r(\cos \theta+i \sin \theta)$;

Trigonometric or Polar Form of a Complex Number

The complex number $z=a+b i$ can be written in trigonometric form as

$$
z=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta
$$

where $a=r \cos \theta, b=r \sin \theta$ and $r=\sqrt{a^{2}+b^{2}}, \tan \theta=\frac{b}{a}$.

Writing a Complex Number in Trigonometric Form

- Write $z=-2-2 i$ in trigonometric form;

Recall the form $z=r(\cos \theta+i \sin \theta)$;
First calculate $r=|z|=\sqrt{a^{2}+b^{2}}=\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{8}=2 \sqrt{2}$;
Now factor r out in the rectangular form:

$$
\begin{aligned}
z & =-2-2 i \\
& =2 \sqrt{2}\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right) \\
& =2 \sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right) \\
& =2 \sqrt{2} \operatorname{cis} \frac{5 \pi}{4}
\end{aligned}
$$

Writing a Complex Number in Standard Form

- Write $z=2 \mathrm{cis} 120^{\circ}$ in standard form;

$$
\begin{aligned}
z & =2 \operatorname{cis} 120^{\circ} \\
& =2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right) \\
& =2\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& =-1+i \sqrt{3}
\end{aligned}
$$

The Product Property of Complex Numbers

- Assume $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ are two complex numbers in polar form;
- We multiply them:

$$
\begin{aligned}
z_{1} z_{2} & = \\
= & r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
= & r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+\right. \\
& \left.=\quad i \sin \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right) \\
= & r_{1} r_{2}\left[\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+\right. \\
& =r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) ;
\end{aligned}
$$

The Product Property of Complex Numbers

If $z_{1}=r_{1} \operatorname{cis} \theta_{1}$ and $z_{2}=r_{2} \operatorname{cis} \theta_{2}$, then

$$
z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
$$

Example of the Product Property

- Find the product of $z_{1}=-1+i \sqrt{3}$ and $z_{2}=-\sqrt{3}+i$ by using the trigonometric forms of the complex numbers; Then write the answer in standard form;

$$
\begin{aligned}
z_{1} & =-1+i \sqrt{3} \\
& =2\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& =2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) ; \\
z_{2} & =-\sqrt{3}+i \\
& =2\left(-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right) \\
& =2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)
\end{aligned}
$$

Therefore, $z_{1} z_{2}=2 \cdot 2\left(\cos \left(\frac{2 \pi}{3}+\frac{5 \pi}{6}\right)+i \sin \left(\frac{2 \pi}{3}+\frac{5 \pi}{6}\right)\right)=$ $4\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)=4(0+i(-1))=-4 i$;

The Quotient Property of Complex Numbers

The Product Property of Complex Numbers

If $z_{1}=r_{1} \operatorname{cis} \theta_{1}$ and $z_{2}=r_{2} \operatorname{cis} \theta_{2}$, then

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right) ;
$$

- Example: Find the quotient of $z_{1}=-1+i$ and $z_{2}=\sqrt{3}-i$ by using trigonometric forms. Write the answer in standard form;

$$
\begin{aligned}
& z_{1}=-1+i=\sqrt{2}\left(-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) ; \\
& z_{2}=\sqrt{3}-i=2\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=2\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right) ; \\
& \frac{z_{1}}{z_{2}}=\frac{\sqrt{2}}{2}\left(\cos \left(\frac{3 \pi}{4}-\left(-\frac{\pi}{6}\right)\right)+i \sin \left(\frac{3 \pi}{4}-\left(-\frac{\pi}{6}\right)\right)\right)= \\
& \quad \frac{\sqrt{2}}{2}\left(\cos \frac{11 \pi}{12}+i \sin \frac{11 \pi}{12}\right) \approx 0.707(-0.966+0.259 i) \\
& \quad \approx-0.683+0.183 i ;
\end{aligned}
$$

Subsection 3

De Moivre's Theorem

De Moivre's Theorem

De Moivre's Theorem

If $z=r \operatorname{cis} \theta$ and n is a positive integer, then

$$
z^{n}=r^{n} \operatorname{cis} n \theta
$$

- Example: Find $\left(2 \mathrm{cis} 30^{\circ}\right)^{5}$; Write the answer in standard form;

$$
\begin{aligned}
& \left(2 \operatorname{cis} 30^{\circ}\right)^{5}=2^{5} \operatorname{cis}\left(5 \cdot 30^{\circ}\right)=32 \operatorname{cis} 150^{\circ}= \\
& 32\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)=32\left(-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=-16 \sqrt{3}+16 i
\end{aligned}
$$

- Example: Find $(1+i)^{8}$ using De Moivre's Theorem; Write the answer in standard form;

$$
(1+i)^{8}=\left(\sqrt{2}\left(\operatorname{cis} \frac{\pi}{4}\right)\right)^{8}=\sqrt{2}^{8} \operatorname{cis}\left(8 \cdot \frac{\pi}{4}\right)=16 \operatorname{cis}(2 \pi)=16 ;
$$

Using De Moivre's Theorem to Find Roots

De Moivre's Theorem for Finding Roots

If $z=r \operatorname{cis} \theta$ is a complex number, then there exist n distinct n-th roots of z, given by

$$
w_{k}=r^{1 / n} \operatorname{cis} \frac{\theta+360^{\circ} k}{n}, k=0,1,2, \ldots, n-1 ;
$$

- Find the three cube roots of 27 ;

$$
\begin{aligned}
& 27=27 \operatorname{cis} 0^{\circ} ; \\
& w_{k}=27^{1 / 3} \operatorname{cis} \frac{0^{\circ}+360^{\circ} k}{3}, k=0,1,2 ; \\
& w_{0}=27^{1 / 3} \operatorname{cis} 0=3 ; \\
& w_{1}=27^{1 / 3} \operatorname{cis} \frac{360^{\circ}}{3}=3 \operatorname{cis} 120^{\circ}=3\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=-\frac{3}{2}+\frac{3 \sqrt{3}}{2} i ; \\
& w_{2}=27^{1 / 3} \operatorname{cis} \frac{720^{\circ}}{3}=3 \operatorname{cis} 240^{\circ}=3\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=-\frac{3}{2}-\frac{3 \sqrt{3}}{2} i ;
\end{aligned}
$$

The Three Cube Roots of 27

Another Example

- Find all fifth roots of $z=1+i \sqrt{3}$;

$$
\begin{aligned}
& 1+i \sqrt{3}=2 \operatorname{cis} 60^{\circ} ; \\
& w_{k}=2^{1 / 5} \operatorname{cis} \frac{60^{\circ}+360^{\circ} k}{5}, k=0,1,2,3,4
\end{aligned}
$$

$$
\begin{aligned}
& w_{0}=\sqrt[5]{2} \operatorname{cis} \frac{60^{\circ}}{5}=\sqrt[5]{2} \operatorname{cis} 12^{\circ} ; \\
& w_{1}=\sqrt[5]{2} \operatorname{cis} \frac{420^{\circ}}{5}=\sqrt[5]{2} \operatorname{cis} 84^{\circ} ; \\
& w_{2}=\sqrt[5]{2} \operatorname{cis} \frac{780^{\circ}}{5}=\sqrt[5]{2} \operatorname{cis} 156^{\circ} ; \\
& w_{3}=\sqrt[5]{2} \operatorname{cis} \frac{1140^{\circ}}{5}=\sqrt[5]{2} \operatorname{cis} 228^{\circ} ; \\
& w_{4}=\sqrt[5]{2} \operatorname{cis} \frac{1500^{\circ}}{5}=\sqrt[5]{2} \operatorname{cis} 300^{\circ} ;
\end{aligned}
$$

Properties of the n-th Roots of z

- Geometric Property: All n-th roots of z are equally spaced on a circle with center $(0,0)$ and a radius of $|z|^{1 / n}$;
- Absolute Value Properties:
(If $|z|=1$, then each n-th root of z has absolute value 1 ;
(3) If $|z|>1$, then each n-th root has an absolute value of $|z|^{1 / n}$, where $|z|^{1 / n}$ is greater than 1 but less than $|z|$;
O If $|z|<1$, then each n-th root has an absolute value of $|z|^{1 / n}$, where $|z|^{1 / n}$ is less than 1 but greater than $|z| ;$
- Argument Property: If the argument of z is θ, then the argument of w_{0} is $\frac{\theta}{n}$ and the arguments of the remaining roots can be determined by adding multiples of $\frac{360^{\circ}}{n}$ to $\frac{\theta}{n}$;

