Introduction to Universal Algebra

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

June 2020 1 / 45

Lattices

- Definitions of Lattices
- Isomorphic Lattices, and Sublattices
- Distributive and Modular Lattices
- Complete Lattices, Equivalences, and Algebraic Lattices
- Closure Operators

Subsection 1

Definitions of Lattices

Definition of a Lattice

Definition (Lattice)

A nonempty set *L* together with two binary operations \lor and \land (read "join" and "meet" respectively) on *L* is called a **lattice** if it satisfies the following identities:

L1 (commutative laws)	L3 (idempotent laws)
(a) $x \lor y \approx y \lor x;$	(a) $x \lor x \approx x;$
(b) $x \wedge y \approx y \wedge x$	(b) $x \wedge x \approx x;$
L2 (associative laws)	L4 (absorption laws)
(a) $x \lor (y \lor z) \approx (x \lor y) \lor z;$	(a) $x \approx x \vee (x \wedge y);$
(b) $x \wedge (y \wedge z) \approx (x \wedge y) \wedge z;$	(b) $x \approx x \wedge (x \vee y)$.

Example: Let *L* be the set of propositions, \lor the connective "or" and \land the connective "and". L1 to L4 are well-known properties from propositional logic.

Example: Let $L = \mathbb{N}$, \lor the least common multiple and \land the greatest common divisor. Then properties L1 to L4 are easily verifiable.

George Voutsadakis (LSSU)

Ordered Sets

Definition (Orders)

A binary relation \leq defined on a set A is a **partial order** on the set A if the following conditions hold identically in A:

(i) $a \le a$ (reflexivity)

```
(ii) a \le b and b \le a imply a = b (antisymmetry)
```

```
(iii) a \le b and b \le c imply a \le c (transitivity)
```

If, in addition, for every a, b in A,

```
(iv) a \le b or b \le a,
```

then we say \leq is a **total order** on *A*.

A nonempty set with a partial order on it is called a **partially ordered set**, or more briefly a **poset**. If the relation is a total order then we speak of a **totally ordered set**, or a **linearly ordered set**, or simply a **chain**. In a poset A we use the expression a < b to mean $a \le b$ but $a \ne b$.

Examples of Partially Ordered Sets

- (1) Let Su(A) denote the **power set** of A, i.e., the set of all subsets of A. Then \subseteq is a partial order on Su(A).
- (2) Let A be the set of natural numbers and let \leq be the relation "divides". Then \leq is a partial order on A.
- (3) Let A be the set of real numbers and let ≤ be the usual ordering. Then ≤ is a total order on A.

Bounds

Definition (Bounds)

Let A be a subset of a poset P.

An element p in P is an **upper bound** for A if $a \le p$, for every a in A. An element p in P is the **least upper bound** of A (**l.u.b.** of A), or **supremum** of A (supA) if:

- p is an upper bound of A, and
- a ≤ b, for every a in A implies p ≤ b (i.e., p is the smallest among the upper bounds of A).

An element p in P is a **lower bound** for A if $p \le a$, for every a in A. An element p in P is the **greatest lower bound** of A (**g.l.b.** of A), or **infimum** of A (infA) if:

- p is a lower bound of A, and
- b ≤ a, for every a in A implies b ≤ p (i.e., p is the largest among the lower bounds of A).

Covers and Intervals

Definition

```
Let A be a subset of a poset P and a, b \in P.
```

We say *b* covers *a*, or *a* is covered by *b*, if a < b, and whenever $a \le c \le b$, it follows that a = c or c = b. We use the notation a < b to denote *a* is covered by *b*. The closed interval [a, b] is defined to be the set of *c* in *P*, such that

 $a \le c \le b$.

```
The open interval (a, b) is the set of c in P, such that a < c < b.
```

Hasse Diagrams

- We describe the method of associating a **Hasse diagram** with a finite poset *P*:
 - We represent each element of *P* by a small circle.
 - If a < b, then we draw the circle for b above the circle for a, joining the two circles with a line segment.
- From this diagram we can recapture the relation \leq by noting that $a \leq b$ holds iff, for some finite sequence of elements c_1, \ldots, c_n from P, we have $a = c_1 < c_2 < \cdots < c_{n-1} < c_n = b$.

Hasse Diagrams for Infinite Posets

• Some more examples

• It is not so clear how one would draw an infinite poset.

- For example, the real line with the usual ordering has no covering relations, but it is quite common to visualize it as a vertical line. Unfortunately, the rational line would have the same picture.
- The diagram on the very right depicts the integers under the usual ordering.

Lattices as Partially Ordered Sets

Definition (Lattice)

A poset L is a **lattice** iff for every a, b in L both sup{a, b} and inf{a, b} exist (in L).

• The poset in each of the first four following diagrams is a lattice:

 The poset corresponding to the last diagram has the interesting property that every pair of elements has an upper bound and a lower bound, but is not a lattice.

George Voutsadakis (LSSU)

Algebraic Lattice to Partially Ordered Lattice

(A) If L is a lattice by the algebraic definition, then define \leq on L by $a \leq b$ iff $a = a \wedge b$.

Suppose that *L* is a lattice by the first definition and \leq is defined as in (A). Since $a \wedge a = a$, we get $a \leq a$. If $a \leq b$ and $b \leq a$, then $a = a \wedge b$ and $b = b \wedge a$. Hence a = b. If $a \leq b$ and $b \leq c$, then $a = a \wedge b$ and $b = b \wedge c$. So $a = a \wedge b = a \wedge (b \wedge c) = (a \wedge b) \wedge c = a \wedge c$, whence $a \leq c$. This shows \leq is a partial order on *L*.

Since $a = a \land (a \lor b)$ and $b = b \land (a \lor b)$, we get $a \le a \lor b$ and $b \le a \lor b$, so $a \lor b$ is an upper bound of both a and b.

If $a \le u$ and $b \le u$, then $a \lor u = (a \land u) \lor u = u$, and likewise $b \lor u = u$. So $(a \lor u) \lor (b \lor u) = u \lor u = u$. Hence $(a \lor b) \lor u = u$, giving $(a \lor b) \land u = (a \lor b) \land [(a \lor b) \lor u] = a \lor b$ (by the absorption law). This says $a \lor b \le u$. Thus $a \lor b = \sup\{a, b\}$.

Similarly, $a \wedge b = \inf\{a, b\}$.

Partially Ordered to Algebraic Lattice

(B) If L is a partially ordered lattice, then define the operations \lor and \land by $a \lor b = \sup\{a, b\}$ and $a \land b = \inf\{a, b\}$.

These operations satisfy the requirements L1 to L4. E.g., the absorption law L4(a) becomes

 $a = \sup\{a, \inf\{a, b\}\},\$

which is clearly true as $\inf\{a, b\} \le a$.

• The two constructions (A) and (B) are inverses of each other.

Subsection 2

Isomorphic Lattices, and Sublattices

Lattice Isomorphisms and Order-Preserving Maps

Definition (Lattice Isomorphism)

Two lattices L_1 and L_2 are **isomorphic** if there is a bijection α from L_1 to L_2 , such that for every a, b in L_1 the following two equations hold:

$$\alpha(a \lor b) = \alpha(a) \lor \alpha(b)$$
 and $\alpha(a \land b) = \alpha(a) \land \alpha(b)$.

Such an α is called an **isomorphism**.

- If α is an isomorphism from L_1 to L_2 , then α^{-1} is an isomorphism from L_2 to L_1 ;
- If, in addition, β is an isomorphism from L_2 to L_3 , then $\beta \circ \alpha$ is an isomorphism from L_1 to L_3 .

Definition (Order-Preserving Map)

If P_1 and P_2 are two posets and α is a map from P_1 to P_2 , then we say α is **order-preserving** if, for all $a, b \in P_1$, $a \le b$ in P_1 implies $\alpha(a) \le \alpha(b)$ in P_2 .

Lattice Isomorphisms and Order-Preservation

Theorem

Two lattices L_1 and L_2 are isomorphic iff there is a bijection α from L_1 to L_2 , such that both α and α^{-1} are order-preserving.

Suppose α is an isomorphism from L₁ to L₂. If a ≤ b holds in L₁, then a = a ∧ b, so α(a) = α(a ∧ b) = α(a) ∧ α(b). Hence α(a) ≤ α(b), and, thus, α is order-preserving. Since α⁻¹ is an isomorphism, it is also order-preserving.

Conversely, let α be a bijection from L_1 to L_2 , such that both α and α^{-1} are order-preserving. For a, b in L_1 , we have $a \le a \lor b$ and $b \le a \lor b$. So $\alpha(a) \le \alpha(a \lor b)$ and $\alpha(b) \le \alpha(a \lor b)$. Hence, $\alpha(a) \lor \alpha(b) \le \alpha(a \lor b)$. Furthermore, if $\alpha(a) \lor \alpha(b) \le u$, then $\alpha(a) \le u$ and $\alpha(b) \le u$. Hence $a \le \alpha^{-1}(u)$ and $b \le \alpha^{-1}(u)$. So $a \lor b \le \alpha^{-1}(u)$, and, thus, $\alpha(a \lor b) \le u$. This implies that $\alpha(a) \lor \alpha(b) = \alpha(a \lor b)$. Similarly, it can be argued that $\alpha(a) \land \alpha(b) = \alpha(a \land b)$.

A Non-Isomorphism Order-Preserving Bijection

 An example of a bijection α between lattices which is order-preserving but not an isomorphism is shown below:

Sublattices

Definition (Sublattice)

If *L* is a lattice and $L' \neq \emptyset$ is a subset of *L*, such that, for every pair of elements *a*, *b* in *L'*, both $a \lor b$ and $a \land b$ are in *L'*, where \lor and \land are the lattice operations of *L*, then we say that *L'* with the same operations (restricted to *L'*) is a **sublattice** of *L*.

- If L' is a sublattice of L, then for a, b in L', we have a ≤ b in L' iff a ≤ b in L.
- Given a lattice L, one can often find subsets which, as posets, are lattices, but which do not qualify as sublattices, as the operations ∨ and ∧ do not agree with those of the original lattice L.
 Example: P = {a, c, d, e} as a poset is indeed a lattice. But P is not a sublattice of the lattice {a, b, c, d, e}.

Lattice Embeddings

Definition (Lattice Embedding)

A lattice L_1 can be **embedded into** a lattice L_2 if there is a sublattice of L_2 isomorphic to L_1 . In this case we also say L_2 **contains a copy of** L_1 **as a sublattice**.

Example:

Subsection 3

Distributive and Modular Lattices

Distributive Lattices

Definition (Distributive Lattice)

A **distributive lattice** is a lattice which satisfies either (and hence, as we shall see, both) of the distributive laws:

- D1 $x \land (y \lor z) \approx (x \land y) \lor (x \land z);$
- D2 $x \lor (y \land z) \approx (x \lor y) \land (x \lor z).$

Theorem

A lattice L satisfies D1 iff it satisfies D2.

Suppose D1 holds. Then:

$$\begin{array}{ll} x \lor (y \land z) &\approx & (x \lor (x \land z)) \lor (y \land z) \approx x \lor ((x \land z) \lor (y \land z)) \\ &\approx & x \lor ((z \land x) \lor (z \land y)) \approx x \lor (z \land (x \lor y)) \\ &\approx & x \lor ((x \lor y) \land z) \approx (x \land (x \lor y)) \lor ((x \lor y) \land z) \\ &\approx & ((x \lor y) \land x) \lor ((x \lor y) \land z) \approx (x \lor y) \land (x \lor z). \end{array}$$

Thus D2 also holds. Similarly, if D2 holds, then so does D1.

Sufficient Conditions

Note that every lattice satisfies both of the inequalities

$$\begin{array}{rcl} (x \wedge y) \lor (x \wedge z) &\leq & x \wedge (y \lor z); \\ & & x \lor (y \wedge z) &\leq & (x \lor y) \wedge (x \lor z) \end{array}$$

To see this, note for example that $x \land y \le x$ and $x \land y \le y \lor z$. Hence $x \land y \le x \land (y \lor z)$, etc.

• Thus to verify the distributive laws in a lattice it suffices to check either of the following inequalities:

$$\begin{array}{rcl} x \wedge (y \vee z) &\leq & (x \wedge y) \vee (x \wedge z); \\ (x \vee y) \wedge (x \vee z) &\leq & x \vee (y \wedge z). \end{array}$$

Modular Lattices

Definition (Modular Lattice)

A modular lattice is any lattice which satisfies the modular law:

$$M \quad x \le y \to x \lor (y \land z) \approx y \land (x \lor z).$$

 ${\scriptstyle \bullet}\,$ The modular law is obviously equivalent (for lattices) to the identity

$$(x \land y) \lor (y \land z) \approx y \land ((x \land y) \lor z)$$

since $a \le b$ holds iff $a = a \land b$.

 Since every lattice satisfies x ≤ y → x ∨ (y ∧ z) ≤ y ∧ (x ∨ z), to verify the modular law it suffices to check the implication

$$x \le y \to y \land (x \lor z) \le x \lor (y \land z).$$

Theorem

Every distributive lattice is a modular lattice.

• Assume distributivity and let $x \le y$. The $y \land x = x$. So $x \lor (y \land z) = (y \land x) \lor (y \land z) = y \land (x \lor z)$.

George Voutsadakis (LSSU)

The Lattices M_5 and N_5

• Consider the two five-element lattices M₅ and N₅:

We have:

- In M_5 : $a \lor (b \land c) = a \lor 0 = a \neq 1 = 1 \lor 1 = (a \lor b) \land (a \lor c)$
- In N_5 : $a \lor (b \land c) = a \lor 0 = a \neq b = b \land 1 = (a \lor b) \land (a \lor c)$

So neither M_5 nor N_5 is a distributive lattice.

 In N₅, we also see that a ≤ b, but a ∨ (b ∧ c) = a ∨ 0 = a ≠ b = b ∧ 1 = b ∧ (a ∨ c) So N₅ is not modular. However, we can verify that M₅ satisfies the distributive law.

Characterization of Modular Lattices

Theorem (Dedekind)

L is a nonmodular lattice iff N_5 can be embedded into L.

• From the preceding remarks, if N_5 can be embedded into L, then L does not satisfy the modular law.

For the converse, suppose that *L* does not satisfy the modular law. Then, for some a, b, c in L, we have $a \le b$ but $a \lor (b \land c) < b \land (a \lor c)$. Let $a_1 = a \lor (b \land c)$ and $b_1 = b \land (a \lor c)$. Then $c \wedge b_1 = c \wedge [b \wedge (a \vee c)] = [c \wedge (c \vee a)] \wedge b = c \wedge b$ and $c \vee a$ $c \lor a_1 = c \lor [a \lor (b \land c)] = [c \lor (c \land b)] \lor a = c \lor a.$ Now, as $c \wedge b \leq a_1 \leq b_1$, we have $c \wedge b \leq c \wedge a_1 \leq b_1$ $c \wedge b_1 = c \wedge b$, whence $c \wedge a_1 = c \wedge b_1 = c \wedge b$. Likewise a_1 $c \lor b_1 = c \lor a_1 = c \lor a$. Now it is straightforward to verify that the diagram in the figure gives the desired copy of N_5 in L.

George Voutsadakis (LSSU)

Characterization of Distributive Lattices

Theorem (Birkhoff)

L is a non-distributive lattice iff M_5 or N_5 can be embedded into L.

If either M₅ or N₅ can be embedded into L, then it is clear from previous remarks that L cannot be distributive.
 For the converse, let us suppose that L is a non-distributive lattice and that L does not contain a copy of N₅ as a sublattice. Thus L is modular by the preceding theorem. Since the distributive laws do not hold in L, there must be elements a, b, c from L, such that (a ∧ b) ∨ (a ∧ c) < a ∧ (b ∨ c). We define

 $d = (a \land b) \lor (a \land c) \lor (b \land c), \quad e = (a \lor b) \land (a \lor c) \land (b \lor c),$ $a_1 = (a \land e) \lor d, \quad b_1 = (b \land e) \lor d, \quad c_1 = (c \land e) \lor d.$

It is easily seen that $d \le a_1, b_1, c_1 \le e$. Now from $a \land e = a \land (b \lor c)$,

$$a \wedge d = a \wedge ((a \wedge b) \vee (a \wedge c) \vee (b \wedge c))$$

= ((a \wedge b) \langle (a \langle c)) \langle (a \langle b) \langle (a \langle c),

it follows that d < e.

George Voutsadakis (LSSU)

Characterization of Distributive Lattices (Cont'd)

• We now show that the diagram is a copy of *M*₅ in *L*. To do this it suffices to show that

$$a_1 \wedge b_1 = a_1 \wedge c_1 = b_1 \wedge c_1 = d$$

and

$$a_1 \lor b_1 = a_1 \lor c_1 = b_1 \lor c_1 = e.$$

We will verify one case only and the others require similar arguments:

$$a_{1} \wedge b_{1} = ((a \wedge e) \vee d) \wedge ((b \wedge e) \vee d) \stackrel{(M)}{=} ((a \wedge e) \wedge ((b \wedge e) \vee d)) \vee d$$

$$\stackrel{(M)}{=} ((a \wedge e) \wedge ((b \vee d) \wedge e)) \vee d = ((a \wedge e) \wedge e \wedge (b \vee d)) \vee d$$

$$= ((a \wedge e) \wedge (b \vee d)) \vee d = (a \wedge (b \vee c) \wedge (b \vee (a \wedge c))) \vee d$$

$$\stackrel{(M)}{=} (a \wedge (b \vee ((b \vee c) \wedge (a \wedge c)))) \vee d = (a \wedge (b \vee (a \wedge c))) \vee d$$

$$\stackrel{(M)}{=} (a \wedge c) \vee (b \wedge a) \vee d = d.$$

Subsection 4

Complete Lattices, Equivalences, and Algebraic Lattices

Complete Lattices

Definition (Complete Lattice)

A poset P is **complete** if, for every subset A of P, both sup A and inf A exist (in P). All complete posets are lattices, and a lattice L which is complete as a poset is a **complete lattice**.

Theorem

Let P be a poset such that $\land A$ exists for every subset A, or such that $\lor A$ exists for every subset A. Then P is a complete lattice.

• Suppose $\bigwedge A$ exists for every $A \subseteq P$. In particular, since $\bigwedge \phi = 1$, P has a largest element. We have, by definition of A^u , for all $a \in A$ and all $u \in A^u$, $a \le u$. Thus, for all $a \in A$, $a \le \bigwedge A^u$. Hence, $\bigvee A \le \bigwedge A^u$. But, if u is an upper bound of A, then $u \in A^u$, whence $\bigwedge A^u \le u$. Therefore, $\bigvee A = \bigwedge A^u$.

The other half of the theorem is proved similarly.

An Alternative Formulation

- The existence of $\bigwedge \phi$ guarantees a largest element in *P*.
- The existence of $\bigvee \phi$ guarantees a smallest element in *P*.
- So an equivalent formulation of the theorem is:

Corollary

- *P* is complete if it has a largest element and the inf of every nonempty subset exists.
- *P* is complete if it has a smallest element and the sup of every nonempty subset exists.

Examples of Complete Lattices

- (1) The set $\mathbb{R} \cup \{-\infty, +\infty\}$ of extended reals with the usual ordering is a complete lattice.
- (2) The open subsets of a topological space with the ordering ⊆ form a complete lattice.
- (3) Su(1) with the usual ordering \subseteq is a complete lattice.

Complete Sublattices

- A complete lattice may have sublattices which are incomplete: Consider the reals as a sublattice of the extended reals.
- It is also possible for a sublattice of a complete lattice to be complete, but the sups and infs of the sublattice not to agree with those of the original lattice:

Consider the sublattice of the extended reals consisting of those numbers whose absolute value is less than one together with the numbers -2, +2.

Definition (Complete Sublattice)

A sublattice L' of a complete lattice L is called a **complete sublattice** of L if for every subset A of L' the elements $\lor A$ and $\land A$, as defined in L, are actually in L'.

Relations and Equivalence Relations

Definition

Let A be a set. Recall that a **binary relation** r on A is a subset of A^2 . If $(a, b) \in r$, we also write a r b.

- If r_1 and r_2 are binary relations on A, then the **relational product** $r_1 \circ r_2$ is the binary relation on A defined by $\langle a, b \rangle \in r_1 \circ r_2$ iff there is a $c \in A$, such that $\langle a, c \rangle \in r_1$ and $\langle c, b \rangle \in r_2$. Inductively, one defines $r_1 \circ r_2 \circ \cdots \circ r_n = (r_1 \circ r_2 \circ \cdots \circ r_{n-1}) \circ r_n$.
- The **inverse** of *r* is given by $r^{\vee} = \{ \langle a, b \rangle \in A^2 : \langle b, a \rangle \in r \}.$
- The diagonal relation Δ_A on A is the set $\{\langle a, a \rangle : a \in A\}$.
- The **all** or **nabla relation** A^2 is denoted by ∇_A .
- A relation r on A is an equivalence relation if, for any a, b, c from A:
 - E1 a r a (reflexivity)
 - E2 *a r b* implies *b r a* (**symmetry**)
 - E3 a r b and b r c imply a r c (transitivity)

Eq(A) is the set of all equivalence relations on A.

Lattice Structure of Eq(A)

Theorem

The poset Eq(A), with \subseteq as the partial ordering, is a complete lattice.

- Note that Eq(A) is closed under arbitrary intersections.
- For θ_1 and θ_2 in Eq(A) it is clear that $\theta_1 \wedge \theta_2 = \theta_1 \cap \theta_2$.

Theorem

If θ_1 and θ_2 are two equivalence relations on A, then

 $\theta_1 \lor \theta_2 = \theta_1 \cup (\theta_1 \circ \theta_2) \cup (\theta_1 \circ \theta_2 \circ \theta_1) \cup (\theta_1 \circ \theta_2 \circ \theta_1 \circ \theta_2) \cup \cdots,$

or, equivalently, $\langle a, b \rangle \in \theta_1 \lor \theta_2$ iff, there is a sequence of elements c_1, c_2, \ldots, c_n from A, such that

$$\langle c_i, c_{i+1} \rangle \in \theta_1$$
 or $\langle c_i, c_{i+1} \rangle \in \theta_2$,

for i = 1, ..., n - 1, and $a = c_1, b = c_n$.

• Verify that the condition of the right-hand side of the above equation defines an equivalence relation. Each of the relational products in parentheses is contained in $\theta_1 \vee \theta_2$.

George Voutsadakis (LSSU)

Infinite Meets and Joins and Equivalence Classes

• If $\{\theta_i\}_{i \in I}$ is a subset of Eq(A), then $\bigwedge_{i \in I} \theta_i$ is just $\bigcap_{i \in I} \theta_i$.

Theorem

If $\theta_i \in Eq(A)$, for $i \in I$, then

$$\bigvee_{i \in I} \theta_i = \bigcup \{ \theta_{i_0} \circ \theta_{i_1} \circ \cdots \circ \theta_{i_k} : i_0, \dots, i_k \in I, k < \infty \}.$$

Definition (Equivalence Class)

Let θ be a member of Eq(A). For $a \in A$, the **equivalence class** (or **coset**) **of** a modulo θ is the set $a/\theta = \{b \in A : \langle b, a \rangle \in \theta\}$. The set $\{a/\theta : a \in A\}$ is denoted by A/θ .

Theorem

For $\theta \in \text{Eq}(A)$ and $a, b \in A$ we have: (a) $A = \bigcup_{a \in A} a/\theta$. (b) $a/\theta \neq b/\theta$ implies $a/\theta \cap b/\theta = \phi$.

Partitions and Equivalence Relations

Definition (Partition)

A partition π of a set A is a family of nonempty pairwise disjoint subsets of A, such that $A = \bigcup \pi$. The sets in π are called the **blocks** of π . The set of all partitions of A is denoted by $\Pi(A)$.

• For π in $\Pi(A)$, let us define an equivalence relation $\theta(\pi)$ by

 $\theta(\pi) = \{ \langle a, b \rangle \in A^2 : \{a, b\} \subseteq B, \text{ for some } B \text{ in } \pi \}.$

- The mapping $\pi \mapsto \theta(\pi)$ is a bijection between $\Pi(A)$ and Eq(A).
- Define a relation ≤ on Π(A) by π₁ ≤ π₂ iff each block of π₁ is contained in some block of π₂.

Theorem

With the above ordering $\Pi(A)$ is a complete lattice, and it is isomorphic to the lattice Eq(A) under the mapping $\pi \mapsto \theta(\pi)$.

• The lattice $\Pi(A)$ is called the **lattice of partitions** of A.

Algebraic Lattices

Definition (Algebraic Lattice)

Let *L* be a lattice. An element *a* in *L* is **compact** iff whenever $\lor A$ exists and $a \leq \lor A$, for $A \subseteq L$, then $a \leq \lor B$, for some finite $B \subseteq A$. *L* is **compactly generated** iff every element in *L* is a sup of compact elements. A lattice *L* is **algebraic** if it is complete and compactly generated.

Examples:

- (1) The lattice of subsets of a set is an algebraic lattice (where the compact elements are finite sets).
- (2) The lattice of subgroups of a group is an algebraic lattice (in which "compact" = "finitely generated").
- (3) Finite lattices are algebraic lattices.
- (4) The subset [0,1] of the real line is a complete lattice, but it is not algebraic.
- (5) We will also see that *lattices of subuniverses of algebras* and *lattices of congruences on algebras* are algebraic.

Subsection 5

Closure Operators

Closure Operators

Definition (Closure Operator)

If we are given a set A, a mapping $C : Su(A) \rightarrow Su(A)$ is called a **closure** operator on A if, for $X, Y \subseteq A$, it satisfies:

- C1 $X \subseteq C(X)$ (extensive)
- C2 $C^2(X) = C(X)$ (idempotent)
- C3 $X \subseteq Y$ implies $C(X) \subseteq C(Y)$ (isotone)

A subset X of A is called a **closed subset** if C(X) = X. The poset of closed subsets of A, with set inclusion as the partial ordering, is denoted by L_C .

Complete Lattice Structure of L_C

Theorem

Let C be a closure operator on a set A. Then L_C is a complete lattice with

$$\bigwedge_{i \in I} C(A_i) = \bigcap_{i \in I} C(A_i) \text{ and } \bigvee_{i \in I} C(A_i) = C(\bigcup_{i \in I} A_i).$$

 Let (A_i)_{i∈I} be an indexed family of closed subsets of A. We have ∩_{i∈I} A_i ⊆ A_i, for each i. Hence, C(∩_{i∈I} A_i) ⊆ C(A_i) = A_i. So C(∩_{i∈I} A_i) ⊆ ∩_{i∈I} A_i. Since C is extensive, C(∩_{i∈I} A_i) = ∩_{i∈I} A_i. We conclude ∩_{i∈I} A_i is in L_C.

Since A = C(A) is itself in L_C , L_C is a complete lattice.

• $\bigcap_{i \in I} C(A_i) \subseteq C(A_i)$, for all *i*. So $\bigcap_{i \in I} C(A_i) \subseteq \bigwedge_{i \in I} C(A_i)$. If $B \in L_C$ is such that $B \subseteq C(A_i)$, for all *i*, then $B \subseteq \bigcap_{i \in I} C(A_i)$. Hence $\bigwedge_{i \in I} C(A_i) = \bigcap_{i \in I} C(A_i)$.

• $C(A_i) \subseteq C(\bigcup_{i \in I} A_i)$, for all *i*. Hence, $\bigvee_{i \in I} C(A_i) \subseteq C(\bigcup_{i \in I} A_i)$. If $C(A_i) \subseteq B \in L_C$, for all *i*, then $A_i \subseteq B$, for all *i*, whence $\bigcup_{i \in I} A_i \subseteq B$. Thus, $C(\bigcup_{i \in I} A_i) \subseteq C(B) = B$. So $\bigvee_{i \in I} C(A_i) = C(\bigcup_{i \in I} A_i)$.

Complete Lattices and Lattices of Closed Sets

Theorem

Every complete lattice is isomorphic to the lattice of closed subsets of some set A with a closure operator C.

• Let *L* be a complete lattice. For $X \subseteq L$ define

 $C(X) = \{a \in L : a \le \sup X\}.$

Then C is a closure operator on L:

- $X \subseteq \{a \in L : a \le \sup X\} = C(X);$
- If $X \subseteq Y$, $C(X) = \{a \in L : a \le \sup X\} \subseteq \{a \in L : a \le \sup Y\} = C(Y)$.
- If a ∈ C(C(X)), then a ≤ sup C(X) = sup {a ∈ L : a ≤ sup X} ≤ sup X. Hence, a ∈ C(X).

The mapping

$$a \mapsto \{b \in L : b \le a\}$$

gives the desired isomorphism between L and L_C .

Algebraic Closure Operators

Definition (Algebraic Closure Operator)

A closure operator C on the set A is an algebraic closure operator if, for every $X \subseteq A$,

C4 $C(X) = \bigcup \{C(Y) : Y \subseteq X \text{ and } Y \text{ is finite} \}.$

Note that C1, C2, C4 imply C3.

Theorem

If C is an algebraic closure operator on a set A then L_C is an algebraic lattice. The compact elements of L_C are precisely the closed sets C(X), where X is a finite subset of A.

First we show that C(X) is compact iff X is finite.
 Then by (C4), we have C(X) = ∪{C(Y) : Y ⊆ X, Y finite} = C(∪{C(Y) : Y ⊆ X, Y finite}) = ∨{C(Y) : Y ⊆ X, Y finite}.
 Thus, L_C is algebraic.

Algebraic Closure Operators (Cont'd)

• Suppose $X = \{a_1, ..., a_k\}$ and $C(X) \subseteq \bigvee_{i \in I} C(A_i) = C(\bigcup_{i \in I} A_i)$. For each $a_j \in X$, we have a finite $X_j \subseteq \bigcup_{i \in I} A_i$, with $a_j \in C(X_j)$. There are finitely many A_i 's, say $A_{j1}, ..., A_{jn_j}$, such that $X_j \subseteq A_{j1} \cup \cdots \cup A_{jn_j}$, Hence, $a_j \in C(A_{j1} \cup \cdots \cup A_{jn_j})$. But then $X \subseteq \bigcup_{1 \leq j \leq k} C(A_{j1} \cup \cdots \cup A_{jn_j})$, so $X \subseteq C(\bigcup_{1 \leq j \leq k} A_{ji})$. Hence, $a_{j \leq i \leq n_j}$

$$C(X) \subseteq C(\bigcup_{\substack{1 \le j \le k \\ 1 \le i \le n_j}} A_{ji}) = \bigvee_{\substack{1 \le j \le k \\ 1 \le i \le n_j}} C(A_{ji}).$$

So C(X) is compact.

Now suppose C(Y) is not equal to C(X) for any finite X. From $C(Y) \subseteq \bigcup \{C(X) : X \subseteq Y \text{ and } X \text{ finite}\}$, it is easy to see that C(Y) cannot be contained in any finite union of the C(X)'s. Hence C(Y) is not compact.

George Voutsadakis (LSSU)

Generating Sets

Definition (Generating Set)

If C is a closure operator on A and Y is a closed subset of A, then we say a set X is a **generating set** for Y if C(X) = Y. The set Y is **finitely generated** if there is a finite generating set for Y.

The set X is a minimal generating set for Y if X generates Y and no proper subset of X generates Y.

Corollary

Let C be an algebraic closure operator on A. Then the finitely generated subsets of A are precisely the compact elements of L_C .

Algebraic Lattices and Algebraic Closure Operators

Theorem

Every algebraic lattice is isomorphic to the lattice of closed subsets of some set A with an algebraic closure operator C.

 Let L be an algebraic lattice, and let A be the subset of compact elements. For X ⊆ A, define

$$C(X) = \{a \in A : a \leq \bigvee X\}.$$

C is a closure operator. Moreover, for all $X \subseteq L$, $C(X) = \{a \in A : a \leq \forall X\} = \{a \in A : a \leq \forall Y : Y \subseteq X, Y \text{ finite}\} = \bigcup \{C(Y) : Y \subseteq X, Y \text{ finite}\}$. So *C* is algebraic. The map

$$a \mapsto \{b \in A : b \le a\}$$

gives the desired isomorphism as L is compactly generated.