College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) Functions and Graphs

- Parabolas
- Ellipses
- Hyperbolas
- Introduction to Polar Coordinates
- Polar Equations of the Conics
- Parametric Equations

Subsection 1

Parabolas

Conic Sections

Definition of Parabola

Definition of Parabola

A parabola is the set of points in a plane that are equidistant from a fixed line, called the directrix, and a fixed point, called the focus, not on the directrix.

The line passing through the focus and perpendicular to the directrix is called the axis of symmetry of the parabola;

Standard Forms of the Equation of the Parabola

When the parabola has vertex at the origin, the standard forms of the equation are:

Example I

- Find the focus and directrix of the parabola given by the equation $y=-\frac{1}{2} x^{2} ;$

$$
y=-\frac{1}{2} x^{2} \quad \Rightarrow \quad x^{2}=-2 y \quad \Rightarrow \quad x^{2}=4\left(-\frac{1}{2}\right) y
$$

This shows that $p=-\frac{1}{2}$, i.e., the focus is $\left(0,-\frac{1}{2}\right)$ and the directrix $y=\frac{1}{2}$;

Example II

- Find the equation in standard form of the parabola with vertex at the origin and focus at ($-2,0$);

We have $p=-2$; Therefore, the equation is

$$
y^{2}=4(-2) x \Rightarrow y^{2}=-8 x
$$

Standard Forms of the Equation of the Parabola

Equation is

$$
(x-h)^{2}=4 p(y-k)
$$

Equation is

$$
(y-k)^{2}=4 p(x-h)
$$

Example I

- Find the equation of the directrix and the coordinates of the vertex and of the focus of the parabola given by the equation $3 x+2 y^{2}+8 y-4=0$;

$$
\begin{aligned}
& 3 x+2 y^{2}+8 y-4=0 \quad \Rightarrow \quad 2 y^{2}+8 y=-3 x+4 \\
& \quad \Rightarrow 2\left(y^{2}+4 y\right)=-3 x+4 \quad \Rightarrow \quad 2\left(y^{2}+4 y+4\right)=-3 x+12 \\
& \quad \Rightarrow 2(y+2)^{2}=-3(x-4) \quad \Rightarrow \quad(y+2)^{2}=-\frac{3}{2}(x-4) \\
& \quad \Rightarrow \quad(y+2)^{2}=4\left(-\frac{3}{8}\right)(x-4) ;
\end{aligned}
$$

So $V=(4,-2)$, parabola opens left and $p=-\frac{3}{8}$; Therefore, directrix is $x=4+\frac{3}{8} \Rightarrow x=\frac{35}{8}$ and focus is at $\left(4-\frac{3}{8},-2\right)=\left(\frac{29}{8},-2\right)$;

Example II

- Find an equation in the standard form of the parabola with directrix $x=-1$ and focus (3,2);

Directrix is vertical; Focus on the right of directrix, so equation has the form $(y-k)^{2}=4 p(x-h)$; Therefore, since the distance from focus to directrix is 4 , we get $p=2$ and $(h, k)=(1,2)$; These give equation $(y-2)^{2}=8(x-1)^{2}$;

Application: Focus of a Satellite Dish

A dish has a paraboloid shape; The signals it receives are reflected to a receiver at its focus; If the dish is 8 feet across at its opening and 1.25 feet deep at its center, find the location of the focus;

The dish may be modeled by the equation $y^{2}=4 p x$; Since at $x=\frac{5}{4}$ feet, we have $y=4$ feet, we obtain

$$
4^{2}=4 p \frac{5}{4} \Rightarrow p=\frac{16}{5} \text { feet, }
$$

i.e., its focus is located $\frac{16}{5}$ feet above its vertex;

Subsection 2

Ellipses

Definition of Ellipses

Definition of an Ellipse

An ellipse is the set of all points in the plane the sum of whose distances from two fixed points, called the foci, is a positive constant.

Standard Form of the Equation of an Ellipse

Example I

- Find the vertices and foci of the ellipse given by the equation $\frac{x^{2}}{25}+\frac{y^{2}}{49}=1$; Sketch its graph;
The y^{2} term has a larger denominator, so the major axis is on the y-axis;

$$
\begin{aligned}
a^{2} & =49 \quad \Rightarrow \quad a=7 \\
b^{2} & =25 \quad \Rightarrow \quad b=5 \\
c^{2} & =a^{2}-b^{2}=24 \\
& \Rightarrow \quad c=2 \sqrt{6}
\end{aligned}
$$

Thus, the vertices are at $(0,7)$, $(0,-7)$, the foci are at $(0,2 \sqrt{6})$, $(0,-2 \sqrt{6})$;

Example II

- Consider the ellipse with foci $(3,0)$ and $(-3,0)$ and major axis of length 10 as shown in the figure; Find an equation for this ellipse;

$$
\begin{aligned}
& c=3 \\
& a=5 ; \\
& b^{2}=a^{2}-c^{2} \quad \Rightarrow \quad b^{2}=16 \\
& \quad \Rightarrow \quad b=4 ;
\end{aligned}
$$

Standard Forms of the Equation of an Ellipse

Ellipse type 1:

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \frac{(y-h)^{2}}{a^{2}}+\frac{(x-k)^{2}}{b^{2}}=1
$$

Ellipse type 2:

Example I

- Find the center, vertices and foci of the ellipse $4 x^{2}+9 y^{2}-8 x+36 y+4=0$; Then sketch the graph;

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}-8 x+36 y+4=0 \quad \Rightarrow \quad 4 x^{2}+9 y^{2}-8 x+36 y=-4 \\
& \quad \Rightarrow \quad 4\left(x^{2}-2 x\right)+9\left(y^{2}+4 y\right)=-4 \\
& \quad \Rightarrow \quad 4\left(x^{2}-2 x+1\right)+9\left(y^{2}+4 y+4\right)=-4+4+36 \\
& \quad \Rightarrow \quad 4(x-1)^{2}+9(y+2)^{2}=36 \quad \Rightarrow \quad \frac{(x-1)^{2}}{9}+\frac{(y+2)^{2}}{4}=1
\end{aligned}
$$

Thus, center is $(1,-2), a=3$ and, therefore, vertices are at $(4,-2)$ and $(-2,-2)$ and $c^{2}=a^{2}-b^{2}=5 \Rightarrow c=$ $\sqrt{5}$, and, thus, foci are at $(1+\sqrt{5},-2)$ and ($1-\sqrt{5},-2$);

Example II

- Find the standard form of the equation of the ellipse with center at $(4,-2)$, foci $F_{2}(4,1)$ and $F_{1}(4,-5)$ and minor axis of length 10 ;

$$
\begin{aligned}
& (h, k)=(4,-2) \\
& c=3 ; \\
& b=5 ; \\
& a^{2}=b^{2}+c^{2}=34 ; \\
& \frac{(x-4)^{2}}{25}+\frac{(y+2)^{2}}{34}=1 ;
\end{aligned}
$$

Eccentricity

Eccentricity of an Ellipse

The eccentricity e of an ellipse is the ratio of c to a, where c is the distance from the center to a focus and a is one-half the length of the major axis, i.e., $e=\frac{c}{a}$.

- Example: What is the eccentricity of the ellipse with equation $8 x^{2}+9 y^{2}=18 ?$

$$
\begin{aligned}
& 8 x^{2}+9 y^{2}=18 \Rightarrow \frac{4 x^{2}}{9}+\frac{y^{2}}{2}=1 \Rightarrow \frac{x^{2}}{(3 / 2)^{2}}+\frac{y^{2}}{(\sqrt{2})^{2}}=1 ; \\
& a=\frac{3}{2} ; \quad c=\sqrt{a^{2}-b^{2}}=\sqrt{\frac{9}{4}-2}=\frac{1}{2} ; \\
& e=\frac{c}{a}=\frac{1 / 2}{3 / 2}=\frac{1}{3} ;
\end{aligned}
$$

Application: The Earth's Orbit

Earth has a mean distance of 93 million miles and a perihelion distance of 91.5 million miles. Find an equation for Earth's orbit;

The mean distance gives $a=93$; The distance from the Sun to the center of the Earth's orbit is

$$
c=93-91.5=1.5 \text { million miles; }
$$

Therefore, $b^{2}=a^{2}-c^{2}=8646.75$; Thus, an equation of the orbit is

$$
\frac{x^{2}}{93^{2}}+\frac{y^{2}}{8646.75}=1
$$

Subsection 3

Hyperbolas

Definition of a Hyperbola

Definition of a Hyperbola

A hyperbola is the set of all points in the plane the difference between whose distances from two fixed points, called foci, is a positive constant.

- The axis joining the vertices is the transverse axis;
- The midpoint of the transverse axes is the center;
- The conjugate axis is the segment passing through the center and perpendicular to the transverse axis;

Standard Forms of the Equation of a Hyperbola

Example

- Find the vertices and the foci of the hyperbola given by the equation

$$
\begin{aligned}
\frac{x^{2}}{16}-\frac{y^{2}}{9} & =1 \\
a & =4 \\
b & =3 \\
c & =\sqrt{a^{2}+b^{2}}=5
\end{aligned}
$$

Vertices at $(-4,0)$ and $(4,0)$; Foci at $(-5,0)$ and $(5,0)$;

Asymptotes

$$
\underset{\substack{\mathbf{C}^{2}-\frac{b}{a} x}}{\frac{\mathbf{X}^{2}}{\mathbf{b}^{2}}=1}
$$

Example

- Find the vertices, the foci and the asymptotes of the hyperbola given by $\frac{y^{2}}{9}-\frac{x^{2}}{4}=1$; Then sketch its graph;

$$
\begin{aligned}
& a=3 \\
& b=2 \\
& c=\sqrt{a^{2}+b^{2}}=\sqrt{13}
\end{aligned}
$$

Vertices at $(0,-3)$ and $(0,3)$; Foci at $(0,-\sqrt{13})$ and $(0, \sqrt{13})$;
Asymptotes $y=-\frac{3}{2} x$ and $y=\frac{3}{2} x$;

Standard Forms of the Equation of a Hyperbola

Example

- Find the center, vertices, foci and asymptotes of the hyperbola given by the equation $4 x^{2}-9 y^{2}-16 x+54 y-29=0$; Then sketch its graph;

$$
\begin{aligned}
& 4 x^{2}-9 y^{2}-16 x+54 y-29=0 \quad \Rightarrow \quad 4 x^{2}-9 y^{2}-16 x+54 y=29 \\
& \quad \Rightarrow \quad 4\left(x^{2}-4 x\right)-9\left(y^{2}-6 y\right)=29 \\
& \quad \Rightarrow \quad 4\left(x^{2}-4 x+4\right)-9\left(y^{2}-6 y+9\right)=29+16-81 \\
& \quad \Rightarrow \quad 4(x-2)^{2}-9(y-3)^{2}=-36 \quad \Rightarrow \quad \frac{(y-3)^{2}}{4}-\frac{(x-2)^{2}}{9}=1
\end{aligned}
$$

So $(h, k)=(2,3), \quad a=2, \quad b=3$, and $c=\sqrt{13}$;
These give that center is at $(2,3)$, vertices are at $(2,5)$ and $(2,1)$, foci are at $(2,3+\sqrt{13})$ and $(2,3-\sqrt{13})$ and asymptotes are $y-3=-\frac{2}{3}(x-2)$ and $y-3=\frac{2}{3}(x-2)$;

Eccentricity

Eccentricity of a Hyperbola

The eccentricity e of a hyperbola is the ratio of c to a, where c is the distance from the center to a focus and a is one-half the length of the transverse axis, i.e., $e=\frac{c}{a}$.

- Example: What is an equation for a hyperbola centered at the origin with eccentricity $e=\frac{3}{2}$ and focus at $(6,0)$?

$$
\begin{aligned}
& c=6 ; \quad \frac{c}{a}=\frac{3}{2} \Rightarrow a=4 ; \quad b^{2}=c^{2}-a^{2}=20 ; \\
& \frac{x^{2}}{16}-\frac{y^{2}}{20}=1 ;
\end{aligned}
$$

Subsection 4

Introduction to Polar Coordinates

Polar Coordinates

Polar Equations

- A polar equation is an equation in r and θ;
- A solution to a polar equation is an ordered pair (r, θ) that satisfies the equation;
- The graph of a polar equation is the set of all points whose ordered pairs are solutions of the equation;
- What is the graph of the polar equation $\theta=\frac{\pi}{6}$?
- What is the graph of $r=2$?

Polar Equation of a Line

The graph of a polar equation $\theta=\alpha$ is a line through the pole at an angle α from the polar axis;

Graph of $r=a$

The graph of a polar equation $r=a$ is a circle with center at the pole and radius a;

Graphs of $r \sin \theta=a$ and $r \cos \theta=a$

Graphs of $r \sin \theta=a$ and $r \cos \theta=a$

- The graph of $r \sin \theta=a$ is a horizontal line passing through the point (a, $\frac{\pi}{2}$);
- The graph of $r \cos \theta=a$ is a vertical line passing through the point (a, 0);

Symmetries and Tests for Symmetry

Substitution	Symmetry w.r.t
$-\theta$ for θ	the line $\theta=0$
$\pi-\theta$ for $\theta,-r$ for r	the line $\theta=0$
$\pi-\theta$ for θ	the line $\theta=\frac{\pi}{2}$
$-\theta$ for $\theta,-r$ for r	the line $\theta=\frac{\pi}{2}$
$-r$ for r	the pole
$\pi+\theta$ for θ	the pole

Example of Testing for Symmetry

Substitution	Symmetry w.r.t
$-\theta$ for θ	the line $\theta=0$
$\pi-\theta$ for $\theta,-r$ for r	the line $\theta=0$

- Example: Show that the graph of $r=4 \cos \theta$ is symmetric with respect to $\theta=0$; Graph the equation;

$$
r=4 \cos (-\theta) \quad \Leftrightarrow \quad r=4 \cos \theta
$$

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
r	4	$2 \sqrt{3}$	$2 \sqrt{2}$	2	0
θ	0	$-\frac{\pi}{6}$	$-\frac{\pi}{4}$	$-\frac{\pi}{3}$	$-\frac{\pi}{2}$
r	4	$2 \sqrt{3}$	$2 \sqrt{2}$	2	0

Polar Equations of Circle

Polar Equations of a Circle

- The graph of $r=a$ is a circle with center at the pole and radius $a ;$
- The graph of $r=a \cos \theta$ is a circle that is symmetric with respect to the line $\theta=0$;
- The graph of $r=a \sin \theta$ is a circle that is symmetric with respect to the line $\theta=\frac{\pi}{2}$;

Polar Equations of Limaçons

Polar Equations of a Limaçon

- The graph of the equation $r=a+b \cos \theta$ is a limaçon that is symmetric with respect to the line $\theta=0$;
- The graph of the equation $r=a+b \sin \theta$ is a limaçon that is symmetric with respect to the line $\theta=\frac{\pi}{2}$;
- If $|a|=|b|$, then the graph is called a cardioid;

$$
\left|\frac{a}{b}\right| \geq 2
$$

Convex limaçon (no dimple)

$1<\left|\frac{a}{b}\right|<2$
Limaçon
(with a dimple)

$\left|\frac{a}{b}\right|=1$
Cardioid
(heart-shaped limaçon)

$\left|\frac{a}{b}\right|<1$
Limaçon (with an inner loop)

Example of a Limaçon

- Sketch the graph of $r=2-2 \sin \theta$;

θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0
r	4	$2+\sqrt{3}$	$2+\sqrt{2}$	3	2
θ	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
r	1	$2-\sqrt{2}$	$2-\sqrt{3}$	0	

Polar Equations of Rose Curves

Polar Equations of a Roses

The graphs of the equations $r=a \cos n \theta$ and $r=a \sin n \theta$ are rose curves; When n is even, the number of petals is $2 n$; When n is odd the number of petals is n;

$$
\begin{aligned}
& r=a \cos 4 \theta \\
& n=4 \text { is even, } 2 n=8 \text { petals }
\end{aligned}
$$

$r=a \cos 5 \theta$
$n=5$ is odd, 5 petals

Example of a Rose Curve

- Sketch the graph of $r=2 \sin 3 \theta$;

$$
\begin{array}{c|ccccccc}
\theta & 0 & \frac{\pi}{18} & \frac{\pi}{6} & \frac{5 \pi}{18} & \frac{\pi}{3} & \frac{7 \pi}{18} & \frac{\pi}{2} \\
\hline r & 0 & 1 & 2 & 1 & 0 & -1 & -2
\end{array}
$$

Transformations Between Rectangular and Polar

Transformations Between Rectangular and Polar Coordinates

- Given the point (r, θ) in polar coordinates, the transformation equations to change its representation into rectangular coordinates are

$$
x=r \cos \theta \quad y=r \sin \theta
$$

- Given the point (x, y) in rectangular coordinates, the transformation equations to change its representation into polar coordinates are

$$
r=\sqrt{x^{2}+y^{2}} \quad \tan \theta=\frac{y}{x}, x \neq 0
$$

where θ is chosen so that the point lies in the appropriate quadrant;

Transforming Coordinates

- Find the rectangular coordinates of the points whose polar coordinates are:
- $\left(6, \frac{3 \pi}{4}\right)$;

$$
\begin{aligned}
& x=r \cos \theta=6 \cos \frac{3 \pi}{4}=6\left(-\frac{\sqrt{2}}{2}\right)=-3 \sqrt{2} \\
& y=r \sin \theta=6 \sin \frac{3 \pi}{4}=6 \frac{\sqrt{2}}{2}=3 \sqrt{2} \\
& \left(6, \frac{3 \pi}{4}\right) \equiv(-3 \sqrt{2}, 3 \sqrt{2})
\end{aligned}
$$

- $\left(-4,30^{\circ}\right)$;

$$
\begin{aligned}
& x=r \cos \theta=-4 \cos 30^{\circ}=-4 \cdot \frac{\sqrt{3}}{2}=-2 \sqrt{3} \\
& y=r \sin \theta=-4 \sin 30^{\circ}=-4 \cdot \frac{1}{2}=-2 ; \\
& \left(-4,30^{\circ}\right) \equiv(-2 \sqrt{3},-2) ;
\end{aligned}
$$

- Find the polar coordinates of the point with rectangular coordinates $(-2,-2 \sqrt{3})$;

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{(-2)^{2}+(-2 \sqrt{3})^{2}}=4 \\
& \tan \theta=\frac{y}{x}=\frac{-2 \sqrt{3}}{-2}=\sqrt{3} \quad \Rightarrow \quad \theta=\frac{4 \pi}{3} \\
& (-2,-2 \sqrt{3}) \equiv\left(4, \frac{4 \pi}{3}\right)
\end{aligned}
$$

Transforming Equations I

- Find a rectangular form of the equation $r^{2} \cos 2 \theta=3$;

$$
\begin{aligned}
& r^{2} \cos 2 \theta=3 \quad \Rightarrow \quad r^{2}\left(2 \cos ^{2} \theta-1\right)=3 \quad \Rightarrow \quad 2 r^{2} \cos ^{2} \theta-r^{2}=3 \\
& \quad \Rightarrow 2(r \cos \theta)^{2}-r^{2}=3 \Rightarrow 2 x^{2}-\left(x^{2}+y^{2}\right)=3 \\
& \quad \Rightarrow \quad x^{2}-y^{2}=3
\end{aligned}
$$

- Find a rectangular form of the equation $r=8 \cos \theta$;

$$
\begin{aligned}
r= & 8 \cos \theta \quad \Rightarrow \quad r^{2}=8 r \cos \theta \quad \Rightarrow \quad x^{2}+y^{2}=8 x \\
& \Rightarrow \quad x^{2}-8 x+y^{2}=0 \quad \Rightarrow \quad x^{2}-8 x+16+y^{2}=16 \\
& \Rightarrow \quad(x-4)^{2}+y^{2}=4^{2} ;
\end{aligned}
$$

Subsection 5

Polar Equations of the Conics

Focus-Directrix Definitions of the Conics

Focus-Directrix Definitions of the Conics

Let F be a fixed point and D a fixed line on the plane; Consider the set of all points P, such that $\frac{d(P, F)}{d(P, D)}=e$, where e is a constant; The graph is a parabola for $e=1$, an ellipse for $0<e<1$, and a hyperbola for $e>1$.

Ellipse

Parabola

Hyperbola

Standard Forms of Polar Equations of the Conics

Standard Forms of Polar Equations of the Conics

Suppose that the pole is the focus of a conic section of eccentricity e, with directrix d units from the focus; Then the equation of the conic is given by one of the following:

Directrix right or above Directrix left or below

Vertical Directrix	$r=\frac{e d}{1+e \cos \theta}$	$r=\frac{e d}{1-e \cos \theta}$
Horizontal Directrix	$r=\frac{e d}{1+e \sin \theta}$	$r=\frac{e d}{1-e \sin \theta}$

When the equation involves $\cos \theta$, the line $\theta=0$ is an axis of symmetry; When it involves $\sin \theta$, the line $\theta=\frac{\pi}{2}$ is an axis of symmetry.

Example I

- What type is the conic that is given by the equation $r=\frac{4}{5-3 \sin \theta}$?

$$
\begin{aligned}
r= & \frac{4}{5-3 \sin \theta} \\
& \Rightarrow \quad r=\frac{4}{5\left(1-\frac{3}{5} \sin \theta\right)} \\
& \Rightarrow \quad r=\frac{\frac{4}{5}}{1-\frac{3}{5} \sin \theta}
\end{aligned}
$$

Thus, $e=\frac{3}{5}<1$, showing that this is the equation of an ellipse;

Note that the fact that the denominator has a "-" and a sine immediately reveals that the directrix is horizontal and lies below the focus located at the pole.

Example II

- Describe and sketch the graph of $r=\frac{8}{2-3 \sin \theta}$;

$$
\begin{aligned}
& r=\frac{8}{2-3 \sin \theta} \Rightarrow r=\frac{8}{2\left(1-\frac{3}{2} \sin \theta\right)} \\
& \quad \Rightarrow \quad r=\frac{4}{1-\frac{3}{2} \sin \theta}
\end{aligned}
$$

Thus, $e=\frac{3}{2}>1$, showing that this is the equation of a hyperbola;

The fact that the denominator has a "-" and a sine immediately reveals that the directrix is horizontal and lies below the focus. Moreover, ed $=\frac{3}{2} d=4 \Rightarrow d=\frac{8}{3}$;

Example III

- Describe and sketch the graph of $r=\frac{4}{2+\cos \theta}$;

$$
\begin{aligned}
r= & \frac{4}{2+\cos \theta} \Rightarrow r=\frac{4}{2\left(1+\frac{1}{2} \cos \theta\right)} \\
& \Rightarrow \quad r=\frac{2}{1+\frac{1}{2} \cos \theta}
\end{aligned}
$$

Thus, $e=\frac{1}{2}<1$, showing that this is the equation of an ellipse;

The fact that the denominator has a " + " and a cosine immediately reveals that the directrix is vertical and lies to the right of the focus. Moreover, ed $=\frac{1}{2} d=2 \Rightarrow d=4$;

Example IV

- Find the polar equation of a parabola with vertex at $\left(2, \frac{\pi}{2}\right)$ and focus at the pole;

The directrix is horizontal and lies above the pole; Therefore, the equation must involve the sine function and have a " + " sign, i.e., it is of the form $r=\frac{e d}{1+e \sin \theta}$; Since the conic is a parabola, $e=1$; Since the distance from the focus to the directrix is 4 , we have $d=4$;

Therefore, the equation must be $r=\frac{4}{1+\sin \theta}$;

Subsection 6

Parametric Equations

Curves and Parametric Equations

Curve and Parametric Equations

Given an interval I, a curve is a set of ordered pairs (x, y), where

$$
x=f(t), \quad y=g(t), \quad \text { for } t \in I
$$

The variable t is called the parameter and the equations $x=f(t)$ and $y=g(t)$ the parametric equations of the curve.

- Example: Consider the equations $\left\{\begin{array}{l}x=2 t-1 \\ y=4 t+1\end{array}\right.$ for $t \in(-\infty, \infty)$; Plot a few points to reveal the curve:

t	$x=2 t-1$	$y=4 t+1$	(x, y)
-2	-5	-7	$(-5,-7)$
-1	-3	-3	$(-3,-3)$
0	-1	1	$(-1,1)$
1	1	5	$(1,5)$
2	3	9	$(3,9)$

Example

Consider the equations $\left\{\begin{array}{ll}x & =t^{2}+t \\ y & =t-1\end{array}\right.$ for $t \in(-\infty, \infty)$; Plot a few points to reveal the curve:

t	$x=t^{2}+t$	$y=t-1$	(x, y)
-3	6	-4	$(6,-4)$
-2	2	-3	$(2,-3)$
-1	0	-2	$(0,-2)$
0	0	-1	$(0,-1)$
1	2	0	$(2,0)$
2	6	1	$(6,1)$

Eliminating the Parameter

- Consider again the equations $\left\{\begin{array}{ll}x & =t^{2}+t \\ y & =t-1\end{array}\right.$ for $t \in(-\infty, \infty)$;

Solve the second for $t: t=y+1$; Plug in this value in for t in the first equation:

$$
x=(y+1)^{2}+(y+1) \Rightarrow x=y^{2}+2 y+1+y+1 \Rightarrow x=y^{2}+3 y+2
$$

This clearly represents a parabola in Cartesian coordinates as we saw by plotting the parametric curve:

Example I

Eliminate the parameter and sketch the curve of the parametric equations $\left\{\begin{array}{l}x=\sin t \\ y=\cos t\end{array}\right.$ for $0 \leq t \leq 2 \pi ;$
Square the first equation $x^{2}=\sin ^{2} t$; Square the second equation $y^{2}=\cos ^{2} t$; Add the two equations

$$
x^{2}+y^{2}=\sin ^{2} t+\cos ^{2} t=1
$$

Thus, we have a circle of radius 1 centered at the origin:

Example II

Eliminate the parameter and sketch the curve of the parametric equations
$\left\{\begin{array}{l}x=2+3 \cos t \\ y=3+2 \sin t\end{array}\right.$ for $0 \leq t \leq \pi ;$
Solve the first equation for $\cos t$ and square: $\cos ^{2}(t)=\left(\frac{x-2}{3}\right)^{2}$; Solve the second equation for $\sin t$ and square: $\sin ^{2} t=\left(\frac{y-3}{2}\right)^{2}$; Add the two equations

$$
\begin{gathered}
\cos ^{2} t+\sin ^{2} t=\left(\frac{x-2}{3}\right)^{2}+\left(\frac{y-3}{2}\right)^{2} \\
\Rightarrow \quad \frac{(x-2)^{2}}{9}+\frac{(y-3)^{2}}{4}=1
\end{gathered}
$$

Thus, we have an ellipse with center $(2,3)$ and length of major axis 6 : Because $0 \leq t \leq \pi$, we actually get only the upper half of the ellipse!

Time as a Parameter

Consider the equations $\left\{\begin{array}{ll}x & =t^{2} \\ y & =t+1\end{array}\right.$ for $-2 \leq t \leq 3$; Plot a few points to reveal the curve:

t	$x=t^{2}$	$y=t+1$	(x, y)
-2	4	-1	$(4,-1)$
-1	1	0	$(1,0)$
0	0	1	$(0,1)$
1	1	2	$(1,2)$
2	4	3	$(4,3)$
3	9	4	$(9,4)$

Example

Suppose the equations $\left\{\begin{array}{ll}x & =\sin t \\ y & =\cos t\end{array}\right.$, for $0 \leq t \leq 2 \pi$, describe the motion of a point in a plane; Describe the motion of the point.

Plot a few points to reveal the curve:

t	$x=\sin t$	$y=\cos t$	(x, y)
0	0	1	$(0,1)$
$\frac{\pi}{2}$	1	0	$(1,0)$
π	0	-1	$(0,-1)$
$\frac{3 \pi}{2}$	-1	0	$(-1,0)$
2π	0	1	$(0,1)$

The point starts at $(0,1)$ and rotates clockwise around the unit circle centered at the origin until it reaches back to its original position.

The Cycloid

- A cycloid is the curve traced by a point on the circumference of a circle of radius a that is rolling on a straight line without slipping;

$$
x=h-a \sin \theta ; \quad y=k-a \cos \theta
$$

Note $k=a$ and $h=a \theta$; Therefore, the parametric equations describing the cycloid are

$$
\left\{\begin{array}{l}
x=a(\theta-\sin \theta) \\
y=a(1-\cos \theta)
\end{array}, \quad \theta \geq 0\right.
$$

