Introduction to Universal Algebra

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

June 2020 1 / 85

D Algebras, Subalgebras, Homomorphisms & Direct Products

- Definition and Examples of Algebras
- Isomorphic Algebras and Subalgebras
- Algebraic Lattices and Subuniverses
- Congruences and Quotient Algebras
- Homomorphisms and the Homomorphism Theorems
- Direct Products and Factor Congruences
- Subdirect Products and Simple Algebras

Subsection 1

Definition and Examples of Algebras

Operations

Definition

For A a nonempty set and n a nonnegative integer, we define $A^0 = \{\emptyset\}$ and, for n > 0, A^n is the set of n-tuples of elements from A.

An *n*-ary operation (or function) on A is any function f from A^n to A; n is the arity (or rank) of f. A finitary operation is an *n*-ary operation, for some n.

The image of $\langle a_1, \ldots, a_n \rangle$ under an *n*-ary operation *f* is denoted by $f(a_1, \ldots, a_n)$.

An operation f on A is called a **nullary operation** (or **constant**) if its arity is zero; it is completely determined by the image $f(\phi)$ in A of the only element ϕ in A^0 . As such it is convenient to identify it with the element $f(\phi)$. Thus a nullary operation is thought of as an element of A. An operation f on A is **unary**, **binary** or **ternary** if its arity is 1,2, or 3, respectively.

Languages and Algebras

Definition

A language (or type) of algebras is a set \mathscr{F} of function symbols such that a nonnegative integer n is assigned to each member f of \mathscr{F} . This integer is called the arity (or rank) of f, and f is said to be an n-ary function symbol. The subset of n-ary function symbols in \mathscr{F} is denoted by \mathscr{F}_n .

Definition

If \mathscr{F} is a language of algebras, then an **algebra A of type** \mathscr{F} is an ordered pair $\langle A, F \rangle$, where:

- A is a nonempty set;
- F is a family of finitary operations on A indexed by the language \mathscr{F} , such that corresponding to each *n*-ary function symbol f in \mathscr{F} , there is an *n*-ary operation $f^{\mathbf{A}}$ on A.

The set A is called the **universe** (or **underlying set**) of $\mathbf{A} = \langle A, F \rangle$. The $f^{\mathbf{A}}$'s are called the **fundamental operations** of \mathbf{A} .

More Algebraic Notation and Terminology

• If \mathscr{F} is finite, say $\mathscr{F} = \{f_1, \dots, f_k\}$, we often write $\langle A, f_1, \dots, f_k \rangle$ for $\langle A, F \rangle$, usually adopting the convention:

$$\operatorname{arity} f_1 \ge \operatorname{arity} f_2 \ge \cdots \ge \operatorname{arity} f_k.$$

- An algebra A is unary if all of its operations are unary. It is mono-unary if it has just one unary operation.
- A is a groupoid if it has just one binary operation. The operation is usually denoted by + or ·, and we write a + b or a · b (or just ab) for the image of ⟨a, b⟩ under this operation and call it the sum or product of a and b, respectively.
- An algebra A is finite if |A| is finite.
- An algebra **A** is **trivial** if |A| = 1.

Groups and Abelian Groups

 A group G is an algebra ⟨G,·, ⁻¹,1⟩ with a binary, a unary, and a nullary operation in which the following identities are true:

$$G1 \quad x \cdot (y \cdot z) \approx (x \cdot y) \cdot z;$$

G2
$$x \cdot 1 \approx 1 \cdot x \approx x;$$

$$G3 \quad x \cdot x^{-1} \approx x^{-1} \cdot x \approx 1.$$

• A group **G** is **Abelian** (or **commutative**) if the following identity is true:

$$\mathsf{G4} \quad x \cdot y \approx y \cdot x.$$

Monoids and Quasigroups

- Groups are generalized to semigroups and monoids in one direction, and to quasigroups and loops in another direction.
- A semigroup is a groupoid $\langle G, \cdot \rangle$ in which (G1) is true.

It is commutative (or Abelian) if (G4) holds.

- A monoid is an algebra ⟨M, ·, 1⟩ with a binary and a nullary operation satisfying (G1) and (G2).
- A quasigroup is an algebra ⟨Q, /, ·, \⟩ with three binary operations satisfying the following identities:

Q1 $x \setminus (x \cdot y) \approx y;$ $(x \cdot y)/y \approx x;$ Q2 $x \cdot (x \setminus y) \approx y;$ $(x/y) \cdot y \approx x.$

A loop is a quasigroup with identity, i.e., an algebra ⟨Q,/,·, \,1⟩ which satisfies (Q1), (Q2) and (G2).

Rings

- A ring is an algebra ⟨R,+,·,-,0⟩, where + and · are binary, is unary and 0 is nullary, satisfying the following conditions:
 - R1 $\langle R, +, -, 0 \rangle$ is an Abelian group;
 - R2 $\langle R, \cdot \rangle$ is a semigroup;
 - R3 $x \cdot (y+z) \approx (x \cdot y) + (x \cdot z)$ $(x+y) \cdot z \approx (x \cdot z) + (y \cdot z).$
- A ring with identity is an algebra (R, +, ·, -, 0, 1), such that (R1)-(R3) and (G2) hold.

Modules and Algebras Over a (Fixed) Ring

- Let **R** be a given ring. A (left) **R-module** is an algebra $\langle M, +, -, 0, (f_r)_{r \in R} \rangle$, where + is binary, is unary, 0 is nullary, and each f_r is unary, such that the following hold:
 - M1 $\langle M, +, -, 0 \rangle$ is an Abelian group;

M2
$$f_r(x+y) \approx f_r(x) + f_r(y)$$
, for $r \in R$;

M3
$$f_{r+s}(x) \approx f_r(x) + f_s(x)$$
 for $r, s \in R$;

M4
$$f_r(f_s(x)) \approx f_{rs}(x)$$
, for $r, s \in R$

- Let R be a ring with identity. A unitary R-module is an algebra as above satisfying (M1)-(M4) and:
 - M5 $f_1(x) \approx x$.
- Let **R** be a ring with identity. An **algebra over R** is an algebra $\langle A, +, \cdot, -, 0, (f_r)_{r \in R} \rangle$, such that the following hold:

A1
$$\langle A, +, -, 0, (f_r)_{r \in R} \rangle$$
 is a unitary **R**-module;

A2 $\langle A, +, \cdot, -, 0 \rangle$ is a ring;

A3
$$f_r(x \cdot y) \approx (f_r(x)) \cdot y \approx x \cdot f_r(y)$$
, for $r \in R$.

Semilattices and Lattices

- A semilattice is a semigroup (S, ·) which satisfies the commutative law (G4) and the idempotent law
 S1 x · x ≈ x.
- A lattice is an algebra ⟨L, ∨, ∧⟩, with two binary operations which satisfies
 - L1 (commutative laws) L3 (idempotent laws)

(a)
$$x \lor y \approx y \lor x;$$

(b) $x \land y \approx y \land x;$

L2 (associative laws)

(a) $x \lor (y \lor z) \approx (x \lor y) \lor z;$ (b) $x \land (y \land z) \approx (x \land y) \land z;$ (b) $x \wedge x \approx x$; L4 (absorption laws)

(a) $x \vee x \approx x$;

(a) $x \approx x \lor (x \land y);$ (b) $x \approx x \land (x \lor y).$

 An algebra (L, ∨, ∧, 0, 1), with two binary and two nullary operations is a bounded lattice if it satisfies:

BL1 $\langle L, \vee, \wedge \rangle$ is a lattice; BL2 $x \wedge 0 \approx 0$; $x \vee 1 \approx 1$.

Subsection 2

Isomorphic Algebras and Subalgebras

Isomorphism

Definition

Let **A** and **B** be two algebras of the same type \mathscr{F} . Then a function $\alpha: A \rightarrow B$ is an **isomorphism** from **A** to **B** if:

- *α* is one-to-one and onto;
- for every *n*-ary $f \in \mathcal{F}$ and for all $a_1, \ldots, a_n \in A$, we have

$$\alpha(f^{\mathbf{A}}(a_1,\ldots,a_n))=f^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)).$$

We say A is **isomorphic** to B, written $A \cong B$, if there is an isomorphism from A to B.

- The properties of algebras that are invariant under isomorphism are called **algebraic properties**.
- Isomorphic algebras can be regarded as equal or the same, having the same algebraic structure, and differing only in the nature of the elements: The phrase "equal up to isomorphism" is often used.

George Voutsadakis (LSSU)

Subalgebras and Subuniverses

Definition

Let **A** and **B** be two algebras of the same type. Then **B** is a **subalgebra** of **A** if $B \subseteq A$ and every fundamental operation of **B** is the restriction of the corresponding operation of **A**; i.e., for each function symbol f, $f^{\mathbf{B}}$ is $f^{\mathbf{A}}$ restricted to B. We write simply $\mathbf{B} \leq \mathbf{A}$. A **subuniverse** of **A** is a subset B of A which is closed under the fundamental operations of **A**; i.e., if f is a fundamental n-ary operation of **A** and $a_1, \ldots, a_n \in B$ we would require $f(a_1, \ldots, a_n) \in B$.

- Thus, if **B** is a subalgebra of **A**, then *B* is a subuniverse of **A**.
- The empty set may be a subuniverse, but it is not the underlying set of any subalgebra.
- If A has nullary operations then every subuniverse contains them as well.

Embeddings (or Monomorphisms)

Definition

Let **A** and **B** be of the same type. A function $\alpha : A \rightarrow B$ is an **embedding** of **A** into **B** if α is one-to-one and satisfies

$$\alpha(f^{\mathbf{A}}(a_1,\ldots,a_n))=f^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)).$$

Such an α is also called a **monomorphism**. For brevity we simply say " α : $\mathbf{A} \rightarrow \mathbf{B}$ is an embedding". We say \mathbf{A} can be **embedded** in \mathbf{B} if there is an embedding of \mathbf{A} into \mathbf{B} .

Theorem

If $\alpha : \mathbf{A} \to \mathbf{B}$ is an embedding, then $\alpha(A)$ is a subuniverse of **B**.

Let α : A → B be an embedding. Then, for an n-ary function symbol f and a₁,..., a_n ∈ A, f^B(α(a₁),...,α(a_n)) = α(f^A(a₁,...,a_n)) ∈ α(A).

Definition

If $\alpha : \mathbf{A} \to \mathbf{B}$ is an embedding, $\alpha(\mathbf{A})$ denotes the subalgebra of \mathbf{B} with universe $\alpha(A)$.

George Voutsadakis (LSSU)

Structure Theorems in Algebra

- Let K be a class of algebras and let K_1 be a proper subclass of K.
- In practice, K may have been obtained from the process of abstraction of certain properties of K_1 ; or K_1 may be obtained from K by certain additional, more desirable, properties.
- Two basic questions arise in the quest for structure theorems:
 -) Is every member of K isomorphic to some member of K_1 ?
 - 2) Is every member of K embeddable in some member of K_1 ?

Examples:

- Every Boolean algebra is isomorphic to a field of sets.
- Every group is isomorphic to a group of permutations.
- A finite Abelian group is isomorphic to a direct product of cyclic groups.
- A finite distributive lattice can be embedded in a power of the two-element distributive lattice.

Subsection 3

Algebraic Lattices and Subuniverses

Generated Subuniverses

Definition

Given an algebra **A**, define, for every $X \subseteq A$,

 $Sg(X) = \bigcap \{B : X \subseteq B \text{ and } B \text{ is a subuniverse of } A\}.$

We read Sg(X) as "the subuniverse generated by X".

Theorem

If we are given an algebra A, then Sg is an algebraic closure operator on A.

 Observe that an arbitrary intersection of subuniverses of A is again a subuniverse. Hence Sg is a closure operator on A whose closed sets are precisely the subuniverses of A. Now, for any X ⊆ A, define

$$E(X) = X \cup \{f(a_1, \dots, a_n) : f \text{ is a fundamental } n \text{-ary operation} \\ \text{on } A, n \in \omega, \text{ and } a_1, \dots, a_n \in X\}.$$

Generated Subuniverses (Algebraicity)

• We defined, for $X \subseteq A$,

 $E(X) = X \cup \{f(a_1, \dots, a_n) : f \text{ is a fundamental } n \text{-ary operation} \\ \text{on } A, n \in \omega, \text{ and } a_1, \dots, a_n \in X\}.$

Then define $E^n(X)$, for $n \ge 0$, by induction, as follows:

$$E^{0}(X) = X, \quad E^{n+1}(X) = E(E^{n}(X)).$$

As all the fundamental operations on A are finitary and $X \subseteq E(X) \subseteq E^2(X) \subseteq \cdots$, we can show that

$$\operatorname{Sg}(X) = X \cup E(X) \cup E^2(X) \cup \cdots$$
.

Therefore, if $a \in Sg(X)$, then $a \in E^n(X)$, for some $n \in \omega$. Hence, for some finite $Y \subseteq X$, $a \in E^n(Y)$. Thus, $a \in Sg(Y)$. But this says Sg is an algebraic closure operator.

George Voutsadakis (LSSU)

The Lattice of Subuniverses

Corollary

If A is an algebra then $\mathsf{L}_{\mathsf{Sg}},$ the lattice of subuniverses of A is an algebraic lattice.

 The corollary says that the subuniverses of A, with ⊆ as the partial order, form an algebraic lattice.

Definition

Given an algebra A, Sub(A) denotes the set of subuniverses of A, and Sub(A) is the corresponding algebraic lattice, the lattice of subuniverses of A.

For $X \subseteq A$, we say X generates A (or A is generated by X; or X is a set of generators of A) if Sg(X) = A.

The algebra A is finitely generated if it has a finite set of generators.

Algebraic Lattices and Lattices of Subuniverses

 Every algebraic lattice is isomorphic to the lattice of subuniverses of some algebra:

Theorem (Birkhoff and Frink)

If L is an algebraic lattice, then $L \cong Sub(A)$, for some algebra A.

• Let C be an algebraic closure operator on a set A, such that $L \cong L_C$. For each finite subset B of A and each $b \in C(B)$, define an *n*-ary function $f_{B,b}$ on A, where n = |B|, by $f_{B,b}(a_1,\ldots,a_n) = \begin{cases} b, & \text{if } B = \{a_1,\ldots,a_n\} \\ a_1, & \text{otherwise} \end{cases}$ Call the resulting algebra **A**. Then clearly $f_{B,b}(a_1,\ldots,a_n) \in C(\{a_1,\ldots,a_n\})$. Hence, for $X \subseteq A$, $Sg(X) \subseteq C(X)$. On the other hand, $C(X) = \bigcup \{C(B) : B \subseteq X \text{ and } B \text{ is finite} \}$ and, for B finite, $C(B) = \{f_{B,b}(a_1, ..., a_n) : B = \{a_1, ..., a_n\}, b \in C(B)\} \subseteq Sg(B) \subseteq Sg(X)$ imply $C(X) \subseteq Sg(X)$. Hence, $C(X) \subseteq Sg(X)$. Thus, $L_C = Sub(A)$. So $Sub(A) \cong L$.

Algebras Generated by Sets of Specific Cardinality

- For a given type there cannot be "too many" algebras (up to isomorphism) generated by sets no larger than a given cardinality.
- Recall that ω is the smallest infinite cardinal.

Corollary

If **A** is an algebra and $X \subseteq A$, then

$$|\mathsf{Sg}(X)| \le |X| + |\mathcal{F}| + \omega.$$

• Using induction on *n*, one has

 $|E^n(X)| \le |X| + |\mathcal{F}| + \omega.$

• $|E^0(X)| = |X| \le |X| + |\mathscr{F}| + \omega;$ • $|E^{n+1}(X)| = |E(E^n(X))| \le |E^n(X)| + |\mathscr{F}| + \omega \le |X| + |\mathscr{F}| + \omega.$ So the result follows from $Sg(X) = X \cup E(X) \cup E^2(X) \cup \cdots$.

n-ary Closure Operators

Definition

Let C be a closure operator on A. For $n < \omega$, let C_n be the function defined on Su(A) by

$$C_n(X) = \bigcup \{C(Y) : Y \subseteq X, |Y| \le n\}.$$

We say that C is *n*-ary, if

$$C(X) = C_n(X) \cup C_n^2(X) \cup \cdots,$$

where:

•
$$C_n^1(X) = C_n(X);$$

• $C_n^{k+1}(X) = C_n(C_n^k(X)).$

Generation and *n*-ary Closure Operators

Lemma

Let **A** be an algebra all of whose fundamental operations have arity at most n. Then Sg is an n-ary closure operator on A.

Recall the definition

 $E(X) = X \cup \{f(a_1, \dots, a_n) : f \text{ is a fundamental } n \text{-ary operation} \\ \text{on } A, n \in \omega, \text{ and } a_1, \dots, a_n \in X\}.$

Note that $E(X) \subseteq \operatorname{Sg}_n(X) \subseteq \operatorname{Sg}(X)$. Hence,

$$Sg(X) = X \cup E(X) \cup E^{2}(X) \cup \cdots$$

$$\subseteq Sg_{n}(X) \cup Sg_{n}^{2}(X) \cup \cdots$$

$$\subseteq Sg(X).$$

So $Sg(X) = Sg_n(X) \cup Sg_n^2(X) \cup \cdots$.

Subsection 4

Congruences and Quotient Algebras

The Compatibility Condition

Definition

- Let A be an algebra of type \mathscr{F} and let $\theta \in Eq(A)$. Then θ is a congruence on A if θ satisfies the following compatibility property:
- CP For each *n*-ary function symbol $f \in \mathscr{F}$, and elements $a_i, b_i \in A$, if $a_i \ \theta \ b_i$ holds, for $1 \le i \le n$, then $f^{\mathbf{A}}(a_1, \dots, a_n) \ \theta \ f^{\mathbf{A}}(b_1, \dots, b_n)$ holds.
 - The compatibility property allows introducing an algebraic structure on the set of equivalence classes A/θ:

If a_1, \ldots, a_n are elements of A and f is an n-ary symbol in \mathscr{F} , then the easiest choice of an equivalence class to be the value of f applied to $\langle a_1/\theta, \ldots, a_n/\theta \rangle$ is $f^{\mathbf{A}}(a_1, \ldots, a_n)/\theta$.

This will indeed define a function on A/θ iff (CP) holds.

Illustration of the Algebraic Structure on A/θ

• The Compatibility Condition for a binary operation is illustrated below:

A is subdivided into the equivalence classes of θ .

Then selecting a_1, b_1 in the same equivalence class and a_2, b_2 in the same equivalence class, we want $f^{\mathbf{A}}(a_1, a_2)$ and $f^{\mathbf{A}}(b_1, b_2)$ to be in the same equivalence class.

Quotient Algebras

Definition

The set of all congruences on an algebra **A** is denoted by Con**A**. Let θ be a congruence on an algebra **A**. Then the **quotient algebra of A by** θ , written **A**/ θ , is the algebra whose universe is A/θ and whose fundamental operations satisfy

$$f^{\mathbf{A}/\theta}(a_1/\theta,\ldots,a_n/\theta) = f^{\mathbf{A}}(a_1,\ldots,a_n)/\theta,$$

where $a_1, \ldots, a_n \in A$ and f is an n-ary function symbol in \mathscr{F} .

Note that quotient algebras of A are of the same type as A.

Group Congruences and Normal Subgroups

Let G be a group.

Then one can establish the following connection between congruences on ${\bf G}$ and normal subgroups of ${\bf G}$:

- (a) If $\theta \in \text{Con}\mathbf{G}$, then $1/\theta$ is the universe of a normal subgroup of \mathbf{G} ; For $a, b \in G$, we have $\langle a, b \rangle \in \theta$ iff $\langle a \cdot b^{-1}, 1 \rangle \in \theta$ iff $a \cdot b^{-1} \in 1/\theta$.
- (b) If N is a normal subgroup of G, then the binary relation defined on G by

$$\langle a, b \rangle \in \theta$$
 iff $a \cdot b^{-1} \in N$

is a congruence on **G**, with $1/\theta = N$.

Thus, the mapping $\theta \mapsto 1/\theta$ is an order-preserving bijection between congruences on **G** and normal subgroups of **G**.

Ring Congruences and Ideals

• Let R be a ring.

The following establishes a similar connection between the congruences on R and ideals of R:

(a) If θ ∈ Con**R**, then 0/θ is an ideal of **R**; For a, b ∈ R, we have ⟨a, b⟩ ∈ θ iff ⟨a - b, 0⟩ ∈ θ iff a - b ∈ 0/θ.
(b) If I is an ideal of **R**, then the binary relation θ defined on R by

$$\langle a, b \rangle \in \theta$$
 iff $a - b \in I$

is a congruence on **R**, with $0/\theta = I$.

Thus the mapping $\theta \mapsto 0/\theta$ is an order-preserving bijection between congruences on **R** and ideals of **R**.

Lattice Congruences

- In the preceding two examples any congruence on the algebra (group or ring) was determined by a single equivalence class of the congruence $(1/\theta \text{ and } 0/\theta, \text{ respectively})$.
- The next example shows this need not be the case:
 - Let **L** be a lattice which is a chain, and let θ be an equivalence relation on *L*, such that the equivalence classes of θ are convex subsets of *L* (i.e., if $a \theta b$ and $a \le c \le b$, then $a \theta c$.) Then θ is a congruence on **L**.

Lattice Structure of ConA

Theorem

 $(ConA, \subseteq)$ is a complete sublattice of $(Eq(A), \subseteq)$, the lattice of equivalence relations on A.

 ConA is closed under arbitrary intersections. For arbitrary joins in ConA suppose θ_i ∈ ConA for i ∈ I. Then, if f is a fundamental n-ary operation of A and

$$\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle \in \bigvee_{i \in I} \theta_i,$$

where \lor is the join of Eq(A), then, there exist $i_0, \ldots, i_k \in I$, for some $k \in \omega$, such that

$$\langle a_j, b_j \rangle \in \theta_{i_0} \circ \theta_{i_1} \circ \cdots \circ \theta_{i_k}, \quad 1 \le j \le n.$$

That is, for all j = 1, ..., n, there exist $c_{j0}, ..., c_{j(k-1)} \in A$, such that

$$a_j \ \theta_{i_0} \ c_{j0} \ \theta_{i_1} \ \cdots \ \theta_{i_{k-1}} \ c_{j(k-1)} \ \theta_{i_k} \ b_j.$$

Lattice Structure of ConA (Cont'd)

• For all
$$j = 1, ..., n$$
, there exist $c_{j0}, ..., c_{j(k-1)} \in A$, such that
 $a_j \ \theta_{i_0} \ c_{j0} \ \theta_{i_1} \ \cdots \ \theta_{i_{k-1}} \ c_{j(k-1)} \ \theta_{i_k} \ b_j$.
Since $\theta_i \in \text{Con}\mathbf{A}$, for all $i \in I$, we get
 $f(a_1, ..., a_n) \ \theta_{i_0} \ f(c_{10}, ..., c_{n0}) \ \theta_{i_1} \ \cdots \ \theta_{i_{k-1}} \ f(c_{1(k-1)}, ..., c_{n(k-1)}) \ \theta_{i_k} \ f(b_1, ..., b_n)$.

Hence

$$\langle f(a_1,\ldots,a_n), f(b_1,\ldots,b_n) \rangle \in \theta_{i_0} \circ \theta_{i_1} \circ \cdots \circ \theta_{i_k} \subseteq \bigvee_{i \in I} \theta_i.$$

Therefore, $\bigvee_{i \in I} \theta_i$ is a congruence relation on **A**.

Definition

The **congruence lattice of A** denoted by **ConA**, is the lattice whose universe is Con**A**, and meets and joins are calculated the same as when working with equivalence relations.

George Voutsadakis (LSSU)

Congruence Lattices of Algebras

Theorem

For **A** an algebra, there is an algebraic closure operator Θ on $A \times A$, such that the closed subsets of $A \times A$ are precisely the congruences on **A**. Hence **ConA** is an algebraic lattice.

- We define an algebraic structure on $A \times A$. For each *n*-ary function symbol *f* in the type of **A**, define a corresponding *n*-ary function *f* on $A \times A$ by $f(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) = \langle f^{\mathbf{A}}(a_1, \dots, a_n), f^{\mathbf{A}}(b_1, \dots, b_n) \rangle$. Then we add:
 - the nullary operations $\langle a, a \rangle$, for each $a \in A$;
 - a unary operation s, defined by $s(\langle a, b \rangle) = \langle b, a \rangle$;

• a binary operation t defined by $t(\langle a, b \rangle, \langle c, d \rangle) = \begin{cases} \langle a, d \rangle, & \text{if } b = c \\ \langle a, b \rangle, & \text{otherwise} \end{cases}$.

Now we can verify that B is a subuniverse of this new algebra iff B is a congruence on A. Let Θ be the Sg closure operator on $A \times A$ for the algebra we have just described. Thus, **ConA** is an algebraic lattice.

Compact Elements of ConA and Congruence Generation

• The compact members of **ConA** are the finitely generated members $\Theta(\langle a_1, b_1 \rangle, ..., \langle a_n, b_n \rangle)$ of **ConA**.

Definition

For **A** an algebra and $a_1, \ldots, a_n \in A$, let $\Theta(a_1, \ldots, a_n)$ denote the congruence generated by $\{\langle a_i, a_j \rangle : 1 \le i, j \le n\}$, i.e., the smallest congruence such that a_1, \ldots, a_n are in the same equivalence class. The congruence $\Theta(a_1, a_2)$ is called a **principal congruence**. For arbitrary $X \subseteq A$, let $\Theta(X)$ be defined to mean the congruence generated by $X \times X$.

The Case of Groups and Rings

(1) If **G** is a group and $a, b, c, d \in G$, then $\langle a, b \rangle \in \Theta(c, d)$ iff ab^{-1} is a product of conjugates of cd^{-1} and conjugates of dc^{-1} .

This follows from the fact that the smallest normal subgroup of **G** containing a given element u has as its universe the set of all products of conjugates of u and conjugates of u^{-1} .

(2) If R is a ring with unity and a, b, c, d ∈ R, then ⟨a, b⟩ ∈ Θ(c, d) iff a - b is of the form ∑_{1≤i≤n} r_i(c - d)s_i, where r_i, s_i ∈ R.

This follows from the fact that the smallest ideal of **R** containing a given element *e* of *R* is precisely the set $\{\sum_{1 \le i \le n} r_i es_i : r_i, s_i \in R, n \ge 1\}$.

Properties of Congruences

Theorem

Let **A** be an algebra, and suppose $a_1, b_1, \ldots, a_n, b_n \in A$ and $\theta \in ConA$. Then:

(a)
$$\Theta(a_1, b_1) = \Theta(b_1, a_1);$$

(b)
$$\Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) = \Theta(a_1, b_1) \vee \dots \vee \Theta(a_n, b_n);$$

(c)
$$\Theta(a_1,\ldots,a_n) = \Theta(a_1,a_2) \vee \Theta(a_2,a_3) \vee \cdots \vee \Theta(a_{n-1},a_n);$$

(d)
$$\theta = \bigcup \{ \Theta(a, b) : \langle a, b \rangle \in \theta \} = \bigvee \{ \Theta(a, b) : \langle a, b \rangle \in \theta \};$$

(e)
$$\theta = \bigcup \{ \Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) : \langle a_i, b_i \rangle \in \theta, n \ge 1 \}.$$

(a) $\langle b_1, a_1 \rangle \in \Theta(a_1, b_1)$. Hence, $\Theta(b_1, a_1) \subseteq \Theta(a_1, b_1)$. By symmetry, $\Theta(a_1, b_1) = \Theta(b_1, a_1)$.

(b) For $1 \le i \le n$, $\langle a_i, b_i \rangle \in \Theta(\langle a_1, b_1 \rangle, ..., \langle a_n, b_n \rangle)$. Hence $\Theta(a_i, b_i) \subseteq \Theta(\langle a_1, b_1 \rangle, ..., \langle a_n, b_n \rangle)$, whence $\Theta(a_1, b_1) \lor \cdots \lor \Theta(a_n, b_n) \subseteq \Theta(\langle a_1, b_1 \rangle, ..., \langle a_n, b_n \rangle)$.

Properties of Congruences (Cont'd)

On the other hand, for $1 \le i \le n$. $\langle a_i, b_i \rangle \in \Theta(a_i, b_i) \subseteq \Theta(a_1, b_1) \lor \cdots \lor \Theta(a_n, b_n)$. So $\{\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle\} \subseteq \Theta(a_1, b_1) \vee \dots \vee \Theta(a_n, b_n)$. Hence, $\Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) \subseteq \Theta(a_1, b_1) \lor \dots \lor \Theta(a_n, b_n)$. So $\Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) = \Theta(a_1, b_1) \vee \dots \vee \Theta(a_n, b_n).$ (c) For $1 \le i \le n-1$, $\langle a_i, a_{i+1} \rangle \in \Theta(a_1, \dots, a_n)$. So $\Theta(a_i, a_{i+1}) \subseteq \Theta(a_1, \dots, a_n)$. Hence, $\Theta(a_1, a_2) \lor \cdots \lor \Theta(a_{n-1}, a_n) \subseteq \Theta(a_1, \dots, a_n)$. Conversely, for $1 \le i < j \le n$, $\langle a_i, a_i \rangle \in \Theta(a_i, a_{i+1}) \circ \cdots \circ \Theta(a_{i-1}, a_i)$. So, $\langle a_i, a_i \rangle \in \Theta(a_i, a_{i+1}) \lor \cdots \lor \Theta(a_{i-1}, a_i)$. Hence, $\langle a_i, a_i \rangle \in \Theta(a_1, a_2) \lor \cdots \lor \Theta(a_{n-1}, a_n)$. By Part (a), $\Theta(a_1,\ldots,a_n) \subseteq \Theta(a_1,a_2) \lor \cdots \lor \Theta(a_{n-1},a_n)$. Therefore, $\Theta(a_1,\ldots,a_n) = \Theta(a_1,a_2) \vee \cdots \vee \Theta(a_{n-1},a_n).$

Properties of Congruences (Conclusion)

$$\begin{array}{l} \text{for } \langle a, b \rangle \in \theta, \ \langle a, b \rangle \in \Theta(a, b) \subseteq \theta. \text{ So} \\ \theta \subseteq \bigcup \{ \Theta(a, b) : \langle a, b \rangle \in \theta \} \subseteq \bigvee \{ \Theta(a, b) : \langle a, b \rangle \in \theta \} \subseteq \theta. \text{ Hence} \\ \theta = \bigcup \{ \Theta(a, b) : \langle a, b \rangle \in \theta \} = \bigvee \{ \Theta(a, b) : \langle a, b \rangle \in \theta \}. \end{array}$$

$$\begin{array}{l} \text{(e) For } \langle a, b \rangle \in \theta, \\ \langle a, b \rangle \in \Theta(a, b) \subseteq \bigcup \{ \Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) : \langle a_i, b_i \rangle \in \theta, n \ge 1 \}. \text{ So} \\ \theta \subseteq \bigcup \{ \Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) : \langle a_i, b_i \rangle \in \theta, n \ge 1 \}. \text{ So} \\ \theta \subseteq \bigcup \{ \Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) : \langle a_i, b_i \rangle \in \theta, n \ge 1 \}. \end{array}$$

$$\begin{array}{l} \text{Conversely, if } n \ge 1 \text{ and } \langle a_i, b_i \rangle \in \theta, \text{ for all } 1 \le i \le n, \text{ then} \\ \Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) \subseteq \theta. \text{ Hence,} \\ \bigcup \{ \Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) : \langle a_i, b_i \rangle \in \theta, n \ge 1 \} \subseteq \theta. \end{array}$$

$$\begin{array}{l} \text{Therefore, } \theta = \bigcup \{ \Theta(\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle) : \langle a_i, b_n \rangle) : \langle a_i, b_i \rangle \in \theta, n \ge 1 \}. \end{array}$$

On Properties of Congruence Lattices

• In 1963 Grätzer and Schmidt proved:

For every algebraic lattice L, there is an algebra A, such that $L \cong ConA$.

- For particular classes of algebras one might find that some additional properties hold for the corresponding classes of congruence lattices:
 - The congruence lattices of lattices satisfy the distributive law;
 - The congruence lattices of groups (or rings) satisfy the modular law.

Congruence-Distributivity and Congruence-Permutability

Definition

An algebra **A** is **congruence-distributive** (congruence-modular) if **ConA** is a distributive (modular) lattice. If $\theta_1, \theta_2 \in \text{ConA}$ and

$$\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1,$$

then we say θ_1 and θ_2 are **permutable**, or θ_1 and θ_2 **permute**. **A** is **congruence-permutable** if every pair of congruences on **A** permutes. A class *K* of algebras is **congruence-distributive**, **congruence-modular**, respectively **congruence-permutable** iff every algebra in *K* has the desired property.

Characterization of Congruence Permutability

Theorem

Let **A** be an algebra and suppose $\theta_1, \theta_2 \in \text{Con}\mathbf{A}$. Then the following are equivalent:

- (a) $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$;
- (b) $\theta_1 \vee \theta_2 = \theta_1 \circ \theta_2$;
- (c) $\theta_1 \circ \theta_2 \subseteq \theta_2 \circ \theta_1$.

 $(a) \Rightarrow (b)$: Recall that

$$\theta_1 \lor \theta_2 = \theta_1 \cup (\theta_1 \circ \theta_2) \cup (\theta_1 \circ \theta_2 \circ \theta_1) \cup \cdots$$

By hypothesis, since, for any equivalence relation θ , we have $\theta \circ \theta = \theta$, we get $\theta_1 \lor \theta_2 = \theta_1 \cup (\theta_1 \circ \theta_2) = \theta_1 \circ \theta_2$.

Characterization of Congruence Permutability (Cont'd)

(c)⇒(a): Suppose $\theta_1 \circ \theta_2 \subseteq \theta_2 \circ \theta_1$. Apply the relational inverse operation $^{\vee}$ to get $(\theta_1 \circ \theta_2)^{\vee} \subseteq (\theta_2 \circ \theta_1)^{\vee}$. Hence, we get $\theta_2^{\vee} \circ \theta_1^{\vee} \subseteq \theta_1^{\vee} \circ \theta_2^{\vee}$. But the inverse of an equivalence relation is just that equivalence relation, whence $\theta_2 \circ \theta_1 \subseteq \theta_1 \circ \theta_2$. We conclude that $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

(b) \Rightarrow (c): We have $\theta_2 \circ \theta_1 \subseteq \theta_1 \lor \theta_2$. Thus, from (b) we deduce $\theta_2 \circ \theta_1 \subseteq \theta_1 \circ \theta_2$. Then, from (c) \Rightarrow (a) it follows that $\theta_2 \circ \theta_1 = \theta_1 \circ \theta_2$. Hence (c) holds.

Congruence-Permutability Implies Congruence-Modularity

Theorem (Birkhoff)

If A is congruence-permutable, then A is congruence-modular.

• Let $\theta_1, \theta_2, \theta_3 \in \text{Con} \mathbf{A}$, with $\theta_1 \subseteq \theta_2$. We want to show that

 $\theta_2 \cap (\theta_1 \vee \theta_3) \subseteq \theta_1 \vee (\theta_2 \cap \theta_3).$

Suppose $\langle a, b \rangle \in \theta_2 \cap (\theta_1 \vee \theta_3)$. Then, since $\theta_1 \vee \theta_3 = \theta_1 \circ \theta_3$, there is a c, such that $a \ \theta_1 \ c \ \theta_3 \ b$. By symmetry, $\langle c, a \rangle \in \theta_1$. Hence $\langle c, a \rangle \in \theta_2$. Then, by transitivity, $\langle c, b \rangle \in \theta_2$. Thus, $\langle c, b \rangle \in \theta_2 \cap \theta_3$. So we get $a \ \theta_1 \ c \ (\theta_2 \cap \theta_3) \ b$. Therefore,

$$\langle a, b \rangle \in \theta_1 \circ (\theta_2 \cap \theta_3) \subseteq \theta_1 \lor (\theta_2 \cap \theta_3).$$

Subsection 5

Homomorphisms and the Homomorphism Theorems

Homomorphisms

Definition

Suppose **A** and **B** are two algebras of the same type \mathscr{F} . A mapping $\alpha: A \to B$ is called a **homomorphism** from **A** to **B** if

$$\alpha(f^{\mathbf{A}}(a_1,\ldots,a_n))=f^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)),$$

for each *n*-ary *f* in \mathscr{F} and each sequence a_1, \ldots, a_n from *A*.

If, in addition, the mapping α is onto, then α is called an **epimorphism** and **B** is said to be a **homomorphic image** of **A**. In this terminology an **isomorphism** is a homomorphism which is one-to-one and onto.

In case A = B, a homomorphism is also called an **endomorphism** and an isomorphism is referred to as an **automorphism**.

The phrase " α : $A \rightarrow B$ is a homomorphism" is often used to express the fact that α is a homomorphism from A to B.

Example: Lattice, group, ring, module, and monoid homomorphisms are all special cases of homomorphisms as defined above.

George Voutsadakis (LSSU)

Universal Algebra

Equality of Homomorphisms

Theorem

Let **A** be an algebra generated by a set X. If $\alpha : \mathbf{A} \to \mathbf{B}$ and $\beta : \mathbf{A} \to \mathbf{B}$ are two homomorphisms which agree on X (i.e., $\alpha(a) = \beta(a)$, for $a \in X$), then $\alpha = \beta$.

• Recall the definition of E:

 $E(X) = X \cup \{f(a_1, \dots, a_n) : f \text{ is a fundamental } n \text{-ary operation} \\ \text{on } A, n \in \omega, \text{ and } a_1, \dots, a_n \in X\}.$

Note that if α and β agree on X, then α and β agree on E(X): If f is an *n*-ary function symbol and $a_1, \ldots, a_n \in X$, then

$$\begin{aligned} \alpha(f^{\mathbf{A}}(a_1,\ldots,a_n)) &= f^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)) \\ &= f^{\mathbf{B}}(\beta(a_1),\ldots,\beta(a_n)) \\ &= \beta(f^{\mathbf{A}}(a_1,\ldots,a_n)). \end{aligned}$$

Thus, by induction, if α and β agree on X, then they agree on $E^n(X)$, for $n < \omega$. Hence, they agree on Sg(X).

Images and Inverse Images of Subuniverses

Theorem

Let $\alpha : \mathbf{A} \to \mathbf{B}$ be a homomorphism. Then the image of a subuniverse of \mathbf{A} under α is a subuniverse of \mathbf{B} , and the inverse image of a subuniverse of \mathbf{B} is a subuniverse of \mathbf{A} .

Let S be a subuniverse of A. Let f be an n-ary member of F and let a₁,..., a_n ∈ S. Then f^B(α(a₁),...,α(a_n)) = α(f^A(a₁,...,a_n)) ∈ α(S). So α(S) is a subuniverse of B.
If S is a subuniverse of B and α(a₁),...,α(a_n) ∈ S, then, by the preceding equation, α(f^A(a₁,...,a_n)) ∈ S. So f^A(a₁,...,a_n) is in α⁻¹(S). Thus, α⁻¹(S) is a subuniverse of A.

Definition

If $\alpha : \mathbf{A} \to \mathbf{B}$ is a homomorphism and $\mathbf{C} \leq \mathbf{A}$, $\mathbf{D} \leq \mathbf{B}$, let $\alpha(\mathbf{C})$ be the subalgebra of \mathbf{B} , with universe $\alpha(C)$, and let $\alpha^{-1}(\mathbf{D})$ be the subalgebra of \mathbf{A} , with universe $\alpha^{-1}(D)$, provided $\alpha^{-1}(D) \neq \emptyset$.

Composition of Homomorphisms

Theorem

Suppose $\alpha : \mathbf{A} \to \mathbf{B}$ and $\beta : \mathbf{B} \to \mathbf{C}$ are homomorphisms. Then the composition $\beta \circ \alpha$ is a homomorphism from **A** to **C**.

• For f an n-ary function symbol and $a_1, \ldots, a_n \in A$, we have

$$\begin{aligned} (\beta \circ \alpha)(f^{\mathbf{A}}(a_1,\ldots,a_n)) &= \beta(\alpha(f^{\mathbf{A}}(a_1,\ldots,a_n))) \\ &= \beta(f^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n))) \\ &= f^{\mathbf{C}}(\beta(\alpha(a_1)),\ldots,\beta(\alpha(a_n))) \\ &= f^{\mathbf{C}}((\beta \circ \alpha)(a_1),\ldots,(\beta \circ \alpha)(a_n)). \end{aligned}$$

Homomorphisms and Generation

Theorem

If $\alpha : \mathbf{A} \to \mathbf{B}$ is a homomorphism and X is a subset of \mathbf{A} , then $\alpha(\operatorname{Sg}(X)) = \operatorname{Sg}(\alpha(X)).$

• We have, for all $Y \subseteq A$,

$$\begin{aligned} \alpha(E(Y)) &= \alpha(Y \cup \{f^{\mathbf{A}}(a_1, \dots, a_n) : f \in \mathcal{F}_n, n \in \omega, a_1, \dots, a_n \in Y\}) \\ &= \alpha(Y) \cup \{\alpha(f^{\mathbf{A}}(a_1, \dots, a_n)) : f \in \mathcal{F}_n, n \in \omega, a_1, \dots, a_n \in Y\} \\ &= \alpha(Y) \cup \{f^{\mathbf{B}}(\alpha(a_1), \dots, \alpha(a_n)) : f \in \mathcal{F}_n, n \in \omega, a_1, \dots, a_n \in Y\} \\ &= \alpha(Y) \cup \{f^{\mathbf{B}}(b_1, \dots, b_n) : f \in \mathcal{F}_n, n \in \omega, b_1, \dots, b_n \in \alpha(Y)\} \\ &= E(\alpha(Y)). \end{aligned}$$

Thus, by induction on n, $\alpha(E^n(X)) = E^n(\alpha(X))$, for $n \ge 1$. Hence

$$\begin{aligned} \alpha(\operatorname{Sg}(X)) &= \alpha(X \cup E(X) \cup E^2(X) \cup \cdots) \\ &= \alpha(X) \cup \alpha(E(X)) \cup \alpha(E^2(X)) \cup \cdots \\ &= \alpha(X) \cup E(\alpha(X)) \cup E^2(\alpha(X)) \cup \cdots = \operatorname{Sg}(\alpha(X)). \end{aligned}$$

The Kernel of a Homomorphism

Definition

Let $\alpha : \mathbf{A} \to \mathbf{B}$ be a homomorphism. Then the kernel of α , written ker(α), and sometimes just ker α , is defined by

$$\ker(\alpha) = \{ \langle a, b \rangle \in A^2 : \alpha(a) = \alpha(b) \}.$$

Theorem

Let $\alpha : \mathbf{A} \to \mathbf{B}$ be a homomorphism. Then ker(α) is a congruence on \mathbf{A} .

• If $\langle a_i, b_i \rangle \in \ker(\alpha)$, for $1 \le i \le n$ and f is *n*-ary in \mathscr{F} , then

$$\begin{aligned} \alpha(f^{\mathbf{A}}(a_1,\ldots,a_n)) &= f^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)) \\ &= f^{\mathbf{B}}(\alpha(b_1),\ldots,\alpha(b_n)) \\ &= \alpha(f^{\mathbf{A}}(b_1,\ldots,b_n)). \end{aligned}$$

Hence $\langle f^{\mathbf{A}}(a_1,...,a_n), f^{\mathbf{A}}(b_1,...,b_n) \rangle \in \ker(\alpha)$. Clearly $\ker(\alpha)$ is an equivalence relation. Thus, $\ker(\alpha)$ is actually a congruence on \mathbf{A} .

The Natural Map

Definition

Let **A** be an algebra and let $\theta \in \text{Con}\mathbf{A}$. The **natural map** $v_{\theta} : A \to A/\theta$ is defined by

$$v_{\theta}(a) = a/\theta.$$

When there is no ambiguity we write simply v instead of v_{θ} .

• The figure shows how one might visualize the natural map:

George Voutsadakis (LSSU)

The Natural Homomorphism

Theorem

The natural map from an algebra to a quotient of the algebra is an onto homomorphism.

• Let $\theta \in \text{Con} \mathbf{A}$ and let $v : A \to A/\theta$ be the natural map. Then, for f an *n*-ary function symbol and $a_1, \ldots, a_n \in A$, we have

$$v(f^{\mathbf{A}}(a_1,\ldots,a_n)) = f^{\mathbf{A}}(a_1,\ldots,a_n)/\theta$$

= $f^{\mathbf{A}/\theta}(a_1/\theta,\ldots,a_n/\theta)$
= $f^{\mathbf{A}/\theta}(v(a_1),\ldots,v(a_n))$

So v is a homomorphism. Clearly v is onto.

Definition

The **natural homomorphism** from an algebra to a quotient of the algebra is given by the natural map.

George Voutsadakis (LSSU)

The Homomorphism Theorem

Theorem (Homomorphism Theorem)

Suppose $\alpha : \mathbf{A} \to \mathbf{B}$ is a homomorphism onto **B**. Then there is an isomorphism β from $\mathbf{A}/\ker(\alpha)$ to **B** defined by $\alpha = \beta \circ v$, where v is the natural homomorphism from **A** to $\mathbf{A}/\ker(\alpha)$.

- First note that if α = β ∘ ν, then we must have β(a/θ) = α(a). The second of these equalities does indeed define a function β and β satisfies α = β ∘ ν. We verify that β is a bijection:
 - If $b \in B$, exists $a \in A$, such that $b = \alpha(a)$. Then $\beta(a/\ker \alpha) = \alpha(a) = b$;
 - Suppose $a, a' \in A$. Then $\beta(a/\ker\alpha) = \beta(a'/\ker\alpha)$ iff $\alpha(a) = \alpha(a')$ iff $\langle a, a' \rangle \in \ker\alpha$ iff $a/\ker\alpha = a'/\ker\alpha$.

The Homomorphism Theorem (Cont'd)

• To show that β is actually an isomorphism, suppose f is an *n*-ary function symbol and $a_1, \ldots, a_n \in A$. Then

$$\beta(f^{\mathbf{A}/\theta}(a_1/\theta,\ldots,a_n/\theta)) = \beta(f^{\mathbf{A}}(a_1,\ldots,a_n)/\theta)$$

= $\alpha(f^{\mathbf{A}}(a_1,\ldots,a_n))$
= $f^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n))$
= $f^{\mathbf{B}}(\beta(a_1/\theta),\ldots,\beta(a_n/\theta)).$

• An algebra is a homomorphic image of an algebra **A** iff it is isomorphic to a quotient of the algebra **A**.

Thus, the "external" problem of finding all homomorphic images of **A** reduces to the "internal" problem of finding all congruences on **A**.

• The Homomorphism Theorem is also called "The First Isomorphism Theorem".

Quotient of a Congruence by a Smaller Congruence

Definition

Suppose **A** is an algebra and $\phi, \theta \in \text{Con}\mathbf{A}$, with $\theta \subseteq \phi$. Then, let

$$\phi/\theta = \{ \langle a/\theta, b/\theta \rangle \in (A/\theta)^2 : \langle a, b \rangle \in \phi \}.$$

Lemma

If $\phi, \theta \in \text{Con} \mathbf{A}$ and $\theta \subseteq \phi$, then ϕ/θ is a congruence on \mathbf{A}/θ .

• Let f be an n-ary function symbol and suppose $\langle a_i/\theta, b_i/\theta \rangle \in \phi/\theta$, for $1 \le i \le n$. Then $\langle a_i, b_i \rangle \in \phi$. So $\langle f^{\mathbf{A}}(a_1, \dots, a_n), f^{\mathbf{A}}(b_1, \dots, b_n) \rangle \in \phi$, and, thus, $\langle f^{\mathbf{A}}(a_1, \dots, a_n)/\theta, f^{\mathbf{A}}(b_1, \dots, b_n)/\theta \rangle \in \phi/\theta$. Therefore, $\langle f^{\mathbf{A}/\theta}(a_1/\theta, \dots, a_n/\theta), f^{\mathbf{A}/\theta}(b_1/\theta, \dots, b_n/\theta) \rangle \in \phi/\theta$.

Second Isomorphism Theorem

Theorem (Second Isomorphism Theorem)

If $\phi, \theta \in \text{Con} \mathbf{A}$ and $\theta \subseteq \phi$, then the map $\alpha : (A/\theta)/(\phi/\theta) \to A/\phi$, defined by

$$\alpha((a/\theta)/(\phi/\theta)) = a/\phi$$

is an isomorphism from $(\mathbf{A}/\theta)/(\phi/\theta)$ to \mathbf{A}/ϕ .

Let a, b ∈ A. From (a/θ)/(φ/θ) = (b/θ)/(φ/θ) iff a/φ = b/φ, it follows that α is a well-defined bijection.

Second Isomorphism Theorem (Cont'd)

• For f an *n*-ary function symbol and $a_1, \ldots, a_n \in A$, we have

$$\begin{aligned} \alpha(f^{(\mathbf{A}/\theta)/(\phi/\theta)}((a_1/\theta)/(\phi/\theta),\dots,(a_n/\theta)/(\phi/\theta))) \\ &= \alpha(f^{\mathbf{A}/\theta}(a_1/\theta,\dots,a_n/\theta)/(\phi/\theta)) \\ &= \alpha((f^{\mathbf{A}}(a_1,\dots,a_n)/\theta)/(\phi/\theta)) \\ &= f^{\mathbf{A}}(a_1,\dots,a_n)/\phi \\ &= f^{\mathbf{A}/\phi}(a_1/\phi,\dots,a_n/\phi) \\ &= f^{\mathbf{A}/\phi}(\alpha((a_1/\theta)/(\phi/\theta)),\dots,\alpha((a_n/\theta)/(\phi/\theta))) \end{aligned}$$

So α is an isomorphism.

Restriction of a Congruence to a Subset

Definition

Let **A** be an algebra. Suppose *B* is a subset of *A* and θ is a congruence on **A**. Let

$$\mathsf{B}^{\theta} = \{ a \in A : B \cap a/\theta \neq \emptyset \}.$$

Let \mathbf{B}^{θ} be the subalgebra of \mathbf{A} generated by B^{θ} . Also define $\theta \upharpoonright_B$ to be $\theta \cap B^2$, the **restriction of** θ to B.

The dashed-line subdivisions of A are the equivalence classes of θ .

Lemma on the Restriction of a Congruence to a Subset

Lemma

If **B** is a subalgebra of **A** and $\theta \in ConA$, then

- (a) The universe of \mathbf{B}^{θ} is B^{θ} .
- (b) $\theta \upharpoonright_B$ is a congruence on **B**.
- (a) Suppose f is an n-ary function symbol. Let a₁,..., a_n ∈ B^θ. Then one can find b₁,..., b_n ∈ B, such that ⟨a_i, b_i⟩ ∈ θ, 1 ≤ i ≤ n. Hence, ⟨f^A(a₁,..., a_n), f^A(b₁,..., b_n)⟩ ∈ θ, so f^A(a₁,..., a_n) ∈ B^θ. Thus, B^θ is a subuniverse of A.
- (b) To verify that $\theta \upharpoonright_B$ is a congruence on **B**, let f be an n-ary function symbol in \mathscr{F} , $a_1, \ldots, a_n, b_1, \ldots, b_n \in B$, such that $\langle a_i, b_i \rangle \in \theta$, $1 \le i \le n$. Then

$$f^{\mathbf{B}}(a_1,\ldots,a_n)=f^{\mathbf{A}}(a_1,\ldots,a_n) \ \theta \ f^{\mathbf{A}}(b_1,\ldots,b_n)=f^{\mathbf{B}}(b_1,\ldots,b_n).$$

Hence, $\langle f^{\mathbf{B}}(a_1,\ldots,a_n), f^{\mathbf{B}}(b_1,\ldots,b_n) \rangle \in \theta \upharpoonright_B$.

The Third Isomorphism Theorem

• We can verify that the map α which is defined by

 $\alpha(b/\theta\!\upharpoonright_B) = b/\theta\!\upharpoonright_{B^\theta}$

gives the desired isomorphism.

The Correspondence Theorem

If L is a lattice and a, b ∈ L, with a ≤ b, then the interval [a, b] is a subuniverse of L.

Definition

For [a, b] a closed interval of a lattice L, where $a \le b$, let [a, b] denote the corresponding sublattice of L.

Theorem (Correspondence Theorem)

Let **A** be an algebra and let $\theta \in \text{Con}\mathbf{A}$. Then the mapping α defined on $[\theta, \nabla_A]$ by

 $\alpha(\phi) = \phi/\theta$

is a lattice isomorphism from $[\theta, \nabla_A]$ to **ConA**/ θ , where $[\theta, \nabla_A]$ is a sublattice of **ConA**.

Proof of the Correspondence Theorem

• To see that α is one-to-one, let $\phi, \psi \in [\theta, \nabla_A]$, with $\phi \neq \psi$. Then, without loss of generality, we can assume that there are elements $a, b \in A$, with $\langle a, b \rangle \in \phi - \psi$. Thus, $\langle a/\theta, b/\theta \rangle \in (\phi/\theta) - (\psi/\theta)$. So $\alpha(\phi) \neq \alpha(\psi)$.

To show that α is onto, let $\psi \in \text{Con} \mathbf{A}/\theta$. Define ϕ to be ker $(v_{\psi}v_{\theta})$. Then for $a, b \in A$,

$$\langle a/\theta, b/\theta \rangle \in \phi/\theta$$
 iff $\langle a, b \rangle \in \phi$ iff $\langle a/\theta, b/\theta \rangle \in \psi$.

So $\phi/\theta = \psi$.

Finally, we will show that α is an isomorphism. If $\phi, \psi \in [\theta, \nabla_A]$, then it is clear that

$$\phi \subseteq \psi$$
 iff $\phi/\theta \subseteq \psi/\theta$ iff $\alpha(\phi) \subseteq \alpha(\psi)$.

Subsection 6

Direct Products and Factor Congruences

Direct Products

 Subalgebras and quotient algebras, do not give a means of creating algebras of larger cardinality than what we start with, or of combining several algebras into one.

Definition

Let A_1 and A_2 be two algebras of the same type \mathscr{F} . Define the (direct) product $A_1 \times A_2$ to be the algebra whose universe is the set $A_1 \times A_2$ and such that for $f \in \mathscr{F}_n$ and $a_i \in A_1, a'_i \in A_2, 1 \le i \le n$,

$$f^{\mathbf{A}_1 \times \mathbf{A}_2}(\langle a_1, a_1' \rangle, \dots, \langle a_n, a_n' \rangle) = \langle f^{\mathbf{A}_1}(a_1, \dots, a_n), f^{\mathbf{A}_2}(a_1', \dots, a_n') \rangle.$$

In general neither A₁ nor A₂ is embeddable in A₁ × A₂; In special cases, e.g., groups, this is possible because there is always a trivial subalgebra.

Definition

The mapping $\pi_i : A_1 \times A_2 \rightarrow A_i$, $i \in \{1, 2\}$, defined by $\pi_i(\langle a_1, a_2 \rangle) = a_i$, is called the **projection map on the** *i*-th **coordinate** of $A_1 \times A_2$.

George Voutsadakis (LSSU)

Properties of Projection Maps

Theorem

For i = 1 or 2, the mapping $\pi_i : A_1 \times A_2 \rightarrow A_i$ is a surjective homomorphism from $\mathbf{A} = \mathbf{A}_1 \times \mathbf{A}_2$ to \mathbf{A}_i . Furthermore, in $\mathbf{ConA}_1 \times \mathbf{A}_2$ we have:

- (a) ker $\pi_1 \times \text{ker}\pi_2 = \Delta$;
- (b) ker π_1 and ker π_2 permute;
- (c) ker $\pi_1 \vee \text{ker}\pi_2 = \nabla$.
 - Clearly π_i is surjective. If $f \in \mathscr{F}_n$ and $a_i \in A_1$, $a'_i \in A_2$, $1 \le i \le n$, then

$$\pi_1(f^{\mathbf{A}}(\langle a_1, a_1' \rangle, \dots, \langle a_n, a_n' \rangle) = \pi_1(\langle f^{\mathbf{A}_1}(a_1, \dots, a_n), f^{\mathbf{A}_2}(a_1', \dots, a_n') \rangle) \\ = f^{\mathbf{A}_1}(a_1, \dots, a_n) \\ = f^{\mathbf{A}_1}(\pi_1(\langle a_1, a_1' \rangle), \dots, \pi_1(\langle a_n, a_n' \rangle)).$$

So π_1 is a homomorphism. Similarly, π_2 is a homomorphism.

Properties of Projection Maps (Cont'd)

We have

$$\langle \langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle \rangle \in \ker \pi_i \quad \text{iff} \quad \pi_i (\langle a_1, a_2 \rangle) = \pi_i (\langle b_1, b_2 \rangle)$$

$$\text{iff} \quad a_i = b_i.$$

Thus, $\ker \pi_1 \cap \ker \pi_2 = \Delta$. Also, if $\langle a_1, a_2 \rangle$, $\langle b_1, b_2 \rangle$ are any two elements of $A_1 \times A_2$, then $\langle a_1, a_2 \rangle \ker \pi_1 \langle a_1, b_2 \rangle \ker \pi_2 \langle b_1, b_2 \rangle$.

So $\nabla = \ker \pi_1 \circ \ker \pi_2$. But then $\ker \pi_1$ and $\ker \pi_2$ permute, and their join is ∇ .

Factor Congruences

Definition

A congruence θ on **A** is a **factor congruence** if there is a congruence θ^* on **A**, such that

 $\theta \cap \theta^* = \Delta, \quad \theta \lor \theta^* = \nabla, \quad \theta \text{ permutes with } \theta^*.$

The pair θ , θ^* is called a **pair of factor congruences** on **A**.

Theorem

If θ, θ^* is a pair of factor congruences on **A**, then $\mathbf{A} \cong \mathbf{A}/\theta \times \mathbf{A}/\theta^*$ under the map $\alpha(a) = \langle a/\theta, a/\theta^* \rangle$.

If a, b ∈ A, and α(a) = α(b), then a/θ = b/θ and a/θ* = b/θ*, so (a, b) ∈ θ and (a, b) ∈ θ*, whence a = b. Therefore, α is injective. Next, given a, b ∈ A, there is a c ∈ A, with a θ c θ* b. Hence, α(c) = (c/θ, c/θ*) = (a/θ, b/θ*), whence α is onto.

Factor Congruences (Cont'd)

• Finally, for
$$f \in \mathscr{F}_n$$
 and $a_1, \ldots, a_n \in A$,

$$\begin{aligned} \alpha(f^{\mathbf{A}}(a_{1},...,a_{n})) &= \langle f^{\mathbf{A}}(a_{1},...,a_{n})/\theta, f^{\mathbf{A}}(a_{1},...,a_{n})/\theta^{*} \rangle \\ &= \langle f^{\mathbf{A}/\theta}(a_{1}/\theta,...,a_{n}/\theta), f^{\mathbf{A}/\theta^{*}}(a_{1}/\theta^{*},...,a_{n}/\theta^{*}) \rangle \\ &= f^{\mathbf{A}/\theta \times \mathbf{A}/\theta^{*}}(\langle a_{1}/\theta, a_{1}/\theta^{*} \rangle,...,\langle a_{n}/\theta, a_{n}/\theta^{*} \rangle) \\ &= f^{\mathbf{A}/\theta \times \mathbf{A}/\theta^{*}}(\alpha(a_{1}),...,\alpha(a_{n})). \end{aligned}$$

Hence α is indeed an isomorphism.

Direct Indecomposability

Definition

An algebra **A** is (**directly**) **indecomposable** if **A** is not isomorphic to a direct product of two nontrivial algebras.

Example: Any finite algebra A, with |A| a prime number must be directly indecomposable.

Corollary

A is directly indecomposable iff the only factor congruences on A are Δ and $\nabla.$

Direct Products in General

Definition

Let $(\mathbf{A}_i)_{i \in I}$ be an indexed family of algebras of type \mathscr{F} . The (direct) product $\mathbf{A} = \prod_{i \in I} \mathbf{A}_i$ is an algebra with universe $\prod_{i \in I} A_i$ and such that for $f \in \mathscr{F}_n$ and $a_1, \ldots, a_n \in \prod_{i \in I} A_i$,

$$f^{\mathbf{A}}(a_1,...,a_n)(i) = f^{\mathbf{A}_i}(a_1(i),...,a_n(i)), \quad i \in I,$$

i.e., f^{A} is defined coordinate-wise.

The empty product $\prod \emptyset$ is the trivial algebra with universe { \emptyset }. As before, we have **projection maps** $\pi_j : \prod_{i \in I} A_i \to A_j$, for $j \in I$, defined by $\pi_j(a) = a(j)$, which give surjective homomorphisms $\pi_j : \prod_{i \in I} A_i \to A_j$. If $I = \{1, 2, ..., n\}$, we also write $A_1 \times \cdots \times A_n$. If I is arbitrary but $A_i = A$, for all $i \in I$, then we usually write A^I for the direct product, and call it a (direct) power of A. A^{\emptyset} is a trivial algebra.

Visualization and Basic Properties of Direct Products

 A direct product ∏_{i∈I} A_i of sets is often visualized as a rectangle with base I and vertical cross sections A_i.

An element *a* of $\prod_{i \in I} A_i$ is then a curve.

Theorem

If A_1, A_2 and A_3 are of type \mathscr{F} , then:

(a)
$$\mathbf{A}_1 \times \mathbf{A}_2 \cong \mathbf{A}_2 \times \mathbf{A}_1$$
 under $\alpha(\langle a_1, a_2 \rangle) = \langle a_2, a_1 \rangle$.

(b) $\mathbf{A}_1 \times (\mathbf{A}_2 \times \mathbf{A}_3) \cong \mathbf{A}_1 \times \mathbf{A}_2 \times \mathbf{A}_3$ under $\alpha(\langle a_1, \langle a_2, a_3 \rangle\rangle) = \langle a_1, a_2, a_3 \rangle$.

Direct Product Decomposition of Finite Algebras

Theorem

Every finite algebra is isomorphic to a direct product of directly indecomposable algebras.

- Let A be a finite algebra. We proceed by induction on |A|.
 - If **A** is trivial, then **A** is indecomposable.
 - Suppose A is a nontrivial finite algebra such that for every B, with |B| < |A|, we know that B is isomorphic to a product of indecomposable algebras.
 - If **A** is indecomposable we are finished.
 - If not, then $\mathbf{A} \cong \mathbf{A}_1 \times \mathbf{A}_2$, with $1 < |A_1|, |A_2|$. Then, $|A_1|, |A_2| < |A|$. So, by the induction hypothesis, $\mathbf{A}_1 \cong \mathbf{B}_1 \times \cdots \times \mathbf{B}_m$; $\mathbf{A}_2 \cong \mathbf{C}_1 \times \cdots \times \mathbf{C}_n$, where the \mathbf{B}_i and \mathbf{C}_j are indecomposable. Consequently, $\mathbf{A} \cong \mathbf{B}_1 \times \cdots \times \mathbf{B}_m \times \mathbf{C}_1 \times \cdots \times \mathbf{C}_n$.

Combining Homomorphisms Using Products

 Using direct products there are two obvious ways of combining families of homomorphisms into single homomorphisms.

Definition

- (i) If we are given maps α_i: A → A_i, i ∈ I, then the natural map α: A → Π_{i∈I} A_i is defined by (α(a))(i) = α_i(a).
- (ii) If we are given maps $\alpha_i : A_i \to B_i$, $i \in I$, then the **natural map** $\alpha : \prod_{i \in I} A_i \to \prod_{i \in I} B_i$ is defined by $(\alpha(a))(i) = \alpha_i(a(i))$.

Theorem

- (a) If $\alpha_i : \mathbf{A} \to \mathbf{A}_i$, $i \in I$, is an indexed family of homomorphisms, then the natural map α is a homomorphism from \mathbf{A} to $\mathbf{A}^* = \prod_{i \in I} \mathbf{A}_i$.
- (b) If $\alpha_i : \mathbf{A}_i \to \mathbf{B}_i$, $i \in I$, is an indexed family of homomorphisms, then the natural map α is a homomorphism from $\mathbf{A}^* = \prod_{i \in I} \mathbf{A}_i$ to $\mathbf{B}^* = \prod_{i \in I} \mathbf{B}_i$.

Proof of the Natural Map Theorem

• Suppose $\alpha_i : \mathbf{A} \to \mathbf{A}_i$ is a homomorphism for $i \in I$. Then for $a_1, \ldots, a_n \in A$ and $f \in \mathscr{F}_n$, we have, for $i \in I$,

$$\begin{aligned} (\alpha(f^{\mathbf{A}}(a_{1},...,a_{n})))(i) &= \alpha_{i}(f^{\mathbf{A}}(a_{1},...,a_{n})) \\ &= f^{\mathbf{A}_{i}}(\alpha_{i}(a_{1}),...,\alpha_{i}(a_{n})) \\ &= f^{\mathbf{A}_{i}}((\alpha(a_{1}))(i),...,(\alpha(a_{n}))(i)) \\ &= f^{\mathbf{A}^{*}}(\alpha(a_{1}),...,\alpha(a_{n}))(i). \end{aligned}$$

Hence, $\alpha(f^{\mathbf{A}}(a_1,...,a_n)) = f^{\mathbf{A}^*}(\alpha(a_1),...,\alpha(a_n))$, so α is indeed a homomorphism.

Case (b) is a consequence of (a) using the homomorphisms $\alpha_i \circ \pi_i$:

Separation of Points

Definition

If $a_1, a_2 \in A$ and $\alpha : A \rightarrow B$ is a map, we say α separates a_1 and a_2 if

 $\alpha(a_1) \neq \alpha(a_2).$

The maps $\alpha_i : A \to A_i$, $i \in I$, separate points if for each $a_1, a_2 \in A$, with $a_1 \neq a_2$, there is an α_i , such that $\alpha_i(a_1) \neq \alpha_i(a_2)$.

Lemma

For an indexed family of maps $\alpha_i : A \rightarrow A_i$, $i \in I$, the following are equivalent:

- (a) The maps α_i separate points.
- (b) The natural map $\alpha : A \to \prod_{i \in I} A_i$ is injective.
- (c) $\bigcap_{i \in I} \ker \alpha_i = \Delta$.

Proof of the Separation of Points Lema

(a)
$$\Rightarrow$$
 (b): Suppose $a_1, a_2 \in A$ and $a_1 \neq a_2$. Then, for some *i*,
 $\alpha_i(a_1) \neq \alpha_i(a_2)$. Hence $(\alpha(a_1))(i) \neq (\alpha(a_2))(i)$. So $\alpha(a_1) \neq \alpha(a_2)$.
(b) \Rightarrow (c): For $a_1, a_2 \in A$, with $a_1 \neq a_2$, we have $\alpha(a_1) \neq \alpha(a_2)$, hence
 $(\alpha(a_1))(i) \neq (\alpha(a_2))(i)$, for some *i*; so $\alpha_i(a_1) \neq \alpha_i(a_2)$, for some *i*; and
this implies $\langle a_1, a_2 \rangle \notin \ker \alpha_i$, so $\bigcap_{i \in I} \ker \alpha_i = \Delta$.

(c) \Rightarrow (a): For $a_1, a_2 \in A$, with $a_1 \neq a_2$, $\langle a_1, a_2 \rangle \notin \bigcap_{i \in I} \ker \alpha_i$ so, for some $i, \langle a_1, a_2 \rangle \notin \ker \alpha_i$, hence $\alpha_i(a_1) \neq \alpha_i(a_2)$.

Theorem

If we are given an indexed family of homomorphisms $\alpha_i : \mathbf{A} \to \mathbf{A}_i$, $i \in I$, then the natural homomorphism $\alpha : \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i$ is an embedding iff $\bigcap_{i \in I} \ker \alpha_i = \Delta$ iff the maps α_i separate points.

This is immediate from the lemma.

Subsection 7

Subdirect Products and Simple Algebras

Subdirect Products and Subdirect Embeddings

Definition

An algebra **A** is a **subdirect product** of an indexed family $(\mathbf{A}_i)_{i \in I}$ of algebras if:

- (i) $\mathbf{A} \leq \prod_{i \in I} \mathbf{A}_i$;
- (ii) $\pi_i(\mathbf{A}) = \mathbf{A}_i$, for each $i \in I$.

An embedding $\alpha : \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i$ is subdirect if $\alpha(\mathbf{A})$ is a subdirect product of the \mathbf{A}_i .

If *I* = Ø, then A is a subdirect product of Ø iff A = ∏Ø, a trivial algebra.

The Subdirect Embedding Lemma

Lemma

If $\theta_i \in \text{Con} \mathbf{A}$, for $i \in I$, and $\bigcap_{i \in I} \theta_i = \Delta$, then the natural homomorphism $v : \mathbf{A} \to \prod_{i \in I} \mathbf{A} / \theta_i$, defined by

$$v(a)(i) = a/\theta_i$$

is a subdirect embedding.

- Let v_i be the natural homomorphism from **A** to \mathbf{A}/θ_i , for $i \in I$.
 - Since ker $v_i = \theta_i$ and $\bigcap_{i \in I} \theta_i = \Delta$, it follows that v is an embedding.
 - Since each v_i is surjective, v is a subdirect embedding.

Subdirect Irreducibility

Definition

An algebra A is subdirectly irreducible if, for every subdirect embedding

$$\alpha: \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i,$$

there is an $i \in I$, such that $\pi_i \circ \alpha : \mathbf{A} \to \mathbf{A}_i$ is an isomorphism.

Theorem

An algebra **A** is subdirectly irreducible iff **A** is trivial or there is a minimum congruence in $ConA - \{\Delta\}$. In the latter case the minimum element is $\bigcap(ConA - \{\Delta\})$, a principal congruence, and the congruence lattice of **A** looks as in the diagram.

Subdirect Irreducibility (Cont'd)

- (⇒): If **A** is not trivial and Con**A** { Δ } has no minimum element, then $\bigcap(\text{ConA} - \{\Delta\}) = \Delta$. Let $I = \text{ConA} - \{\Delta\}$. Then the natural map $\alpha : \mathbf{A} \to \prod_{\theta \in I} \mathbf{A}/\theta$ is a subdirect embedding by the lemma. The natural map $\mathbf{A} \to \mathbf{A}/\theta$ is not injective for $\theta \in I$, whence **A** is not subdirectly irreducible.
- (\Leftarrow): If **A** is trivial and $\alpha : \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i$ is a subdirect embedding then each \mathbf{A}_i is trivial. Hence, each $\pi_i \circ \alpha$ is an isomorphism.

So suppose **A** is not trivial, and let $\theta = \bigcap (\operatorname{Con} \mathbf{A} - \{\Delta\}) \neq \Delta$. Choose $\langle a, b \rangle \in \theta, a \neq b$. If $\alpha : \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i$ is a subdirect embedding, then for some $i, (\alpha(a))(i) \neq (\alpha(b))(i)$. Hence $(\pi_i \circ \alpha)(a) \neq (\pi_i \circ \alpha)(b)$. Thus, $\langle a, b \rangle \notin \operatorname{ker}(\pi_i \circ \alpha)$ so $\theta \nsubseteq \operatorname{ker}(\pi_i \circ \alpha)$. This implies $\operatorname{ker}(\pi_i \circ \alpha) = \Delta$ so $\pi_i \circ \alpha : \mathbf{A} \to \mathbf{A}_i$ is an isomorphism. Consequently, **A** is subdirectly irreducible.

If $\operatorname{Con} \mathbf{A} - \{\Delta\}$ has a minimum element θ , then for $a \neq b$ and $\langle a, b \rangle \in \theta$, we have $\Theta(a, b) \subseteq \theta$, whence $\theta = \Theta(a, b)$.

Subdirect Irreducibility and Direct Indecomposability

Examples:

- (1) A finite Abelian group **G** is subdirectly irreducible iff it is cyclic and $|G| = p^n$, for some prime *p*.
- (2) Given a prime number p, the Prüfer p-group $\mathbb{Z}_{p^{\infty}}$, the group of p^n -th roots of unity, $n \in \omega$, is subdirectly irreducible.
- (3) Every simple group is subdirectly irreducible.
- 4) A vector space over a field *F* is subdirectly irreducible iff it is trivial or one-dimensional.
- 5) Any two-element algebra is subdirectly irreducible.
- A directly indecomposable algebra need not be subdirectly irreducible for example, a three-element chain as a lattice.

Theorem

A subdirectly irreducible algebra is directly indecomposable.

 Clearly the only factor congruences on a subdirectly irreducible algebra are ∆ and ∇. Such an algebra is directly indecomposable.

George Voutsadakis (LSSU)

Universal Algebra

Subdirect Decomposability

Theorem (Birkhoff)

Every algebra **A** is isomorphic to a subdirect product of subdirectly irreducible algebras (which are homomorphic images of **A**).

As trivial algebras are subdirectly irreducible, we only need to consider the case of nontrivial A. For a, b ∈ A, with a ≠ b, we can find, using Zorn's lemma, a congruence θ_{a,b} on A which is maximal with respect to the property ⟨a, b⟩ ∉ θ_{a,b}. Then clearly Θ(a, b) ∨ θ_{a,b} is the smallest congruence in [θ_{a,b}, ∇] - {θ_{a,b}}, so we see that A/θ_{a,b} is subdirectly irreducible. As ∩{θ_{a,b} : a ≠ b} = ∆, we can apply a preceding result to show that A is subdirectly embeddable in the product of the indexed family of subdirectly irreducible algebras (A/θ_{a,b})_{a≠b}.

Corollary

Every finite algebra is isomorphic to a subdirect product of a finite number of subdirectly irreducible finite algebras.

Simple Algebras

Definition

An algebra **A** is **simple** if $Con\mathbf{A} = \{\Delta, \nabla\}$. A congruence θ on an algebra **A** is **maximal** if the interval $[\theta, \nabla]$ of Con**A** has exactly two elements.

- We do not require that a simple algebra be nontrivial.
- Just as the quotient of a group by a normal subgroup is simple and nontrivial iff the normal subgroup if maximal, we have a similar result for arbitrary algebras.

Theorem

Let $\theta \in \text{Con} \mathbf{A}$. Then \mathbf{A}/θ is a simple algebra iff θ is a maximal congruence on \mathbf{A} or $\theta = \nabla$.

We know that ConA/θ ≅ [θ, ∇_A]. So the theorem is an immediate consequence of the definition.