College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) Periodic Functions

- Graphs of the Sine and Cosine Functions
- Graphs of the Other Trigonometric Functions
- Inverse Trigonometric Functions

Subsection 1

Graphs of the Sine and Cosine Functions

Period of the Sine or Cosine Function

How Horizontal Stretches and Compressions Affect Period

The period of $f(x)=A \sin (B x)$ or $f(x)=A \cos (B x)$ is $T=\frac{2 \pi}{|B|}$.

Identifying the Period of a Sine or Cosine Function

- Determine the period of the function $f(x)=\sin \left(\frac{\pi}{6} x\right)$. $\sin x$ has period 2π.
$f(x)$ is a horizontal stretch of $\sin x$ by a factor of $\frac{1}{\frac{\pi}{6}}=\frac{6}{\pi}$. So its period is

$$
2 \pi \cdot \frac{6}{\pi}=12 .
$$

How Vertical Stretches and Compressions Affect Amplitude

The amplitude of $f(x)=A \sin (B x)$ or $f(x)=A \cos (B x)$ is $|A|$.

Identifying the Amplitude of a Sine or Cosine Function

(a) Which transformation is applied in passing from $\sin x$ to $f(x)=-4 \sin x ?$
(b) What is the amplitude of the sinusoidal function $f(x)=-4 \sin (x)$?
(a) We apply:

- a vertical reflection (around the x-axis);
- a vertical stretch by a factor of 4 .
(b) The amplitude of $f(x)$ is $|-4|=4$.

Phase Shift of a Function

The phase shift of $f(x)=A \sin (B x-C)+D$ or $f(x)=A \cos (B x-C)+D$ can be found by rewriting as

$$
f(x)=A \sin \left(B\left(x-\frac{C}{B}\right)\right)+D \text { or } f(x)=A \cos \left(B\left(x-\frac{C}{B}\right)\right)+D
$$

So it is equal to $\frac{C}{B}$.

Identifying the Phase Shift of a Function

- Determine the direction and magnitude of the phase shift for $f(x)=\sin \left(x+\frac{\pi}{6}\right)-2$.
$f(x)$ is obtained by $\sin x$ by applying
- a horizontal shift left by $\frac{\pi}{6}$;
- a vertical shift down by 2 .

Thus, the phase shift is $-\frac{\pi}{6}$.

Vertical Shift of a Function

The vertical shift of $f(x)=A \sin (B x-C)+D$ or $f(x)=A \cos (B x-C)+D$ is D.

Identifying the Vertical Shift of a Function

- Determine the direction and magnitude of the vertical shift for $f(x)=\cos (x)-3$.
$f(x)$ is obtained by $\cos x$ by applying a vertical shift down by 3 .

Multiple Transformations

- Given a sinusoidal function in the form

$$
f(x)=A \sin (B x-C)+D,
$$

identify the amplitude, the period, the phase shift and the midline.

- Determine the amplitude as $|A|$.
- Determine the period as $P=\frac{2 \pi}{|B|}$.
- Determine the phase shift as $\frac{C}{B}$.
- Determine the midline as $y=D$.

Identifying the Variations of a Sinusoidal Function

- Determine the midline, amplitude, period and phase shift of the function $y=3 \sin (2 x)+1$.
We have:
- Midline: $y=1$.
- Amplitude: $|A|=3$.
- Period: $P=\frac{2 \pi}{|B|}=\frac{2 \pi}{2}=\pi$.
- Phase Shift: $\frac{C}{B}=0$.

Identifying the Equation from a Graph

- Determine the formula for the cosine function

Follow one-by-one the features to determine A, B, C, D in the form $y=A \sin (B x-C)+D$ or $y=A \cos (B x-C)+D$.
Here I follow sine:

- Amplitude: $|A|=\frac{1}{2}$.
- Period: $P=2 \pi$. So $B=1$.
- Phase Shift: $\frac{C}{B}=\frac{\pi}{2}$. So $C=\frac{\pi}{2}$.
- Midline: $y=\frac{1}{2}$. So $D=\frac{1}{2}$.

We conclude that $f(x)=\frac{1}{2} \sin \left(x-\frac{\pi}{2}\right)+\frac{1}{2}$.

Identifying the Equation from a Graph

- Determine the equation for the sinusoidal function

Follow one-by-one the features to determine A, B, C, D in the form $y=A \sin (B x-C)+D$ or $y=A \cos (B x-C)+D$.
I follow cosine:

- Amplitude: $|A|=3$.
- Period: $P=\frac{2 \pi}{|B|}=6$. So $B=\frac{\pi}{3}$.
- Phase Shift: $\frac{C}{B}=1$. So $C=\frac{\pi}{3}$.
- Midline: $y=-2$. So $D=-2$.

We conclude that $f(x)=3 \cos \left(\frac{\pi}{3} x-\frac{\pi}{3}\right)-2$.

Graphing and Identifying the Amplitude and Period

- Sketch a graph of $f(x)=-2 \sin \left(\frac{\pi x}{2}\right)$.

Find the amplitude, period, phase shift and vertical shift:

- Amplitude: $|A|=2$.
- Period: $P=\frac{2 \pi}{|B|}=\frac{2 \pi}{\frac{\pi}{2}}=4$.
- Phase Shift: $\frac{C}{B}=0$.
- Vertical Shift: $D=0$.

Graphing a Transformed Sinusoid

- Sketch a graph of $f(x)=3 \sin \left(\frac{\pi}{4} x-\frac{\pi}{4}\right)$.

Find the amplitude, period, phase shift and vertical shift:

- Amplitude: $|A|=3$.
- Period: $P=\frac{2 \pi}{|B|}=\frac{2 \pi}{4}=8$.
- Phase Shift: $\frac{C}{B}=\frac{\frac{\pi}{4}}{\frac{\pi}{4}}=1$.
- Vertical Shift: $D=0$.

Identifying the Properties of a Sinusoidal Function

- Given $y=-2 \cos \left(\frac{\pi}{2} x+\pi\right)+3$, determine the amplitude, period, phase shift and vertical shift. Then graph the function.
We find the features:
- Amplitude: $|A|=2$.
- Period: $P=\frac{2 \pi}{|B|}=\frac{2 \pi}{\frac{\pi}{2}}=4$.
- Phase Shift: $\frac{C}{B}=\frac{-\pi}{\frac{\pi}{2}}=-2$.
- Vertical Shift: $D=3$.

Finding the Vertical Component of Circular Motion

- A point rotates around a circle of radius 3 centered at the origin. Sketch a graph of the y-coordinate of the point as a function of the angle of rotation.
The y-coordinate for the unit circle is $y=\sin x$.
Since the circle has radius 3 , we get

$$
f(x)=3 \sin x
$$

Finding the Vertical Component of Circular Motion

- A circle with radius 3 ft is mounted with its center 4 ft off the ground.
The point closest to the ground is labeled P, as shown in the figure.
Sketch a graph of the height above the ground of P as the circle is rotated.

Then find a function that gives the height in terms of the angle of rotation.

- Amplitude: $|A|=3$.
- Period: $P=2 \pi$. So $B=1$.
- Phase Shift: $\frac{C}{B}=\pi$. So $C=\pi$.
- Vertical Shift: $D=1$.

$$
f(x)=3 \cos (x-\pi)+1
$$

Subsection 2

Graphs of the Other Trigonometric Functions

The Graph of Tangent

Sketching a Compressed Tangent

- Sketch a graph of one period of the function $y=0.5 \tan \left(\frac{\pi}{2} x\right)$. The given function is obtained by $y=\tan x$ by:
- A horizontal compression by a factor of $\frac{2}{\pi}$;
- A vertical compression by a factor of 0.5 .

So its graph is the one shown below.

Graphing One Period of a Shifted Tangent Function

- Given the function $y=A \tan (B x-C)+D$:
- Identify the vertical stretching/compressing factor, $|A|$.
- Identify B and determine the period, $P=\frac{\pi}{|B|}$.
- Identify C and determine the phase shift, $\frac{C}{B}$.
- Draw the graph of

$$
y=A \tan (B x)
$$

shifted to the right by $\frac{C}{B}$ and up by D.

Graphing One Period of a Shifted Tangent Function

- Graph one period of the function $y=-2 \tan (\pi x+\pi)-1$. We have:
- Vertical stretch by a factor of $|A|=2$.
- Period $P=\frac{\pi}{|B|}=\frac{\pi}{\pi}=1$.
- Phase Shift $\frac{C}{B}=\frac{-\pi}{\pi}=-1$.
- Vertical shift $D=-1$.

Identifying the Graph of a Stretched Tangent

- Find a formula for the function graphed in

We want to identify A, B, C and D in $y=A \tan (B x-C)+D$:

- Vertical stretch: $A=2$.
- Period: $\frac{\pi}{|B|}=8$. So $B=\frac{\pi}{8}$.
- Phase shift: $\frac{C}{B}=0$. So $C=0$.
- Vertical shift: $D=0$.

Thus, $y=2 \tan \left(\frac{\pi}{8} x\right)$.

The Graph of Secant

Graphing a Variation of the Secant Function

- Graph one period of $f(x)=2.5 \sec (0.4 x)$.

We have:

- Vertical stretch by a factor of $|A|=2.5$.
- Period $P=\frac{2 \pi}{|B|}=\frac{2 \pi}{\frac{2}{5}}=5 \pi$.
- Phase Shift $\frac{C}{B}=0$;
- Vertical shift $D=0$.

Graphing a Variation of the Secant Function

- Graph one period of $y=4 \sec \left(\frac{\pi}{3} x-\frac{\pi}{2}\right)+1$. We have:
- Vertical stretch by a factor of $|A|=4$.
- Period $P=\frac{2 \pi}{|B|}=\frac{2 \pi}{\frac{\pi}{3}}=6$.
- Phase Shift $\frac{C}{B}=\frac{\frac{\pi}{2}}{\frac{\pi}{3}}=\frac{3}{2}$.
- Vertical shift $D=1$.

Graphing a Variation of the Cosecant Function

- Graph one period of $f(x)=-3 \csc (4 x)$. We have:
- Vertical stretch by a factor of $|A|=3$.
- Period $P=\frac{2 \pi}{|B|}=\frac{2 \pi}{4}=\frac{\pi}{2}$.
- Phase Shift $\frac{C}{B}=0$.
- Vertical shift $D=0$.

Graphing a Transformed Cosecant

- Sketch a graph of $y=2 \csc \left(\frac{\pi}{2} x\right)+1$. We have:
- Vertical stretch by a factor of $|A|=2$.
- Period $P=\frac{2 \pi}{|B|}=\frac{2 \pi}{\frac{\pi}{2}}=4$.
- Phase Shift $\frac{C}{B}=0$.
- Vertical shift $D=1$.

The Graph of Cotangent

Graphing Variations of the Cotangent Function

- Determine the stretching factor, period, and phase shift of $y=3 \cot (4 x)$, and then sketch a graph. We have:
- Vertical stretch by a factor of $|A|=3$.
- Period $P=\frac{\pi}{|B|}=\frac{\pi}{4}$.
- Phase Shift $\frac{C}{B}=0$.
- Vertical shift $D=0$.

Graphing a Modified Cotangent

- Sketch a graph of one period of the function $f(x)=4 \cot \left(\frac{\pi}{8} x-\frac{\pi}{2}\right)-2$.
We have:
- Vertical stretch by a factor of $|A|=4$.
- Period $P=\frac{\pi}{|B|}=\frac{\pi}{\frac{\pi}{8}}=8$.
- Phase Shift $\frac{C}{B}=\frac{\frac{\pi}{2}}{\frac{\pi}{6}}=4$.
- Vertical shift $D=-2$.

Subsection 3

Inverse Trigonometric Functions

Things to Recall about Inverse Functions

- Only one-to-one functions (that is, functions passing the horizontal line test) have inverses.
- If f is a 1-1 function, f^{-1} denotes its inverse function.
- The key relation between inverse functions is that

$$
y=f(x) \quad \text { if and only if } \quad x=f^{-1}(y)
$$

That is the roles of input and output values are interchanged.

- Consequently domains and ranges are also interchanged.
- For x in the domain of f and y in the domain of f^{-1} we have:

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(y)\right)=y .
$$

- The graphs of $y=f(x)$ and $y=f^{-1}(x)$ are symmetric with respect to $y=x$.

Writing a Relation for an Inverse Function

- Given $\sin \left(\frac{5 \pi}{12}\right) \approx 0.96593$, write a relation involving the inverse sine. Since roles of input and output are switched:

$$
\sin ^{-1}(0.96593) \approx \frac{5 \pi}{12}
$$

Inverse Sine

Inverse Cosine

Inverse Tangent

Evaluating Inverse Trigonometric Functions

- Evaluate each of the following.
- $\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \quad\left(\right.$ since $\left.\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}\right)$.
- $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4} \quad\left(\right.$ since $\left.\sin \left(-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\right)$.
- $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{5 \pi}{6} \quad\left(\right.$ since $\left.\cos \left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}\right)$.
- $\tan ^{-1}(1)=\frac{\pi}{4} \quad\left(\right.$ since $\left.\tan \left(\frac{\pi}{4}\right)=1\right)$.

Evaluating the Inverse Sine on a Calculator

- Evaluate $\sin ^{-1}(0.97)$ using a calculator. I included this to emphasize that we should check the MODE so that we calculate in degrees or radians as intended.

Applying the Inverse Cosine to a Right Triangle

- Solve the triangle in the figure for the angle θ.

We have

$$
\cos \theta=\frac{9}{12}=\frac{3}{4}
$$

Therefore,

$$
\theta=\cos ^{-1}\left(\frac{3}{4}\right) \approx 41.41^{\circ} .
$$

Using Inverse Trigonometric Functions

- Evaluate the following:
(a) $\sin ^{-1}\left(\sin \left(\frac{\pi}{3}\right)\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$.
(b) $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$.
(c) $\cos ^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)=\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$.
(d) $\cos ^{-1}\left(\cos \left(-\frac{\pi}{3}\right)\right)=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$.

Composition of an Inverse Sine with a Cosine

- Evaluate $\sin ^{-1}\left(\cos \left(\frac{13 \pi}{6}\right)\right)$.

We have

$$
\sin ^{-1}\left(\cos \left(\frac{13 \pi}{6}\right)\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}
$$

Composition of a Sine with an Inverse Cosine

- Find an exact value for $\sin \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)$.

Set $\theta=\cos ^{-1}\left(\frac{4}{5}\right)$.
This yields $\cos \theta=\frac{4}{5}$.
So we get:

Use the Pythagorean Theorem to find $y=\sqrt{5^{2}-4^{2}}=\sqrt{9}=3$.
Now we get $\sin \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=\sin \theta=\frac{3}{5}$.

Composition of a Sine with an Inverse Tangent

- Find an exact value for $\sin \left(\tan ^{-1}\left(\frac{7}{4}\right)\right)$.

Set $\theta=\tan ^{-1}\left(\frac{7}{4}\right)$.
This yields $\tan \theta=\frac{7}{4}$.
So we get:

Use the Pythagorean Theorem to find $z=\sqrt{7^{2}+4^{2}}=\sqrt{65}$. Now we get $\sin \left(\tan ^{-1}\left(\frac{7}{4}\right)\right)=\sin \theta=\frac{7}{\sqrt{65}}$.

Cosine of the Inverse Sine of an Expression

- Find a simplified expression for $\cos \left(\sin ^{-1}\left(\frac{x}{3}\right)\right)$ for $-3 \leq x \leq 3$. Set $\theta=\sin ^{-1}\left(\frac{x}{3}\right)$.
This yields $\sin \theta=\frac{x}{3}$.
So we get:

Use the Pythagorean Theorem to find $z=\sqrt{3^{2}-x^{2}}=\sqrt{9-x^{2}}$. Now we get $\cos \left(\sin ^{-1}\left(\frac{x}{3}\right)\right)=\cos \theta=\frac{\sqrt{9-x^{2}}}{3}$.

