College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) The Unit Circle: Sine and Cosine Functions

- Angles
- Right Triangle Trigonometry
- Unit Circle
- The Other Trigonometric Functions

Subsection 1

Angles

Angles in Degrees in Standard Position

Drawing an Angle in Degrees in Standard Position

- Sketch an angle of 30° in standard position.

Note that $30^{\circ}=\frac{1}{3} 90^{\circ}$.

- Sketch an angle of -135° in standard position.

Note that $-135^{\circ}=-90^{\circ}-45^{\circ}$.

Angles in Radians in Standard Position

Finding a Radian Measure

- Find the radian measure of one-third of a full rotation.

A full rotation corresponds to 2π radians. Hence, a third of a full rotation equals $\frac{2 \pi}{3}$ radians.

Converting Radians to Degrees

- Convert each radian measure to degrees.
(a) $\frac{\pi}{6}$
(b) 3
(a) Find the fraction of the circle represented:

$$
\frac{\frac{\pi}{6}}{2 \pi}=\frac{1}{12} .
$$

Then find how much in degrees is $\frac{1}{12}$ th of the circle:

$$
\frac{1}{12} \cdot 360^{\circ}=30^{\circ} .
$$

(b) Same process:

$$
\frac{3}{2 \pi} \cdot 360^{\circ}=\left(\frac{540}{\pi}\right)^{\circ}
$$

Converting Degrees to Radians

- Convert 15 degrees to radians.

Find the fraction of the circle represented:

$$
\frac{15^{\circ}}{360^{\circ}}=\frac{1}{24}
$$

Then find how much in radians is $\frac{1}{24}$ th of the circle:

$$
\frac{1}{24} \cdot 2 \pi=\frac{\pi}{12} .
$$

Coterminal and Reference Angles

- Coterminal angles are two angles in standard position that have the same terminal side.
- An angle's reference angle is the size of the smallest acute angle, t^{\prime}, formed by the terminal side of the angle t and the horizontal axis.

Finding an Angle Coterminal with an Angle $>360^{\circ}$

- Find the least positive angle θ that is coterminal with an angle measuring 800°, where $0^{\circ} \leq \theta<360^{\circ}$.

Find how many times 360 goes into 800: 2 times.
Subtract these many multiples of 360 from 800:

$$
800^{\circ}-2 \cdot 360^{\circ}=80^{\circ}
$$

Finding an Angle Coterminal with an Angle $<0^{\circ}$

- Show the angle with measure -45° on a circle and find a positive coterminal angle α such that $0^{\circ} \leq \alpha<360^{\circ}$.

Add as many multiples of 360 as needed to get an angle between 0° and 360°.

$$
-45^{\circ}+360^{\circ}=315^{\circ} .
$$

Finding Coterminal Angles Using Radians

- Find an angle β that is coterminal with $\frac{19 \pi}{4}$, where $0 \leq \beta<2 \pi$. Find how many times 2π goes into $\frac{19 \pi}{4}$:
2 times.
Subtract this many multiples of 2π from $\frac{19 \pi}{4}$:

$$
\frac{19 \pi}{4}-2 \cdot 2 \pi=\frac{19 \pi}{4}-\frac{16 \pi}{4}=\frac{3 \pi}{4} .
$$

Finding the Length of an Arc

- In a circle of radius r, the length of an arc s subtended by an angle with measure θ in radians, shown in

is

$$
s=r \theta
$$

Careful: When using this equation, θ must be in radians!

Finding the Length of an Arc

- Find the arc length along a circle of radius 10 units subtended by an angle of 215°.
First convert the measure of the angle to radians:

$$
\frac{215^{\circ}}{360^{\circ}} \cdot 2 \pi=\frac{43 \pi}{36}
$$

Then use

$$
s=r \theta=10 \cdot \frac{43 \pi}{36}=\frac{430 \pi}{36}=\frac{215 \pi}{18} \text { units. }
$$

Area of a Sector

- The area of a sector of a circle with radius r subtended by an angle θ, measured in radians,

is

$$
A=\frac{1}{2} \theta r^{2} .
$$

Careful: When using this equation, θ must be in radians!

Finding the Area of a Sector

- An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees. What is the area of the sector of grass the sprinkler waters?

Convert degrees to radians:

$$
\frac{30^{\circ}}{360^{\circ}} \cdot 2 \pi=\frac{\pi}{6}
$$

Now we get

$$
A=\frac{1}{2} \theta r^{2}=\frac{1}{2} \cdot \frac{\pi}{6} \cdot 20^{2}=\frac{400 \pi}{12}=\frac{100 \pi}{3} \text { feet }^{2} .
$$

Angular Speed and Linear Speed

- Angular Speed:

$$
\omega=\frac{\theta}{t}
$$

- Linear Speed:

$$
v=\frac{s}{t}
$$

- Recall that $s=r \theta$.
- So we get

$$
v=\frac{s}{t}=\frac{r \theta}{t}=r \cdot \frac{\theta}{t}=r \omega .
$$

Finding Angular Speed

- A water wheel completes 1 rotation every 5 seconds. Find the angular speed in radians per second.

The wheel turns 2π radians in 5 seconds.
So we get

$$
\omega=\frac{\theta}{t}=\frac{2 \pi}{5} \text { radians } / \text { second }
$$

Finding a Linear Speed

- A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is traveling down the road.
First compute the angular speed of the wheel:

$$
\omega=\frac{\theta}{t}=\frac{180 \cdot 2 \pi \mathrm{rad}}{1 \mathrm{~min}}=360 \pi \mathrm{rad} / \mathrm{min} .
$$

Now compute the linear speed:

$$
v=r \omega=14 \mathrm{in} \cdot 360 \pi \mathrm{rad} / \mathrm{min}=5040 \pi \mathrm{in} / \mathrm{min} .
$$

Subsection 2

Right Triangle Trigonometry

Trigonometric Functions in a Right Triangle

- The six trigonometric functions are defined as follows:

$$
\begin{aligned}
\sin t & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\cos t & =\frac{\text { adjecent }}{\text { hypotenuse }} \\
\tan t & =\frac{\text { opposite }}{\text { adjacent }} \\
\csc t & =\frac{\text { hypotenuse }}{\text { opposite }} \\
\sec t & =\frac{\text { hypotenuse }}{\text { adjacent }} \\
\cot t & =\frac{\text { adjacent }}{\text { opposite }}
\end{aligned}
$$

Evaluating a Trigonometric Function of a Right Triangle

- Given the triangle shown, find the value of $\cos \alpha$.

We have by definition

$$
\cos \alpha=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{15}{17} .
$$

Evaluating Trigonometric Functions of Angles

- Using the triangle shown, evaluate $\sin \alpha$, $\cos \alpha, \tan \alpha, \sec \alpha, \csc \alpha$ and $\cot \alpha$.

We use again the definitions:

$$
\begin{array}{ll}
\sin \alpha=\frac{4}{5}, & \cos \alpha=\frac{3}{5}, \\
\tan \alpha=\frac{4}{3} \\
\sec \alpha=\frac{5}{3}, & \csc \alpha=\frac{5}{4}, \\
\cot \alpha=\frac{3}{4}
\end{array}
$$

Right Triangles With Special Angles

Evaluating Trigonometric Functions of Special Angles

- Find the exact value of the trigonometric functions of $\frac{\pi}{3}$ using side lengths.
Recall the right triangle configuration.
We have

$$
\begin{array}{lll}
\sin \frac{\pi}{3}=\frac{\sqrt{3} s}{2 s}=\frac{\sqrt{3}}{2}, & \cos \frac{\pi}{3}=\frac{s}{2 s}=\frac{1}{2}, & \tan \frac{\pi}{3}=\frac{\sqrt{3} s}{s}=\sqrt{3}, \\
\csc \frac{\pi}{3}=\frac{2 s}{\sqrt{3} s}=\frac{2 \sqrt{3}}{3}, & \sec \frac{\pi}{3}=\frac{2 s}{s}=2, & \cot \frac{\pi}{3}=\frac{s}{\sqrt{3} s}=\frac{\sqrt{3}}{3}
\end{array}
$$

Cofunction Identities

- The cofunction identities in radians:

$$
\cos t=\sin \left(\frac{\pi}{2}-t\right), \quad \sin t=\cos \left(\frac{\pi}{2}-t\right)
$$

$$
\tan t=\cot \left(\frac{\pi}{2}-t\right), \quad \cot t=\tan \left(\frac{\pi}{2}-t\right)
$$

$$
\sec t=\csc \left(\frac{\pi}{2}-t\right), \quad \csc t=\sec \left(\frac{\pi}{2}-t\right)
$$

Using Cofunction Identities

- If $\sin t=\frac{5}{12}$, find $\cos \left(\frac{\pi}{2}-t\right)$.

We get

$$
\cos \left(\frac{\pi}{2}-t\right)=\sin t=\frac{5}{12}
$$

Finding Missing Side Lengths Using Trigonometric Ratios

- Find the unknown sides of the triangle.

We get

$$
\sin 30^{\circ}=\frac{7}{c} \Rightarrow \frac{1}{2}=\frac{7}{c} \Rightarrow c=14 .
$$

Moreover,

$$
\cos 30^{\circ}=\frac{a}{c} \Rightarrow \frac{\sqrt{3}}{2}=\frac{a}{14} \Rightarrow a=7 \sqrt{3} .
$$

Measuring a Distance Indirectly

- To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of elevation between a line of sight to the top of the tree and the ground, as shown in the figure. Find the height of the tree.

We get

$$
\tan \left(57^{\circ}\right)=\frac{h}{30} \Rightarrow h=30 \tan \left(57^{\circ}\right) \Rightarrow h \approx 46.2 \text { feet. }
$$

Subsection 3

Unit Circle

Finding Function Values for Sine and Cosine

- Point P is a point on the unit circle corresponding to an angle of t, as shown in the figure. Find $\cos (t)$ and $\sin (t)$.
Recall that $\cos t=\frac{\text { adjacent }}{\text { hypotenuse }}$.
But on the unit circle, hypotenuse $=1$.
So

$$
\cos t=\frac{x}{1}=x=\frac{1}{2}
$$

Similarly,

$$
\sin t=y=\frac{\sqrt{3}}{2}
$$

Calculating Sines and Cosines along an Axis

- Find $\cos \left(90^{\circ}\right)$ and $\sin \left(90^{\circ}\right)$.

Draw the angle on the unit circle.

Then we have

$$
\cos \left(90^{\circ}\right)=x=0 \quad \text { and } \quad \sin \left(90^{\circ}\right)=y=1
$$

The Pythagorean Identity

- The Pythagorean Identity states that, for any real number t,

$$
\cos ^{2} t+\sin ^{2} t=1
$$

Looking at the figure,

$$
\cos ^{2} t+\sin ^{2} t=x^{2}+y^{2}=1
$$

Finding a Cosine from a Sine or a Sine from a Cosine

- If $\sin (t)=\frac{3}{7}$ and t is in the second quadrant, find $\cos (t)$. By the Pythagorean Identity,

$$
\begin{aligned}
& \sin ^{2} t+\cos ^{2} t=1 \\
& \frac{9}{49}+\cos ^{2} t=1 \\
& \cos ^{2} t=1-\frac{9}{49}=\frac{40}{49} \\
& \cos t= \pm \sqrt{\frac{40}{49}}= \pm \frac{2 \sqrt{10}}{7}
\end{aligned}
$$

Since $\frac{\pi}{2}<t<\pi, \cos t<0$.
Therefore, $\cos t=-\frac{2 \sqrt{10}}{7}$.

Finding a Reference Angle

- Find the reference angle of 225°.

Recall that an angle t 's reference angle is the size of the smallest acute angle, t^{\prime}, formed by the terminal side of the angle t and the horizontal axis.
So we have

$$
225^{\circ}-180^{\circ}=45^{\circ} .
$$

Using Reference Angles to Find Sine and Cosine

- Using a reference angle, find the exact value of $\cos \left(150^{\circ}\right)$ and $\sin \left(150^{\circ}\right)$.
The angle 150° has reference angle 30°.
So we get

$$
\begin{aligned}
& \sin \left(150^{\circ}\right)= \pm \sin \left(30^{\circ}\right)= \pm \frac{1}{2} \\
& \cos \left(150^{\circ}\right)= \pm \cos \left(30^{\circ}\right)= \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

Since $90^{\circ}<150^{\circ}<180^{\circ}$,

$$
\sin \left(150^{\circ}\right)=+\frac{1}{2} \quad \text { and } \quad \cos \left(150^{\circ}\right)=-\frac{\sqrt{3}}{2}
$$

Using Reference Angles to Find Sine and Cosine

- Using the reference angle, find $\cos \frac{5 \pi}{4}$. and $\sin \frac{5 \pi}{4}$.

The angle $\frac{5 \pi}{4}$ has reference angle $\frac{\pi}{4}$.
So we get

$$
\begin{aligned}
& \sin \frac{5 \pi}{4}= \pm \sin \frac{\pi}{4}= \pm \frac{\sqrt{2}}{2} \\
& \cos \frac{5 \pi}{4}= \pm \cos \frac{\pi}{4}= \pm \frac{\sqrt{2}}{2}
\end{aligned}
$$

Since $\pi<\frac{5 \pi}{4}<\frac{3 \pi}{2}$,

$$
\sin \frac{5 \pi}{4}=-\frac{\sqrt{2}}{2} \quad \text { and } \quad \cos \frac{5 \pi}{4}=-\frac{\sqrt{2}}{2}
$$

Using the Unit Circle to Find Coordinates

- Find the coordinates of the point on the unit circle at an angle of $\frac{7 \pi}{6}$. Since the point is on the unit circle,

$$
\begin{aligned}
(x, y) & =(\cos t, \sin t) \\
& =\left(\cos \frac{7 \pi}{6}, \sin \frac{7 \pi}{6}\right) \\
& =\left(-\cos \frac{\pi}{6},-\sin \frac{\pi}{6}\right) \\
& =\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) .
\end{aligned}
$$

Subsection 4

The Other Trigonometric Functions

The Trigonometric Functions on the Unit Circle

- On the unit circle

$$
\begin{array}{ll}
\sin t=y, & \cos t=x, \\
\sec t=\frac{1}{x}, & \csc t=\frac{y}{x} \\
\sec , & \cot t=\frac{x}{y}
\end{array}
$$

Finding Trigonometric Functions from a Point

- The point $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ is on the unit circle, as shown. Find $\sin t, \cos t, \tan t, \sec t, \csc t$ and $\cot t$.

We have

$$
\begin{array}{lll}
\sin t=\frac{1}{2}, & \cos t=-\frac{\sqrt{3}}{2}, & \tan t=-\frac{\sqrt{3}}{3} \\
\sec t=-\frac{2 \sqrt{3}}{3}, & \csc t=2, & \cot t=-\sqrt{3}
\end{array}
$$

Finding the Trigonometric Functions of an Angle

- Find $\sin t, \cos t, \tan t, \sec t, \csc t$ and $\cot t$, when $t=\frac{\pi}{6}$. We have

$$
\begin{array}{lll}
\sin \frac{\pi}{6}=\frac{1}{2}, & \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, & \tan \frac{\pi}{6}=\frac{\sqrt{3}}{3}, \\
\sec \frac{\pi}{6}=\frac{2 \sqrt{3}}{3}, & \csc \frac{\pi}{6}=2, & \cot \frac{\pi}{6}=\sqrt{3}
\end{array}
$$

Using Reference Angles to Find Trigonometric Functions

- Use reference angles to find all six trigonometric functions of $-\frac{5 \pi}{6}$. The reference angle of $-\frac{5 \pi}{6}$ is $\frac{\pi}{6}$. Moreover $-\frac{5 \pi}{6}$ is in Quadrant III.
So we get:

$$
\begin{array}{lll}
\sin \left(-\frac{5 \pi}{6}\right)=-\frac{1}{2}, & \cos \left(-\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}, & \tan \left(-\frac{5 \pi}{6}\right)=\frac{\sqrt{3}}{3}, \\
\sec \left(-\frac{5 \pi}{6}\right)=-\frac{2 \sqrt{3}}{3}, & \csc \left(-\frac{5 \pi}{6}\right)=-2, & \cot \left(-\frac{5 \pi}{6}\right)=\sqrt{3}
\end{array}
$$

Even and Odd Trigonometric Functions

- From the figure we can tell that

$$
\begin{aligned}
& \sin (-t)=-\sin t, \quad \cos (-t)=\cos t, \quad \tan (-t)=-\tan t \\
& \sec (-t)=\sec t, \quad \csc (-t)=-\csc t, \quad \cot (-t)=-\cot t
\end{aligned}
$$

- So $\cos t$ and $\sec t$ are the only even trig functions.

Using Even and Odd Properties of Trigonometric Functions

- If the secant of angle t is 2 , what is the secant of $-t$?

Since $\sec t$ is even,

$$
\sec (-t)=\sec t=2
$$

Fundamental Identities

$$
\begin{aligned}
& \tan t=\frac{\sin t}{\cos t} \\
& \sec t=\frac{1}{\cos t} \\
& \csc t=\frac{1}{\sin t} \\
& \cot t=\frac{1}{\tan t}=\frac{\cos t}{\sin t}
\end{aligned}
$$

Using Identities to Evaluate Trigonometric Functions

- Given $\sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}, \cos \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}$, evaluate $\tan \left(45^{\circ}\right)$.

$$
\tan \left(45^{\circ}\right)=\frac{\sin \left(45^{\circ}\right)}{\cos \left(45^{\circ}\right)}=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1 .
$$

- Given $\sin \left(\frac{5 \pi}{6}\right)=\frac{1}{2}, \cos \left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}$, evaluate $\sec \left(\frac{5 \pi}{6}\right)$.

$$
\sec \left(\frac{5 \pi}{6}\right)=\frac{1}{\cos \left(\frac{5 \pi}{6}\right)}=\frac{1}{-\frac{\sqrt{3}}{2}}=-\frac{2 \sqrt{3}}{3}
$$

Using Identities to Simplify Trigonometric Expressions

- Simplify $\frac{\sec t}{\tan t}$.

$$
\frac{\sec t}{\tan t}=\frac{\frac{1}{\cos t}}{\frac{\sin t}{\cos t}}
$$

$$
=\frac{1}{\cos t} \frac{\cos t}{\sin t}
$$

$$
=\frac{1}{\sin t}
$$

$$
=\quad \csc t
$$

Alternate Forms of the Pythagorean Identity

$$
\begin{aligned}
1+\tan ^{2} t & =\sec ^{2} t \\
\cot ^{2} t+1 & =\csc ^{2} t
\end{aligned}
$$

- Let us see why the first holds:

$$
\begin{aligned}
1+\tan ^{2} t & =1+\frac{\sin ^{2} t}{\cos ^{2} t} \\
& =\frac{\cos ^{2} t}{\cos ^{2} t}+\frac{\sin ^{2} t}{\cos ^{2} t} \\
& =\frac{\cos ^{2} t+\sin ^{2} t}{\cos ^{2} t} \\
& =\frac{1}{\cos ^{2} t} \\
& =\sec ^{2} t
\end{aligned}
$$

Using Identities to Relate Trigonometric Functions

- If $\cos (t)=\frac{12}{13}$ and t is in quadrant IV, as shown, find the values of the other five trigonometric functions.

By the Pythagorean Identity $\sin ^{2} t+\cos ^{2} t=1$, we get

$$
\sin t=-\sqrt{1-\cos ^{2} t}=-\sqrt{1-\frac{144}{169}}=-\sqrt{\frac{25}{169}}=-\frac{5}{13}
$$

All other trigonometric functions are now easy to compute:

$$
\begin{array}{ll}
\tan t=\frac{\sin t}{\cos t}=\frac{-\frac{5}{13}}{\frac{12}{13}}=-\frac{5}{12}, \quad \sec t=\frac{1}{\cos t}=\frac{1}{\frac{12}{13}}=\frac{13}{12}, \\
\csc t=\frac{1}{\sin t}=\frac{1}{-\frac{5}{13}}=-\frac{13}{5}, \quad \cot t=\frac{1}{\tan t}=\frac{1}{-\frac{5}{12}}=-\frac{12}{5} .
\end{array}
$$

Finding the Values of Trigonometric Functions

- Find the values of the six trigonometric functions of angle t based on the figure.

The sine and cosine can be determined by the figure:

$$
\sin t=-\frac{\sqrt{3}}{2} \quad \text { and } \quad \cos t=-\frac{1}{2}
$$

The other numbers follow easily:

$$
\begin{aligned}
& \tan t=\frac{\sin t}{\cos t}=\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=\sqrt{3}, \quad \sec t=\frac{1}{\cos t}=\frac{1}{-\frac{1}{2}}=-2, \\
& \csc t=\frac{1}{\sin t}=\frac{1}{-\frac{\sqrt{3}}{2}}=-\frac{2 \sqrt{3}}{3}, \quad \cot t=\frac{1}{\tan t}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} .
\end{aligned}
$$

Finding the Value of Trigonometric Functions

- If $\sin (t)=-\frac{\sqrt{3}}{2}$ and $\cos (t)=\frac{1}{2}$, find $\sec (t), \csc (t), \tan (t), \cot (t)$. We get

$$
\begin{aligned}
& \sec t=\frac{1}{\cos t}=\frac{1}{\frac{1}{2}}=2, \\
& \csc t=\frac{1}{\sin t}=\frac{1}{\frac{-\sqrt{3}}{2}}=-\frac{2 \sqrt{3}}{3}, \\
& \tan t=\frac{\sin t}{\cos t}=\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=-\sqrt{3}, \\
& \cot t=\frac{1}{\tan t}=\frac{1}{-\sqrt{3}}=-\frac{\sqrt{3}}{3} .
\end{aligned}
$$

