College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) Exponential and Logarithmic Functions

- Exponential Functions and Applications
- Logarithmic Functions and Applications
- Properties of Logarithms and Logarithmic Scales
- Exponential and Logarithmic Equations
- Exponential Growth and Decay

Subsection 1

Exponential Functions and Applications

Definition of Exponential Functions

Definition of an Exponential Function

The exponential function with base b is defined by

$$
f(x)=b^{x}
$$

where $0<b \neq 1$ and x is a real number.

- Example: Evaluate $f(x)=3^{x}$ at $x=2, x=-4$ and $x=\pi$;

$$
\begin{aligned}
& f(2)=3^{2}=9 \\
& f(-4)=3^{-4}=\frac{1}{3^{4}}=\frac{1}{81} \\
& f(\pi)=3^{\pi} \approx 31.544
\end{aligned}
$$

Graphs of Exponential Functions

x	$y=2^{x}$
-3	$\frac{1}{8}$
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4
3	8
x	$y=\left(\frac{1}{3}\right)^{x}$
-3	27
-2	9
-1	3
0	1
1	$\frac{1}{3}$
2	$\frac{1}{9}$
3	$\frac{1}{27}$

Properties of $f(x)=b^{x}$

- For $0<b \neq 1$, the exponential function defined by $f(x)=b^{x}$ has the following properties:
- Its domain is the set of all real numbers and its range is the set of all positive real numbers;
(2. The graph is a smooth continuous curve with a y-intercept at $(0,1)$ and passing through $(1, b)$;
- The function f is one-to-one (its graph passes the horizontal line test);

O If $b>1, f$ is increasing and has the negative x-axis as a horizontal asymptote; If $0<b<1, f$ is decreasing and has the positive x-axis as a horizontal asymptote;

Graphing an Exponential Function

Graph the exponential function $f(x)=\left(\frac{3}{4}\right)^{x}$;

x	$y=\left(\frac{3}{4}\right)^{x}$
-3	$\frac{64}{27}$
-2	$\frac{16}{9}$
-1	$\frac{4}{3}$
0	1
1	$\frac{3}{4}$
2	$\frac{9}{16}$
3	$\frac{27}{64}$

Using Translations to Graph Exponential Functions

x	$y=2^{x}$	$y=2^{x}-3$
-2	$\frac{1}{4}$	$-\frac{11}{4}$
-1	$\frac{1}{2}$	$-\frac{5}{2}$
0	1	-2
1	2	-1
2	4	1

x	$y=2^{x}$	x	$y=2^{x-3}$
-2	$\frac{1}{4}$	1	$\frac{1}{4}$
-1	$\frac{1}{2}$	2	$\frac{1}{2}$
0	1	3	1
1	2	4	2
2	4	5	4

Using Stretching and Reflections

x	$y=2^{x}$	$y=2 \cdot 2^{x}$
-2	$\frac{1}{4}$	$\frac{1}{2}$
-1	$\frac{1}{2}$	1
0	1	2
1	2	4
2	4	8

The Natural Exponential Function $f(x)=e^{x}$

The number $e \approx 2.718$ is defined as the number that $\left(1+\frac{1}{n}\right)^{n}$ approaches as n increases without a bound:

The function $f(x)=e^{x}$ is called the natural exponential function:

Application: Cooling

- A cup of coffee is heated to $160^{\circ} \mathrm{F}$ and placed in a room that maintains a temperature of $70^{\circ} \mathrm{F}$; The temperature T of the coffee in degrees Fahrenheit after t minutes is given by $T=70+90 e^{-0.0485 t}$;
- Find the temperature of the coffee 20 minutes after its is placed into the room;

$$
T(20)=70+90 e^{-0.0485 \cdot 20} \approx 104.1^{\circ} \mathrm{F}
$$

- Use a graphing utility to determine when the temperature of the coffee will reach $90^{\circ} \mathrm{F}$;

This will happen after about 31 minutes;

Subsection 2

Logarithmic Functions and Applications

Definition of Logarithms and Logarithmic Functions

Definition of a Logarithm and a Logarithmic Function

If $0<b \neq 1$ and $x>0$, then

$$
y=\log _{b} x \text { if and only if } b^{y}=x
$$

The expression $\log _{b} x$ is read the logarithm base b of x; The function defined by $f(x)=\log _{b} x$ is the logarithmic function with base b; It is the inverse function of the exponential $g(x)=b^{x}$;

- Because of the inverse relationship between the exponential function and the logarithmic function with base b, we get

$$
b^{\log _{b} x}=x \quad \text { and } \quad \log _{b} b^{x}=x
$$

Exponential and Logarithmic Forms

The exponential form of $y=\log _{b} x$ is $b^{y}=x$; The logarithmic form of $b^{y}=x$ is $y=\log _{b} x$;

Switching Between Logarithmic and Exponential Forms

- Write each equation in its exponential form:
- $3=\log _{2} 8 \Longleftrightarrow 2^{3}=8$;
- $2=\log _{10}(x+5) \Longleftrightarrow 10^{2}=x+5$;
- $\log _{e} x=4 \Longleftrightarrow e^{4}=x$;
- $\log _{b} b^{3}=3 \Longleftrightarrow b^{3}=b^{3}$;
- Write each equation in its logarithmic form:
- $3^{2}=9 \Longleftrightarrow 2=\log _{3} 9$;
- $5^{3}=x \Longleftrightarrow 3=\log _{5} x$;
- $a^{b}=c \Longleftrightarrow b=\log _{a} c$;
- $b^{\log _{b} 5}=5 \Longleftrightarrow \log _{b} 5=\log _{b} 5$;

Basic Properties of Logarithmic Functions

Basic Logarithmic Properties

(ㄱ) $\log _{b} b=1$;
(ㄹ) $\log _{b} 1=0$;
(0) $\log _{b}\left(b^{x}\right)=x$;
(-) $b^{\log _{b} x}=x$;

- Example: Evaluate each of the following logarithms:
- $\log _{8} 1=0$;
- $\log _{5} 5=1$;
- $\log _{2}\left(2^{4}\right)=4$;
- $3^{\log _{3} 7}=7$;

Graphs of Logarithmic Functions

x	$y=3^{x}$	x	$y=\log _{3} x$
-2	$\frac{1}{9}$	$\frac{1}{9}$	-2
-1	$\frac{1}{3}$	$\frac{1}{3}$	-1
0	1	1	0
1	3	3	1
2	9	9	2

x	$y=\left(\frac{1}{3}\right)^{x}$	x	$y=\log _{1 / 3} x$
-2	9	9	-2
-1	3	3	-1
0	1	1	0
1	$\frac{1}{3}$	$\frac{1}{3}$	1
2	$\frac{1}{9}$	$\frac{1}{9}$	2

Properties of the Graphs

- For $0<b \neq 1$, the function $f(x)=\log _{b} x$ has the following properties:
(1) The domain is the set of positive real numbers and its range is the set of all real numbers;
(3) The graph has an x-intercept at $(1,0)$ and passing through $(b, 1)$;
(3) If $b>1, f$ is increasing and has the negative y-axis as a vertical asymptote; If $0<b<1, f$ is decreasing and has the positive y-axis as a vertical asymptote;

Domains of Logarithmic Functions

Domain of $f(x)=\log _{b} x$

The domain of the function $f(x)=\log _{b} x$ is $\{x: x>0\}$ or in interval notation $(0, \infty)$.

- Example: Find the domain of each of the following logarithmic functions:
- $f(x)=\log _{6}(x-3)$;

$$
x-3>0 \Rightarrow x>3 ;
$$

In interval notation $\operatorname{Dom}(f)=(3, \infty)$;

- $g(x)=\log _{2}|x+2|$;

$$
|x+2|>0 \quad \Rightarrow \quad x \neq-2
$$

In interval notation $\operatorname{Dom}(g)=(-\infty,-2) \cup(-2, \infty)$;

- $h(x)=\log _{5}\left(\frac{x}{8-x}\right)$;

We use the sign table method:

	$x<0$	$0<x<8$	$x>8$
$\frac{x}{8-x}$	-	+	-

Therefore, $0<x<8$ or in interval notation $\operatorname{Dom}(h)=(0,8)$;

Using Translations to Graph Logarithmic Functions

x	$y=\log _{4} x$	$y=\log _{4} x+3$
$\frac{1}{16}$	-2	1
$\frac{1}{4}$	-1	2
1	0	3
4	1	4
16	2	5

x	$y=\log _{4} x$	x	$y=\log _{4}(x+3)$
$\frac{1}{16}$	-2	$-\frac{47}{16}$	-2
$\frac{1}{4}$	-1	$-\frac{11}{4}$	-1
1	0	-2	0
4	1	1	1
16	2	13	2

Common and Natural Logarithms

Definition of Common and Natural Logarithms

The function $f(x)=\log _{10} x$ is called the common logarithmic function; It is usually written as $f(x)=\log x$;
The function $f(x)=\log _{e} x$ is called the natural logarithmic function; It is usually written as $f(x)=\ln x$;

- Note that the definitions of logarithmic functions give

$$
y=\log x \quad \text { if and only if } 10^{y}=x
$$

- Similarly,

$$
y=\ln x \text { if and only if } e^{y}=x ;
$$

Application: Physiology

- As the population of a city increases, the average walking speed of a pedestrian also increases; A relation between the average pedestrian walking speed s in miles per hour and the population x is thousands is given by

$$
s(x)=0.37 \ln x+0.05
$$

- What is the average walking speed in San Francisco, which has a population of 780,000 people?

$$
s(780)=0.37 \cdot \ln 780+0.05 \approx 2.51 \mathrm{mph} ;
$$

- Estimate the population of a city where the average walking speed is 3.1 mph ;

$$
\begin{aligned}
& 3.1=0.37 \ln x+0.05 \quad \Rightarrow \quad 3.05=0.37 \ln x \\
& \quad \Rightarrow \quad \ln x=\frac{3.05}{0.37} \quad \Rightarrow \quad x=e^{\frac{3.05}{0.37}} \approx 3801.85
\end{aligned}
$$

Thus, the population is about $3,800,000$;

Subsection 3

Properties of Logarithms and Logarithmic Scales

Properties of Logarithms

Properties of Logarithms

In the following properties b, M and N are positive real numbers $(b \neq 1)$.

- Product Property: $\log _{b}(M N)=\log _{b} M+\log _{b} N$;
- Quotient Property: $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$;
- Power Property: $\log _{b}\left(M^{p}\right)=p \log _{b} M$;
- Logarithm-of-Each-Side: $M=N$ implies $\log _{b} M=\log _{b} N$;
- One-to-One Property: $\log _{b} M=\log _{b} N$ implies $M=N$;

Expanding and Condensing Logarithmic Expressions

- Expand the following logarithmic expressions, assuming that all variables represent positive numbers; When possible, evaluate logarithmic expressions;
- $\log _{3}\left(x y^{2}\right)=\log _{3} x+\log _{3}\left(y^{2}\right)=\log _{3} x+2 \log _{3} y ;$
- $\ln \left(\frac{e \sqrt{y}}{z^{3}}\right)=\ln (e \sqrt{y})-\ln \left(z^{3}\right)=\ln e+\ln \left(y^{1 / 2}\right)-3 \ln z=$
$1+\frac{1}{2} \ln y-3 \ln z ;$
- Rewrite the following expressions as single logarithms with coefficient 1; All variables represent positive numbers;
- $2 \ln x+\frac{1}{2} \ln (x+4)=\ln \left(x^{2}\right)+\ln \left[(x+4)^{1 / 2}\right]=\ln \left[x^{2} \sqrt{x+4}\right] ;$
- $\log _{5}\left(x^{2}-4\right)+3 \log _{5} y-\log _{5}(x-2)^{2}=\log _{5}\left(x^{2}-4\right)+\log _{5}\left(y^{3}\right)-$ $\log _{5}(x-2)^{2}=\log _{5}\left[y^{3}\left(x^{2}-4\right)\right]-\log _{5}(x-2)^{2}=$

$$
\log _{5}\left[\frac{y^{3}\left(x^{2}-4\right)}{(x-2)^{2}}\right]=\log _{5}\left[\frac{y^{3}(x+2)(x-2)}{(x-2)^{2}}\right]=\log _{5}\left[\frac{y^{3}(x+2)}{x-2}\right]
$$

Change-of-Base Formula

Change-of-Base Formula

If x, a and b are positive real numbers, with $a, b \neq 1$, then

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

In particular, if x, b are positive numbers, with $b \neq 1$,

$$
\log _{b} x=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}
$$

- Example: Use both Change-of-Base and calculators to compute to the nearest thousandth:
- $\log _{3} 18=\frac{\ln 18}{\ln 3} \approx 2.631$;
- $\log _{12} 400=\frac{\ln 400}{\ln 12} \approx 2.411$;

Logarithmic Scales: The Richter Scale

The Richter Scale Magnitude of an Earthquake

An earthquake with intensity of I has a Richter scale magnitude of

$$
M=\log \left(\frac{I}{I_{0}}\right)
$$

where I_{0} is the measure of the intensity of a zero-level (smallest seismographically measurable) earthquake;

- Example: Find the Richter scale magnitude of a 1999 Joshua Tree, CA, earthquake whose intensity was $I=12,589,254 I_{0}$;

$$
M=\log \left(\frac{I}{I_{0}}\right)=\log \left(\frac{12,589,254 I_{0}}{I_{0}}\right)=\log 12,589,254 \approx 7.1
$$

- Example: Find the intensity of the 1999 Taiwan earthquake, which measured 7.6 on the Richter scale;
$M=\log \left(\frac{I}{I_{0}}\right) \Rightarrow 7.6=\log \left(\frac{I}{I_{0}}\right) \Rightarrow \frac{I}{I_{0}}=10^{7.6} \Rightarrow I=10^{7.6} I_{0}=$ $39,810,717 I_{0}$;

Logarithmic Scales: Comparing Earthquake Intensities

- Example: The 1960 Chile earthquake had a Richter scale magnitude of 9.5, whereas the 1989 San Francisco earthquake a Richter scale magnitude of 7.1; Compare the intensities of the two earthquakes;

$$
\begin{aligned}
& M_{\mathrm{C}}=\log \left(\frac{I_{\mathrm{C}}}{I_{0}}\right) \Rightarrow \frac{I_{\mathrm{C}}}{I_{0}}=10^{M_{\mathrm{C}}} \Rightarrow I_{\mathrm{C}}=10^{M_{\mathrm{C}} I_{0}} \\
& M_{\mathrm{SF}}=\log \left(\frac{I_{\mathrm{SF}}}{I_{0}}\right) \Rightarrow \frac{I_{\mathrm{SF}}}{I_{0}}=10^{M_{\mathrm{SF}}} \Rightarrow \quad I_{\mathrm{SF}}=10^{M_{\mathrm{SF}} I_{0}} \\
& \frac{I_{\mathrm{C}}}{I_{\mathrm{SF}}}=\frac{10^{M_{\mathrm{C}} I_{0}}}{10^{M_{\mathrm{SF}} I_{0}}=10^{M_{\mathrm{C}}-M_{\mathrm{SF}}}=10^{9.5-7.1}=10^{2.4} \approx 251} \begin{array}{l}
\Rightarrow I_{\mathrm{C}} \approx 251 I_{\mathrm{SF}} ;
\end{array}
\end{aligned}
$$

Logarithmic Scales: pH of a Solution

Definition of the pH of a Solution

The $\mathbf{p H}$ of a solution with a hydronium anion concentration of H^{+}moles per liter is given by

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ;
$$

- Example: Find the pH of each liquid:
- Orange juice with $\mathrm{H}^{+}=2.8 \times 10^{-4} \mathrm{~mole} / \mathrm{liter}$;

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.8 \times 10^{-4}\right) \approx 3.55 ;
$$

- Milk with $\mathrm{H}^{+}=3.97 \times 10^{-7}$ mole/liter;

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(3.97 \times 10^{-7}\right) \approx 6.4 ;
$$

- Baking soda with $\mathrm{H}^{+}=3.98 \times 10^{-9}$ mole/liter;

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(3.98 \times 10^{-9}\right) \approx 8.4
$$

- Example: A sample blood has pH of 7.3. Find the hydronium ion concentration of the blood; $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \Rightarrow \log \left[\mathrm{H}^{+}\right]=-\mathrm{pH} \Rightarrow \mathrm{H}^{+}=10^{-\mathrm{pH}}=10^{-7.3} \approx$ $5 \times 10^{-8} \mathrm{moles} /$ liter;

Subsection 4

Exponential and Logarithmic Equations

Solving Exponential Equations

Equality of Exponents Theorem

If $b^{x}=b^{y}$, then $x=y$, provided $0<b \neq 1$.

- Example: Use the Equality of Exponents to solve $2^{3 x-7}=32$;

$$
\begin{aligned}
& 2^{3 x-7}=32 \quad \Rightarrow \quad 2^{3 x-7}=2^{5} \\
& \quad \Rightarrow \quad 3 x-7=5 \quad \Rightarrow \quad 3 x=12 \quad \Rightarrow \quad x=4
\end{aligned}
$$

The Exponential-Logarithmic Correspondence

$$
y=\log _{b} x \quad \text { if and only if } b^{y}=x
$$

- Example: Solve the exponential equation $5^{x}=40$;

$$
5^{x}=40 \Rightarrow x=\log _{5} 40
$$

Solving by Taking Logarithms of Both Sides

- Solve $3^{2 x-1}=5^{x+2}$;

$$
\begin{aligned}
3^{2 x-1} & =5^{x+2} \quad \Rightarrow \quad \ln 3^{2 x-1}=\ln 5^{x+2} \\
\Rightarrow & (2 x-1) \ln 3=(x+2) \ln 5 \\
\Rightarrow & 2 x \ln 3-\ln 3=x \ln 5+2 \ln 5 \\
\Rightarrow & 2 x \ln 3-x \ln 5=2 \ln 5+\ln 3 \\
\Rightarrow & x(2 \ln 3-\ln 5)=2 \ln 5+\ln 3 \\
\Rightarrow & x=\frac{2 \ln 5+\ln 3}{2 \ln 3-\ln 5} \approx 7.3
\end{aligned}
$$

Exponential Equations Having Two Solutions

- Solve the equation $\frac{2^{x}+2^{-x}}{2}=3$;

$$
\begin{aligned}
& \frac{2^{x}+2^{-x}}{2}=3 \quad \Rightarrow \quad 2^{x}+2^{-x}=6 \quad \Rightarrow \quad 2^{x}\left(2^{x}+2^{-x}\right)=6 \cdot 2^{x} \\
& \Rightarrow \quad\left(2^{x}\right)^{2}+1=6 \cdot 2^{x} \quad \Rightarrow \quad\left(2^{x}\right)^{2}-6 \cdot 2^{x}+1=0 \\
& \left.\stackrel{y=2^{x}}{\Rightarrow} \quad y^{2}-6 y+1=0 \quad \text { (Recall } y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right) \\
& \Rightarrow \quad y=\frac{6 \pm \sqrt{36-4}}{2}=\frac{6 \pm 4 \sqrt{2}}{2}=3 \pm 2 \sqrt{2}
\end{aligned}
$$

Therefore,

$$
2^{x}=3 \pm 2 \sqrt{2} \quad \Rightarrow \quad x=\log _{2}(3 \pm 2 \sqrt{2})
$$

Solving Logarithmic Equations

The Exponential-Logarithmic Correspondence

$$
y=\log _{b} x \quad \text { if and only if } b^{y}=x
$$

- Example: Solve the logarithmic equation $\log (3 x-5)=2$;

$$
\begin{gathered}
\log (3 x-5)=2 \quad \Rightarrow \quad 3 x-5=10^{2} \\
\quad \Rightarrow \quad 3 x=105 \quad \Rightarrow \quad x=35
\end{gathered}
$$

- Example: Solve the logarithmic equation $\log 2 x-\log (x-3)=1$;

$$
\begin{aligned}
& \log 2 x-\log (x-3)=1 \quad \Rightarrow \quad \log \frac{2 x}{x-3}=1 \\
& \quad \Rightarrow \quad \frac{2 x}{x-3}=10^{1} \quad \Rightarrow \quad 2 x=10(x-3) \\
& \quad \Rightarrow 2 x=10 x-30 \quad \Rightarrow \quad 8 x=30 \quad \Rightarrow \quad x=\frac{15}{4}
\end{aligned}
$$

Example

- Example: Solve the logarithmic equation $\log _{3} x+\log _{3}(x+6)=3$;

$$
\begin{gathered}
\log _{3} x+\log _{3}(x+6)=3 \\
\Rightarrow \quad \log _{3}[x(x+6)]=3 \\
\Rightarrow \quad x(x+6)=3^{3} \\
\Rightarrow \quad x^{2}+6 x-27=0 \\
\Rightarrow \quad(x+9)(x-3)=0 \\
\Rightarrow \quad x=-9 \text { or } x=3
\end{gathered}
$$

Only $x=3$ is an admissible solution!

Applying the One-to-One Property

Equality of Logarithms Theorem

If $\log _{b} x=\log _{b} y$, then $x=y$, provided $0<b \neq 1$.

- Example: Solve $\ln (3 x+8)=\ln (2 x+2)+\ln (x-2)$;

$$
\begin{aligned}
& \ln (3 x+8)=\ln (2 x+2)+\ln (x-2) \\
& \quad \Rightarrow \quad \ln (3 x+8)=\ln [(2 x+2)(x-2)] \\
& \quad \Rightarrow \quad 3 x+8=(2 x+2)(x-2) \\
& \Rightarrow \quad 3 x+8=2 x^{2}-2 x-4 \\
& \Rightarrow \quad 2 x^{2}-5 x-12=0 \\
& \Rightarrow \quad(2 x+3)(x-4)=0 \\
& \Rightarrow \quad x=-\frac{3}{2} \text { or } x=4
\end{aligned}
$$

Only $x=4$ is an admissible solution!

One More Example

- Example: Solve $\ln x=\frac{1}{2} \ln \left(2 x+\frac{5}{2}\right)+\frac{1}{2} \ln 2$;

$$
\begin{aligned}
\ln x & =\frac{1}{2} \ln \left(2 x+\frac{5}{2}\right)+\frac{1}{2} \ln 2 \\
\Rightarrow & 2 \ln x=\ln \left(2 x+\frac{5}{2}\right)+\ln 2 \\
\Rightarrow & \ln \left(x^{2}\right)=\ln \left[2\left(2 x+\frac{5}{2}\right)\right] \\
\Rightarrow & x^{2}=4 x+5 \\
\Rightarrow & x^{2}-4 x-5=0 \\
\Rightarrow & (x+1)(x-5)=0 \\
\Rightarrow & x=-1 \text { or } x=5
\end{aligned}
$$

Only $x=5$ is an admissible solution!

Subsection 5

Exponential Growth and Decay

Exponential Growth and Decay

Exponential Growth and Decay Functions

If a quantity N increases or decreases at a rate proportional to the amount present at time t, then the quantity can be modeled by $N(t)=N_{0} e^{k t}$, where N_{0} is the value of N at time $t=0$, and k is a constant called the growth rate constant.

- If $k>0, N$ increases as t increases and $N(t)=N_{0} e^{k t}$ is called an exponential growth function;
- If $k<0, N$ decreases as t increases and $N(t)=N_{0} e^{k t}$ is called an exponential decay function;

Example: Population Growth

- The population of a city is growing exponentially and it was 16,400 in 1995 and 20,200 in 2005.
- Find the exponential growth function that models the population growth of the city;
Let $N(t)=N_{0} e^{k t}$ model the population of the city t years since 1995; Then, we get

$$
\begin{aligned}
& N_{0}=16400 ; \\
& 20200=16400 e^{10 k} \Rightarrow e^{10 k}=\frac{20200}{16400} \\
& \quad \Rightarrow \quad 10 k=\ln \frac{20200}{16400} \quad \Rightarrow \quad k=\frac{1}{10} \ln \frac{20200}{16400} \approx 0.0208
\end{aligned}
$$

Therefore, $N(t)=16400 e^{0.0208 t}$;

- Predict to the nearest 100, the population of the city in 2020;

$$
N(25)=16400 e^{0.0208 \cdot 25} \approx 27,600 ;
$$

Example: Radioactive Decay

- Find the exponential decay function for the amount of phosphorus $\left({ }^{32} \mathrm{P}\right)$ that remains in a sample after t days, given that the half-life of phosphorus is 14 days;
Let $N(t)=N_{0} e^{k t}$ model the amount of phosphorus remaining in a sample after t days; Then, we get

$$
\begin{aligned}
& \frac{1}{2} N_{0}=N_{0} e^{14 k} \\
& \quad \Rightarrow \quad e^{14 k}=\frac{1}{2} \\
& \quad \Rightarrow \quad 14 k=\ln \frac{1}{2} \\
& \quad \Rightarrow \quad k=\frac{1}{14} \ln \frac{1}{2} \approx-0.0495
\end{aligned}
$$

Therefore, $N(t)=N_{0} e^{-0.0495 t}$;

Example: Carbon Dating

- Estimate the age of a bone if it now has 85% of the carbon-14 that it had at time $t=0$, given that the half-life of carbon-14 $\left({ }^{14} \mathrm{C}\right)$ is 5730 years;
Let $N(t)=N_{0} e^{k t}$ model the amount of carbon-14 remaining in the bone after t years; Then, we get

$$
\begin{aligned}
& \frac{1}{2} N_{0}=N_{0} e^{5730 k} \quad \Rightarrow \quad e^{5730 k}=\frac{1}{2} \\
& \quad \Rightarrow \quad 5730 k=\ln \frac{1}{2} \quad \Rightarrow \quad k=\frac{1}{5730} \ln \frac{1}{2} \approx-0.00012
\end{aligned}
$$

Therefore, $N(t)=N_{0} e^{-0.00012 t}$;
Therefore, if the bone has $N=0.85 N_{0}$, we get

$$
\begin{aligned}
& 0.85 N_{0}=N_{0} e^{-0.00012 t} \quad \Rightarrow \quad 0.85=e^{-0.00012 t} \\
& \quad \Rightarrow \quad-0.00012 t=\ln 0.85 \quad \Rightarrow \quad t=-\frac{1}{0.00012} \ln 0.85 \\
& \approx 1343.486 \text { years; }
\end{aligned}
$$

Compound Interest

The Compound Interest Formula

If a principal P is invested at an annual rate r, expressed as a decimal, and compounded n times per year for t years, it produces the balance $A=P\left(1+\frac{r}{n}\right)^{n t}$.

- Example: Find the balance if $\$ 1,000$ is invested at an annual interest rate of 10% for 2 years compounded monthly;

$$
A=1000\left(1+\frac{0.1}{12}\right)^{12 \cdot 2}=1000 \cdot 1.0083^{24} \approx \$ 1,220.39
$$

- Example: Find the balance if $\$ 1,000$ is invested at an annual interest rate of 10% for 2 years compounded daily;

$$
A=1000\left(1+\frac{0.1}{365}\right)^{365 \cdot 2}=1000 \cdot 1.000274^{730} \approx \$ 1,221.37
$$

Continuous Compounding

Continuous Compounding Interest Formula

If an account with principal P and annual interest rate r is compounded continuously for t years, then the balance is $A=P e^{r t}$.

- Example: Find the balance after 4 years on $\$ 3,000$ invested at an annual rate of 4% compounded continuously;

$$
A=P e^{r t}=3000 e^{0.04 \cdot 4}=3000 e^{0.16}=\$ 3,520.53 ;
$$

- Example: Find the time required for money invested at an annual rate of 5% to double in value if the investment is compounded semiannually; Do the same for continuous compounding;

$$
\begin{array}{ll}
A=P\left(1+\frac{r}{n}\right)^{n t} & A=P e^{r t} \\
2 P=P\left(1+\frac{0.05}{2}\right)^{2 t} & 2 P=P e^{0.05 t} \\
2=1.025^{2 t} & 2=e^{0.05 t} \\
2 t=\log _{1.025} 2 & 0.05 t=\ln 2 \\
t=\frac{\ln 2}{2 \ln 1.025} \approx 14.04 ; & t=20 \ln 2 \approx 13.86 ;
\end{array}
$$

Restricted Growth and the Logistic Model

- A restricted growth model, unlike the exponential growth model, takes into account the effects of limited resources;

The Logistic Model

The magnitude of a population at time $t \geq 0$ is given by

$$
P(t)=\frac{c}{1+a e^{-b t}}
$$

where c is the carrying capacity (max population supported) and b is a positive constant called the growth rate constant; The initial population is $P_{0}=P(0)$ and the relation between a, c and P_{0} is $a=\frac{c-P_{0}}{P_{0}}$;

Example: Coyote Population

At the beginning of 2005 the coyote population in a restricted desert area was estimated at 200; By the beginning of 2007, it had increased to 250; The estimate for the carrying capacity of the area is 500 coyotes;

- What is the growth rate constant of the logistic model of the coyote population?

$$
\begin{aligned}
& c=500, \quad P_{0}=200, \quad a=\frac{c-P_{0}}{P_{0}}=\frac{500-200}{200}=\frac{3}{2} ; \\
& P(t)=\frac{500}{1+1.5 e^{-b t} ;} \\
& P(2)=250 \Rightarrow \quad \frac{500}{1+1.5 e^{-2 b}}=250 \quad \Rightarrow \quad 1+1.5 e^{-2 b}=2 \\
& \Rightarrow 1.5 e^{-2 b}=1 \Rightarrow e^{-2 b}=\frac{2}{3} \Rightarrow b=-\frac{1}{2} \ln \frac{2}{3} \approx 0.203 ;
\end{aligned}
$$

- When will the population reach 400 coyotes?

$$
\begin{aligned}
& P(t)=400 \Rightarrow \frac{500}{1+1.5 e^{-0.203 t}}=400 \Rightarrow 1+1.5 e^{-0.203 t}=1.25 \\
& \quad \Rightarrow \quad e^{-0.203 t}=\frac{0.25}{1.5} \quad \Rightarrow \quad t=-\frac{1}{0.203} \ln \frac{0.25}{1.5} \approx 8.8 \text { years; }
\end{aligned}
$$

