College Trigonometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 131

(1) Analytic Geometry

- The Ellipse
- The Hyperbola
- The Parabola
- Conic Sections in Polar Coordinates

Subsection 1

The Ellipse

Ellipse, Features and Terminology

Equation of an Ellipse at the Origin in Standard Form

- The equations are:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { and } \quad \frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1
$$

- The key equation relating the parameters is $a^{2}=b^{2}+c^{2}$.

Equation of an Ellipse at the Origin in Standard Form

- What is the standard form equation of the ellipse that has vertices $(\pm 8,0)$ and foci $(\pm 5,0)$?
We know that $c=5$ and $a=8$.
We then calculate

$$
b^{2}=a^{2}-c^{2}=8^{2}-5^{2}=39
$$

So the equation is

$$
\frac{x^{2}}{64}+\frac{y^{2}}{39}=1
$$

An Ellipse Centered at a Point Other Than the Origin

- What is the standard form equation of the ellipse that has vertices $(-2,-8)$ and $(-2,2)$ and foci $(-2,-7)$ and $(-2,1)$?
The ellipse has center $(-2,-3)$.
It is vertically placed, with $a=5$ and $c=4$.
So $b^{2}=a^{2}-c^{2}=5^{2}-4^{2}=9$.
If it was centered at the origin, the equation would be $\frac{y^{2}}{25}+\frac{x^{2}}{9}=1$, but, since its center is at $(h, k)=(-2,-3)$, we get the equation

$$
\frac{(y+3)^{2}}{25}+\frac{(x+2)^{2}}{9}=1
$$

Graphing an Ellipse Centered at the Origin

- Graph the ellipse given by the equation, $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$. Identify and label the center, vertices, co-vertices and foci.
First identify all parameters: $a=5, b=3$ and $c^{2}=a^{2}-b^{2}=25-9=16$; so $c=4$.

So we have:

- Center at the origin;
- Vertices at $(0, \pm 5)$;
- Co-vertices at $(\pm 3,0)$;
- Foci at $(0, \pm 4)$.

Graphing from an Equation Not in Standard Form

- Graph the ellipse given by the equation $4 x^{2}+25 y^{2}=100$. Rewrite the equation in standard form. Then identify and label the center, vertices, co-vertices and foci.
Convert into standard form: $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$.
Identify all parameters: $a=5, b=2$ and
$c^{2}=a^{2}-b^{2}=25-4=21$; so $c=\sqrt{21}$.
So we have:
- Center at the origin;
- Vertices at $(\pm 5,0)$;
- Co-vertices at $(0, \pm 2)$;
- Foci at $(\pm \sqrt{21}, 0)$.

Graphing an Ellipse Centered at (h, k)

- Graph the ellipse given by the equation, $\frac{(x+2)^{2}}{4}+\frac{(y-5)^{2}}{9}=1$. Identify and label the center, vertices, co-vertices and foci.
First identify all parameters: $(h, k)=(-2,5), a=3, b=2$ and $c^{2}=a^{2}-b^{2}=9-4=5$; so $c=\sqrt{5}$.

So we have:

- Center at ($-2,5$);
- Vertices at $(-2,5 \pm 3)$;
- Co-vertices at $(-2 \pm 2,5)$;
- Foci at $(-2,5 \pm \sqrt{5})$.

An Ellipse Centered at (h, k) Not in Standard Form

- Graph the ellipse given by $4 x^{2}+9 y^{2}-40 x+36 y+100=0$. Identify and label the center, vertices, co-vertices and foci.
Convert into standard form:

$$
\begin{gathered}
4 x^{2}+9 y^{2}-40 x+36 y+100=0 \\
4 x^{2}-40 x+9 y^{2}+36 y=-100 \\
4\left(x^{2}-10 x\right)+9\left(y^{2}+4 y\right)=-100 \\
4\left(x^{2}-10 x+25\right)+9\left(y^{2}+4 y+4\right)=-100+100+36 \\
4(x-5)^{2}+9(y+2)^{2}=36 \\
\frac{(x-5)^{2}}{9}+\frac{(y+2)^{2}}{4}=1
\end{gathered}
$$

Identify all parameters: $(h, k)=(5,-2), a=3, b=2$ and $c^{2}=a^{2}-b^{2}=9-4=5$; so $c=\sqrt{5}$.

An Ellipse Centered at (h, k) Not in Standard Form

- We found $\frac{(x-5)^{2}}{9}+\frac{(y+2)^{2}}{4}=1$
and identified the parameters: $(h, k)=(5,-2), a=3, b=2$ and $c^{2}=a^{2}-b^{2}=9-4=5$; so $c=\sqrt{5}$.

So we have:

- Center at $(5,-2)$;
- Vertices at $(5 \pm 3,-2)$;
- Co-vertices at $(5,-2 \pm 2)$;
- Foci at $(5 \pm \sqrt{5},-2)$.

Subsection 2

The Hyperbola

Hyperbola, Features and Terminology

Equation of a Hyperbola at the Origin in Standard Form

- The equations are:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \text { and } \quad \frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

- The key equation relating the parameters is $c^{2}=a^{2}+b^{2}$.

Locating a Hyperbola's Vertices and Foci

- Identify the vertices and foci of the hyperbola $\frac{y^{2}}{49}-\frac{x^{2}}{32}=1$.

It is a vertically opening hyperbola, with

- $a=7$,
- $b=\sqrt{32}=4 \sqrt{2}$,
- $c^{2}=a^{2}+b^{2}=49+32=81$; so $c=9$.

So it has vertices at $(0, \pm 7)$ and foci at $(0, \pm 9)$.

Finding a Hyperbola at $(0,0)$ Given its Foci and Vertices

- What is the standard form equation of the hyperbola that has vertices $(\pm 6,0)$ and foci $(2 \sqrt{10}, 0)$?
We identify the parameters:
- $a=6$;
- $c=2 \sqrt{10}$;
- $b^{2}=c^{2}-a^{2}=40-36=4$; so $b=2$.

Now we get

$$
\frac{x^{2}}{36}-\frac{y^{2}}{4}=1
$$

Finding a Hyperbola at (h, k) Given its Foci and Vertices

- What is the standard form equation of the hyperbola that has vertices at $(0,-2)$ and $(6,-2)$ and foci at $(-2,-2)$ and $(8,-2)$?
It is centered at $(3,-2)$.
Identify the parameters:
- $a=3$;
- $c=5$;
- $b^{2}=c^{2}-a^{2}=25-9=16$; so $b=4$.

The equation at the origin would be $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ but since it is centered at $(h, k)=(3,-2)$, we get

$$
\frac{(x-3)^{2}}{9}-\frac{(y+2)^{2}}{16}=1
$$

Graphing a Hyperbola at $(0,0)$ in Standard Form

- Graph the hyperbola given by the equation $\frac{y^{2}}{64}-\frac{x^{2}}{36}=1$. Identify and label the vertices, co-vertices, foci and asymptotes.
First identify all parameters: $a=8, b=6$ and
$c^{2}=a^{2}+b^{2}=64+36=100$; so $c=10$.
So we have:
- Center at the origin;
- Vertices at $(0, \pm 8)$;
- Co-vertices at $(\pm 6,0)$;
- Foci at ($0, \pm 10$);
- Asymptotes $y= \pm \frac{a}{b} x$, i.e., $y= \pm \frac{4}{3} x$.

A Hyperbola at (h, k) in General Form

- Graph the hyperbola given by $9 x^{2}-4 y^{2}-36 x-40 y-388=0$. Identify and label the center, vertices, co-vertices, foci and asymptotes.
Convert into standard form:

$$
\begin{gathered}
9 x^{2}-4 y^{2}-36 x-40 y-388=0 \\
9 x^{2}-36 x-4 y^{2}-40 y=388 \\
9\left(x^{2}-4 x\right)-4\left(y^{2}+10 y\right)=388 \\
9\left(x^{2}-4 x+4\right)-4\left(y^{2}+10 y+25\right)=388+36-100 \\
9(x-2)^{2}-4(y+5)^{2}=324 \\
\frac{(x-2)^{2}}{36}+\frac{(y+5)^{2}}{81}=1 .
\end{gathered}
$$

Identify all parameters: $(h, k)=(2,-5), a=6, b=9$ and $c^{2}=a^{2}+b^{2}=36+81=117$; so $c=3 \sqrt{13}$.

A Hyperbola at (h, k) in General Form

- We found $\frac{(x-2)^{2}}{36}+\frac{(y+5)^{2}}{81}=1$
and identified the parameters: $(h, k)=(2,-5), a=6, b=9$ and $c^{2}=a^{2}+b^{2}=36+81=117$; so $c=3 \sqrt{13}$.

So we have:

- Center at $(2,-5)$;
- Vertices at $(2 \pm 6,-5)$;
- Co-vertices at $(2,-5 \pm 9)$;
- Foci at $(2 \pm 3 \sqrt{13},-5)$;
- Asymptotes

$$
y+5= \pm \frac{3}{2}(x-2)
$$

Subsection 3

The Parabola

Parabola, Features and Terminology

Equation of a Parabola at the Origin in Standard Form

A Parabola at $(0,0)$ With x-Symmetry

- Graph $y^{2}=24 x$. Identify and label the focus, directrix and endpoints of the latus rectum.
First identify p by comparing with $y^{2}=4 p x: p=6$.

So we have:

- Vertex at the origin and opening right;
- Focus at $(6,0)$;
- Directrix $x=-6$;
- Endpoints of latus rectum $(6, \pm 12)$.

A Parabola at $(0,0)$ With y-Symmetry

- Graph $x^{2}=-6 y$. Identify and label the focus, directrix and endpoints of the latus rectum.
First identify p by comparing with $x^{2}=4 p y: p=-\frac{3}{2}$.
So we have:
- Vertex at the origin and opening down;
- Focus at $\left(0,-\frac{3}{2}\right)$;
- Directrix $y=\frac{3}{2}$;
- Endpoints of latus rectum $\left(\pm 3,-\frac{3}{2}\right)$.

A Parabola Given its Focus and Directrix

- What is the equation for the parabola with focus $\left(-\frac{1}{2}, 0\right)$ and directrix $x=\frac{1}{2}$?
First find the vertex, opening direction and p.
Then it is easy to write an equation for the parabola.
We have:
- Vertex $(0,0)$;
- Opens left;
- $p=-\frac{1}{2}$.

So equation is $y^{2}=4\left(-\frac{1}{2}\right) x$, i.e., $y^{2}=-2 x$.

Parabola at (h, k) With Horizontal Symmetry

- Graph $(y-1)^{2}=-16(x+3)$. Identify and label the vertex, axis of symmetry, focus, directrix and endpoints of the latus rectum.
Compare with $(y-k)^{2}=4 p(x-h)$. So $p=-4$.

So we have:

- Vertex $(h, k)=(-3,1)$;
- Opens left;
- Focus at ($-3-4,1$);
- Directrix $x=-3+4$;
- Endpoints of latus rectum $(-3-4,1 \pm 8)$.

A Parabola from an Equation Given in General Form

- Graph $x^{2}-8 x-28 y-208=0$. Identify and label the vertex, axis of symmetry, focus, directrix and endpoints of the latus rectum.
Convert into standard form:

$$
\begin{gathered}
x^{2}-8 x-28 y-208=0 \\
x^{2}-8 x=28 y+208 \\
x^{2}-8 x+16=28 y+224 \\
(x-4)^{2}=28(y+8)
\end{gathered}
$$

Identify all parameters: $(h, k)=(4,-8)$, opens up, $p=7$.

A Parabola from an Equation Given in General Form

- We found equation $(x-4)^{2}=28(y+8)$.

Moreover, we reasoned that

- $(h, k)=(4,-8)$;
- Opens up;
- $p=7$.

So we have:

- Vertex (4, -8);
- Axis of Symmetry $x=4$;
- Focus at $(4,-8+7)$;
- Directrix $y=-8-7$;
- Endpoints

$$
(4 \pm 14,-8+7)
$$

Subsection 4

Conic Sections in Polar Coordinates

Conic Sections in Polar: Features and Terminology

- F is the focus at the pole;
- D is the directrix at $x= \pm p$;
- e >0 a fixed number, called the eccentricity;
- The set of all points P such that $e=\frac{P F}{P D}$ is a conic:

- if $0=e<1$, the conic is an ellipse;
- if $e=1$, the conic is a parabola;
- if $e>1$, the conic is a hyperbola.

Equation of Conic Sections in Polar Coordinates

- For a conic with a focus at the origin, if the directrix is $x= \pm p$, where p is a positive real number, and the eccentricity is a positive real number e, the conic has a polar equation

$$
r=\frac{e p}{1 \pm e \cos \theta} .
$$

- For a conic with a focus at the origin, if the directrix is $y= \pm p$, where p is a positive real number, and the eccentricity is a positive real number e, the conic has a polar equation

$$
r=\frac{e p}{1 \pm e \sin \theta}
$$

Identifying a Conic Given the Polar Form

- For each of the following equations, identify the conic with focus at the origin, the directrix and the eccentricity.
(a) $r=\frac{6}{3+2 \sin \theta}$
(b) $r=\frac{12}{4+5 \cos \theta}$
(c) $r=\frac{7}{2-2 \sin \theta}$
(a) $r=\frac{6}{3+2 \sin \theta} \Rightarrow r=\frac{2}{1+\frac{2}{3} \sin \theta} \Rightarrow e=\frac{2}{3}$ and $e p=2 \Rightarrow p=3$.

So directrix is $y=3$ and the conic is an ellipse $(e<1)$.
(b) $r=\frac{12}{4+5 \cos \theta} \Rightarrow r=\frac{3}{1+\frac{5}{4} \cos \theta} \Rightarrow e=\frac{5}{4}$ and $e p=3 \Rightarrow p=\frac{12}{5}$.

So directrix is $x=\frac{12}{5}$ and the conic is a hyperbola $(e>1)$.
(c) $r=\frac{7}{2-2 \sin \theta} \Rightarrow r=\frac{\frac{7}{2}}{1-\sin \theta} \Rightarrow e=1$ and $e p=\frac{7}{2} \Rightarrow p=\frac{7}{2}$.

So directrix is $y=-\frac{7}{2}$ and the conic is a parabola ($e=1$).

Graphing a Parabola in Polar Form

- Graph $r=\frac{5}{3+3 \cos \theta}$.
$r=\frac{5}{3+3 \cos \theta} \Rightarrow r=\frac{\frac{5}{3}}{1+\cos \theta} \Rightarrow e=1, e p=\frac{5}{3} \Rightarrow p=\frac{5}{3}$.
We have a parabola with directrix $x=\frac{5}{3}$.

Graphing a Hyperbola in Polar Form

- Graph $r=\frac{8}{2-3 \sin \theta}$.

$$
r=\frac{8}{2-3 \sin \theta} \Rightarrow r=\frac{4}{1-\frac{3}{2} \sin \theta} \Rightarrow e=\frac{3}{2}, e p=4 \Rightarrow p=\frac{8}{3} .
$$

We have a hyperbola with directrix $y=-\frac{8}{3}$.

Graphing an Ellipse in Polar Form

- Graph $r=\frac{10}{5-4 \cos \theta}$.
$r=\frac{10}{5-4 \cos \theta} \Rightarrow r=\frac{2}{1-\frac{4}{5} \cos \theta} \Rightarrow e=\frac{4}{5}, e p=2 \Rightarrow p=\frac{5}{2}$.
We have an ellipse with directrix $x=-\frac{5}{2}$.

θ	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$
$r=\frac{10}{5-4 \cos \theta}$	10	-2	$\frac{10}{9}$	2

Finding the Polar Form of a Vertical Conic

- Find the polar form of the conic given a focus at the origin, $e=3$ and directrix $y=-2$.
Identify $p=2$ and choose one of

$$
r=\frac{e p}{1 \pm e \cos \theta} \quad \text { or } \quad r=\frac{e p}{1 \pm e \sin \theta} .
$$

We have

$$
r=\frac{e p}{1-e \sin \theta} \Rightarrow r=\frac{6}{1-3 \sin \theta}
$$

Finding the Polar Form of a Horizontal Conic

- Find the polar form of a conic given a focus at the origin, $e=\frac{3}{5}$, and directrix $x=4$.

Identify $p=4$ and choose one of

$$
r=\frac{e p}{1 \pm e \cos \theta} \quad \text { or } \quad r=\frac{e p}{1 \pm e \sin \theta} .
$$

We have

$$
r=\frac{e p}{1+e \cos \theta} \Rightarrow r=\frac{\frac{12}{5}}{1+\frac{3}{5} \cos \theta} \Rightarrow r=\frac{12}{5+3 \cos \theta}
$$

Converting a Conic in Polar Form to Rectangular Form

- Convert the conic $r=\frac{1}{5-5 \sin \theta}$ to rectangular form. We get

$$
\begin{gathered}
r=\frac{1}{5-5 \sin \theta} \\
r(5-5 \sin \theta)=1 \\
5 r-5 r \sin \theta=1 \\
5 r=1+5 r \sin \theta \\
25 r^{2}=(1+5 r \sin \theta)^{2} \\
25\left(x^{2}+y^{2}\right)=(1+5 y)^{2} \\
25 x^{2}+25 y^{2}=1+10 y+25 y^{2} \\
25 x^{2}-10 y=1 .
\end{gathered}
$$

