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Lattices Definitions of Lattices

Definition of a Lattice

Definition (Lattice)

A nonempty set L together with two binary operations ∨ and ∧ (read
“join" and “meet" respectively) on L is called a lattice if it satisfies the
following identities:

L1 (commutative laws)

(a) x ∨y ≈ y ∨x ;
(b) x ∧y ≈ y ∧x

L2 (associative laws)

(a) x ∨ (y ∨z)≈ (x ∨y)∨z ;
(b) x ∧ (y ∧z)≈ (x ∧y)∧z ;

L3 (idempotent laws)

(a) x ∨x ≈ x ;
(b) x ∧x ≈ x ;

L4 (absorption laws)

(a) x ≈ x ∨ (x ∧y);
(b) x ≈ x ∧ (x ∨y).

Example: Let L be the set of propositions, ∨ the connective “or” and
∧ the connective “and”. L1 to L4 are well-known properties from
propositional logic.

Example: Let L=N, ∨ the least common multiple and ∧ the greatest
common divisor. Then properties L1 to L4 are easily verifiable.
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Lattices Definitions of Lattices

Ordered Sets

Definition (Orders)

A binary relation ≤ defined on a set A is a partial order on the set A if the
following conditions hold identically in A:

(i) a≤ a (reflexivity)

(ii) a≤ b and b ≤ a imply a= b (antisymmetry)

(iii) a≤ b and b ≤ c imply a≤ c (transitivity)

If, in addition, for every a,b in A,

(iv) a≤ b or b ≤ a,

then we say ≤ is a total order on A.
A nonempty set with a partial order on it is called a partially ordered set,
or more briefly a poset. If the relation is a total order then we speak of a
totally ordered set, or a linearly ordered set, or simply a chain.
In a poset A we use the expression a< b to mean a≤ b but a 6= b.
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Lattices Definitions of Lattices

Examples of Partially Ordered Sets

(1) Let Su(A) denote the power set of A, i.e., the set of all subsets of A.
Then ⊆ is a partial order on Su(A).

(2) Let A be the set of natural numbers and let ≤ be the relation
“divides”. Then ≤ is a partial order on A.

(3) Let A be the set of real numbers and let ≤ be the usual ordering.
Then ≤ is a total order on A.
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Lattices Definitions of Lattices

Bounds

Definition (Bounds)

Let A be a subset of a poset P .
An element p in P is an upper bound for A if a≤ p, for every a in A.
An element p in P is the least upper bound of A (l.u.b. of A), or
supremum of A (supA) if:

p is an upper bound of A, and

a≤ b, for every a in A implies p ≤ b (i.e., p is the smallest among the
upper bounds of A).

An element p in P is a lower bound for A if p ≤ a, for every a in A.
An element p in P is the greatest lower bound of A (g.l.b. of A), or
infimum of A (infA) if:

p is a lower bound of A, and

b ≤ a, for every a in A implies b ≤ p (i.e., p is the largest among the
lower bounds of A).
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Lattices Definitions of Lattices

Covers and Intervals

Definition

Let A be a subset of a poset P and a,b ∈P .
We say b covers a, or a is covered by b, if a< b, and whenever a≤ c ≤ b,
it follows that a= c or c = b. We use the notation a≺ b to denote a is
covered by b.
The closed interval [a,b] is defined to be the set of c in P , such that
a≤ c ≤ b.
The open interval (a,b) is the set of c in P , such that a< c < b.
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Lattices Definitions of Lattices

Hasse Diagrams

We describe the method of associating a Hasse diagram with a finite
poset P :

We represent each element of P by a small circle.
If a≺ b, then we draw the circle for b above the circle for a, joining the
two circles with a line segment.

From this diagram we can recapture the relation ≤ by noting that
a≤ b holds iff, for some finite sequence of elements c1, . . . ,cn from P ,
we have a= c1 ≺ c2 ≺ ·· · ≺ cn−1 ≺ cn = b.
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Lattices Definitions of Lattices

Hasse Diagrams for Infinite Posets

Some more examples

It is not so clear how one would draw an infinite poset.

For example, the real line with the usual ordering has no covering
relations, but it is quite common to visualize it as a vertical line.
Unfortunately, the rational line would have the same picture.
The diagram on the very right depicts the integers under the usual
ordering.
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Lattices Definitions of Lattices

Lattices as Partially Ordered Sets

Definition (Lattice)

A poset L is a lattice iff for every a,b in L both sup{a,b} and inf{a,b} exist
(in L).

The poset in each of the first four following diagrams is a lattice:

The poset corresponding to the last diagram has the interesting
property that every pair of elements has an upper bound and a lower
bound, but is not a lattice.
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Lattices Definitions of Lattices

Algebraic Lattice to Partially Ordered Lattice

(A) If L is a lattice by the algebraic definition, then define ≤ on L by a≤ b

iff a= a∧b.

Suppose that L is a lattice by the first definition and ≤ is defined as in
(A). Since a∧a= a, we get a≤ a. If a≤ b and b ≤ a, then a= a∧b and
b = b∧a. Hence a= b. If a≤ b and b ≤ c , then a= a∧b and b = b∧c .
So a= a∧b = a∧(b∧c)= (a∧b)∧c = a∧c , whence a≤ c . This shows
≤ is a partial order on L.

Since a= a∧ (a∨b) and b = b∧ (a∨b), we get a≤ a∨b and b ≤ a∨b,
so a∨b is an upper bound of both a and b.

If a≤ u and b ≤ u, then a∨u = (a∧u)∨u = u, and likewise b∨u = u.
So (a∨u)∨ (b∨u)= u∨u = u. Hence (a∨b)∨u = u, giving
(a∨b)∧u = (a∨b)∧ [(a∨b)∨u]= a∨b (by the absorption law). This
says a∨b ≤ u. Thus a∨b = sup{a,b}.

Similarly, a∧b = inf{a,b}.
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Lattices Definitions of Lattices

Partially Ordered to Algebraic Lattice

(B) If L is a partially ordered lattice, then define the operations ∨ and ∧

by a∨b = sup{a,b} and a∧b = inf{a,b}.

These operations satisfy the requirements L1 to L4. E.g., the
absorption law L4(a) becomes

a= sup{a, inf{a,b}},

which is clearly true as inf{a,b}≤ a.

The two constructions (A) and (B) are inverses of each other.
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Lattices Isomorphic Lattices, and Sublattices

Subsection 2

Isomorphic Lattices, and Sublattices
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Lattices Isomorphic Lattices, and Sublattices

Lattice Isomorphisms and Order-Preserving Maps

Definition (Lattice Isomorphism)

Two lattices L1 and L2 are isomorphic if there is a bijection α from L1 to
L2, such that for every a,b in L1 the following two equations hold:

α(a∨b)=α(a)∨α(b) and α(a∧b)=α(a)∧α(b).

Such an α is called an isomorphism.

If α is an isomorphism from L1 to L2, then α−1 is an isomorphism
from L2 to L1;

If, in addition, β is an isomorphism from L2 to L3, then β◦α is an
isomorphism from L1 to L3.

Definition (Order-Preserving Map)

If P1 and P2 are two posets and α is a map from P1 to P2, then we say α is
order-preserving if, for all a,b ∈P1, a≤ b in P1 implies α(a)≤α(b) in P2.
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Lattices Isomorphic Lattices, and Sublattices

Lattice Isomorphisms and Order-Preservation

Theorem

Two lattices L1 and L2 are isomorphic iff there is a bijection α from L1 to
L2, such that both α and α−1 are order-preserving.

Suppose α is an isomorphism from L1 to L2. If a≤ b holds in L1, then
a= a∧b, so α(a)=α(a∧b)=α(a)∧α(b). Hence α(a)≤α(b), and,
thus, α is order-preserving. Since α−1 is an isomorphism, it is also
order-preserving.

Conversely, let α be a bijection from L1 to L2, such that both α and
α−1 are order-preserving. For a,b in L1, we have a≤ a∨b and
b ≤ a∨b. So α(a)≤α(a∨b) and α(b)≤α(a∨b). Hence,
α(a)∨α(b)≤α(a∨b). Furthermore, if α(a)∨α(b)≤ u, then α(a)≤ u

and α(b)≤ u. Hence a≤α−1(u) and b ≤α−1(u). So a∨b ≤α−1(u),
and, thus, α(a∨b)≤ u. This implies that α(a)∨α(b)=α(a∨b).

Similarly, it can be argued that α(a)∧α(b)=α(a∧b).
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Lattices Isomorphic Lattices, and Sublattices

A Non-Isomorphism Order-Preserving Bijection

An example of a bijection α between lattices which is order-preserving
but not an isomorphism is shown below:

George Voutsadakis (LSSU) Universal Algebra June 2020 17 / 45



Lattices Isomorphic Lattices, and Sublattices

Sublattices

Definition (Sublattice)

If L is a lattice and L′ 6= ; is a subset of L, such that, for every pair of
elements a,b in L′, both a∨b and a∧b are in L′, where ∨ and ∧ are the
lattice operations of L, then we say that L′ with the same operations
(restricted to L′) is a sublattice of L.

If L′ is a sublattice of L, then for a,b in L′, we have a≤ b in L′ iff a≤ b

in L.

Given a lattice L, one can often find subsets which,
as posets, are lattices, but which do not qualify as
sublattices, as the operations ∨ and ∧ do not agree
with those of the original lattice L.
Example: P = {a,c ,d ,e} as a poset is indeed a lattice.
But P is not a sublattice of the lattice {a,b,c ,d ,e}.
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Lattices Isomorphic Lattices, and Sublattices

Lattice Embeddings

Definition (Lattice Embedding)

A lattice L1 can be embedded into a lattice L2 if there is a sublattice of
L2 isomorphic to L1. In this case we also say L2 contains a copy of L1 as

a sublattice.

Example:
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Lattices Distributive and Modular Lattices

Subsection 3

Distributive and Modular Lattices
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Lattices Distributive and Modular Lattices

Distributive Lattices

Definition (Distributive Lattice)

A distributive lattice is a lattice which satisfies either (and hence, as we
shall see, both) of the distributive laws:

D1 x ∧ (y ∨z)≈ (x ∧y)∨ (x ∧z);

D2 x ∨ (y ∧z)≈ (x ∨y)∧ (x ∨z).

Theorem

A lattice L satisfies D1 iff it satisfies D2.

Suppose D1 holds. Then:

x ∨ (y ∧z) ≈ (x ∨ (x ∧z))∨ (y ∧z)≈ x ∨ ((x ∧z)∨ (y ∧z))
≈ x ∨ ((z ∧x)∨ (z ∧y))≈ x ∨ (z ∧ (x ∨y))
≈ x ∨ ((x ∨y)∧z)≈ (x ∧ (x ∨y))∨ ((x ∨y)∧z)
≈ ((x ∨y)∧x)∨ ((x ∨y)∧z)≈ (x ∨y)∧ (x ∨z).

Thus D2 also holds. Similarly, if D2 holds, then so does D1.
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Lattices Distributive and Modular Lattices

Sufficient Conditions

Note that every lattice satisfies both of the inequalities

(x ∧y)∨ (x ∧z) ≤ x ∧ (y ∨z);
x ∨ (y ∧z) ≤ (x ∨y)∧ (x ∨z).

To see this, note for example that x ∧y ≤ x and x ∧y ≤ y ∨z . Hence
x ∧y ≤ x ∧ (y ∨z), etc.

Thus to verify the distributive laws in a lattice it suffices to check
either of the following inequalities:

x ∧ (y ∨z) ≤ (x ∧y)∨ (x ∧z);
(x ∨y)∧ (x ∨z) ≤ x ∨ (y ∧z).
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Lattices Distributive and Modular Lattices

Modular Lattices

Definition (Modular Lattice)

A modular lattice is any lattice which satisfies the modular law:

M x ≤ y → x ∨ (y ∧z)≈ y ∧ (x ∨z).

The modular law is obviously equivalent (for lattices) to the identity

(x ∧y)∨ (y ∧z)≈ y ∧ ((x ∧y)∨z)

since a≤ b holds iff a= a∧b.

Since every lattice satisfies x ≤ y → x ∨ (y ∧z)≤ y ∧ (x ∨z), to verify
the modular law it suffices to check the implication

x ≤ y → y ∧ (x ∨z)≤ x ∨ (y ∧z).

Theorem

Every distributive lattice is a modular lattice.

Assume distributivity and let x ≤ y . The y ∧x = x . So
x ∨ (y ∧z)= (y ∧x)∨ (y ∧z)= y ∧ (x ∨z).
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Lattices Distributive and Modular Lattices

The Lattices M5 and N5

Consider the two five-element lattices M5 and N5:

We have:
In M5: a∨ (b∧c)= a∨0= a 6= 1= 1∨1= (a∨b)∧ (a∨c)
In N5: a∨ (b∧c)= a∨0= a 6= b= b∧1= (a∨b)∧ (a∨c)

So neither M5 nor N5 is a distributive lattice.

In N5, we also see that a≤ b, but
a∨ (b∧c)= a∨0= a 6= b = b∧1= b∧ (a∨c) So N5 is not modular.

However, we can verify that M5 satisfies the distributive law.
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Lattices Distributive and Modular Lattices

Characterization of Modular Lattices

Theorem (Dedekind)

L is a nonmodular lattice iff N5 can be embedded into L.

From the preceding remarks, if N5 can be embedded into L, then L

does not satisfy the modular law.

For the converse, suppose that L does not satisfy the modular law.
Then, for some a,b,c in L, we have a≤ b but a∨ (b∧c)< b∧ (a∨c).
Let a1 = a∨ (b∧c) and b1 = b∧ (a∨c). Then
c ∧b1 = c ∧ [b∧ (a∨c)]= [c ∧ (c ∨a)]∧b = c ∧b and
c ∨a1 = c ∨ [a∨ (b∧c)]= [c ∨ (c ∧b)]∨a= c ∨a.

Now, as c ∧ b ≤ a1 ≤ b1, we have c ∧ b ≤ c ∧ a1 ≤

c∧b1 = c∧b, whence c∧a1 = c∧b1 = c∧b. Likewise
c ∨b1 = c ∨ a1 = c ∨ a. Now it is straightforward to
verify that the diagram in the figure gives the desired
copy of N5 in L.
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Lattices Distributive and Modular Lattices

Characterization of Distributive Lattices

Theorem (Birkhoff)

L is a non-distributive lattice iff M5 or N5 can be embedded into L.

If either M5 or N5 can be embedded into L, then it is clear from
previous remarks that L cannot be distributive.

For the converse, let us suppose that L is a non-distributive lattice and
that L does not contain a copy of N5 as a sublattice. Thus L is
modular by the preceding theorem. Since the distributive laws do not
hold in L, there must be elements a,b,c from L, such that
(a∧b)∨ (a∧c)< a∧ (b∨c). We define

d = (a∧b)∨ (a∧c)∨ (b∧c), e = (a∨b)∧ (a∨c)∧ (b∨c),

a1 = (a∧e)∨d , b1 = (b∧e)∨d , c1 = (c ∧e)∨d .

It is easily seen that d ≤ a1,b1,c1 ≤ e. Now from a∧e = a∧ (b∨c),

a∧d = a∧ ((a∧b)∨ (a∧c)∨ (b∧c))
= ((a∧b)∨ (a∧c))∨ (a∧ (b∧c)) = (a∧b)∨ (a∧c),

it follows that d < e.
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Lattices Distributive and Modular Lattices

Characterization of Distributive Lattices (Cont’d)

We now show that the diagram is a copy of M5 in
L. To do this it suffices to show that

a1∧b1 = a1∧c1 = b1∧c1 = d

and
a1∨b1 = a1∨c1 = b1∨c1 = e.

We will verify one case only and the others require
similar arguments:

a1∧b1 = ((a∧e)∨d)∧ ((b∧e)∨d)
(M)
= ((a∧e)∧ ((b∧e)∨d))∨d

(M)
= ((a∧e)∧ ((b∨d)∧e))∨d = ((a∧e)∧e ∧ (b∨d))∨d

= ((a∧e)∧ (b∨d))∨d = (a∧ (b∨c)∧ (b∨ (a∧c)))∨d
(M)
= (a∧ (b∨ ((b∨c)∧ (a∧c))))∨d = (a∧ (b∨ (a∧c)))∨d
(M)
= (a∧c)∨ (b∧a)∨d = d .
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Subsection 4

Complete Lattices, Equivalences, and Algebraic Lattices
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Complete Lattices

Definition (Complete Lattice)

A poset P is complete if, for every subset A of P , both supA and infA
exist (in P). All complete posets are lattices, and a lattice L which is
complete as a poset is a complete lattice.

Theorem

Let P be a poset such that
∧
A exists for every subset A, or such that

∨
A

exists for every subset A. Then P is a complete lattice.

Suppose
∧
A exists for every A⊆P . In particular, since

∧
;= 1, P has

a largest element. We have, by definition of Au, for all a ∈A and all
u ∈Au, a≤ u. Thus, for all a ∈A, a≤

∧
Au. Hence,

∨
A≤

∧
Au. But, if

u is an upper bound of A, then u ∈Au, whence
∧
Au ≤ u. Therefore,

∨
A=

∧
Au.

The other half of the theorem is proved similarly.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

An Alternative Formulation

The existence of
∧
; guarantees a largest element in P .

The existence of
∨
; guarantees a smallest element in P .

So an equivalent formulation of the theorem is:

Corollary

P is complete if it has a largest element and the inf of every nonempty
subset exists.

P is complete if it has a smallest element and the sup of every nonempty
subset exists.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Examples of Complete Lattices

(1) The set R∪ {−∞,+∞} of extended reals with the usual ordering is a
complete lattice.

(2) The open subsets of a topological space with the ordering ⊆ form a
complete lattice.

(3) Su(I ) with the usual ordering ⊆ is a complete lattice.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Complete Sublattices

A complete lattice may have sublattices which are incomplete:

Consider the reals as a sublattice of the extended reals.

It is also possible for a sublattice of a complete lattice to be complete,
but the sups and infs of the sublattice not to agree with those of the
original lattice:

Consider the sublattice of the extended reals consisting of those
numbers whose absolute value is less than one together with the
numbers −2,+2.

Definition (Complete Sublattice)

A sublattice L′ of a complete lattice L is called a complete sublattice of L
if for every subset A of L′ the elements

∨
A and

∧
A, as defined in L, are

actually in L′.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Relations and Equivalence Relations

Definition

Let A be a set. Recall that a binary relation r on A is a subset of A2. If
〈a,b〉 ∈ r , we also write a r b.

If r1 and r2 are binary relations on A, then the relational product

r1 ◦ r2 is the binary relation on A defined by 〈a,b〉 ∈ r1 ◦ r2 iff there is a
c ∈A, such that 〈a,c〉 ∈ r1 and 〈c ,b〉 ∈ r2. Inductively, one defines
r1 ◦ r2 ◦ · · · ◦ rn = (r1 ◦ r2 ◦ · · · ◦ rn−1)◦ rn.

The inverse of r is given by r∨ = {〈a,b〉 ∈A2 : 〈b,a〉 ∈ r }.

The diagonal relation ∆A on A is the set {〈a,a〉 : a ∈A}.

The all or nabla relation A2 is denoted by ∇A.
A relation r on A is an equivalence relation if, for any a,b,c from A:

E1 a r a (reflexivity)
E2 a r b implies b r a (symmetry)
E3 a r b and b r c imply a r c (transitivity)

Eq(A) is the set of all equivalence relations on A.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Lattice Structure of Eq(A)

Theorem

The poset Eq(A), with ⊆ as the partial ordering, is a complete lattice.

Note that Eq(A) is closed under arbitrary intersections.

For θ1 and θ2 in Eq(A) it is clear that θ1∧θ2 = θ1∩θ2.

Theorem

If θ1 and θ2 are two equivalence relations on A, then

θ1∨θ2 = θ1∪ (θ1 ◦θ2)∪ (θ1 ◦θ2 ◦θ1)∪ (θ1 ◦θ2 ◦θ1 ◦θ2)∪·· · ,

or, equivalently, 〈a,b〉 ∈ θ1∨θ2 iff, there is a sequence of elements
c1,c2, . . . ,cn from A, such that

〈ci ,ci+1〉 ∈ θ1 or 〈ci ,ci+1〉 ∈ θ2,

for i = 1, . . . ,n−1, and a= c1,b = cn.

Verify that the condition of the right-hand side of the above equation
defines an equivalence relation. Each of the relational products in
parentheses is contained in θ1∨θ2.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Infinite Meets and Joins and Equivalence Classes

If {θi }i∈I is a subset of Eq(A), then
∧
i∈I θi is just

⋂
i∈I θi .

Theorem

If θi ∈Eq(A), for i ∈ I , then
∨

i∈I

θi =
⋃

{θi0 ◦θi1 ◦ · · · ◦θik : i0, . . . , ik ∈ I ,k <∞}.

Definition (Equivalence Class)

Let θ be a member of Eq(A). For a ∈A, the equivalence class (or coset)
of a modulo θ is the set a/θ = {b ∈A : 〈b,a〉 ∈ θ}. The set {a/θ : a ∈A} is
denoted by A/θ.

Theorem

For θ ∈Eq(A) and a,b ∈A we have:
(a) A=

⋃
a∈A a/θ.

(b) a/θ 6= b/θ implies a/θ∩b/θ=;.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Partitions and Equivalence Relations

Definition (Partition)

A partition π of a set A is a family of nonempty pairwise disjoint subsets
of A, such that A=

⋃
π. The sets in π are called the blocks of π. The set

of all partitions of A is denoted by Π(A).

For π in Π(A), let us define an equivalence relation θ(π) by

θ(π)= {〈a,b〉 ∈A2 : {a,b} ⊆B , for some B in π}.

The mapping π 7→ θ(π) is a bijection between Π(A) and Eq(A).

Define a relation ≤ on Π(A) by π1 ≤π2 iff each block of π1 is
contained in some block of π2.

Theorem

With the above ordering Π(A) is a complete lattice, and it is isomorphic to
the lattice Eq(A) under the mapping π 7→ θ(π).

The lattice Π(A) is called the lattice of partitions of A.
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Lattices Complete Lattices, Equivalences, and Algebraic Lattices

Algebraic Lattices

Definition (Algebraic Lattice)

Let L be a lattice. An element a in L is compact iff whenever
∨
A exists

and a≤
∨
A, for A⊆ L, then a≤

∨
B , for some finite B ⊆A. L is compactly

generated iff every element in L is a sup of compact elements. A lattice L

is algebraic if it is complete and compactly generated.

Examples:

(1) The lattice of subsets of a set is an algebraic lattice (where the
compact elements are finite sets).

(2) The lattice of subgroups of a group is an algebraic lattice (in which
“compact” = “finitely generated”).

(3) Finite lattices are algebraic lattices.
(4) The subset [0,1] of the real line is a complete lattice, but it is not

algebraic.
(5) We will also see that lattices of subuniverses of algebras and lattices of

congruences on algebras are algebraic.
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Subsection 5

Closure Operators
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Lattices Closure Operators

Closure Operators

Definition (Closure Operator)

If we are given a set A, a mapping C : Su(A)→ Su(A) is called a closure

operator on A if, for X ,Y ⊆A, it satisfies:

C1 X ⊆C (X ) (extensive)

C2 C 2(X )=C (X ) (idempotent)

C3 X ⊆Y implies C (X )⊆C (Y ) (isotone)

A subset X of A is called a closed subset if C (X )=X . The poset of closed
subsets of A, with set inclusion as the partial ordering, is denoted by LC .
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Complete Lattice Structure of LC

Theorem

Let C be a closure operator on a set A. Then LC is a complete lattice with
∧

i∈I

C (Ai)=
⋂

i∈I

C (Ai ) and
∨

i∈I

C (Ai)=C (
⋃

i∈I

Ai).

Let (Ai)i∈I be an indexed family of closed subsets of A. We have
⋂
i∈I Ai ⊆Ai , for each i . Hence, C (

⋂
i∈I Ai)⊆C (Ai)=Ai . So

C (
⋂
i∈I Ai)⊆

⋂
i∈I Ai . Since C is extensive, C (

⋂
i∈I Ai)=

⋂
i∈I Ai . We

conclude
⋂
i∈I Ai is in LC .

Since A=C (A) is itself in LC , LC is a complete lattice.
⋂
i∈I C (Ai )⊆C (Ai ), for all i . So

⋂
i∈I C (Ai )⊆

∧
i∈I C (Ai ). If B ∈ LC is

such that B ⊆C (Ai ), for all i , then B ⊆
⋂
i∈I C (Ai ). Hence∧

i∈I C (Ai )=
⋂
i∈I C (Ai ).

C (Ai )⊆C (
⋃
i∈I AI ), for all i . Hence,

∨
i∈I C (Ai )⊆C (

⋃
i∈I Ai ). If

C (Ai )⊆B ∈ LC , for all i , then Ai ⊆B, for all i , whence
⋃
i∈I Ai ⊆B.

Thus, C (
⋃
i∈I Ai )⊆C (B)=B . So

∨
i∈I C (Ai )=C (

⋃
i∈I Ai ).
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Complete Lattices and Lattices of Closed Sets

Theorem

Every complete lattice is isomorphic to the lattice of closed subsets of some
set A with a closure operator C .

Let L be a complete lattice. For X ⊆ L define

C (X )= {a ∈ L : a≤ supX }.

Then C is a closure operator on L:
X ⊆ {a ∈ L : a≤ supX } =C (X );
If X ⊆Y , C (X )= {a ∈ L : a≤ supX } ⊆ {a ∈ L : a≤ supY } =C (Y ).

If a ∈C (C (X )), then a≤ supC (X )= sup {a ∈ L : a≤ supX } ≤ supX .

Hence, a ∈C (X ).

The mapping
a 7→ {b ∈ L : b ≤ a}

gives the desired isomorphism between L and LC .
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Algebraic Closure Operators

Definition (Algebraic Closure Operator)

A closure operator C on the set A is an algebraic closure operator if, for
every X ⊆A,

C4 C (X )=
⋃

{C (Y ) :Y ⊆X and Y is finite}.

Note that C1, C2, C4 imply C3.

Theorem

If C is an algebraic closure operator on a set A then LC is an algebraic
lattice. The compact elements of LC are precisely the closed sets C (X ),
where X is a finite subset of A.

First we show that C (X ) is compact iff X is finite.

Then by (C4), we have C (X )=
⋃

{C (Y ) :Y ⊆X , Y finite} =

C (
⋃

{C (Y ) :Y ⊆X , Y finite})=
∨

{C (Y ) :Y ⊆X , Y finite}.

Thus, LC is algebraic.
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Algebraic Closure Operators (Cont’d)

Suppose X = {a1, . . . ,ak } and C (X )⊆
∨
i∈I C (Ai)=C (

⋃
i∈I Ai). For each

aj ∈X , we have a finite Xj ⊆
⋃
i∈I Ai , with aj ∈C (Xj). There are

finitely many Ai ’s, say Aj1, . . . ,Ajnj , such that Xj ⊆Aj1∪·· ·∪Ajnj ,
Hence, aj ∈C (Aj1∪·· ·∪Ajnj ). But then X ⊆

⋃
1≤j≤k C (Aj1∪·· ·∪Ajnj ),

so X ⊆C (
⋃

1≤j≤k
1≤i≤nj

Aji). Hence,

C (X )⊆C (
⋃

1≤j≤k
1≤i≤nj

Aji)=
∨

1≤j≤k
1≤i≤nj

C (Aji).

So C (X ) is compact.

Now suppose C (Y ) is not equal to C (X ) for any finite X . From
C (Y )⊆

⋃
{C (X ) :X ⊆Y and X finite}, it is easy to see that C (Y )

cannot be contained in any finite union of the C (X )’s. Hence C (Y ) is
not compact.
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Generating Sets

Definition (Generating Set)

If C is a closure operator on A and Y is a closed subset of A, then we say
a set X is a generating set for Y if C (X )=Y .
The set Y is finitely generated if there is a finite generating set for Y .
The set X is a minimal generating set for Y if X generates Y and no
proper subset of X generates Y .

Corollary

Let C be an algebraic closure operator on A. Then the finitely generated
subsets of A are precisely the compact elements of LC .
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Algebraic Lattices and Algebraic Closure Operators

Theorem

Every algebraic lattice is isomorphic to the lattice of closed subsets of some
set A with an algebraic closure operator C .

Let L be an algebraic lattice, and let A be the subset of compact
elements. For X ⊆A, define

C (X )= {a ∈A : a≤
∨

X }.

C is a closure operator. Moreover, for all X ⊆ L, C (X )= {a ∈A : a≤
∨
X }= {a ∈A : a≤

∨
Y :Y ⊆X , Y finite} =

⋃
{C (Y ) :Y ⊆X , Y finite}.

So C is algebraic. The map

a 7→ {b ∈A : b ≤ a}

gives the desired isomorphism as L is compactly generated.
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