Introduction to Universal Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Algebras, Subalgebras, Homomorphisms \& Direct Products

- Definition and Examples of Algebras
- Isomorphic Algebras and Subalgebras
- Algebraic Lattices and Subuniverses
- Congruences and Quotient Algebras
- Homomorphisms and the Homomorphism Theorems
- Direct Products and Factor Congruences
- Subdirect Products and Simple Algebras

Subsection 1

Definition and Examples of Algebras

Operations

Definition

For A a nonempty set and n a nonnegative integer, we define $A^{0}=\{\varnothing\}$ and, for $n>0, A^{n}$ is the set of n-tuples of elements from A.
An n-ary operation (or function) on A is any function f from A^{n} to $A ; n$ is the arity (or rank) of f. A finitary operation is an n-ary operation, for some n.
The image of $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ under an n-ary operation f is denoted by $f\left(a_{1}, \ldots, a_{n}\right)$.
An operation f on A is called a nullary operation (or constant) if its arity is zero; it is completely determined by the image $f(\varnothing)$ in A of the only element \varnothing in A^{0}. As such it is convenient to identify it with the element $f(\varnothing)$. Thus a nullary operation is thought of as an element of A. An operation f on A is unary, binary or ternary if its arity is 1,2 , or 3 , respectively.

Languages and Algebras

Definition

A language (or type) of algebras is a set \mathscr{F} of function symbols such that a nonnegative integer n is assigned to each member f of \mathscr{F}. This integer is called the arity (or rank) of f, and f is said to be an n-ary function symbol. The subset of n-ary function symbols in \mathscr{F} is denoted by \mathscr{F}_{n}.

Definition

If \mathscr{F} is a language of algebras, then an algebra \mathbf{A} of type \mathscr{F} is an ordered pair $\langle A, F\rangle$, where:

- A is a nonempty set;
- F is a family of finitary operations on A indexed by the language \mathscr{F}, such that corresponding to each n-ary function symbol f in \mathscr{F}, there is an n-ary operation $f^{\mathbf{A}}$ on A.
The set A is called the universe (or underlying set) of $\mathbf{A}=\langle A, F\rangle$. The $f^{\mathbf{A}}$'s are called the fundamental operations of \mathbf{A}.

More Algebraic Notation and Terminology

- If \mathscr{F} is finite, say $\mathscr{F}=\left\{f_{1}, \ldots, f_{k}\right\}$, we often write $\left\langle A, f_{1}, \ldots, f_{k}\right\rangle$ for $\langle A, F\rangle$, usually adopting the convention:

$$
\text { arity } f_{1} \geq \operatorname{arity} f_{2} \geq \cdots \geq \text { arity } f_{k} .
$$

- An algebra \mathbf{A} is unary if all of its operations are unary. It is mono-unary if it has just one unary operation.
- \mathbf{A} is a groupoid if it has just one binary operation. The operation is usually denoted by + or \cdot, and we write $a+b$ or $a \cdot b$ (or just $a b$) for the image of $\langle a, b\rangle$ under this operation and call it the sum or product of a and b, respectively.
- An algebra \mathbf{A} is finite if $|A|$ is finite.
- An algebra \mathbf{A} is trivial if $|A|=1$.

Groups and Abelian Groups

- A group G is an algebra $\left\langle G, \cdot,^{-1}, 1\right\rangle$ with a binary, a unary, and a nullary operation in which the following identities are true:

$$
\begin{aligned}
& \text { G1 } x \cdot(y \cdot z) \approx(x \cdot y) \cdot z ; \\
& \text { G2 } x \cdot 1 \approx 1 \cdot x \approx x ; \\
& \text { G3 } x \cdot x^{-1} \approx x^{-1} \cdot x \approx 1 .
\end{aligned}
$$

- A group G is Abelian (or commutative) if the following identity is true:

$$
\text { G4 } x \cdot y \approx y \cdot x
$$

Monoids and Quasigroups

- Groups are generalized to semigroups and monoids in one direction, and to quasigroups and loops in another direction.
- A semigroup is a groupoid $\langle G, \cdot\rangle$ in which (G1) is true. It is commutative (or Abelian) if (G4) holds.
- A monoid is an algebra $\langle M, \cdot, 1\rangle$ with a binary and a nullary operation satisfying (G1) and (G2).
- A quasigroup is an algebra $\langle Q, / \cdot \cdot, \backslash\rangle$ with three binary operations satisfying the following identities:

Q1 $x \backslash(x \cdot y) \approx y ;$	$(x \cdot y) / y \approx x ;$
Q2 $x \cdot(x \backslash y) \approx y ;$	$(x / y) \cdot y \approx x$.

- A loop is a quasigroup with identity, i.e., an algebra $\langle Q, /, \cdot\rangle, 1$,$\rangle which$ satisfies (Q1), (Q2) and (G2).

Rings

- A ring is an algebra $\langle R,+, \cdot,-, 0\rangle$, where + and \cdot are binary, - is unary and 0 is nullary, satisfying the following conditions:
R1 $\langle R,+,-, 0\rangle$ is an Abelian group;
R2 $\langle R, \cdot\rangle$ is a semigroup;
$x \cdot(y+z) \approx(x \cdot y)+(x \cdot z)$
$(x+y) \cdot z \approx(x \cdot z)+(y \cdot z)$.
- A ring with identity is an algebra $\langle R,+, \cdot,-, 0,1\rangle$, such that (R1)-(R3) and (G2) hold.

Modules and Algebras Over a (Fixed) Ring

- Let \mathbf{R} be a given ring. A (left) R-module is an algebra $\left\langle M,+,-, 0,\left(f_{r}\right)_{r \in R}\right\rangle$, where + is binary, - is unary, 0 is nullary, and each f_{r} is unary, such that the following hold:
M1 $\langle M,+,-, 0\rangle$ is an Abelian group;
M2 $f_{r}(x+y) \approx f_{r}(x)+f_{r}(y)$, for $r \in R$;
M3 $f_{r+s}(x) \approx f_{r}(x)+f_{s}(x)$ for $r, s \in R$;
M4 $f_{r}\left(f_{s}(x)\right) \approx f_{r s}(x)$, for $r, s \in R$.
- Let \mathbf{R} be a ring with identity. A unitary R-module is an algebra as above satisfying (M1)-(M4) and:
M5 $f_{1}(x) \approx x$.
- Let R be a ring with identity. An algebra over R is an algebra $\left\langle A,+, \cdot,-, 0,\left(f_{r}\right)_{r \in R}\right\rangle$, such that the following hold:
A1 $\left\langle A,+,-, 0,\left(f_{r}\right)_{r \in R}\right\rangle$ is a unitary \mathbf{R}-module;
A2 $\langle A,+, \cdot,-, 0\rangle$ is a ring;
A3 $f_{r}(x \cdot y) \approx\left(f_{r}(x)\right) \cdot y \approx x \cdot f_{r}(y)$, for $r \in R$.

Semilattices and Lattices

- A semilattice is a semigroup $\langle S, \cdot\rangle$ which satisfies the commutative law (G4) and the idempotent law
S1 $x \cdot x \approx x$.
- A lattice is an algebra $\langle L, \vee, \wedge\rangle$, with two binary operations which satisfies

L1 (commutative laws)
(a) $x \vee y \approx y \vee x$;
(b) $x \wedge y \approx y \wedge x$;

L2 (associative laws)
(a) $x \vee(y \vee z) \approx(x \vee y) \vee z$;
(b) $x \wedge(y \wedge z) \approx(x \wedge y) \wedge z$;

L3 (idempotent laws)
(a) $x \vee x \approx x$;
(b) $x \wedge x \approx x$;

L4 (absorption laws)
(a) $x \approx x \vee(x \wedge y)$;
(b) $x \approx x \wedge(x \vee y)$.

- An algebra $\langle L, \vee, \wedge, 0,1\rangle$, with two binary and two nullary operations is a bounded lattice if it satisfies:
BL1 $\langle L, \vee, \wedge\rangle$ is a lattice;
BL2 $x \wedge 0 \approx 0 ; \quad x \vee 1 \approx 1$.

Subsection 2

Isomorphic Algebras and Subalgebras

|somorphism

Definition

Let \mathbf{A} and B be two algebras of the same type \mathscr{F}. Then a function $\alpha: A \rightarrow B$ is an isomorphism from \mathbf{A} to B if:

- α is one-to-one and onto;
- for every n-ary $f \in \mathscr{F}$ and for all $a_{1}, \ldots, a_{n} \in A$, we have

$$
\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right) .
$$

We say A is isomorphic to B, written $A \cong B$, if there is an isomorphism from A to B.

- The properties of algebras that are invariant under isomorphism are called algebraic properties.
- Isomorphic algebras can be regarded as equal or the same, having the same algebraic structure, and differing only in the nature of the elements: The phrase "equal up to isomorphism" is often used.

Subalgebras and Subuniverses

Definition

Let A and B be two algebras of the same type. Then B is a subalgebra of A if $B \subseteq A$ and every fundamental operation of B is the restriction of the corresponding operation of \mathbf{A}; i.e., for each function symbol $f, f^{\mathbf{B}}$ is $f^{\mathbf{A}}$ restricted to B. We write simply $\mathbf{B} \leq \mathbf{A}$.
A subuniverse of \mathbf{A} is a subset B of A which is closed under the fundamental operations of \mathbf{A}; i.e., if f is a fundamental n-ary operation of A and $a_{1}, \ldots, a_{n} \in B$ we would require $f\left(a_{1}, \ldots, a_{n}\right) \in B$.

- Thus, if \mathbf{B} is a subalgebra of \mathbf{A}, then B is a subuniverse of \mathbf{A}.
- The empty set may be a subuniverse, but it is not the underlying set of any subalgebra.
- If \mathbf{A} has nullary operations then every subuniverse contains them as well.

Embeddings (or Monomorphisms)

Definition

Let \mathbf{A} and B be of the same type. A function $\alpha: A \rightarrow B$ is an embedding of \mathbf{A} into B if α is one-to-one and satisfies

$$
\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right) .
$$

Such an α is also called a monomorphism. For brevity we simply say " $\alpha: \mathrm{A} \rightarrow \mathrm{B}$ is an embedding". We say A can be embedded in B if there is an embedding of \mathbf{A} into \mathbf{B}.

Theorem

If $\alpha: \mathrm{A} \rightarrow \mathrm{B}$ is an embedding, then $\alpha(A)$ is a subuniverse of B .

- Let $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ be an embedding. Then, for an n-ary function symbol f and $a_{1}, \ldots, a_{n} \in A, f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)=\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \in \alpha(A)$.

Definition

If $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ is an embedding, $\alpha(\mathbf{A})$ denotes the subalgebra of B with universe $\alpha(A)$.

Structure Theorems in Algebra

- Let K be a class of algebras and let K_{1} be a proper subclass of K.
- In practice, K may have been obtained from the process of abstraction of certain properties of K_{1}; or K_{1} may be obtained from K by certain additional, more desirable, properties.
- Two basic questions arise in the quest for structure theorems:
(1) Is every member of K isomorphic to some member of K_{1} ?
(2) Is every member of K embeddable in some member of K_{1} ?

Examples:

- Every Boolean algebra is isomorphic to a field of sets.
- Every group is isomorphic to a group of permutations.
- A finite Abelian group is isomorphic to a direct product of cyclic groups.
- A finite distributive lattice can be embedded in a power of the two-element distributive lattice.

Subsection 3

Algebraic Lattices and Subuniverses

Generated Subuniverses

Definition

Given an algebra \mathbf{A}, define, for every $X \subseteq A$,

$$
\operatorname{Sg}(X)=\bigcap\{B: X \subseteq B \text { and } B \text { is a subuniverse of } \mathbf{A}\} .
$$

We read $\operatorname{Sg}(X)$ as "the subuniverse generated by X ".

Theorem

If we are given an algebra \mathbf{A}, then Sg is an algebraic closure operator on A.

- Observe that an arbitrary intersection of subuniverses of \mathbf{A} is again a subuniverse. Hence Sg is a closure operator on A whose closed sets are precisely the subuniverses of A. Now, for any $X \subseteq A$, define

$$
\begin{gathered}
E(X)=X \cup\left\{f\left(a_{1}, \ldots, a_{n}\right): f \text { is a fundamental } n\right. \text {-ary operation } \\
\text { on } \left.A, n \in \omega \text {, and } a_{1}, \ldots, a_{n} \in X\right\} .
\end{gathered}
$$

Generated Subuniverses (Algebraicity)

- We defined, for $X \subseteq A$,

$$
\begin{gathered}
E(X)=X \cup\left\{f\left(a_{1}, \ldots, a_{n}\right): f \text { is a fundamental } n\right. \text {-ary operation } \\
\text { on } \left.A, n \in \omega \text {, and } a_{1}, \ldots, a_{n} \in X\right\} .
\end{gathered}
$$

Then define $E^{n}(X)$, for $n \geq 0$, by induction, as follows:

$$
E^{0}(X)=X, \quad E^{n+1}(X)=E\left(E^{n}(X)\right)
$$

As all the fundamental operations on A are finitary and $X \subseteq E(X) \subseteq E^{2}(X) \subseteq \cdots$, we can show that

$$
\operatorname{Sg}(X)=X \cup E(X) \cup E^{2}(X) \cup \cdots .
$$

Therefore, if $a \in \operatorname{Sg}(X)$, then $a \in E^{n}(X)$, for some $n \in \omega$. Hence, for some finite $Y \subseteq X, a \in E^{n}(Y)$. Thus, $a \in \operatorname{Sg}(Y)$. But this says Sg is an algebraic closure operator.

The Lattice of Subuniverses

Corollary

If \mathbf{A} is an algebra then L_{Sg}, the lattice of subuniverses of \mathbf{A} is an algebraic lattice.

- The corollary says that the subuniverses of \mathbf{A}, with \subseteq as the partial order, form an algebraic lattice.

Definition

Given an algebra $\mathbf{A}, \operatorname{Sub}(\mathbf{A})$ denotes the set of subuniverses of \mathbf{A}, and $\operatorname{Sub}(A)$ is the corresponding algebraic lattice, the lattice of subuniverses of A.
For $X \subseteq A$, we say X generates \mathbf{A} (or \mathbf{A} is generated by X; or X is a set of generators of \mathbf{A}) if $\operatorname{Sg}(X)=A$.
The algebra \mathbf{A} is finitely generated if it has a finite set of generators.

Algebraic Lattices and Lattices of Subuniverses

- Every algebraic lattice is isomorphic to the lattice of subuniverses of some algebra:

Theorem (Birkhoff and Frink)

If L is an algebraic lattice, then $L \cong \operatorname{Sub}(A)$, for some algebra A.

- Let C be an algebraic closure operator on a set A, such that $\mathbf{L} \cong \mathbf{L}_{C}$. For each finite subset B of A and each $b \in C(B)$, define an n-ary function $f_{B, b}$ on A, where $n=|B|$, by
$f_{B, b}\left(a_{1}, \ldots, a_{n}\right)=\left\{\begin{array}{ll}b, & \text { if } B=\left\{a_{1}, \ldots, a_{n}\right\} \\ a_{1}, & \text { otherwise }\end{array}\right.$. Call the resulting algebra
A. Then clearly $f_{B, b}\left(a_{1}, \ldots, a_{n}\right) \in C\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$. Hence, for $X \subseteq A$, $\mathrm{Sg}(X) \subseteq C(X)$. On the other hand,
$C(X)=\bigcup\{C(B): B \subseteq X$ and B is finite $\}$ and, for B finite,
$C(B)=\left\{f_{B, b}\left(a_{1}, \ldots, a_{n}\right): B=\left\{a_{1}, \ldots, a_{n}\right\}, b \in C(B)\right\} \subseteq \operatorname{Sg}(B) \subseteq \operatorname{Sg}(X)$ imply $C(X) \subseteq \operatorname{Sg}(X)$. Hence, $C(X) \subseteq \operatorname{Sg}(X)$. Thus, $\mathrm{L}_{C}=\operatorname{Sub}(\mathbf{A})$. So $\operatorname{Sub}(A) \cong L$.

Algebras Generated by Sets of Specific Cardinality

- For a given type there cannot be "too many" algebras (up to isomorphism) generated by sets no larger than a given cardinality.
- Recall that ω is the smallest infinite cardinal.

Corollary

If \mathbf{A} is an algebra and $X \subseteq A$, then

$$
|\operatorname{Sg}(X)| \leq|X|+|\mathscr{F}|+\omega .
$$

- Using induction on n, one has

$$
\left|E^{n}(X)\right| \leq|X|+|\mathscr{F}|+\omega .
$$

$$
\begin{aligned}
& \text { - }\left|E^{0}(X)\right|=|X| \leq|X|+|\mathscr{F}|+\omega \text {; } \\
& -\left|E^{n+1}(X)\right|=\left|E\left(E^{n}(X)\right)\right| \leq\left|E^{n}(X)\right|+|\mathscr{F}|+\omega \leq|X|+|\mathscr{F}|+\omega .
\end{aligned}
$$

So the result follows from $\operatorname{Sg}(X)=X \cup E(X) \cup E^{2}(X) \cup \cdots$.

n-ary Closure Operators

Definition

Let C be a closure operator on A. For $n<\omega$, let C_{n} be the function defined on $\mathrm{Su}(A)$ by

$$
C_{n}(X)=\bigcup_{\{C(Y): Y \subseteq X,|Y| \leq n\} .}
$$

We say that C is n-ary, if

$$
C(X)=C_{n}(X) \cup C_{n}^{2}(X) \cup \cdots,
$$

where:

- $C_{n}^{1}(X)=C_{n}(X)$;
- $C_{n}^{k+1}(X)=C_{n}\left(C_{n}^{k}(X)\right)$.

Generation and n-ary Closure Operators

Lemma

Let \mathbf{A} be an algebra all of whose fundamental operations have arity at most n. Then Sg is an n-ary closure operator on A.

- Recall the definition

$$
\begin{gathered}
E(X)=X \cup\left\{f\left(a_{1}, \ldots, a_{n}\right): f \text { is a fundamental } n\right. \text {-ary operation } \\
\text { on } \left.A, n \in \omega \text {, and } a_{1}, \ldots, a_{n} \in X\right\} .
\end{gathered}
$$

Note that $E(X) \subseteq \operatorname{Sg}_{n}(X) \subseteq \operatorname{Sg}(X)$. Hence,

$$
\begin{aligned}
\operatorname{Sg}(X) & =X \cup E(X) \cup E^{2}(X) \cup \cdots \\
& \subseteq \operatorname{Sg}_{n}(X) \cup \operatorname{Sg}_{n}^{2}(X) \cup \cdots \\
& \subseteq \operatorname{Sg}(X)
\end{aligned}
$$

So $\operatorname{Sg}(X)=\operatorname{Sg}_{n}(X) \cup \operatorname{Sg}_{n}^{2}(X) \cup \cdots$.

Subsection 4

Congruences and Quotient Algebras

The Compatibility Condition

Definition

Let \mathbf{A} be an algebra of type \mathscr{F} and let $\theta \in \mathrm{Eq}(A)$. Then θ is a congruence on \mathbf{A} if θ satisfies the following compatibility property:
CP For each n-ary function symbol $f \in \mathscr{F}$, and elements $a_{i}, b_{i} \in A$, if $a_{i} \theta b_{i}$ holds, for $1 \leq i \leq n$, then $f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \theta f^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)$ holds.

- The compatibility property allows introducing an algebraic structure on the set of equivalence classes A / θ :
If a_{1}, \ldots, a_{n} are elements of A and f is an n-ary symbol in \mathscr{F}, then the easiest choice of an equivalence class to be the value of f applied to $\left\langle a_{1} / \theta, \ldots, a_{n} / \theta\right\rangle$ is $f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta$.
This will indeed define a function on A / θ iff (CP) holds.

Illustration of the Algebraic Structure on A / θ

- The Compatibility Condition for a binary operation is illustrated below:

A is subdivided into the equivalence classes of θ.
Then selecting a_{1}, b_{1} in the same equivalence class and a_{2}, b_{2} in the same equivalence class, we want $f^{\mathbf{A}}\left(a_{1}, a_{2}\right)$ and $f^{\mathbf{A}}\left(b_{1}, b_{2}\right)$ to be in the same equivalence class.

Quotient Algebras

Definition

The set of all congruences on an algebra \mathbf{A} is denoted by $\operatorname{Con} \mathbf{A}$. Let θ be a congruence on an algebra \mathbf{A}. Then the quotient algebra of \mathbf{A} by θ, written \mathbf{A} / θ, is the algebra whose universe is A / θ and whose fundamental operations satisfy

$$
f^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)=f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta
$$

where $a_{1}, \ldots, a_{n} \in A$ and f is an n-ary function symbol in \mathscr{F}.

- Note that quotient algebras of \mathbf{A} are of the same type as \mathbf{A}.

Group Congruences and Normal Subgroups

- Let G be a group.

Then one can establish the following connection between congruences on \mathbf{G} and normal subgroups of \mathbf{G} :
(a) If $\theta \in \operatorname{ConG}$, then $1 / \theta$ is the universe of a normal subgroup of \mathbf{G};

For $a, b \in G$, we have $\langle a, b\rangle \in \theta$ iff $\left\langle a \cdot b^{-1}, 1\right\rangle \in \theta$ iff $a \cdot b^{-1} \in 1 / \theta$.
(b) If \mathbf{N} is a normal subgroup of \mathbf{G}, then the binary relation defined on G by

$$
\langle a, b\rangle \in \theta \quad \text { iff } \quad a \cdot b^{-1} \in N
$$

is a congruence on \mathbf{G}, with $1 / \theta=N$.
Thus, the mapping $\theta \mapsto 1 / \theta$ is an order-preserving bijection between congruences on \mathbf{G} and normal subgroups of \mathbf{G}.

Ring Congruences and Ideals

- Let R be a ring.

The following establishes a similar connection between the congruences on R and ideals of R :
(a) If $\theta \in \operatorname{Con} \mathbf{R}$, then $0 / \theta$ is an ideal of \mathbf{R};

For $a, b \in R$, we have $\langle a, b\rangle \in \theta$ iff $\langle a-b, 0\rangle \in \theta$ iff $a-b \in 0 / \theta$.
(b) If I is an ideal of \mathbf{R}, then the binary relation θ defined on R by

$$
\langle a, b\rangle \in \theta \quad \text { iff } \quad a-b \in I
$$

is a congruence on \mathbf{R}, with $0 / \theta=1$.
Thus the mapping $\theta \mapsto 0 / \theta$ is an order-preserving bijection between congruences on \mathbf{R} and ideals of \mathbf{R}.

Lattice Congruences

- In the preceding two examples any congruence on the algebra (group or ring) was determined by a single equivalence class of the congruence ($1 / \theta$ and $0 / \theta$, respectively).
- The next example shows this need not be the case:

Let \mathbf{L} be a lattice which is a chain, and let θ be an equivalence relation on L, such that the equivalence classes of θ are convex subsets of L (i.e., if $a \theta$ and $a \leq c \leq b$, then $a \theta$ c.) Then θ is a congruence on L.

Lattice Structure of ConA

Theorem

\langle Con $\mathbf{A}, \subseteq\rangle$ is a complete sublattice of $\langle\mathrm{Eq}(A), \subseteq\rangle$, the lattice of equivalence relations on A.

- ConA is closed under arbitrary intersections. For arbitrary joins in ConA suppose $\theta_{i} \in \operatorname{ConA}$ for $i \in I$. Then, if f is a fundamental n-ary operation of \mathbf{A} and

$$
\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle \in \bigvee_{i \in I} \theta_{i}
$$

where V is the join of $\mathrm{Eq}(A)$, then, there exist $i_{0}, \ldots, i_{k} \in I$, for some $k \in \omega$, such that

$$
\left\langle a_{j}, b_{j}\right\rangle \in \theta_{i_{0}} \circ \theta_{i_{1}} \circ \cdots \circ \theta_{i_{k}}, \quad 1 \leq j \leq n .
$$

That is, for all $j=1, \ldots, n$, there exist $c_{j 0}, \ldots, c_{j(k-1)} \in A$, such that

$$
a_{j} \theta_{i_{0}} c_{j 0} \theta_{i_{1}} \cdots \theta_{i_{k-1}} c_{j(k-1)} \theta_{i_{k}} b_{j}
$$

Lattice Structure of ConA (Cont'd)

- For all $j=1, \ldots, n$, there exist $c_{j 0}, \ldots, c_{j(k-1)} \in A$, such that

$$
a_{j} \theta_{i_{0}} c_{j 0} \theta_{i_{1}} \cdots \theta_{i_{k-1}} c_{j(k-1)} \theta_{i_{k}} b_{j} .
$$

Since $\theta_{i} \in \operatorname{ConA}$, for all $i \in I$, we get

$$
\begin{aligned}
& f\left(a_{1}, \ldots, a_{n}\right) \theta_{i_{0}} f\left(c_{10}, \ldots, c_{n 0}\right) \theta_{i_{1}} \ldots \\
& \quad \theta_{i_{k-1}} f\left(c_{1(k-1)}, \ldots, c_{n(k-1)}\right) \theta_{i_{k}} f\left(b_{1}, \ldots, b_{n}\right) .
\end{aligned}
$$

Hence

$$
\left\langle f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \theta_{i_{0}} \circ \theta_{i_{1}} \circ \cdots \circ \theta_{i_{k}} \subseteq \bigvee_{i \in I} \theta_{i}
$$

Therefore, $\bigvee_{i \in I} \theta_{i}$ is a congruence relation on \mathbf{A}.

Definition

The congruence lattice of \mathbf{A} denoted by ConA, is the lattice whose universe is ConA, and meets and joins are calculated the same as when working with equivalence relations.

Congruence Lattices of Algebras

Theorem

For \mathbf{A} an algebra, there is an algebraic closure operator Θ on $A \times A$, such that the closed subsets of $A \times A$ are precisely the congruences on \mathbf{A}. Hence ConA is an algebraic lattice.

- We define an algebraic structure on $A \times A$. For each n-ary function symbol f in the type of \mathbf{A}, define a corresponding n-ary function f on $A \times A$ by $f\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)=\left\langle f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), f^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle$. Then we add:
- the nullary operations $\langle a, a\rangle$, for each $a \in A$;
- a unary operation s, defined by $s(\langle a, b\rangle)=\langle b, a\rangle$;
- a binary operation t defined by $t(\langle a, b\rangle,\langle c, d\rangle)= \begin{cases}\langle a, d\rangle, & \text { if } b=c \\ \langle a, b\rangle, & \text { otherwise }\end{cases}$ Now we can verify that B is a subuniverse of this new algebra iff B is a congruence on A . Let Θ be the Sg closure operator on $A \times A$ for the algebra we have just described. Thus, ConA is an algebraic lattice.

Compact Elements of ConA and Congruence Generation

- The compact members of ConA are the finitely generated members $\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)$ of ConA.

Definition

For \mathbf{A} an algebra and $a_{1}, \ldots, a_{n} \in A$, let $\Theta\left(a_{1}, \ldots, a_{n}\right)$ denote the congruence generated by $\left\{\left\langle a_{i}, a_{j}\right\rangle: 1 \leq i, j \leq n\right\}$, i.e., the smallest congruence such that a_{1}, \ldots, a_{n} are in the same equivalence class. The congruence $\Theta\left(a_{1}, a_{2}\right)$ is called a principal congruence. For arbitrary $X \subseteq A$, let $\Theta(X)$ be defined to mean the congruence generated by $X \times X$.

The Case of Groups and Rings

(1) If \mathbf{G} is a group and $a, b, c, d \in G$, then $\langle a, b\rangle \in \Theta(c, d)$ iff $a b^{-1}$ is a product of conjugates of $c d^{-1}$ and conjugates of $d c^{-1}$.
This follows from the fact that the smallest normal subgroup of G containing a given element u has as its universe the set of all products of conjugates of u and conjugates of u^{-1}.
(2) If \mathbf{R} is a ring with unity and $a, b, c, d \in R$, then $\langle a, b\rangle \in \Theta(c, d)$ iff $a-b$ is of the form $\sum_{1 \leq i \leq n} r_{i}(c-d) s_{i}$, where $r_{i}, s_{i} \in R$.
This follows from the fact that the smallest ideal of R containing a given element e of R is precisely the set $\left\{\sum_{1 \leq i \leq n} r_{i} e s_{i}: r_{i}, s_{i} \in R, n \geq 1\right\}$.

Properties of Congruences

Theorem

Let \mathbf{A} be an algebra, and suppose $a_{1}, b_{1}, \ldots, a_{n}, b_{n} \in A$ and $\theta \in$ ConA. Then:
(a) $\Theta\left(a_{1}, b_{1}\right)=\Theta\left(b_{1}, a_{1}\right)$;
(b) $\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)=\Theta\left(a_{1}, b_{1}\right) \vee \cdots \vee \Theta\left(a_{n}, b_{n}\right)$;
(c) $\Theta\left(a_{1}, \ldots, a_{n}\right)=\Theta\left(a_{1}, a_{2}\right) \vee \Theta\left(a_{2}, a_{3}\right) \vee \cdots \vee \Theta\left(a_{n-1}, a_{n}\right)$;
(d) $\theta=\bigcup\{\Theta(a, b):\langle a, b\rangle \in \theta\}=\bigvee\{\Theta(a, b):\langle a, b\rangle \in \theta\}$;
(e) $\theta=\bigcup\left\{\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right):\left\langle a_{i}, b_{i}\right\rangle \in \theta, n \geq 1\right\}$.
(a) $\left\langle b_{1}, a_{1}\right\rangle \in \Theta\left(a_{1}, b_{1}\right)$. Hence, $\Theta\left(b_{1}, a_{1}\right) \subseteq \Theta\left(a_{1}, b_{1}\right)$. By symmetry, $\Theta\left(a_{1}, b_{1}\right)=\Theta\left(b_{1}, a_{1}\right)$.
(b) For $1 \leq i \leq n,\left\langle a_{i}, b_{i}\right\rangle \in \Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)$. Hence $\Theta\left(a_{i}, b_{i}\right) \subseteq \Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)$, whence
$\Theta\left(a_{1}, b_{1}\right) \vee \cdots \vee \Theta\left(a_{n}, b_{n}\right) \subseteq \Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)$.

Properties of Congruences (Cont'd)

On the other hand, for $1 \leq i \leq n$,
$\left\langle a_{i}, b_{i}\right\rangle \in \Theta\left(a_{i}, b_{i}\right) \subseteq \Theta\left(a_{1}, b_{1}\right) \vee \cdots \vee \Theta\left(a_{n}, b_{n}\right)$. So
$\left\{\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right\} \subseteq \Theta\left(a_{1}, b_{1}\right) \vee \cdots \vee \Theta\left(a_{n}, b_{n}\right)$. Hence,
$\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right) \subseteq \Theta\left(a_{1}, b_{1}\right) \vee \cdots \vee \Theta\left(a_{n}, b_{n}\right)$. So
$\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)=\Theta\left(a_{1}, b_{1}\right) \vee \cdots \vee \Theta\left(a_{n}, b_{n}\right)$.
(c) For $1 \leq i \leq n-1,\left\langle a_{i}, a_{i+1}\right\rangle \in \Theta\left(a_{1}, \ldots, a_{n}\right)$. So $\Theta\left(a_{i}, a_{i+1}\right) \subseteq \Theta\left(a_{1}, \ldots, a_{n}\right)$. Hence, $\Theta\left(a_{1}, a_{2}\right) \vee \cdots \vee \Theta\left(a_{n-1}, a_{n}\right) \subseteq \Theta\left(a_{1}, \ldots, a_{n}\right)$.
Conversely, for $1 \leq i<j \leq n,\left\langle a_{i}, a_{j}\right\rangle \in \Theta\left(a_{i}, a_{i+1}\right) \circ \cdots \circ \Theta\left(a_{j-1}, a_{j}\right)$. So, $\left\langle a_{i}, a_{j}\right\rangle \in \Theta\left(a_{i}, a_{i+1}\right) \vee \cdots \vee \Theta\left(a_{j-1}, a_{j}\right)$. Hence, $\left\langle a_{i}, a_{j}\right\rangle \in \Theta\left(a_{1}, a_{2}\right) \vee \cdots \vee \Theta\left(a_{n-1}, a_{n}\right)$. By Part (a), $\Theta\left(a_{1}, \ldots, a_{n}\right) \subseteq \Theta\left(a_{1}, a_{2}\right) \vee \cdots \vee \Theta\left(a_{n-1}, a_{n}\right)$. Therefore, $\Theta\left(a_{1}, \ldots, a_{n}\right)=\Theta\left(a_{1}, a_{2}\right) \vee \cdots \vee \Theta\left(a_{n-1}, a_{n}\right)$.

Properties of Congruences (Conclusion)

(d) For $\langle a, b\rangle \in \theta,\langle a, b\rangle \in \Theta(a, b) \subseteq \theta$. So
$\theta \subseteq \bigcup\{\Theta(a, b):\langle a, b\rangle \in \theta\} \subseteq \bigvee\{\Theta(a, b):\langle a, b\rangle \in \theta\} \subseteq \theta$. Hence $\theta=\bigcup\{\Theta(a, b):\langle a, b\rangle \in \theta\}=\bigvee\{\Theta(a, b):\langle a, b\rangle \in \theta\}$.
(e) For $\langle a, b\rangle \in \theta$,
$\langle a, b\rangle \in \Theta(a, b) \subseteq \bigcup\left\{\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right):\left\langle a_{i}, b_{i}\right\rangle \in \theta, n \geq 1\right\}$. So $\theta \subseteq \bigcup\left\{\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right):\left\langle a_{i}, b_{i}\right\rangle \in \theta, n \geq 1\right\}$.
Conversely, if $n \geq 1$ and $\left\langle a_{i}, b_{i}\right\rangle \in \theta$, for all $1 \leq i \leq n$, then $\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right) \subseteq \theta$. Hence, $\cup\left\{\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right):\left\langle a_{i}, b_{i}\right\rangle \in \theta, n \geq 1\right\} \subseteq \theta$.
Therefore, $\theta=\bigcup\left\{\Theta\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right):\left\langle a_{i}, b_{i}\right\rangle \in \theta, n \geq 1\right\}$.

On Properties of Congruence Lattices

- In 1963 Grätzer and Schmidt proved:

For every algebraic lattice \mathbf{L}, there is an algebra \mathbf{A}, such that $\mathbf{L} \cong$ ConA.

- For particular classes of algebras one might find that some additional properties hold for the corresponding classes of congruence lattices:
- The congruence lattices of lattices satisfy the distributive law;
- The congruence lattices of groups (or rings) satisfy the modular law.

Congruence-Distributivity and Congruence-Permutability

Definition

An algebra \mathbf{A} is congruence-distributive (congruence-modular) if ConA is a distributive (modular) lattice.
If $\theta_{1}, \theta_{2} \in \operatorname{ConA}$ and

$$
\theta_{1} \circ \theta_{2}=\theta_{2} \circ \theta_{1},
$$

then we say θ_{1} and θ_{2} are permutable, or θ_{1} and θ_{2} permute.
\mathbf{A} is congruence-permutable if every pair of congruences on \mathbf{A} permutes. A class K of algebras is congruence-distributive, congruence-modular, respectively congruence-permutable iff every algebra in K has the desired property.

Characterization of Congruence Permutability

Theorem

Let \mathbf{A} be an algebra and suppose $\theta_{1}, \theta_{2} \in \operatorname{Con} \mathbf{A}$. Then the following are equivalent:
(a) $\theta_{1} \circ \theta_{2}=\theta_{2} \circ \theta_{1}$;
(b) $\theta_{1} \vee \theta_{2}=\theta_{1} \circ \theta_{2}$;
(c) $\theta_{1} \circ \theta_{2} \subseteq \theta_{2} \circ \theta_{1}$.
(a) $\Rightarrow(\mathrm{b})$: Recall that

$$
\theta_{1} \vee \theta_{2}=\theta_{1} \cup\left(\theta_{1} \circ \theta_{2}\right) \cup\left(\theta_{1} \circ \theta_{2} \circ \theta_{1}\right) \cup \cdots
$$

By hypothesis, since, for any equivalence relation θ, we have $\theta \circ \theta=\theta$, we get $\theta_{1} \vee \theta_{2}=\theta_{1} \cup\left(\theta_{1} \circ \theta_{2}\right)=\theta_{1} \circ \theta_{2}$.

Characterization of Congruence Permutability (Cont'd)

(c) \Rightarrow (a): Suppose $\theta_{1} \circ \theta_{2} \subseteq \theta_{2} \circ \theta_{1}$. Apply the relational inverse operation ${ }^{\vee}$ to get $\left(\theta_{1} \circ \theta_{2}\right)^{\vee} \subseteq\left(\theta_{2} \circ \theta_{1}\right)^{\vee}$. Hence, we get
$\theta_{2}^{\vee} \circ \theta_{1}^{\vee} \subseteq \theta_{1}^{\vee} \circ \theta_{2}^{\vee}$. But the inverse of an equivalence relation is just that equivalence relation, whence $\theta_{2} \circ \theta_{1} \subseteq \theta_{1} \circ \theta_{2}$. We conclude that $\theta_{1} \circ \theta_{2}=\theta_{2} \circ \theta_{1}$.
(b) $\Rightarrow(c)$: We have $\theta_{2} \circ \theta_{1} \subseteq \theta_{1} \vee \theta_{2}$. Thus, from (b) we deduce $\theta_{2} \circ \theta_{1} \subseteq \theta_{1} \circ \theta_{2}$. Then, from (c) $\Rightarrow(\mathrm{a})$ it follows that $\theta_{2} \circ \theta_{1}=\theta_{1} \circ \theta_{2}$. Hence (c) holds.

Congruence-Permutability Implies Congruence-Modularity

Theorem (Birkhoff)

If \mathbf{A} is congruence-permutable, then \mathbf{A} is congruence-modular.

- Let $\theta_{1}, \theta_{2}, \theta_{3} \in \operatorname{Con} \mathbf{A}$, with $\theta_{1} \subseteq \theta_{2}$. We want to show that

$$
\theta_{2} \cap\left(\theta_{1} \vee \theta_{3}\right) \subseteq \theta_{1} \vee\left(\theta_{2} \cap \theta_{3}\right)
$$

Suppose $\langle a, b\rangle \in \theta_{2} \cap\left(\theta_{1} \vee \theta_{3}\right)$. Then, since $\theta_{1} \vee \theta_{3}=\theta_{1} \circ \theta_{3}$, there is a c, such that $a \theta_{1} c \theta_{3} b$. By symmetry, $\langle c, a\rangle \in \theta_{1}$. Hence $\langle c, a\rangle \in \theta_{2}$. Then, by transitivity, $\langle c, b\rangle \in \theta_{2}$. Thus, $\langle c, b\rangle \in \theta_{2} \cap \theta_{3}$. So we get a $\theta_{1} c\left(\theta_{2} \cap \theta_{3}\right) b$. Therefore,

$$
\langle a, b\rangle \in \theta_{1} \circ\left(\theta_{2} \cap \theta_{3}\right) \subseteq \theta_{1} \vee\left(\theta_{2} \cap \theta_{3}\right) .
$$

Subsection 5

Homomorphisms and the Homomorphism Theorems

Homomorphisms

Definition

Suppose \mathbf{A} and \mathbf{B} are two algebras of the same type \mathscr{F}. A mapping $\alpha: A \rightarrow B$ is called a homomorphism from A to B if

$$
\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right),
$$

for each n-ary f in \mathscr{F} and each sequence a_{1}, \ldots, a_{n} from A.
If, in addition, the mapping α is onto, then α is called an epimorphism and \mathbf{B} is said to be a homomorphic image of \mathbf{A}. In this terminology an isomorphism is a homomorphism which is one-to-one and onto.
In case $\mathbf{A}=\mathbf{B}$, a homomorphism is also called an endomorphism and an isomorphism is referred to as an automorphism.
The phrase " $\alpha: \mathrm{A} \rightarrow \mathrm{B}$ is a homomorphism" is often used to express the fact that α is a homomorphism from \mathbf{A} to \mathbf{B}.

Example: Lattice, group, ring, module, and monoid homomorphisms are all special cases of homomorphisms as defined above.

Equality of Homomorphisms

Theorem

Let \mathbf{A} be an algebra generated by a set X. If $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ and $\beta: \mathbf{A} \rightarrow \mathbf{B}$ are two homomorphisms which agree on X (i.e., $\alpha(a)=\beta(a)$, for $a \in X$), then $\alpha=\beta$.

- Recall the definition of E :

$$
\begin{gathered}
E(X)=X \cup\left\{f\left(a_{1}, \ldots, a_{n}\right): f \text { is a fundamental } n\right. \text {-ary operation } \\
\text { on } \left.A, n \in \omega \text {, and } a_{1}, \ldots, a_{n} \in X\right\} .
\end{gathered}
$$

Note that if α and β agree on X, then α and β agree on $E(X)$: If f is an n-ary function symbol and $a_{1}, \ldots, a_{n} \in X$, then

$$
\begin{aligned}
\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) & =f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right) \\
& =f^{\mathbf{B}}\left(\beta\left(a_{1}\right), \ldots, \beta\left(a_{n}\right)\right) \\
& =\beta\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) .
\end{aligned}
$$

Thus, by induction, if α and β agree on X, then they agree on $E^{n}(X)$, for $n<\omega$. Hence, they agree on $\operatorname{Sg}(X)$.

Images and Inverse Images of Subuniverses

Theorem

Let $\alpha: \mathrm{A} \rightarrow \mathrm{B}$ be a homomorphism. Then the image of a subuniverse of A under α is a subuniverse of B, and the inverse image of a subuniverse of B is a subuniverse of \mathbf{A}.

- Let S be a subuniverse of A. Let f be an n-ary member of \mathscr{F} and let $a_{1}, \ldots, a_{n} \in S$. Then $f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)=\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \in \alpha(S)$. So $\alpha(S)$ is a subuniverse of B . If S is a subuniverse of B and $\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right) \in S$, then, by the preceding equation, $\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \in S$. So $f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$ is in $\alpha^{-1}(S)$. Thus, $\alpha^{-1}(S)$ is a subuniverse of \mathbf{A}.

Definition

If $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ is a homomorphism and $\mathbf{C} \leq \mathbf{A}, \mathbf{D} \leq \mathbf{B}$, let $\alpha(\mathbf{C})$ be the subalgebra of B , with universe $\alpha(C)$, and let $\alpha^{-1}(\mathrm{D})$ be the subalgebra of A, with universe $\alpha^{-1}(D)$, provided $\alpha^{-1}(D) \neq \varnothing$.

Composition of Homomorphisms

Theorem

Suppose $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ and $\beta: \mathbf{B} \rightarrow \mathbf{C}$ are homomorphisms. Then the composition $\beta \circ \alpha$ is a homomorphism from \mathbf{A} to \mathbf{C}.

- For f an n-ary function symbol and $a_{1}, \ldots, a_{n} \in A$, we have

$$
\begin{aligned}
(\beta \circ \alpha)\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) & =\beta\left(\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)\right) \\
& =\beta\left(f^{\mathrm{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)\right) \\
& =f^{\mathrm{C}}\left(\beta\left(\alpha\left(a_{1}\right)\right), \ldots, \beta\left(\alpha\left(a_{n}\right)\right)\right) \\
& =f^{\mathrm{C}}\left((\beta \circ \alpha)\left(a_{1}\right), \ldots,(\beta \circ \alpha)\left(a_{n}\right)\right) .
\end{aligned}
$$

Homomorphisms and Generation

Theorem

If $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ is a homomorphism and X is a subset of \mathbf{A}, then

$$
\alpha(\operatorname{Sg}(X))=\operatorname{Sg}(\alpha(X))
$$

- We have, for all $Y \subseteq A$,

$$
\begin{aligned}
\alpha(E(Y)) & =\alpha\left(Y \cup\left\{f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right): f \in \mathscr{F}_{n}, n \in \omega, a_{1}, \ldots, a_{n} \in Y\right\}\right) \\
& =\alpha(Y) \cup\left\{\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right): f \in \mathscr{F}_{n}, n \in \omega, a_{1}, \ldots, a_{n} \in Y\right\} \\
& =\alpha(Y) \cup\left\{f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right): f \in \mathscr{F}_{n}, n \in \omega, a_{1}, \ldots, a_{n} \in Y\right\} \\
& =\alpha(Y) \cup\left\{f^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right): f \in \mathscr{F}_{n}, n \in \omega, b_{1}, \ldots, b_{n} \in \alpha(Y)\right\} \\
& =E(\alpha(Y)) .
\end{aligned}
$$

Thus, by induction on $n, \alpha\left(E^{n}(X)\right)=E^{n}(\alpha(X))$, for $n \geq 1$. Hence

$$
\begin{aligned}
\alpha(\operatorname{Sg}(X)) & =\alpha\left(X \cup E(X) \cup E^{2}(X) \cup \cdots\right) \\
& =\alpha(X) \cup \alpha(E(X)) \cup \alpha\left(E^{2}(X)\right) \cup \cdots \\
& =\alpha(X) \cup E(\alpha(X)) \cup E^{2}(\alpha(X)) \cup \cdots=\operatorname{Sg}(\alpha(X)) .
\end{aligned}
$$

The Kernel of a Homomorphism

Definition

Let $\alpha: \mathrm{A} \rightarrow \mathrm{B}$ be a homomorphism. Then the kernel of α, written $\operatorname{ker}(\alpha)$, and sometimes just $\operatorname{ker} \alpha$, is defined by

$$
\operatorname{ker}(\alpha)=\left\{\langle a, b\rangle \in A^{2}: \alpha(a)=\alpha(b)\right\}
$$

Theorem

Let $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ be a homomorphism. Then $\operatorname{ker}(\alpha)$ is a congruence on \mathbf{A}.

- If $\left\langle a_{i}, b_{i}\right\rangle \in \operatorname{ker}(\alpha)$, for $1 \leq i \leq n$ and f is n-ary in \mathscr{F}, then

$$
\begin{aligned}
\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) & =f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right) \\
& =f^{\mathbf{B}}\left(\alpha\left(b_{1}\right), \ldots, \alpha\left(b_{n}\right)\right) \\
& =\alpha\left(f^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right) .
\end{aligned}
$$

Hence $\left\langle f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), f^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \operatorname{ker}(\alpha)$. Clearly $\operatorname{ker}(\alpha)$ is an equivalence relation. Thus, $\operatorname{ker}(\alpha)$ is actually a congruence on A .

The Natural Map

Definition

Let \mathbf{A} be an algebra and let $\theta \in \operatorname{Con} \mathbf{A}$. The natural map $v_{\theta}: A \rightarrow A / \theta$ is defined by

$$
v_{\theta}(a)=a / \theta
$$

When there is no ambiguity we write simply v instead of v_{θ}.

- The figure shows how one might visualize the natural map:

The Natural Homomorphism

Theorem

The natural map from an algebra to a quotient of the algebra is an onto homomorphism.

- Let $\theta \in \operatorname{ConA}$ and let $v: A \rightarrow A / \theta$ be the natural map. Then, for f an n-ary function symbol and $a_{1}, \ldots, a_{n} \in A$, we have

$$
\begin{aligned}
v\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) & =f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta \\
& =f^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right) \\
& =f^{\mathbf{A} / \theta}\left(v\left(a_{1}\right), \ldots, v\left(a_{n}\right)\right) .
\end{aligned}
$$

So v is a homomorphism. Clearly v is onto.

Definition

The natural homomorphism from an algebra to a quotient of the algebra is given by the natural map.

The Homomorphism Theorem

Theorem (Homomorphism Theorem)

Suppose $\alpha: \mathrm{A} \rightarrow \mathrm{B}$ is a homomorphism onto \mathbf{B}. Then there is an isomorphism β from $\mathrm{A} / \operatorname{ker}(\alpha)$ to \mathbf{B} defined by $\alpha=\beta \circ v$, where v is the natural homomorphism from \mathbf{A} to $\mathrm{A} / \operatorname{ker}(\alpha)$.

- First note that if $\alpha=\beta \circ v$, then we must have $\beta(a / \theta)=\alpha(a)$. The second of these equalities does indeed define a function β and β satisfies $\alpha=\beta \circ v$. We verify that β is a bijection:
- If $b \in B$, exists $a \in A$, such that $b=\alpha(a)$. Then $\beta(a / \operatorname{ker} \alpha)=\alpha(a)=b$;
- Suppose $a, a^{\prime} \in A$. Then $\beta(a / \operatorname{ker} \alpha)=\beta\left(a^{\prime} / \operatorname{ker} \alpha\right)$ iff $\alpha(a)=\alpha\left(a^{\prime}\right)$ iff $\left\langle a, a^{\prime}\right\rangle \in \operatorname{ker} \alpha$ iff $a / \operatorname{ker} \alpha=a^{\prime} / \operatorname{ker} \alpha$.

The Homomorphism Theorem (Cont'd)

- To show that β is actually an isomorphism, suppose f is an n-ary function symbol and $a_{1}, \ldots, a_{n} \in A$. Then

$$
\begin{aligned}
\beta\left(f^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right)\right) & =\beta\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta\right) \\
& =\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \\
& =f^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right) \\
& =f^{\mathbf{B}}\left(\beta\left(a_{1} / \theta\right), \ldots, \beta\left(a_{n} / \theta\right)\right) .
\end{aligned}
$$

- An algebra is a homomorphic image of an algebra \mathbf{A} iff it is isomorphic to a quotient of the algebra \mathbf{A}.
Thus, the "external" problem of finding all homomorphic images of \mathbf{A} reduces to the "internal" problem of finding all congruences on \mathbf{A}.
- The Homomorphism Theorem is also called "The First Isomorphism Theorem".

Quotient of a Congruence by a Smaller Congruence

Definition

Suppose \mathbf{A} is an algebra and $\phi, \theta \in \operatorname{Con} \mathbf{A}$, with $\theta \subseteq \phi$. Then, let

$$
\phi / \theta=\left\{\langle a / \theta, b / \theta\rangle \in(A / \theta)^{2}:\langle a, b\rangle \in \phi\right\} .
$$

Lemma

If $\phi, \theta \in \operatorname{Con} \mathbf{A}$ and $\theta \subseteq \phi$, then ϕ / θ is a congruence on \mathbf{A} / θ.

- Let f be an n-ary function symbol and suppose $\left\langle a_{i} / \theta, b_{i} / \theta\right\rangle \in \phi / \theta$, for $1 \leq i \leq n$. Then $\left\langle a_{i}, b_{i}\right\rangle \in \phi$. So $\left\langle f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), f^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \phi$, and, thus, $\left\langle f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta, f^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right) / \theta\right\rangle \in \phi / \theta$. Therefore, $\left\langle f^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right), f^{\mathbf{A} / \theta}\left(b_{1} / \theta, \ldots, b_{n} / \theta\right)\right\rangle \in \phi / \theta$.

Second Isomorphism Theorem

Theorem (Second Isomorphism Theorem)

If $\phi, \theta \in \operatorname{ConA}$ and $\theta \subseteq \phi$, then the map $\alpha:(A / \theta) /(\phi / \theta) \rightarrow A / \phi$, defined by

$$
\alpha((a / \theta) /(\phi / \theta))=a / \phi
$$

is an isomorphism from
$(\mathbf{A} / \theta) /(\phi / \theta)$ to \mathbf{A} / ϕ.
equivalence classes of ϕ / θ

$(\mathbf{A} / \theta) /(\phi / \theta)$
dashed lines for equivalence classes of ϕ
dotted and dashed lines for equivalence classes of θ

- Let $a, b \in A$. From $(a / \theta) /(\phi / \theta)=(b / \theta) /(\phi / \theta)$ iff $a / \phi=b / \phi$, it follows that α is a well-defined bijection.

Second Isomorphism Theorem (Cont'd)

- For f an n-ary function symbol and $a_{1}, \ldots, a_{n} \in A$, we have

$$
\begin{aligned}
\alpha\left(f^{(\mathbf{A} / \theta)} /(\phi / \theta)\right. & \left.\left(\left(a_{1} / \theta\right) /(\phi / \theta), \ldots,\left(a_{n} / \theta\right) /(\phi / \theta)\right)\right) \\
& =\alpha\left(f^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right) /(\phi / \theta)\right) \\
& =\alpha\left(\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta\right) /(\phi / \theta)\right) \\
& =f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \phi \\
& =f^{\mathbf{A} / \phi}\left(a_{1} / \phi, \ldots, a_{n} / \phi\right) \\
& =f^{\mathbf{A} / \phi}\left(\alpha\left(\left(a_{1} / \theta\right) /(\phi / \theta)\right), \ldots, \alpha\left(\left(a_{n} / \theta\right) /(\phi / \theta)\right)\right) .
\end{aligned}
$$

So α is an isomorphism.

Restriction of a Congruence to a Subset

Definition

Let \mathbf{A} be an algebra. Suppose B is a subset of A and θ is a congruence on A. Let

$$
B^{\theta}=\{a \in A: B \cap a / \theta \neq \varnothing\} .
$$

Let \mathbf{B}^{θ} be the subalgebra of \mathbf{A} generated by B^{θ}. Also define $\theta \upharpoonright_{B}$ to be $\theta \cap B^{2}$, the restriction of θ to B.

The dashed-line subdivisions of A are the equivalence classes of θ.

Lemma on the Restriction of a Congruence to a Subset

Lemma

If \mathbf{B} is a subalgebra of \mathbf{A} and $\theta \in \operatorname{Con} \mathbf{A}$, then
(a) The universe of \mathbf{B}^{θ} is B^{θ}.
(b) $\theta \upharpoonright_{B}$ is a congruence on B.
(a) Suppose f is an n-ary function symbol. Let $a_{1}, \ldots, a_{n} \in B^{\theta}$. Then one can find $b_{1}, \ldots, b_{n} \in B$, such that $\left\langle a_{i}, b_{i}\right\rangle \in \theta, 1 \leq i \leq n$. Hence, $\left\langle f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), f^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \theta$, so $f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \in B^{\theta}$. Thus, B^{θ} is a subuniverse of A.
(b) To verify that $\theta \upharpoonright_{B}$ is a congruence on \mathbf{B}, let f be an n-ary function symbol in $\mathscr{F}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in B$, such that $\left\langle a_{i}, b_{i}\right\rangle \in \theta, 1 \leq i \leq n$. Then

$$
f^{\mathbf{B}}\left(a_{1}, \ldots, a_{n}\right)=f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \theta f^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)=f^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right) .
$$

Hence, $\left\langle f^{\mathbf{B}}\left(a_{1}, \ldots, a_{n}\right), f^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \theta \upharpoonright_{B}$.

The Third Isomorphism Theorem

Theorem (Third Isomorphism Theorem)

If \mathbf{B} is a subalgebra of \mathbf{A} and $\theta \in$ ConA, then

$$
\mathrm{B} / \theta \upharpoonright_{B} \cong \mathrm{~B}^{\theta} / \theta \upharpoonright_{B^{\theta}} .
$$

- We can verify that the map α which is defined by

$$
\alpha\left(b / \theta \upharpoonright_{B}\right)=b / \theta \upharpoonright_{B^{\theta}}
$$

gives the desired isomorphism.

The Correspondence Theorem

- If \mathbf{L} is a lattice and $a, b \in L$, with $a \leq b$, then the interval $[a, b]$ is a subuniverse of L.

Definition

For $[a, b]$ a closed interval of a lattice \mathbf{L}, where $a \leq b$, let $[a, b$] denote the corresponding sublattice of \mathbf{L}.

Theorem (Correspondence Theorem)

Let \mathbf{A} be an algebra and let $\theta \in \operatorname{ConA}$. Then the mapping α defined on $\left[\theta, \nabla_{A}\right]$ by

$$
\alpha(\phi)=\phi / \theta
$$

is a lattice isomorphism from $\left[\theta, \nabla_{A}\right]$ to ConA/ θ, where $\left[\theta, \nabla_{A}\right]$ is a sublattice of ConA.

Proof of the Correspondence Theorem

- To see that α is one-to-one, let $\phi, \psi \in\left[\theta, \nabla_{A}\right]$, with $\phi \neq \psi$. Then, without loss of generality, we can assume that there are elements $a, b \in A$, with $\langle a, b\rangle \in \phi-\psi$. Thus, $\langle a / \theta, b / \theta\rangle \in(\phi / \theta)-(\psi / \theta)$. So $\alpha(\phi) \neq \alpha(\psi)$.
To show that α is onto, let $\psi \in \operatorname{ConA} / \theta$. Define ϕ to be $\operatorname{ker}\left(v_{\psi} v_{\theta}\right)$. Then for $a, b \in A$,

$$
\langle a / \theta, b / \theta\rangle \in \phi / \theta \text { iff }\langle a, b\rangle \in \phi \text { iff }\langle a / \theta, b / \theta\rangle \in \psi
$$

So $\phi / \theta=\psi$.
Finally, we will show that α is an isomorphism. If $\phi, \psi \in\left[\theta, \nabla_{A}\right]$, then it is clear that

$$
\phi \subseteq \psi \text { iff } \phi / \theta \subseteq \psi / \theta \text { iff } \alpha(\phi) \subseteq \alpha(\psi)
$$

Subsection 6

Direct Products and Factor Congruences

Direct Products

- Subalgebras and quotient algebras, do not give a means of creating algebras of larger cardinality than what we start with, or of combining several algebras into one.

Definition

Let \mathbf{A}_{1} and \mathbf{A}_{2} be two algebras of the same type \mathscr{F}. Define the (direct) product $\mathbf{A}_{1} \times \mathbf{A}_{2}$ to be the algebra whose universe is the set $A_{1} \times A_{2}$ and such that for $f \in \mathscr{F}_{n}$ and $a_{i} \in A_{1}, a_{i}^{\prime} \in A_{2}, 1 \leq i \leq n$,

$$
f^{\mathbf{A}_{1} \times \mathbf{A}_{2}}\left(\left\langle a_{1}, a_{1}^{\prime}\right\rangle, \ldots,\left\langle a_{n}, a_{n}^{\prime}\right\rangle\right)=\left\langle f^{\mathbf{A}_{1}}\left(a_{1}, \ldots, a_{n}\right), f^{\mathbf{A}_{2}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)\right\rangle .
$$

- In general neither \mathbf{A}_{1} nor \mathbf{A}_{2} is embeddable in $\mathbf{A}_{1} \times \mathbf{A}_{2}$; In special cases, e.g., groups, this is possible because there is always a trivial subalgebra.

Definition

The mapping $\pi_{i}: A_{1} \times A_{2} \rightarrow A_{i}, i \in\{1,2\}$, defined by $\pi_{i}\left(\left\langle a_{1}, a_{2}\right\rangle\right)=a_{i}$, is called the projection map on the i-th coordinate of $A_{1} \times A_{2}$.

Properties of Projection Maps

Theorem

For $i=1$ or 2 , the mapping $\pi_{i}: A_{1} \times A_{2} \rightarrow A_{i}$ is a surjective homomorphism from $\mathbf{A}=\mathbf{A}_{1} \times \mathbf{A}_{2}$ to \mathbf{A}_{i}. Furthermore, in $\operatorname{Con} \mathbf{A}_{1} \times \mathbf{A}_{2}$ we have:
(a) $\operatorname{ker} \pi_{1} \times \operatorname{ker} \pi_{2}=\Delta$;
(b) ker π_{1} and ker π_{2} permute;
(c) $\operatorname{ker} \pi_{1} \vee \operatorname{ker} \pi_{2}=\nabla$.

- Clearly π_{i} is surjective. If $f \in \mathscr{F}_{n}$ and $a_{i} \in A_{1}, a_{i}^{\prime} \in A_{2}, 1 \leq i \leq n$, then

$$
\begin{aligned}
\pi_{1}\left(f^{\mathbf{A}}\left(\left\langle a_{1}, a_{1}^{\prime}\right\rangle, \ldots,\left\langle a_{n}, a_{n}^{\prime}\right\rangle\right)\right. & =\pi_{1}\left(\left\langle f^{\mathbf{A}_{1}}\left(a_{1}, \ldots, a_{n}\right), f^{\mathbf{A}_{2}}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)\right\rangle\right) \\
& =f^{\mathbf{A}_{1}}\left(a_{1}, \ldots, a_{n}\right) \\
& =f^{\mathbf{A}_{1}}\left(\pi_{1}\left(\left\langle a_{1}, a_{1}^{\prime}\right\rangle\right), \ldots, \pi_{1}\left(\left\langle a_{n}, a_{n}^{\prime}\right\rangle\right)\right) .
\end{aligned}
$$

So π_{1} is a homomorphism. Similarly, π_{2} is a homomorphism.

Properties of Projection Maps (Cont'd)

- We have

$$
\begin{array}{lll}
\left\langle\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle\right\rangle \in \operatorname{ker} \pi_{i} & \text { iff } & \pi_{i}\left(\left\langle a_{1}, a_{2}\right\rangle\right)=\pi_{i}\left(\left\langle b_{1}, b_{2}\right\rangle\right) \\
& \text { iff } \quad a_{i}=b_{i} .
\end{array}
$$

Thus, ker $\pi_{1} \cap \operatorname{ker} \pi_{2}=\Delta$.
Also, if $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle$ are any two elements of $A_{1} \times A_{2}$, then

$$
\left\langle a_{1}, a_{2}\right\rangle \operatorname{ker} \pi_{1}\left\langle a_{1}, b_{2}\right\rangle \operatorname{ker} \pi_{2}\left\langle b_{1}, b_{2}\right\rangle .
$$

So $\nabla=\operatorname{ker} \pi_{1} \circ \operatorname{ker} \pi_{2}$. But then $\operatorname{ker} \pi_{1}$ and $\operatorname{ker} \pi_{2}$ permute, and their join is ∇.

Factor Congruences

Definition

A congruence θ on \mathbf{A} is a factor congruence if there is a congruence θ^{*} on \mathbf{A}, such that

$$
\theta \cap \theta^{*}=\Delta, \quad \theta \vee \theta^{*}=\nabla, \quad \theta \text { permutes with } \theta^{*} .
$$

The pair θ, θ^{*} is called a pair of factor congruences on \mathbf{A}.

Theorem

If θ, θ^{*} is a pair of factor congruences on \mathbf{A}, then $\mathbf{A} \cong \mathbf{A} / \theta \times \mathbf{A} / \theta^{*}$ under the map $\alpha(a)=\left\langle a / \theta, a / \theta^{*}\right\rangle$.

- If $a, b \in A$, and $\alpha(a)=\alpha(b)$, then $a / \theta=b / \theta$ and $a / \theta^{*}=b / \theta^{*}$, so $\langle a, b\rangle \in \theta$ and $\langle a, b\rangle \in \theta^{*}$, whence $a=b$. Therefore, α is injective. Next, given $a, b \in A$, there is a $c \in A$, with $a \theta c \theta^{*} b$. Hence, $\alpha(c)=\left\langle c / \theta, c / \theta^{*}\right\rangle=\left\langle a / \theta, b / \theta^{*}\right\rangle$, whence α is onto.

Factor Congruences (Cont'd)

- Finally, for $f \in \mathscr{F}_{n}$ and $a_{1}, \ldots, a_{n} \in A$,

$$
\begin{aligned}
\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) & =\left\langle f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta, f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) / \theta^{*}\right\rangle \\
& =\left\langle f^{\mathbf{A} / \theta}\left(a_{1} / \theta, \ldots, a_{n} / \theta\right), f^{\mathbf{A} / \theta^{*}}\left(a_{1} / \theta^{*}, \ldots, a_{n} / \theta^{*}\right)\right\rangle \\
& =f^{\mathbf{A} / \theta \times \mathbf{A} / \theta^{*}}\left(\left\langle a_{1} / \theta, a_{1} / \theta^{*}\right\rangle, \ldots,\left\langle a_{n} / \theta, a_{n} / \theta^{*}\right\rangle\right) \\
& =f^{\mathbf{A} / \theta \times \mathbf{A} / \theta^{*}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right) .
\end{aligned}
$$

Hence α is indeed an isomorphism.

Direct Indecomposability

Definition

An algebra \mathbf{A} is (directly) indecomposable if \mathbf{A} is not isomorphic to a direct product of two nontrivial algebras.

Example: Any finite algebra A , with $|A|$ a prime number must be directly indecomposable.

Corollary

A is directly indecomposable iff the only factor congruences on \mathbf{A} are Δ and ∇.

Direct Products in General

Definition

Let $\left(\mathbf{A}_{i}\right)_{i \in I}$ be an indexed family of algebras of type \mathscr{F}. The (direct) product $\mathbf{A}=\prod_{i \in I} \mathbf{A}_{i}$ is an algebra with universe $\prod_{i \in I} A_{i}$ and such that for $f \in \mathscr{F}_{n}$ and $a_{1}, \ldots, a_{n} \in \prod_{i \in I} A_{i}$,

$$
f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)(i)=f^{\mathbf{A}_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right), \quad i \in I
$$

i.e., $f^{\mathbf{A}}$ is defined coordinate-wise.

The empty product $\Pi \varnothing$ is the trivial algebra with universe $\{\varnothing\}$.
As before, we have projection maps $\pi_{j}: \prod_{i \in I} A_{i} \rightarrow A_{j}$, for $j \in I$, defined by $\pi_{j}(a)=a(j)$, which give surjective homomorphisms $\pi_{j}: \prod_{i \in I} \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$. If $I=\{1,2, \ldots, n\}$, we also write $\mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$.
If I is arbitrary but $\mathbf{A}_{i}=\mathbf{A}$, for all $i \in I$, then we usually write \mathbf{A}^{\prime} for the direct product, and call it a (direct) power of $\mathbf{A} . \mathbf{A}^{\varnothing}$ is a trivial algebra.

Visualization and Basic Properties of Direct Products

- A direct product $\prod_{i \in I} A_{i}$ of sets is often visualized as a rectangle with base I and vertical cross sections A_{i}.

An element a of $\prod_{i \in I} A_{i}$ is then a curve.

Theorem

If $\mathbf{A}_{1}, \mathbf{A}_{2}$ and \mathbf{A}_{3} are of type \mathscr{F}, then:
(a) $\mathbf{A}_{1} \times \mathbf{A}_{2} \cong \mathbf{A}_{2} \times \mathbf{A}_{1}$ under $\alpha\left(\left\langle a_{1}, a_{2}\right\rangle\right)=\left\langle a_{2}, a_{1}\right\rangle$.
(b) $\mathbf{A}_{1} \times\left(\mathbf{A}_{2} \times \mathbf{A}_{3}\right) \cong \mathbf{A}_{1} \times \mathbf{A}_{2} \times \mathbf{A}_{3}$ under $\alpha\left(\left\langle a_{1},\left\langle a_{2}, a_{3}\right\rangle\right\rangle\right)=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$.

Direct Product Decomposition of Finite Algebras

Theorem

Every finite algebra is isomorphic to a direct product of directly indecomposable algebras.

- Let \mathbf{A} be a finite algebra. We proceed by induction on $|A|$.
- If \mathbf{A} is trivial, then \mathbf{A} is indecomposable.
- Suppose \mathbf{A} is a nontrivial finite algebra such that for every \mathbf{B}, with $|B|<|A|$, we know that \mathbf{B} is isomorphic to a product of indecomposable algebras.
- If \mathbf{A} is indecomposable we are finished.
- If not, then $\mathbf{A} \cong \mathbf{A}_{1} \times \mathbf{A}_{2}$, with $1<\left|A_{1}\right|,\left|A_{2}\right|$. Then, $\left|A_{1}\right|,\left|A_{2}\right|<|A|$. So, by the induction hypothesis, $\mathbf{A}_{1} \cong \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{m} ; \mathbf{A}_{2} \cong \mathbf{C}_{1} \times \cdots \times \mathbf{C}_{n}$, where the \mathbf{B}_{i} and \mathbf{C}_{j} are indecomposable. Consequently, $\mathrm{A} \cong \mathrm{B}_{1} \times \cdots \times \mathrm{B}_{m} \times \mathrm{C}_{1} \times \cdots \times \mathrm{C}_{n}$.

Combining Homomorphisms Using Products

- Using direct products there are two obvious ways of combining families of homomorphisms into single homomorphisms.

Definition

(i) If we are given maps $\alpha_{i}: A \rightarrow A_{i}, i \in I$, then the natural map $\alpha: A \rightarrow \prod_{i \in I} A_{i}$ is defined by $(\alpha(a))(i)=\alpha_{i}(a)$.
(ii) If we are given maps $\alpha_{i}: A_{i} \rightarrow B_{i}, i \in I$, then the natural map $\alpha: \prod_{i \in I} A_{i} \rightarrow \prod_{i \in I} B_{i}$ is defined by $(\alpha(a))(i)=\alpha_{i}(a(i))$.

Theorem

(a) If $\alpha_{i}: \mathbf{A} \rightarrow \mathbf{A}_{i}, i \in I$, is an indexed family of homomorphisms, then the natural map α is a homomorphism from \mathbf{A} to $\mathbf{A}^{*}=\prod_{i \in 1} \mathbf{A}_{i}$.
(b) If $\alpha_{i}: \mathbf{A}_{i} \rightarrow \mathbf{B}_{i}, i \in I$, is an indexed family of homomorphisms, then the natural map α is a homomorphism from $\mathbf{A}^{*}=\prod_{i \in I} \mathbf{A}_{i}$ to $\mathbf{B}^{*}=\prod_{i \in I} \mathbf{B}_{i}$.

Proof of the Natural Map Theorem

- Suppose $\alpha_{i}: \mathbf{A} \rightarrow \mathbf{A}_{i}$ is a homomorphism for $i \in I$. Then for $a_{1}, \ldots, a_{n} \in A$ and $f \in \mathscr{F}_{n}$, we have, for $i \in I$,

$$
\begin{aligned}
\left(\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)\right)(i) & =\alpha_{i}\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \\
& =f^{\mathbf{A}_{i}}\left(\alpha,\left(a_{1}\right), \ldots, \alpha_{i}\left(a_{n}\right)\right) \\
& =f^{\mathbf{A}_{i}}\left(\left(\alpha\left(a_{1}\right)\right)(i), \ldots,\left(\alpha\left(a_{n}\right)\right)(i)\right) \\
& =f^{\mathbf{A}^{*}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)(i) .
\end{aligned}
$$

Hence, $\alpha\left(f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathbf{A}^{*}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)$, so α is indeed a homomorphism.
Case (b) is a consequence of (a) using the homomorphisms $\alpha_{i} \circ \pi_{i}$:

Separation of Points

Definition

If $a_{1}, a_{2} \in A$ and $\alpha: A \rightarrow B$ is a map, we say α separates a_{1} and a_{2} if

$$
\alpha\left(a_{1}\right) \neq \alpha\left(a_{2}\right)
$$

The maps $\alpha_{i}: A \rightarrow A_{i}, i \in I$, separate points if for each $a_{1}, a_{2} \in A$, with $a_{1} \neq a_{2}$, there is an α_{i}, such that $\alpha_{i}\left(a_{1}\right) \neq \alpha_{i}\left(a_{2}\right)$.

Lemma

For an indexed family of maps $\alpha_{i}: A \rightarrow A_{i}, i \in I$, the following are equivalent:
(a) The maps α_{i} separate points.
(b) The natural map $\alpha: A \rightarrow \prod_{i \in I} A_{i}$ is injective.
(c) $\bigcap_{i \in I} \operatorname{ker} \alpha_{i}=\Delta$.

Proof of the Separation of Points Lema

(a) $\Rightarrow(\mathrm{b})$: Suppose $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$. Then, for some i, $\alpha_{i}\left(a_{1}\right) \neq \alpha_{i}\left(a_{2}\right)$. Hence $\left(\alpha\left(a_{1}\right)\right)(i) \neq\left(\alpha\left(a_{2}\right)\right)(i)$. So $\alpha\left(a_{1}\right) \neq \alpha\left(a_{2}\right)$.
(b) $\Rightarrow(\mathrm{c})$: For $a_{1}, a_{2} \in A$, with $a_{1} \neq a_{2}$, we have $\alpha\left(a_{1}\right) \neq \alpha\left(a_{2}\right)$, hence $\left(\alpha\left(a_{1}\right)\right)(i) \neq\left(\alpha\left(a_{2}\right)\right)(i)$, for some i; so $\alpha_{i}\left(a_{1}\right) \neq \alpha_{i}\left(a_{2}\right)$, for some i; and this implies $\left\langle a_{1}, a_{2}\right\rangle \notin \operatorname{ker} \alpha_{i}$, so $\bigcap_{i \in I} \operatorname{ker} \alpha_{i}=\Delta$.
(c) $\Rightarrow(\mathrm{a})$: For $a_{1}, a_{2} \in A$, with $a_{1} \neq a_{2},\left\langle a_{1}, a_{2}\right\rangle \notin \bigcap_{i \in I} \operatorname{ker} \alpha_{i}$ so, for some $i,\left\langle a_{1}, a_{2}\right\rangle \notin \operatorname{ker} \alpha_{i}$, hence $\alpha_{i}\left(a_{1}\right) \neq \alpha_{i}\left(a_{2}\right)$.

Theorem

If we are given an indexed family of homomorphisms $\alpha_{i}: \mathbf{A} \rightarrow \mathbf{A}_{i}, i \in I$, then the natural homomorphism $\alpha: \mathbf{A} \rightarrow \prod_{i \in I} \mathbf{A}_{i}$ is an embedding iff $\bigcap_{i \in I} \operatorname{ker} \alpha_{i}=\Delta$ iff the maps α_{i} separate points.

- This is immediate from the lemma.

Subsection 7

Subdirect Products and Simple Algebras

Subdirect Products and Subdirect Embeddings

Definition

An algebra \mathbf{A} is a subdirect product of an indexed family $\left(\mathbf{A}_{i}\right)_{i \in I}$ of algebras if:
(i) $\mathbf{A} \leq \prod_{i \in I} \mathbf{A}_{i}$;
(ii) $\pi_{i}(\mathbf{A})=\mathbf{A}_{i}$, for each $i \in I$.

An embedding $\alpha: \mathbf{A} \rightarrow \prod_{i \in I} \mathbf{A}_{i}$ is subdirect if $\alpha(\mathbf{A})$ is a subdirect product of the \mathbf{A}_{i}.

- If $I=\varnothing$, then \mathbf{A} is a subdirect product of \varnothing iff $\mathbf{A}=\Pi \varnothing$, a trivial algebra.

The Subdirect Embedding Lemma

Lemma

If $\theta_{i} \in \operatorname{Con} \mathbf{A}$, for $i \in I$, and $\bigcap_{i \in I} \theta_{i}=\Delta$, then the natural homomorphism $v: \mathbf{A} \rightarrow \prod_{i \in I} \mathbf{A} / \theta_{i}$, defined by

$$
v(a)(i)=a / \theta_{i}
$$

is a subdirect embedding.

- Let v_{i} be the natural homomorphism from \mathbf{A} to \mathbf{A} / θ_{i}, for $i \in I$.
- Since ker $v_{i}=\theta_{i}$ and $\bigcap_{i \in I} \theta_{i}=\Delta$, it follows that v is an embedding.
- Since each v_{i} is surjective, v is a subdirect embedding.

Subdirect Irreducibility

Definition

An algebra \mathbf{A} is subdirectly irreducible if, for every subdirect embedding

$$
\alpha: \mathbf{A} \rightarrow \prod_{i \in I} \mathbf{A}_{i},
$$

there is an $i \in I$, such that $\pi_{i} \circ \alpha: \mathbf{A} \rightarrow \mathbf{A}_{i}$ is an isomorphism.

Theorem

An algebra \mathbf{A} is subdirectly irreducible iff \mathbf{A} is trivial or there is a minimum congruence in $\operatorname{Con} \mathbf{A}-\{\Delta\}$. In the latter case the minimum element is $\cap(\operatorname{Con} \mathbf{A}-\{\Delta\})$, a principal congruence, and the congruence lattice of \mathbf{A} looks as in the diagram.

Subdirect Irreducibility (Cont'd)

(\Rightarrow) : If \mathbf{A} is not trivial and $\operatorname{Con} \mathbf{A}-\{\Delta\}$ has no minimum element, then $\cap(\operatorname{Con} A-\{\Delta\})=\Delta$. Let $I=\operatorname{Con} A-\{\Delta\}$. Then the natural map $\alpha: \mathbf{A} \rightarrow \prod_{\theta \epsilon I} \mathbf{A} / \theta$ is a subdirect embedding by the lemma. The natural $\operatorname{map} \mathbf{A} \rightarrow \mathbf{A} / \theta$ is not injective for $\theta \in I$, whence \mathbf{A} is not subdirectly irreducible.
(\Leftarrow) : If \mathbf{A} is trivial and $\alpha: \mathbf{A} \rightarrow \prod_{i \in I} \mathbf{A}_{i}$ is a subdirect embedding then each A_{i} is trivial. Hence, each $\pi_{i} \circ \alpha$ is an isomorphism.
So suppose \mathbf{A} is not trivial, and let $\theta=\cap(\operatorname{Con} \mathbf{A}-\{\Delta\}) \neq \Delta$. Choose $\langle a, b\rangle \in \theta, a \neq b$. If $\alpha: \mathbf{A} \rightarrow \prod_{i \in I} \mathbf{A}_{i}$ is a subdirect embedding, then for some $i,(\alpha(a))(i) \neq(\alpha(b))(i)$. Hence $\left(\pi_{i} \circ \alpha\right)(a) \neq\left(\pi_{i} \circ \alpha\right)(b)$. Thus, $\langle a, b\rangle \notin \operatorname{ker}\left(\pi_{i} \circ \alpha\right)$ so $\theta \nsubseteq \operatorname{ker}\left(\pi_{i} \circ \alpha\right)$. This implies $\operatorname{ker}\left(\pi_{i} \circ \alpha\right)=\Delta$ so $\pi_{i} \circ \alpha: \mathbf{A} \rightarrow \mathbf{A}_{i}$ is an isomorphism. Consequently, \mathbf{A} is subdirectly irreducible.
If $\operatorname{Con} \mathbf{A}-\{\Delta\}$ has a minimum element θ, then for $a \neq b$ and $\langle a, b\rangle \in \theta$, we have $\Theta(a, b) \subseteq \theta$, whence $\theta=\Theta(a, b)$.

Subdirect Irreducibility and Direct Indecomposability

Examples:

(1) A finite Abelian group \mathbf{G} is subdirectly irreducible iff it is cyclic and $|G|=p^{n}$, for some prime p.
(2) Given a prime number p, the Prüfer p-group $\mathbb{Z}_{p^{\infty}}$, the group of p^{n}-th roots of unity, $n \in \omega$, is subdirectly irreducible.
(3) Every simple group is subdirectly irreducible.
(4) A vector space over a field F is subdirectly irreducible iff it is trivial or one-dimensional.
(5) Any two-element algebra is subdirectly irreducible.

- A directly indecomposable algebra need not be subdirectly irreducible for example, a three-element chain as a lattice.

Theorem

A subdirectly irreducible algebra is directly indecomposable.

- Clearly the only factor congruences on a subdirectly irreducible algebra are Δ and ∇. Such an algebra is directly indecomposable.

Subdirect Decomposability

Theorem (Birkhoff)

Every algebra \mathbf{A} is isomorphic to a subdirect product of subdirectly irreducible algebras (which are homomorphic images of \mathbf{A}).

- As trivial algebras are subdirectly irreducible, we only need to consider the case of nontrivial \mathbf{A}. For $a, b \in A$, with $a \neq b$, we can find, using Zorn's lemma, a congruence $\theta_{a, b}$ on \mathbf{A} which is maximal with respect to the property $\langle a, b\rangle \notin \theta_{a, b}$. Then clearly $\Theta(a, b) \vee \theta_{a, b}$ is the smallest congruence in $\left[\theta_{a, b}, \nabla\right]-\left\{\theta_{a, b}\right\}$, so we see that $\mathbf{A} / \theta_{a, b}$ is subdirectly irreducible. As $\cap\left\{\theta_{a, b}: a \neq b\right\}=\Delta$, we can apply a preceding result to show that \mathbf{A} is subdirectly embeddable in the product of the indexed family of subdirectly irreducible algebras $\left(\mathbf{A} / \theta_{a, b}\right)_{a \neq b}$.

Corollary

Every finite algebra is isomorphic to a subdirect product of a finite number of subdirectly irreducible finite algebras.

Simple Algebras

Definition

An algebra \mathbf{A} is simple if $\operatorname{Con} \mathbf{A}=\{\Delta, \nabla\}$. A congruence θ on an algebra \mathbf{A} is maximal if the interval $[\theta, \nabla]$ of $\operatorname{Con} A$ has exactly two elements.

- We do not require that a simple algebra be nontrivial.
- Just as the quotient of a group by a normal subgroup is simple and nontrivial iff the normal subgroup if maximal, we have a similar result for arbitrary algebras.

Theorem

Let $\theta \in \operatorname{Con} \mathbf{A}$. Then \mathbf{A} / θ is a simple algebra iff θ is a maximal congruence on \mathbf{A} or $\theta=\nabla$.

- We know that ConA/ $\theta \cong\left[\theta, \nabla_{A}\right]$. So the theorem is an immediate consequence of the definition.

