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Lattices = Definitions of Lattices

Subsection 1

Definitions of Lattices

George Voutsadakis (LSSU) Universal Algebra June 2020 3/45



Lattices

Definition (Lattice)

A nonempty set L together with two binary operations v and A (read
“join" and “meet" respectively) on L is called a lattice if it satisfies the
following identities:

(commutative laws) (idempotent laws)
XVy=yVX; XV X=X,
XANYy=RYyNX XNAX=X;

(associative laws) (absorption laws)
xV(yvz)=(xVvy)vz x=xV(xAy);
XA (yAz)=(xAY)AzZ; x=XxA(xVy).

. Let L be the set of propositions, v the connective “or" and
A the connective “and”. L1 to L4 are well-known properties from
propositional logic.

: Let L=1N, v the least common multiple and A the greatest
common divisor. Then properties L1 to L4 are easily verifiable.
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Lattices

Definition (Orders)

A binary relation < defined on a set A is a partial order on the set A if the
following conditions hold identically in A:

a < a (reflexivity)
as<band b<aimply a=b (antisymmetry)
a<band b<c imply a< c (transitivity)
If, in addition, for every a,b in A,
asborb<a,

then we say < is a total order on A.

A nonempty set with a partial order on it is called a partially ordered set,
or more briefly a poset. If the relation is a total order then we speak of a
totally ordered set, or a linearly ordered set, or simply a chain.

In a poset A we use the expression a< b to mean a<b but a#b.
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Let Su(A) denote the power set of A, i.e., the set of all subsets of A.
Then < is a partial order on Su(A).

Let A be the set of natural numbers and let < be the relation
“divides”. Then < is a partial order on A.

Let A be the set of real numbers and let < be the usual ordering.
Then < is a total order on A.
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Lattices

Definition (Bounds)

Let A be a subset of a poset P.
An element p in P is an upper bound for A if a<p, for every a in A.
An element p in P is the least upper bound of A (l.u.b. of A), or
supremum of A (supA) if:
o pis an upper bound of A, and
o a<b, for every ain A implies p<b (i.e., p is the smallest among the
upper bounds of A).
An element p in P is a lower bound for A if p<a, for every a in A.
An element p in P is the greatest lower bound of A (g.l.b. of A), or
infimum of A (infA) if:
o pis a lower bound of A, and
o b<a, for every ain A implies b<p (i.e., p is the largest among the
lower bounds of A).
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Lattices

Definition

Let A be a subset of a poset P and a,be P.
We say b covers a, or a is covered by b, if a< b, and whenever a<c < b,
it follows that a=c or ¢ = b. We use the notation a < b to denote a is
covered by b.

The closed interval [a, b] is defined to be the set of ¢ in P, such that
ascs<b.

The open interval (a,b) is the set of ¢ in P, such that a<c<b.
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o We describe the method of associating a Hasse diagram with a finite
poset P:
o We represent each element of P by a small circle.
o If a< b, then we draw the circle for b above the circle for a, joining the
two circles with a line segment.
o From this diagram we can recapture the relation < by noting that
a < b holds iff, for some finite sequence of elements cy,...,c, from P,
we have a=¢ci <o <---<cp_1<cp=b.

O
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o Some more examples

9P O

o It is not so clear how one would draw an infinite poset.
o For example, the real line with the usual ordering has no covering
relations, but it is quite common to visualize it as a vertical line.
Unfortunately, the rational line would have the same picture.

o The diagram on the very right depicts the integers under the usual
ordering.
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Lattices

Definition (Lattice)
A poset L is a lattice iff for every a,b in L both sup{a, b} and inf{a, b} exist
(in L).

o The poset in each of the first four following diagrams is a lattice:

A

o The poset corresponding to the last diagram has the interesting
property that every pair of elements has an upper bound and a lower
bound, but is not a lattice.
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If L is a lattice by the algebraic definition, then define < on L by a<b
iffa=anb.

Suppose that L is a lattice by the first definition and < is defined as in
(A). Since ana=a, we get a<a. If asband b<a, then a=anb and
b=bAa. Hence a=b. If a<band b=<c, then a=anband b=bAc.
Soa=anb=an(bnc)=(anb)Ac=anc, whence a<c. This shows
< is a partial order on L.

Since a=an(avb)and b=bA(avb), we get asavband b<avb,
so aV b is an upper bound of both a and b.

If a<uand b<u, then avu=(anu)vu=u, and likewise bv u=u.
So (avu)v(bvu)=uvu=u.Hence (avb)Vvu=u, giving
(avb)au=(avb)a[(avb)vu]=avb (by the absorption law). This
says avb<u. Thus av b=supi{a, b}.

Similarly, aA b=inf{a, b}.
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If L is a partially ordered lattice, then define the operations v and A
by av b=sup{a, b} and an b=inf{a, b}.

These operations satisfy the requirements L1 to L4. E.g., the
absorption law L4(a) becomes

a=supf{a,inf{a, b}},

which is clearly true as inf{a, b} < a.
o The two constructions (A) and (B) are inverses of each other.
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Lattices Isomorphic Lattices, and Sublattices

Subsection 2

Isomorphic Lattices, and Sublattices
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Definition (Lattice Isomorphism)

Two lattices L; and L, are isomorphic if there is a bijection a from L; to
L5, such that for every a,b in L the following two equations hold:

a(lavb)=a(a)va(b) and a(anb)=a(a)Aa(b).

Such an a is called an isomorphism.

1

o If a is an isomorphism from L; to L, then a~* is an isomorphism

from Lo to Ly;
o If, in addition, B is an isomorphism from L, to L3, then Boa is an
isomorphism from L to L3.

Definition (Order-Preserving Map)
If P; and P, are two posets and a is a map from P; to P,, then we say «a is
order-preserving if, for all a,be P;, a<b in Py implies a(a) < a(b) in P.
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Lattices

Two lattices L; and Ly are isomorphic iff there is a bijection a from L; to
L,, such that both a and a~! are order-preserving.

o Suppose a is an isomorphism from L; to L. If a< b holds in Ly, then
a=anb, so a(a)=a(anb)=a(a)Aa(b). Hence a(a) < a(b), and,
thus, a is order-preserving. Since @' is an isomorphism, it is also
order-preserving.

Conversely, let a be a bijection from L; to Ly, such that both a and
a~! are order-preserving. For a,b in Ly, we have a<av b and
b<avb. So a(a)<a(avb) and a(b) <a(avb). Hence,

a(a)va(b) <a(avb). Furthermore, if a(a) v a(b) <u, then a(a)<u
and a(b) < u. Hence a<a™!(u) and b<a *(u). So avb=<a l(u),
and, thus, a(av b) < u. This implies that a(a) v a(b) = a(aVv b).
Similarly, it can be argued that a(a) A a(b) = a(an b).
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Lattices Isomorphic Lattices, and Sublattices

A Non-Isomorphism Order-Preserving Bijection

o An example of a bijection a between lattices which is order-preserving
but not an isomorphism is shown below:

a > a

(

|
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Lattices

Definition (Sublattice)

If Lis a lattice and L' # @ is a subset of L, such that, for every pair of
elements a,b in L', both av b and aAb are in L', where v and A are the
lattice operations of L, then we say that L’ with the same operations
(restricted to L') is a sublattice of L.

o If L" is a sublattice of L, then for a,bin L', we have a<bin L' iffa<b

in L.

o Given a lattice L, one can often find subsets which, a
as posets, are lattices, but which do not qualify as b
sublattices, as the operations v and A do not agree
with those of the original lattice L. c d

: P={a,c,d,e} as a poset is indeed a lattice.
But P is not a sublattice of the lattice {a, b, c,d, e}. e
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Lattices Isomorphic Lattices, and Sublattices

Lattice Embeddings

Definition (Lattice Embedding)

A lattice L1 can be embedded into a lattice L, if there is a sublattice of

L, isomorphic to L;. In this case we also say L, contains a copy of L; as
a sublattice.

Example:
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Lattices = Distributive and Modular Lattices

Subsection 3

Distributive and Modular Lattices
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Definition (Distributive Lattice)

A distributive lattice is a lattice which satisfies either (and hence, as we
shall see, both) of the distributive laws:

xAN(yvz)=(xAy)V(xAz);

xV(yAnz)=(xvy)A(xvz).

A lattice L satisfies D1 iff it satisfies D2.
o Suppose D1 holds. Then:

xV(yAz) (xv(xaz))v(ynz)=xv((xaz)v(yAz))
xV({(zax)Vv(zAy))=xVv(zA(xVy))
xv ((xVy) A2) = (A (V) V (v y) A 2)
(xvy)Ax)v((xvy)rnz)=(xVvy)A(xVz).
Thus D2 also holds. Similarly, if D2 holds, then so does D1.
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o Note that every lattice satisfies both of the inequalities

xA(yvz),
(xvy)A(xvz).

(xAy)V(xAz)

=
xVv(ynz) <

To see this, note for example that x Ay <x and xAy <y Vv z. Hence
XAy <xA(yVz), etc.

o Thus to verify the distributive laws in a lattice it suffices to check
either of the following inequalities:

(xAy)Vv(xnz);
xV(yAz).

xNA(yvz)

(xvy)Aa(xvz) ;
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Definition (Modular Lattice)

A modular lattice is any lattice which satisfies the modular law:

xsy—-xV(yAz)=yA(xVz).
o The modular law is obviously equivalent (for lattices) to the identity
(xay)v(ynz)=yn((xay)vz)
since a< b holds iff a=anb.

o Since every lattice satisfies x<y —xV(yAz)<yA(xVz), to verify
the modular law it suffices to check the implication

xsy—yAn(xvz)sxv(ynz).

Every distributive lattice is a modular lattice.

o Assume distributivity and let x<y. The y Ax=x. So
xV(ynz)=(yAx)v(yAnz)=yA(xVz).



o Consider the two five-element lattices M5 and Ns:

o We have:
o In Ms: av(bAac)=av0=a#l=1vl=(avb)a(avc)
o In Ns: av(bac)=av0=a#b=bal=(avb)a(avc)
So neither Mg nor N5 is a distributive lattice.
o In N5, we also see that a< b, but
av(bac)=av0=a#b=bnal=bna(avc) So Ns is not modular.
However, we can verify that My satisfies the distributive law.



Lattices

Theorem (Dedekind)

L is a nonmodular lattice iff N5 can be embedded into L.

o From the preceding remarks, if N5 can be embedded into L, then L
does not satisfy the modular law.

For the converse, suppose that L does not satisfy the modular law.
Then, for some a,b,c in L, we have a< b but av(bAac)<ba(avc).
Let ay=av(bAc) and by =bA(avc). Then
cAbi=cnA[ba(avc)]l=[can(cva)lab=cAb and
cvai=cvVv]av(bAac)|=[cv(cab)]va=cva.

Now, as cAb<a; < b, we have cAb<cha; =
cAby=cAb, whence cAa; =cAb; =cAb. Likewise ¢
cvby=cva; =cva. Now it is straightforward to
verify that the diagram in the figure gives the desired
copy of N5 in L.
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Lattices

Theorem (Birkhoff)

L is a non-distributive lattice iff M5 or N5 can be embedded into L.

o If either My or N5 can be embedded into L, then it is clear from
previous remarks that L cannot be distributive.
For the converse, let us suppose that L is a non-distributive lattice and
that L does not contain a copy of Ny as a sublattice. Thus L is
modular by the preceding theorem. Since the distributive laws do not
hold in L, there must be elements a, b,c from L, such that
(anb)v(anc)<an(bvc). We define

d=(anb)v(anc)v(bac), e=(avb)a(avc)a(bvec),
ai=(ane)vd, bi=(bre)vd, c=(cne)vd.

It is easily seen that d < aj,b1,c; <e. Now from ane=an(bvc),
and=an((anb)v(anc)v(bnac))
=((anb)v(anc))v(an(bac))=(anb)v(anc),

it follows that d <e.



o We now show that the diagram is a copy of Ms in
L. To do this it suffices to show that

al/\b1=31/\C1=b1/\C1=d

and
31Vb1231VC1=b1VC1=e.

We will verify one case only and the others require
similar arguments:

yvd)a((bae)vd) D ((ane)a((bre)vd))vd
(ane)a((bvd)ne))vd=((ane)nen(bvd))vd

31/\b1 = (
(

= ((ane)a(bvd))vd=(an(bvc)a(bv(anc)))vd
(
(

(ane

an(bv((bvc)a(anc))))vd=(an(bv(anc)))vd
anc)v(baa)vd=d.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Subsection 4

Complete Lattices, Equivalences, and Algebraic Lattices
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Lattices

Definition (Complete Lattice)

A poset P is complete if, for every subset A of P, both supA and inf A
exist (in P). All complete posets are lattices, and a lattice L which is
complete as a poset is a complete lattice.

Theorem

Let P be a poset such that A A exists for every subset A, or such that \/ A
exists for every subset A. Then P is a complete lattice.

o Suppose A A exists for every A< P. In particular, since A@ =1, P has
a largest element. We have, by definition of AY, for all a€ A and all
ue AY, a<u. Thus, for all ae A, a< AAY. Hence, VA< A\AY. But, if
u is an upper bound of A, then ue AY, whence A AY < u. Therefore,
VA=N\AY
The other half of the theorem is proved similarly.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

An Alternative Formulation

o The existence of A\ @ guarantees a largest element in P.
o The existence of \/ @ guarantees a smallest element in P.

o So an equivalent formulation of the theorem is:

Corollary

o P is complete if it has a largest element and the inf of every nonempty
subset exists.

o P is complete if it has a smallest element and the sup of every nonempty
subset exists.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Examples of Complete Lattices

(1) The set Ru{-o0,+o0} of extended reals with the usual ordering is a
complete lattice.

() The open subsets of a topological space with the ordering < form a
complete lattice.

() Su(l) with the usual ordering < is a complete lattice.
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o A complete lattice may have sublattices which are incomplete:
Consider the reals as a sublattice of the extended reals.

o It is also possible for a sublattice of a complete lattice to be complete,
but the sups and infs of the sublattice not to agree with those of the
original lattice:

Consider the sublattice of the extended reals consisting of those
numbers whose absolute value is less than one together with the
numbers —2,+2.

Definition (Complete Sublattice)

A sublattice L’ of a complete lattice L is called a complete sublattice of L
if for every subset A of L' the elements \/ A and A A, as defined in L, are
actually in L'.
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Lattices

Let A be a set. Recall that a binary relation r on A is a subset of A%, If
{a,b) € r, we also write a r b.

o If L and ry are binary relations on A, then the relational product
rior, is the binary relation on A defined by (a, b) € r o r, iff there is a
c€ A, such that {(a,c) € r; and (¢, b) € rp. Inductively, one defines
rporo---or,=(rporo---or,_1)or,.

o The inverse of r is given by r¥ ={(a, by € A®: (b,a) € r}.

o The diagonal relation A4 on A is the set {(a,a): a€ A}.

o The all or nabla relation A? is denoted by V4.

o A relation r on A is an equivalence relation if, for any a, b, c from A:

a r a (reflexivity)
a r bimplies b r a (symmetry)
ar bandbrcimply ar c (transitivity)

Eq(A) is the set of all equivalence relations on A.
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The poset Eq(A), with < as the partial ordering, is a complete lattice.

o Note that Eq(A) is closed under arbitrary intersections.
o For 61 and 6, in Eq(A) it is clear that 0; AO; =01 NO,.

If 61 and 65 are two equivalence relations on A, then
91V92 =01U(91 002)U(01 092091)U(91 002001 092)U~~~ 9
or, equivalently, (a, by € 01 v 0, iff, there is a sequence of elements
c1,C,...,¢, from A, such that
(ci,Ci+1) €01 or (ci,Ci41) €02,
fori=1,...,n-1,and a=c;,b=c,.

o Verify that the condition of the right-hand side of the above equation
defines an equivalence relation. Each of the relational products in
parentheses is contained in 01 v 65.
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o If {0};cs is a subset of Eq(A), then Aje0; is just Njcs0;.

If 6; € Eq(A), for i€, then
\6i=J0j,00;,0:-:00, :iy,...,ik €],k <oo}.

i€l

Definition (Equivalence Class)

Let O be a member of Eq(A). For a€ A, the equivalence class (or coset)
of a modulo 0 is the set a/0 ={be A:(b,ay€0}. The set {a/0:a€ A} is
denoted by A/6.

For 8 € Eq(A) and a,be A we have:
A=U3€Aa/9.
a/0#b/6 implies a/0Nnb/0=0.
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Definition (Partition)
A partition 7 of a set A is a family of nonempty pairwise disjoint subsets

of A, such that A=U#n. The sets in 7 are called the blocks of m. The set
of all partitions of A is denoted by II(A).

o For 7 in TI(A), let us define an equivalence relation 6(7x) by
0(m) = {(a, by € A% {a,b} < B, for some B in m}.
o The mapping m— 6(7) is a bijection between II(A) and Eq(A).

o Define a relation < on TI(A) by 7y < w5 iff each block of 77 is
contained in some block of ms.

With the above ordering T1(A) is a complete lattice, and it is isomorphic to
the lattice Eq(A) under the mapping 7 — 6(7).

o The lattice TI(A) is called the lattice of partitions of A.
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Lattices

Definition (Algebraic Lattice)
Let L be a lattice. An element a in L is compact iff whenever \/ A exists
and a< VA, for Ac L, then a<V/ B, for some finite BS A. L is compactly
generated iff every element in L is a sup of compact elements. A lattice L
is algebraic if it is complete and compactly generated.

The lattice of subsets of a set is an algebraic lattice (where the
compact elements are finite sets).

The lattice of subgroups of a group is an algebraic lattice (in which
“compact” = "finitely generated”).

Finite lattices are algebraic lattices.

The subset [0,1] of the real line is a complete lattice, but it is not

algebraic.
We will also see that /attices of subuniverses of algebras and lattices of

congruences on algebras are algebraic.
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Lattices Closure Operators

Subsection 5

Closure Operators
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Lattices

Definition (Closure Operator)

If we are given a set A, a mapping C:Su(A) — Su(A) is called a closure
operator on A if, for X, Y c A, it satisfies:

X < C(X) (extensive)

C?(X) = C(X) (idempotent)

X <Y implies C(X)< C(Y) (isotone)
A subset X of A is called a closed subset if C(X)=X. The poset of closed
subsets of A, with set inclusion as the partial ordering, is denoted by L.
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Lattices

Let C be a closure operator on a set A. Then L is a complete lattice with

AC(A)=[NC(A) and \/C(A)=C(UA).

i€l i€l i€l i€l

o Let (Aj)ies be an indexed family of closed subsets of A. We have
Nic1 Ai S A;, for each i. Hence, C(Njes Ai) = C(A;) = A;. So
C(Nijer Ai) €Nies Aj. Since C is extensive, C(Njes Ai) =Nies Ai. We
conclude Nje; Aj isin Lc.

Since A= C(A) is itself in L¢, L¢ is a complete lattice.

o Njer C(Ai) € C(A;)), for all i. So Nies C(A;) € Niet C(Aj). If BelLc is
such that B< C(A;), for all i, then B<N;ey C(A;). Hence
Niel C( ) Nier C( )

o C(A)) <= C(Uier Ar), for all i. Hence, Ve C(A;) < C(Ujes Ai). If
C(Aj)cBelc, for all i, then A; < B, for all i, whence Uje; A;j < B.
Thus, C(Ujes Ai) = C(B) = B. So Ve C(Ai) = C(Ujer Ai).



Lattices

Every complete lattice is isomorphic to the lattice of closed subsets of some
set A with a closure operator C.

o Let L be a complete lattice. For X < L define

C(X)={ael:a<ssupX}.

Then C is a closure operator on L:
o Xc{ael:assupX}=C(X);
o If XcVY, C(X)={ael:assupX}ic{ael:assupY}=C(Y).
o If ae C(C(X)), then a<supC(X)=sup{ael:a<supX}<supX.
Hence, ae C(X).

The mapping
a—{bel:bs<a}
gives the desired isomorphism between L and L.



Definition (Algebraic Closure Operator)

A closure operator C on the set A is an algebraic closure operator if, for
every X C A,

C(X)=U{C(Y): Y <X and Y is finite}.

o Note that C1, C2, C4 imply C3.

If C is an algebraic closure operator on a set A then L¢ is an algebraic
lattice. The compact elements of L¢ are precisely the closed sets C(X),
where X is a finite subset of A.

o First we show that C(X) is compact iff X is finite.
Then by (C4), we have C(X)=U{C(Y):Y <X, Y finite} =
C(UIC(Y): Y X, Y finite}) = VIC(Y): Y€ X, Y finite}.
Thus, L is algebraic.



o Suppose X ={ay,...,ax} and C(X) < V;es C(A;) = C(Ujes Ai). For each
aj€ X, we have a finite X; cUje/ A;, with aj€ C(Xj). There are
finitely many A;'s, say Ajtre Ajnjs such that XiSAjpu---UAjn,
Hence, a; € C(Ajlu---UAj,,j). But then X cUi<j<k C(Ajlu---UAj,,j),
so X € C(U1<j<k Aji)- Hence,

1<i=n;

C(X)g C( U Aj,')z v C(Aj,').

1sj<k 1sj<k

1=<i=n; 1<i<n;
So C(X) is compact.
Now suppose C(Y) is not equal to C(X) for any finite X. From
C(Y)<UIC(X): X <Y and X finite}, it is easy to see that C(Y)
cannot be contained in any finite union of the C(X)'s. Hence C(Y) is
not compact.
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Definition (Generating Set)

If C is a closure operator on A and Y is a closed subset of A, then we say
a set X is a generating set for Y if C(X)=Y.

The set Y is finitely generated if there is a finite generating set for Y.
The set X is a minimal generating set for Y if X generates Y and no
proper subset of X generates Y.

Corollary

Let C be an algebraic closure operator on A. Then the finitely generated
subsets of A are precisely the compact elements of L.
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Lattices

Every algebraic lattice is isomorphic to the lattice of closed subsets of some
set A with an algebraic closure operator C.

o Let L be an algebraic lattice, and let A be the subset of compact
elements. For X € A, define

C(X)={acA:a<\/ X}

C is a closure operator. Moreover, for all X <L, C(X)={aeA:a<
VXi={acA:asVY:YcX, Y finite) = U{C(Y): Y =X, Y finite}.
So C is algebraic. The map

a—{beA:b=<a}

gives the desired isomorphism as L is compactly generated.
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