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Definition of Exponential Functions

Definition of an Exponential Function

The exponential function with base b is defined by

f (x) = bx ,

where 0 < b 6= 1 and x is a real number.

Example: Evaluate f (x) = 3x at x = 2, x = −4 and x = π;

f (2) = 32 = 9;
f (−4) = 3−4 = 1

34
= 1

81 ;
f (π) = 3π ≈ 31.544;
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Graphs of Exponential Functions
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Properties of f (x) = b
x

For 0 < b 6= 1, the exponential function defined by f (x) = bx has the
following properties:

1 Its domain is the set of all real numbers and its range is the set of all
positive real numbers;

2 The graph is a smooth continuous curve with a y -intercept at (0, 1)
and passing through (1, b);

3 The function f is one-to-one (its graph passes the horizontal line test);
4 If b > 1, f is increasing and has the negative x-axis as a horizontal

asymptote; If 0 < b < 1, f is decreasing and has the positive x-axis as
a horizontal asymptote;
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Graphing an Exponential Function

Graph the exponential function f (x) =

(
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Using Translations to Graph Exponential Functions
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Using Stretching and Reflections

x y = 2x y = 2 · 2x
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The Natural Exponential Function f (x) = e
x

The number e ≈ 2.718 is defined

as the number that

(

1 +
1

n

)n

ap-

proaches as n increases without a
bound:

The function f (x) = ex is called the
natural exponential function:
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Application: Cooling

A cup of coffee is heated to 160◦F and placed in a room that
maintains a temperature of 70◦F; The temperature T of the coffee in
degrees Fahrenheit after t minutes is given by T = 70 + 90e−0.0485t ;

Find the temperature of the coffee 20 minutes after its is placed into
the room;

T (20) = 70 + 90e−0.0485·20 ≈ 104.1◦F;

Use a graphing utility to
determine when the
temperature of the coffee
will reach 90◦F;

This will happen after
about 31 minutes;
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Subsection 2

Logarithmic Functions and Applications
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Definition of Logarithms and Logarithmic Functions

Definition of a Logarithm and a Logarithmic Function

If 0 < b 6= 1 and x > 0, then

y = logb x if and only if by = x .

The expression logb x is read the logarithm base b of x ; The function
defined by f (x) = logb x is the logarithmic function with base b; It is
the inverse function of the exponential g(x) = bx ;

Because of the inverse relationship between the exponential function
and the logarithmic function with base b, we get

blogb x = x and logb b
x = x ;

Exponential and Logarithmic Forms

The exponential form of y = logb x is by = x ;
The logarithmic form of by = x is y = logb x ;
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Switching Between Logarithmic and Exponential Forms

Write each equation in its exponential form:

3 = log2 8 ⇐⇒ 23 = 8;
2 = log10 (x + 5) ⇐⇒ 102 = x + 5;
loge x = 4 ⇐⇒ e4 = x ;
logb b

3 = 3 ⇐⇒ b3 = b3;

Write each equation in its logarithmic form:

32 = 9 ⇐⇒ 2 = log3 9;
53 = x ⇐⇒ 3 = log5 x ;
ab = c ⇐⇒ b = loga c ;
blogb 5 = 5 ⇐⇒ logb 5 = logb 5;
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Basic Properties of Logarithmic Functions

Basic Logarithmic Properties

1 logb b = 1;

2 logb 1 = 0;

3 logb (b
x) = x ;

4 blogb x = x ;

Example: Evaluate each of the following logarithms:

log8 1 = 0;
log5 5 = 1;
log2 (2

4) = 4;
3log3 7 = 7;
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Graphs of Logarithmic Functions
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Properties of the Graphs

For 0 < b 6= 1, the function f (x) = logb x has the following
properties:

1 The domain is the set of positive real numbers and its range is the set
of all real numbers;

2 The graph has an x-intercept at (1, 0) and passing through (b, 1);
3 If b > 1, f is increasing and has the negative y -axis as a vertical

asymptote; If 0 < b < 1, f is decreasing and has the positive y -axis as
a vertical asymptote;
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Domains of Logarithmic Functions

Domain of f (x) = logb x

The domain of the function f (x) = logb x is {x : x > 0} or in interval
notation (0,∞).

Example: Find the domain of each of the following logarithmic
functions:

f (x) = log6 (x − 3);
x − 3 > 0 ⇒ x > 3;

In interval notation Dom(f ) = (3,∞);
g(x) = log2 |x + 2|;

|x + 2| > 0 ⇒ x 6= −2;
In interval notation Dom(g) = (−∞,−2) ∪ (−2,∞);
h(x) = log5 (

x
8−x

);
We use the sign table method:

x < 0 0 < x < 8 x > 8
x

8−x
− + −

Therefore, 0 < x < 8 or in interval notation Dom(h) = (0, 8);
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Using Translations to Graph Logarithmic Functions
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Common and Natural Logarithms

Definition of Common and Natural Logarithms

The function f (x) = log10 x is called the common logarithmic function;

It is usually written as f (x) = log x ;
The function f (x) = loge x is called the natural logarithmic function; It
is usually written as f (x) = ln x ;

Note that the definitions of logarithmic functions give

y = log x if and only if 10y = x ;

Similarly,
y = ln x if and only if ey = x ;
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Application: Physiology

As the population of a city increases, the average walking speed of a
pedestrian also increases; A relation between the average pedestrian
walking speed s in miles per hour and the population x is thousands
is given by

s(x) = 0.37 ln x + 0.05;

What is the average walking speed in San Francisco, which has a
population of 780, 000 people?

s(780) = 0.37 · ln 780 + 0.05 ≈ 2.51 mph;

Estimate the population of a city where the average walking speed is
3.1 mph;

3.1 = 0.37 ln x + 0.05 ⇒ 3.05 = 0.37 ln x

⇒ ln x =
3.05

0.37
⇒ x = e

3.05
0.37 ≈ 3801.85;

Thus, the population is about 3, 800, 000;

George Voutsadakis (LSSU) Trigonometry January 2015 21 / 45



Exponential and Logarithmic Functions Properties of Logarithms and Logarithmic Scales

Subsection 3

Properties of Logarithms and Logarithmic Scales

George Voutsadakis (LSSU) Trigonometry January 2015 22 / 45



Exponential and Logarithmic Functions Properties of Logarithms and Logarithmic Scales

Properties of Logarithms

Properties of Logarithms

In the following properties b,M and N are positive real numbers (b 6= 1).

Product Property: logb (MN) = logb M + logb N;

Quotient Property: logb

(

M

N

)

= logb M − logb N;

Power Property: logb (M
p) = p logb M;

Logarithm-of-Each-Side: M = N implies logb M = logb N;

One-to-One Property: logb M = logb N implies M = N;
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Expanding and Condensing Logarithmic Expressions

Expand the following logarithmic expressions, assuming that all
variables represent positive numbers; When possible, evaluate
logarithmic expressions;

log3 (xy
2) = log3 x + log3 (y

2) = log3 x + 2 log3 y ;

ln

(

e
√
y

z3

)

= ln (e
√
y )− ln (z3) = ln e + ln (y1/2)− 3 ln z =

1 +
1

2
ln y − 3 ln z ;

Rewrite the following expressions as single logarithms with coefficient
1; All variables represent positive numbers;

2 ln x +
1

2
ln (x + 4) = ln (x2) + ln [(x + 4)1/2] = ln [x2

√
x + 4];

log5 (x
2 − 4) + 3 log5 y − log5 (x − 2)2 = log5 (x

2 − 4) + log5 (y
3)−

log5 (x − 2)2 = log5 [y
3(x2 − 4)]− log5 (x − 2)2 =

log5

[

y3(x2 − 4)

(x − 2)2

]

= log5

[

y3(x + 2)(x − 2)

(x − 2)2

]

= log5

[

y3(x + 2)

x − 2

]

;
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Change-of-Base Formula

Change-of-Base Formula

If x , a and b are positive real numbers, with a, b 6= 1, then

logb x =
loga x

loga b
;

In particular, if x , b are positive numbers, with b 6= 1,

logb x =
log x

log b
=

ln x

ln b
;

Example: Use both Change-of-Base and calculators to compute to
the nearest thousandth:

log3 18 =
ln 18

ln 3
≈ 2.631;

log12 400 =
ln 400

ln 12
≈ 2.411;
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Logarithmic Scales: The Richter Scale

The Richter Scale Magnitude of an Earthquake

An earthquake with intensity of I has a Richter scale magnitude of

M = log

(

I

I0

)

,

where I0 is the measure of the intensity of a zero-level (smallest
seismographically measurable) earthquake;

Example: Find the Richter scale magnitude of a 1999 Joshua Tree,
CA, earthquake whose intensity was I = 12, 589, 254I0 ;

M = log

(

I

I0

)

= log

(

12, 589, 254I0
I0

)

= log 12, 589, 254 ≈ 7.1;

Example: Find the intensity of the 1999 Taiwan earthquake, which
measured 7.6 on the Richter scale;

M = log

(

I

I0

)

⇒ 7.6 = log

(

I

I0

)

⇒ I

I0
= 107.6 ⇒ I = 107.6I0 =

39, 810, 717I0 ;
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Logarithmic Scales: Comparing Earthquake Intensities

Example: The 1960 Chile earthquake had a Richter scale magnitude
of 9.5, whereas the 1989 San Francisco earthquake a Richter scale
magnitude of 7.1; Compare the intensities of the two earthquakes;

MC = log

(

IC

I0

)

⇒ IC

I0
= 10MC ⇒ IC = 10MC I0;

MSF = log

(

ISF

I0

)

⇒ ISF

I0
= 10MSF ⇒ ISF = 10MSF I0;

IC

ISF
=

10MC I0

10MSF I0
= 10MC−MSF = 109.5−7.1 = 102.4 ≈ 251

⇒ IC ≈ 251ISF;
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Logarithmic Scales: pH of a Solution

Definition of the pH of a Solution

The pH of a solution with a hydronium anion concentration of H+ moles
per liter is given by pH = − log [H+];

Example: Find the pH of each liquid:
Orange juice with H+ = 2.8× 10−4 mole/liter;

pH = − log [H+] = − log (2.8× 10−4) ≈ 3.55;

Milk with H+ = 3.97× 10−7 mole/liter;
pH = − log [H+] = − log (3.97× 10−7) ≈ 6.4;

Baking soda with H+ = 3.98× 10−9 mole/liter;
pH = − log [H+] = − log (3.98× 10−9) ≈ 8.4;

Example: A sample blood has pH of 7.3. Find the hydronium ion
concentration of the blood;
pH = − log [H+] ⇒ log [H+] = −pH ⇒ H+ = 10−pH = 10−7.3 ≈
5× 10−8 moles/liter;
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Subsection 4

Exponential and Logarithmic Equations
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Solving Exponential Equations

Equality of Exponents Theorem

If bx = by , then x = y , provided 0 < b 6= 1.

Example: Use the Equality of Exponents to solve 23x−7 = 32;

23x−7 = 32 ⇒ 23x−7 = 25

⇒ 3x − 7 = 5 ⇒ 3x = 12 ⇒ x = 4;

The Exponential-Logarithmic Correspondence

y = logb x if and only if by = x .

Example: Solve the exponential equation 5x = 40;

5x = 40 ⇒ x = log5 40;
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Solving by Taking Logarithms of Both Sides

Solve 32x−1 = 5x+2;

32x−1 = 5x+2 ⇒ ln 32x−1 = ln 5x+2

⇒ (2x − 1) ln 3 = (x + 2) ln 5

⇒ 2x ln 3− ln 3 = x ln 5 + 2 ln 5

⇒ 2x ln 3− x ln 5 = 2 ln 5 + ln 3

⇒ x(2 ln 3− ln 5) = 2 ln 5 + ln 3

⇒ x =
2 ln 5 + ln 3

2 ln 3− ln 5
≈ 7.3;
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Exponential Equations Having Two Solutions

Solve the equation
2x + 2−x

2
= 3;

2x + 2−x

2
= 3 ⇒ 2x + 2−x = 6 ⇒ 2x(2x + 2−x) = 6 · 2x

⇒ (2x)2 + 1 = 6 · 2x ⇒ (2x )2 − 6 · 2x + 1 = 0

y=2x⇒ y2 − 6y + 1 = 0 (Recall y =
−b ±

√
b2 − 4ac

2a
)

⇒ y =
6±

√
36− 4

2
=

6± 4
√
2

2
= 3± 2

√
2;

Therefore,

2x = 3± 2
√
2 ⇒ x = log2 (3± 2

√
2);
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Solving Logarithmic Equations

The Exponential-Logarithmic Correspondence

y = logb x if and only if by = x .

Example: Solve the logarithmic equation log (3x − 5) = 2;

log (3x − 5) = 2 ⇒ 3x − 5 = 102

⇒ 3x = 105 ⇒ x = 35;

Example: Solve the logarithmic equation log 2x − log (x − 3) = 1;

log 2x − log (x − 3) = 1 ⇒ log
2x

x − 3
= 1

⇒ 2x

x − 3
= 101 ⇒ 2x = 10(x − 3)

⇒ 2x = 10x − 30 ⇒ 8x = 30 ⇒ x = 15
4 ;
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Example

Example: Solve the logarithmic equation log3 x + log3 (x + 6) = 3;

log3 x + log3 (x + 6) = 3

⇒ log3 [x(x + 6)] = 3

⇒ x(x + 6) = 33

⇒ x2 + 6x − 27 = 0

⇒ (x + 9)(x − 3) = 0

⇒ x = −9 or x = 3;

Only x = 3 is an admissible solution!
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Applying the One-to-One Property

Equality of Logarithms Theorem

If logb x = logb y , then x = y , provided 0 < b 6= 1.

Example: Solve ln (3x + 8) = ln (2x + 2) + ln (x − 2);

ln (3x + 8) = ln (2x + 2) + ln (x − 2)

⇒ ln (3x + 8) = ln [(2x + 2)(x − 2)]

⇒ 3x + 8 = (2x + 2)(x − 2)

⇒ 3x + 8 = 2x2 − 2x − 4

⇒ 2x2 − 5x − 12 = 0

⇒ (2x + 3)(x − 4) = 0

⇒ x = −3
2 or x = 4

Only x = 4 is an admissible solution!
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One More Example

Example: Solve ln x = 1
2 ln (2x + 5

2) +
1
2 ln 2;

ln x = 1
2 ln (2x + 5

2 ) +
1
2 ln 2

⇒ 2 ln x = ln (2x + 5
2) + ln 2

⇒ ln (x2) = ln [2(2x + 5
2)]

⇒ x2 = 4x + 5

⇒ x2 − 4x − 5 = 0

⇒ (x + 1)(x − 5) = 0

⇒ x = −1 or x = 5

Only x = 5 is an admissible solution!
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Subsection 5

Exponential Growth and Decay
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Exponential Growth and Decay

Exponential Growth and Decay Functions

If a quantity N increases or decreases at a rate proportional to the amount
present at time t, then the quantity can be modeled by N(t) = N0e

kt ,

where N0 is the value of N at time t = 0, and k is a constant called the
growth rate constant.

If k > 0, N increases as t increases and N(t) = N0e
kt is called an

exponential growth function;
If k < 0, N decreases as t increases and N(t) = N0e

kt is called an
exponential decay function;
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Example: Population Growth

The population of a city is growing exponentially and it was 16,400 in
1995 and 20,200 in 2005.

Find the exponential growth function that models the population
growth of the city;
Let N(t) = N0e

kt model the population of the city t years since 1995;
Then, we get

N0 = 16400;

20200 = 16400e10k ⇒ e10k = 20200
16400

⇒ 10k = ln 20200
16400 ⇒ k = 1

10 ln
20200
16400 ≈ 0.0208;

Therefore, N(t) = 16400e0.0208t;
Predict to the nearest 100, the population of the city in 2020;

N(25) = 16400e0.0208·25 ≈ 27, 600;
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Example: Radioactive Decay

Find the exponential decay function for the amount of phosphorus
(32P) that remains in a sample after t days, given that the half-life of
phosphorus is 14 days;

Let N(t) = N0e
kt model the amount of phosphorus remaining in a

sample after t days; Then, we get

1
2N0 = N0e

14k

⇒ e14k = 1
2

⇒ 14k = ln 1
2

⇒ k = 1
14 ln

1
2 ≈ −0.0495;

Therefore, N(t) = N0e
−0.0495t ;
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Example: Carbon Dating

Estimate the age of a bone if it now has 85% of the carbon-14 that it
had at time t = 0, given that the half-life of carbon-14 (14C) is 5730
years;

Let N(t) = N0e
kt model the amount of carbon-14 remaining in the

bone after t years; Then, we get

1
2N0 = N0e

5730k ⇒ e5730k = 1
2

⇒ 5730k = ln 1
2 ⇒ k = 1

5730 ln
1
2 ≈ −0.00012;

Therefore, N(t) = N0e
−0.00012t ;

Therefore, if the bone has N = 0.85N0, we get

0.85N0 = N0e
−0.00012t ⇒ 0.85 = e−0.00012t

⇒ −0.00012t = ln 0.85 ⇒ t = − 1
0.00012 ln 0.85

≈ 1343.486 years;
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Compound Interest

The Compound Interest Formula

If a principal P is invested at an annual rate r , expressed as a decimal, and
compounded n times per year for t years, it produces the balance
A = P(1 + r

n
)nt .

Example: Find the balance if $1,000 is invested at an annual interest
rate of 10% for 2 years compounded monthly;

A = 1000(1 +
0.1

12
)12·2 = 1000 · 1.008324 ≈ $1, 220.39

Example: Find the balance if $1,000 is invested at an annual interest
rate of 10% for 2 years compounded daily;

A = 1000(1 +
0.1

365
)365·2 = 1000 · 1.000274730 ≈ $1, 221.37;
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Continuous Compounding

Continuous Compounding Interest Formula

If an account with principal P and annual interest rate r is compounded
continuously for t years, then the balance is A = Pert .

Example: Find the balance after 4 years on $3,000 invested at an
annual rate of 4% compounded continuously;

A = Pert = 3000e0.04·4 = 3000e0.16 = $3, 520.53;

Example: Find the time required for money invested at an annual rate
of 5% to double in value if the investment is compounded
semiannually; Do the same for continuous compounding;

A = P(1 + r
n
)nt

2P = P(1 + 0.05
2 )2t

2 = 1.0252t

2t = log1.025 2

t = ln 2
2 ln 1.025 ≈ 14.04;

A = Pert

2P = Pe0.05t

2 = e0.05t

0.05t = ln 2
t = 20 ln 2 ≈ 13.86;
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Restricted Growth and the Logistic Model

A restricted growth model, unlike the exponential growth model,
takes into account the effects of limited resources;

The Logistic Model

The magnitude of a population at time t ≥ 0 is given by

P(t) =
c

1 + ae−bt
,

where c is the carrying capacity

(max population supported) and b is
a positive constant called the growth

rate constant; The initial popula-

tion is P0 = P(0) and the relation
between a, c and P0 is a = c−P0

P0
;
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Example: Coyote Population

At the beginning of 2005 the coyote population
in a restricted desert area was estimated at 200;
By the beginning of 2007, it had increased to
250; The estimate for the carrying capacity of
the area is 500 coyotes;

What is the growth rate constant of the logistic model of the coyote
population?

c = 500, P0 = 200, a = c−P0
P0

= 500−200
200 = 3

2 ;

P(t) = 500
1+1.5e−bt ;

P(2) = 250 ⇒ 500
1+1.5e−2b = 250 ⇒ 1 + 1.5e−2b = 2

⇒ 1.5e−2b = 1 ⇒ e−2b = 2
3 ⇒ b = −1

2 ln
2
3 ≈ 0.203;

When will the population reach 400 coyotes?
P(t) = 400 ⇒ 500

1+1.5e−0.203t = 400 ⇒ 1 + 1.5e−0.203t = 1.25

⇒ e−0.203t = 0.25
1.5 ⇒ t = − 1

0.203 ln
0.25
1.5 ≈ 8.8 years;
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