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Algebras, Subalgebras, Homomorphisms & Direct Products Definition and Examples of Algebras

Operations

Definition

For A a nonempty set and n a nonnegative integer, we define A0 = {;} and,
for n> 0, An is the set of n-tuples of elements from A.
An n-ary operation (or function) on A is any function f from An to A; n
is the arity (or rank) of f . A finitary operation is an n-ary operation, for
some n.
The image of 〈a1, . . . ,an〉 under an n-ary operation f is denoted by
f (a1, . . . ,an).
An operation f on A is called a nullary operation (or constant) if its arity
is zero; it is completely determined by the image f (;) in A of the only
element ; in A0. As such it is convenient to identify it with the element
f (;). Thus a nullary operation is thought of as an element of A.
An operation f on A is unary, binary or ternary if its arity is 1,2, or 3,
respectively.
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Algebras, Subalgebras, Homomorphisms & Direct Products Definition and Examples of Algebras

Languages and Algebras

Definition

A language (or type) of algebras is a set F of function symbols such
that a nonnegative integer n is assigned to each member f of F . This
integer is called the arity (or rank) of f , and f is said to be an n-ary
function symbol. The subset of n-ary function symbols in F is denoted
by Fn.

Definition

If F is a language of algebras, then an algebra A of type F is an ordered
pair 〈A,F 〉, where:

A is a nonempty set;
F is a family of finitary operations on A indexed by the language F ,
such that corresponding to each n-ary function symbol f in F , there
is an n-ary operation f A on A.

The set A is called the universe (or underlying set) of A= 〈A,F 〉.
The f A’s are called the fundamental operations of A.
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Algebras, Subalgebras, Homomorphisms & Direct Products Definition and Examples of Algebras

More Algebraic Notation and Terminology

If F is finite, say F = {f1, . . . , fk }, we often write 〈A, f1, . . . , fk〉 for
〈A,F 〉, usually adopting the convention:

arityf1 ≥ arityf2 ≥ ·· · ≥ arityfk .

An algebra A is unary if all of its operations are unary.
It is mono-unary if it has just one unary operation.

A is a groupoid if it has just one binary operation. The operation is
usually denoted by + or ·, and we write a+b or a ·b (or just ab) for
the image of 〈a,b〉 under this operation and call it the sum or
product of a and b, respectively.

An algebra A is finite if |A| is finite.

An algebra A is trivial if |A| = 1.
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Algebras, Subalgebras, Homomorphisms & Direct Products Definition and Examples of Algebras

Groups and Abelian Groups

A group G is an algebra 〈G , ·, −1,1〉 with a binary, a unary, and a
nullary operation in which the following identities are true:

G1 x · (y ·z)≈ (x ·y) ·z ;
G2 x ·1≈ 1 ·x ≈ x ;
G3 x ·x−1 ≈ x−1 ·x ≈ 1.

A group G is Abelian (or commutative) if the following identity is
true:

G4 x ·y ≈ y ·x .
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Algebras, Subalgebras, Homomorphisms & Direct Products Definition and Examples of Algebras

Monoids and Quasigroups

Groups are generalized to semigroups and monoids in one direction,
and to quasigroups and loops in another direction.

A semigroup is a groupoid 〈G , ·〉 in which (G1) is true.

It is commutative (or Abelian) if (G4) holds.

A monoid is an algebra 〈M , ·,1〉 with a binary and a nullary operation
satisfying (G1) and (G2).

A quasigroup is an algebra 〈Q ,
/

, ·,
∖

〉 with three binary operations
satisfying the following identities:

Q1 x
∖

(x ·y)≈ y ; (x ·y)
/

y ≈ x ;
Q2 x · (x

∖

y)≈ y ; (x
/

y) ·y ≈ x .

A loop is a quasigroup with identity, i.e., an algebra 〈Q ,
/

, ·,
∖

,1〉 which
satisfies (Q1), (Q2) and (G2).
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Algebras, Subalgebras, Homomorphisms & Direct Products Definition and Examples of Algebras

Rings

A ring is an algebra 〈R ,+, ·,−,0〉, where + and · are binary, − is unary
and 0 is nullary, satisfying the following conditions:

R1 〈R ,+,−,0〉 is an Abelian group;
R2 〈R , ·〉 is a semigroup;
R3 x · (y +z)≈ (x ·y)+ (x ·z)

(x +y) ·z ≈ (x ·z)+ (y ·z).

A ring with identity is an algebra 〈R ,+, ·,−,0,1〉, such that (R1)-(R3)
and (G2) hold.
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Algebras, Subalgebras, Homomorphisms & Direct Products Definition and Examples of Algebras

Modules and Algebras Over a (Fixed) Ring

Let R be a given ring. A (left) R-module is an algebra
〈M ,+,−,0,(fr )r∈R〉, where + is binary, − is unary, 0 is nullary, and
each fr is unary, such that the following hold:

M1 〈M ,+,−,0〉 is an Abelian group;
M2 fr (x +y)≈ fr (x)+ fr (y), for r ∈R ;
M3 fr+s(x)≈ fr (x)+ fs (x) for r ,s ∈R ;
M4 fr (fs(x))≈ frs(x), for r ,s ∈R .

Let R be a ring with identity. A unitary R-module is an algebra as
above satisfying (M1)-(M4) and:

M5 f1(x)≈ x .

Let R be a ring with identity. An algebra over R is an algebra
〈A,+, ·,−,0,(fr )r∈R〉, such that the following hold:

A1 〈A,+,−,0,(fr )r∈R 〉 is a unitary R-module;
A2 〈A,+, ·,−,0〉 is a ring;
A3 fr (x ·y)≈ (fr (x)) ·y ≈ x · fr (y), for r ∈R .
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Algebras, Subalgebras, Homomorphisms & Direct Products Definition and Examples of Algebras

Semilattices and Lattices

A semilattice is a semigroup 〈S , ·〉 which satisfies the commutative
law (G4) and the idempotent law

S1 x ·x ≈ x .

A lattice is an algebra 〈L,∨,∧〉, with two binary operations which
satisfies

L1 (commutative laws)

(a) x ∨y ≈ y ∨x ;
(b) x ∧y ≈ y ∧x ;

L2 (associative laws)

(a) x ∨(y ∨z)≈ (x ∨y)∨z ;
(b) x ∧(y ∧z)≈ (x ∧y)∧z ;

L3 (idempotent laws)

(a) x ∨x ≈ x ;
(b) x ∧x ≈ x ;

L4 (absorption laws)

(a) x ≈ x ∨(x ∧y);
(b) x ≈ x ∧(x ∨y).

An algebra 〈L,∨,∧,0,1〉, with two binary and two nullary operations is
a bounded lattice if it satisfies:

BL1 〈L,∨,∧〉 is a lattice;
BL2 x ∧0≈ 0; x ∨1≈ 1.
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Subsection 2

Isomorphic Algebras and Subalgebras
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Algebras, Subalgebras, Homomorphisms & Direct Products Isomorphic Algebras and Subalgebras

Isomorphism

Definition

Let A and B be two algebras of the same type F . Then a function
α :A→B is an isomorphism from A to B if:

α is one-to-one and onto;

for every n-ary f ∈F and for all a1, . . . ,an ∈A, we have

α(f A(a1, . . . ,an))= f B(α(a1), . . . ,α(an)).

We say A is isomorphic to B, written A∼=B, if there is an isomorphism
from A to B.

The properties of algebras that are invariant under isomorphism are
called algebraic properties.

Isomorphic algebras can be regarded as equal or the same, having the
same algebraic structure, and differing only in the nature of the
elements: The phrase “equal up to isomorphism” is often used.
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Algebras, Subalgebras, Homomorphisms & Direct Products Isomorphic Algebras and Subalgebras

Subalgebras and Subuniverses

Definition

Let A and B be two algebras of the same type. Then B is a subalgebra of
A if B ⊆A and every fundamental operation of B is the restriction of the
corresponding operation of A; i.e., for each function symbol f , f B is f A

restricted to B . We write simply B≤A.
A subuniverse of A is a subset B of A which is closed under the
fundamental operations of A; i.e., if f is a fundamental n-ary operation of
A and a1, . . . ,an ∈B we would require f (a1, . . . ,an) ∈B .

Thus, if B is a subalgebra of A, then B is a subuniverse of A.

The empty set may be a subuniverse, but it is not the underlying set
of any subalgebra.

If A has nullary operations then every subuniverse contains them as
well.
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Algebras, Subalgebras, Homomorphisms & Direct Products Isomorphic Algebras and Subalgebras

Embeddings (or Monomorphisms)

Definition

Let A and B be of the same type. A function α :A→B is an embedding

of A into B if α is one-to-one and satisfies

α(f A(a1, . . . ,an))= f B(α(a1), . . . ,α(an)).

Such an α is also called a monomorphism. For brevity we simply say
“α :A→B is an embedding”. We say A can be embedded in B if there is
an embedding of A into B.

Theorem

If α :A→B is an embedding, then α(A) is a subuniverse of B.

Let α :A→B be an embedding. Then, for an n-ary function symbol f
and a1, . . . ,an ∈A, f B(α(a1), . . . ,α(an))=α(f A(a1, . . . ,an)) ∈α(A).

Definition

If α :A→B is an embedding, α(A) denotes the subalgebra of B with
universe α(A).
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Algebras, Subalgebras, Homomorphisms & Direct Products Isomorphic Algebras and Subalgebras

Structure Theorems in Algebra

Let K be a class of algebras and let K1 be a proper subclass of K .

In practice, K may have been obtained from the process of abstraction
of certain properties of K1; or K1 may be obtained from K by certain
additional, more desirable, properties.

Two basic questions arise in the quest for structure theorems:

(1) Is every member of K isomorphic to some member of K1?
(2) Is every member of K embeddable in some member of K1?

Examples:

Every Boolean algebra is isomorphic to a field of sets.
Every group is isomorphic to a group of permutations.
A finite Abelian group is isomorphic to a direct product of cyclic
groups.
A finite distributive lattice can be embedded in a power of the
two-element distributive lattice.
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Subsection 3

Algebraic Lattices and Subuniverses
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Algebras, Subalgebras, Homomorphisms & Direct Products Algebraic Lattices and Subuniverses

Generated Subuniverses

Definition

Given an algebra A, define, for every X ⊆A,

Sg(X )=
⋂

{B :X ⊆B and B is a subuniverse of A}.

We read Sg(X ) as “the subuniverse generated by X ”.

Theorem

If we are given an algebra A, then Sg is an algebraic closure operator on A.

Observe that an arbitrary intersection of subuniverses of A is again a
subuniverse. Hence Sg is a closure operator on A whose closed sets
are precisely the subuniverses of A. Now, for any X ⊆A, define

E (X ) = X ∪ {f (a1, . . . ,an) : f is a fundamental n-ary operation
on A,n ∈ω, and a1, . . . ,an ∈X }.
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Algebras, Subalgebras, Homomorphisms & Direct Products Algebraic Lattices and Subuniverses

Generated Subuniverses (Algebraicity)

We defined, for X ⊆A,

E (X ) = X ∪ {f (a1, . . . ,an) : f is a fundamental n-ary operation
on A,n ∈ω, and a1, . . . ,an ∈X }.

Then define En(X ), for n≥ 0, by induction, as follows:

E 0(X )=X , En+1(X )=E (En(X )).

As all the fundamental operations on A are finitary and
X ⊆E (X )⊆E 2(X )⊆ ·· ·, we can show that

Sg(X )=X ∪E (X )∪E 2(X )∪·· · .

Therefore, if a ∈ Sg(X ), then a ∈En(X ), for some n ∈ω. Hence, for
some finite Y ⊆X , a ∈En(Y ). Thus, a ∈ Sg(Y ). But this says Sg is
an algebraic closure operator.
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Algebras, Subalgebras, Homomorphisms & Direct Products Algebraic Lattices and Subuniverses

The Lattice of Subuniverses

Corollary

If A is an algebra then LSg, the lattice of subuniverses of A is an algebraic
lattice.

The corollary says that the subuniverses of A, with ⊆ as the partial
order, form an algebraic lattice.

Definition

Given an algebra A, Sub(A) denotes the set of subuniverses of A, and
Sub(A) is the corresponding algebraic lattice, the lattice of subuniverses

of A.
For X ⊆A, we say X generates A (or A is generated by X ; or X is a set

of generators of A) if Sg(X )=A.
The algebra A is finitely generated if it has a finite set of generators.
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Algebras, Subalgebras, Homomorphisms & Direct Products Algebraic Lattices and Subuniverses

Algebraic Lattices and Lattices of Subuniverses

Every algebraic lattice is isomorphic to the lattice of subuniverses of
some algebra:

Theorem (Birkhoff and Frink)

If L is an algebraic lattice, then L∼=Sub(A), for some algebra A.

Let C be an algebraic closure operator on a set A, such that L∼=LC .
For each finite subset B of A and each b ∈C (B), define an n-ary
function fB ,b on A, where n= |B |, by

fB ,b(a1, . . . ,an)=

{

b, if B = {a1, . . . ,an}

a1, otherwise
. Call the resulting algebra

A. Then clearly fB ,b(a1, . . . ,an) ∈C ({a1, . . . ,an}). Hence, for X ⊆A,
Sg(X )⊆C (X ). On the other hand,
C (X )=

⋃

{C (B) :B ⊆X and B is finite} and, for B finite,
C (B)= {fB ,b(a1, . . . ,an) :B = {a1, . . . ,an},b ∈C (B)} ⊆ Sg(B)⊆Sg(X )
imply C (X )⊆ Sg(X ). Hence, C (X )⊆ Sg(X ). Thus, LC =Sub(A). So
Sub(A)∼=L.
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Algebras, Subalgebras, Homomorphisms & Direct Products Algebraic Lattices and Subuniverses

Algebras Generated by Sets of Specific Cardinality

For a given type there cannot be “too many” algebras (up to
isomorphism) generated by sets no larger than a given cardinality.

Recall that ω is the smallest infinite cardinal.

Corollary

If A is an algebra and X ⊆A, then

|Sg(X )| ≤ |X |+ |F |+ω.

Using induction on n, one has

|En(X )| ≤ |X |+ |F |+ω.

|E0(X )| = |X | ≤ |X |+ |F |+ω;
|E n+1(X )| = |E (E n(X ))| ≤ |E n(X )|+ |F |+ω≤ |X |+ |F |+ω.

So the result follows from Sg(X )=X ∪E (X )∪E 2(X )∪·· ·.
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Algebras, Subalgebras, Homomorphisms & Direct Products Algebraic Lattices and Subuniverses

n-ary Closure Operators

Definition

Let C be a closure operator on A. For n<ω, let Cn be the function defined
on Su(A) by

Cn(X )=
⋃

{C (Y ) :Y ⊆X , |Y | ≤ n}.

We say that C is n-ary, if

C (X )=Cn(X )∪C 2
n (X )∪·· · ,

where:

C 1
n (X )=Cn(X );

C k+1
n (X )=Cn(C

k
n (X )).
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Algebras, Subalgebras, Homomorphisms & Direct Products Algebraic Lattices and Subuniverses

Generation and n-ary Closure Operators

Lemma

Let A be an algebra all of whose fundamental operations have arity at most
n. Then Sg is an n-ary closure operator on A.

Recall the definition

E (X ) = X ∪ {f (a1, . . . ,an) : f is a fundamental n-ary operation
on A,n ∈ω, and a1, . . . ,an ∈X }.

Note that E (X )⊆ Sgn(X )⊆ Sg(X ). Hence,

Sg(X ) = X ∪E (X )∪E 2(X )∪·· ·

⊆ Sgn(X )∪Sg2
n(X )∪·· ·

⊆ Sg(X ).

So Sg(X )= Sgn(X )∪Sg2
n(X )∪·· ·.
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Subsection 4

Congruences and Quotient Algebras
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Algebras, Subalgebras, Homomorphisms & Direct Products Congruences and Quotient Algebras

The Compatibility Condition

Definition

Let A be an algebra of type F and let θ ∈Eq(A). Then θ is a congruence

on A if θ satisfies the following compatibility property:

CP For each n-ary function symbol f ∈F , and elements ai ,bi ∈A, if
ai θ bi holds, for 1≤ i ≤ n, then f A(a1, . . . ,an) θ f A(b1, . . . ,bn) holds.

The compatibility property allows introducing an algebraic structure
on the set of equivalence classes A/θ:

If a1, . . . ,an are elements of A and f is an n-ary symbol in F , then the
easiest choice of an equivalence class to be the value of f applied to
〈a1/θ, . . . ,an/θ〉 is f A(a1, . . . ,an)/θ.

This will indeed define a function on A/θ iff (CP) holds.
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Illustration of the Algebraic Structure on A/θ

The Compatibility Condition for a binary operation is illustrated below:

A is subdivided into the equivalence classes of θ.

Then selecting a1,b1 in the same equivalence class and a2,b2 in the
same equivalence class, we want f A(a1,a2) and f A(b1,b2) to be in the
same equivalence class.
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Algebras, Subalgebras, Homomorphisms & Direct Products Congruences and Quotient Algebras

Quotient Algebras

Definition

The set of all congruences on an algebra A is denoted by ConA. Let θ be a
congruence on an algebra A. Then the quotient algebra of A by θ,
written A/θ, is the algebra whose universe is A/θ and whose fundamental
operations satisfy

f A/θ(a1/θ, . . . ,an/θ)= f A(a1, . . . ,an)/θ,

where a1, . . . ,an ∈A and f is an n-ary function symbol in F .

Note that quotient algebras of A are of the same type as A.
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Group Congruences and Normal Subgroups

Let G be a group.

Then one can establish the following connection between congruences
on G and normal subgroups of G:

(a) If θ ∈ConG, then 1/θ is the universe of a normal subgroup of G;
For a,b ∈G , we have 〈a,b〉 ∈ θ iff 〈a ·b−1,1〉 ∈ θ iff a ·b−1 ∈ 1/θ.

(b) If N is a normal subgroup of G, then the binary relation defined on G

by
〈a,b〉 ∈ θ iff a ·b−1

∈N

is a congruence on G, with 1/θ=N .

Thus, the mapping θ 7→ 1/θ is an order-preserving bijection between
congruences on G and normal subgroups of G.
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Ring Congruences and Ideals

Let R be a ring.

The following establishes a similar connection between the
congruences on R and ideals of R:

(a) If θ ∈ConR, then 0/θ is an ideal of R;
For a,b ∈R , we have 〈a,b〉 ∈ θ iff 〈a−b,0〉 ∈ θ iff a−b ∈ 0/θ.

(b) If I is an ideal of R, then the binary relation θ defined on R by

〈a,b〉 ∈ θ iff a−b ∈ I

is a congruence on R, with 0/θ= I .

Thus the mapping θ 7→ 0/θ is an order-preserving bijection between
congruences on R and ideals of R.
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Lattice Congruences

In the preceding two examples any congruence on the algebra (group
or ring) was determined by a single equivalence class of the
congruence (1/θ and 0/θ, respectively).

The next example shows this need not be the case:

Let L be a lattice which is a chain, and let θ be an equivalence relation
on L, such that the equivalence classes of θ are convex subsets of L
(i.e., if a θ b and a≤ c ≤ b, then a θ c .) Then θ is a congruence on L.
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Lattice Structure of ConA

Theorem

〈ConA,⊆〉 is a complete sublattice of 〈Eq(A),⊆〉, the lattice of equivalence
relations on A.

ConA is closed under arbitrary intersections. For arbitrary joins in
ConA suppose θi ∈ConA for i ∈ I . Then, if f is a fundamental n-ary
operation of A and

〈a1,b1〉, . . . ,〈an,bn〉 ∈
∨

i∈I

θi ,

where
∨

is the join of Eq(A), then, there exist i0, . . . , ik ∈ I , for some
k ∈ω, such that

〈aj ,bj 〉 ∈ θi0 ◦θi1 ◦ · · · ◦θik , 1≤ j ≤ n.

That is, for all j = 1, . . . ,n, there exist cj0, . . . ,cj(k−1) ∈A, such that

aj θi0 cj0 θi1 · · · θik−1
cj(k−1) θik bj .
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Lattice Structure of ConA (Cont’d)

For all j = 1, . . . ,n, there exist cj0, . . . ,cj(k−1) ∈A, such that

aj θi0 cj0 θi1 · · · θik−1
cj(k−1) θik bj .

Since θi ∈ConA, for all i ∈ I , we get

f (a1, . . . ,an) θi0 f (c10, . . . ,cn0) θi1 · · ·

θik−1
f (c1(k−1), . . . ,cn(k−1)) θik f (b1, . . . ,bn).

Hence

〈f (a1, . . . ,an), f (b1, . . . ,bn)〉 ∈ θi0 ◦θi1 ◦ · · · ◦θik ⊆
∨

i∈I

θi .

Therefore,
∨

i∈I θi is a congruence relation on A.

Definition

The congruence lattice of A denoted by ConA, is the lattice whose
universe is ConA, and meets and joins are calculated the same as when
working with equivalence relations.
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Congruence Lattices of Algebras

Theorem

For A an algebra, there is an algebraic closure operator Θ on A×A, such
that the closed subsets of A×A are precisely the congruences on A. Hence
ConA is an algebraic lattice.

We define an algebraic structure on A×A. For each n-ary function
symbol f in the type of A, define a corresponding n-ary function f on
A×A by f (〈a1,b1〉, . . . ,〈an,bn〉)= 〈f A(a1, . . . ,an), f A(b1, . . . ,bn)〉. Then
we add:

the nullary operations 〈a,a〉, for each a ∈A;
a unary operation s, defined by s(〈a,b〉)= 〈b,a〉;

a binary operation t defined by t(〈a,b〉,〈c ,d〉)=

{

〈a,d〉, if b = c

〈a,b〉, otherwise
.

Now we can verify that B is a subuniverse of this new algebra iff B is
a congruence on A. Let Θ be the Sg closure operator on A×A for the
algebra we have just described. Thus, ConA is an algebraic lattice.
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Compact Elements of ConA and Congruence Generation

The compact members of ConA are the finitely generated members
Θ(〈a1,b1〉, . . . ,〈an,bn〉) of ConA.

Definition

For A an algebra and a1, . . . ,an ∈A, let Θ(a1, . . . ,an) denote the congruence
generated by {〈ai ,aj〉 : 1≤ i , j ≤ n}, i.e., the smallest congruence such that
a1, . . . ,an are in the same equivalence class. The congruence Θ(a1,a2) is
called a principal congruence. For arbitrary X ⊆A, let Θ(X ) be defined
to mean the congruence generated by X ×X .
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The Case of Groups and Rings

(1) If G is a group and a,b,c ,d ∈G , then 〈a,b〉 ∈Θ(c ,d) iff ab−1 is a
product of conjugates of cd−1 and conjugates of dc−1.

This follows from the fact that the smallest normal subgroup of G

containing a given element u has as its universe the set of all products
of conjugates of u and conjugates of u−1.

(2) If R is a ring with unity and a,b,c ,d ∈R , then 〈a,b〉 ∈Θ(c ,d) iff a−b

is of the form
∑

1≤i≤n ri(c −d)si , where ri ,si ∈R .

This follows from the fact that the smallest ideal of R containing a
given element e of R is precisely the set {

∑

1≤i≤n riesi : ri ,si ∈R ,n≥ 1}.
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Properties of Congruences

Theorem

Let A be an algebra, and suppose a1,b1, . . . ,an,bn ∈A and θ ∈ConA. Then:

(a) Θ(a1,b1)=Θ(b1,a1);

(b) Θ(〈a1,b1〉, . . . ,〈an,bn〉)=Θ(a1,b1)∨·· ·∨Θ(an,bn);

(c) Θ(a1, . . . ,an)=Θ(a1,a2)∨Θ(a2,a3)∨·· ·∨Θ(an−1,an);

(d) θ=
⋃

{Θ(a,b) : 〈a,b〉 ∈ θ} =
∨

{Θ(a,b) : 〈a,b〉 ∈ θ};

(e) θ=
⋃

{Θ(〈a1,b1〉, . . . ,〈an,bn〉) : 〈ai ,bi 〉 ∈ θ,n≥ 1}.

(a) 〈b1,a1〉 ∈Θ(a1,b1). Hence, Θ(b1,a1)⊆Θ(a1,b1). By symmetry,
Θ(a1,b1)=Θ(b1,a1).

(b) For 1≤ i ≤ n, 〈ai ,bi 〉 ∈Θ(〈a1,b1〉, . . . ,〈an,bn〉). Hence
Θ(ai ,bi )⊆Θ(〈a1,b1〉, . . . ,〈an,bn〉), whence
Θ(a1,b1)∨·· ·∨Θ(an,bn)⊆Θ(〈a1,b1〉, . . . ,〈an,bn〉).
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Properties of Congruences (Cont’d)

On the other hand, for 1≤ i ≤ n,
〈ai ,bi 〉 ∈Θ(ai ,bi)⊆Θ(a1,b1)∨·· ·∨Θ(an,bn). So
{〈a1,b1〉, . . . ,〈an,bn〉}⊆Θ(a1,b1)∨·· ·∨Θ(an,bn). Hence,
Θ(〈a1,b1〉, . . . ,〈an,bn〉)⊆Θ(a1,b1)∨·· ·∨Θ(an,bn). So
Θ(〈a1,b1〉, . . . ,〈an,bn〉)=Θ(a1,b1)∨·· ·∨Θ(an,bn).

(c) For 1≤ i ≤ n−1, 〈ai ,ai+1〉 ∈Θ(a1, . . . ,an). So Θ(ai ,ai+1)⊆Θ(a1, . . . ,an).
Hence, Θ(a1,a2)∨·· ·∨Θ(an−1,an)⊆Θ(a1, . . . ,an).

Conversely, for 1≤ i < j ≤ n, 〈ai ,aj 〉 ∈Θ(ai ,ai+1)◦ · · · ◦Θ(aj−1,aj). So,
〈ai ,aj 〉 ∈Θ(ai ,ai+1)∨·· ·∨Θ(aj−1,aj). Hence,
〈ai ,aj 〉 ∈Θ(a1,a2)∨·· ·∨Θ(an−1,an). By Part (a),
Θ(a1, . . . ,an)⊆Θ(a1,a2)∨·· ·∨Θ(an−1,an). Therefore,
Θ(a1, . . . ,an)=Θ(a1,a2)∨·· ·∨Θ(an−1,an).
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Properties of Congruences (Conclusion)

(d) For 〈a,b〉 ∈ θ, 〈a,b〉 ∈Θ(a,b)⊆ θ. So
θ⊆

⋃

{Θ(a,b) : 〈a,b〉 ∈ θ} ⊆
∨

{Θ(a,b) : 〈a,b〉 ∈ θ} ⊆ θ. Hence
θ=

⋃

{Θ(a,b) : 〈a,b〉 ∈ θ} =
∨

{Θ(a,b) : 〈a,b〉 ∈ θ}.

(e) For 〈a,b〉 ∈ θ,
〈a,b〉 ∈Θ(a,b)⊆

⋃

{Θ(〈a1,b1〉, . . . ,〈an,bn〉) : 〈ai ,bi 〉 ∈ θ,n≥ 1}. So
θ⊆

⋃

{Θ(〈a1,b1〉, . . . ,〈an,bn〉) : 〈ai ,bi 〉 ∈ θ,n≥ 1}.

Conversely, if n≥ 1 and 〈ai ,bi 〉 ∈ θ, for all 1≤ i ≤ n, then
Θ(〈a1,b1〉, . . . ,〈an,bn〉)⊆ θ. Hence,
⋃

{Θ(〈a1,b1〉, . . . ,〈an,bn〉) : 〈ai ,bi 〉 ∈ θ,n ≥ 1} ⊆ θ.

Therefore, θ =
⋃

{Θ(〈a1,b1〉, . . . ,〈an,bn〉) : 〈ai ,bi 〉 ∈ θ,n≥ 1}.
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On Properties of Congruence Lattices

In 1963 Grätzer and Schmidt proved:

For every algebraic lattice L, there is an algebra A, such that L∼=ConA.

For particular classes of algebras one might find that some additional
properties hold for the corresponding classes of congruence lattices:

The congruence lattices of lattices satisfy the distributive law;
The congruence lattices of groups (or rings) satisfy the modular law.
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Congruence-Distributivity and Congruence-Permutability

Definition

An algebra A is congruence-distributive (congruence-modular) if
ConA is a distributive (modular) lattice.
If θ1,θ2 ∈ConA and

θ1 ◦θ2 = θ2 ◦θ1,

then we say θ1 and θ2 are permutable, or θ1 and θ2 permute.
A is congruence-permutable if every pair of congruences on A permutes.
A class K of algebras is congruence-distributive, congruence-modular,
respectively congruence-permutable iff every algebra in K has the desired
property.
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Characterization of Congruence Permutability

Theorem

Let A be an algebra and suppose θ1,θ2 ∈ConA. Then the following are
equivalent:

(a) θ1 ◦θ2 = θ2 ◦θ1;

(b) θ1∨θ2 = θ1 ◦θ2;

(c) θ1 ◦θ2 ⊆ θ2 ◦θ1.

(a)⇒(b): Recall that

θ1∨θ2 = θ1∪ (θ1 ◦θ2)∪ (θ1 ◦θ2 ◦θ1)∪·· · .

By hypothesis, since, for any equivalence relation θ, we have θ ◦θ = θ,
we get θ1∨θ2 = θ1∪ (θ1 ◦θ2)= θ1 ◦θ2.
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Characterization of Congruence Permutability (Cont’d)

(c)⇒(a): Suppose θ1 ◦θ2 ⊆ θ2 ◦θ1. Apply the relational inverse
operation ∨ to get (θ1 ◦θ2)

∨ ⊆ (θ2 ◦θ1)
∨. Hence, we get

θ∨2 ◦θ∨1 ⊆ θ∨1 ◦θ∨2 . But the inverse of an equivalence relation is just that
equivalence relation, whence θ2 ◦θ1 ⊆ θ1 ◦θ2. We conclude that
θ1 ◦θ2 = θ2 ◦θ1.

(b)⇒(c): We have θ2 ◦θ1 ⊆ θ1∨θ2. Thus, from (b) we deduce
θ2 ◦θ1 ⊆ θ1 ◦θ2. Then, from (c)⇒(a) it follows that θ2 ◦θ1 = θ1 ◦θ2.
Hence (c) holds.
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Congruence-Permutability Implies Congruence-Modularity

Theorem (Birkhoff)

If A is congruence-permutable, then A is congruence-modular.

Let θ1,θ2,θ3 ∈ConA, with θ1 ⊆ θ2. We want to show that

θ2∩ (θ1∨θ3)⊆ θ1∨ (θ2 ∩θ3).

Suppose 〈a,b〉 ∈ θ2∩ (θ1 ∨θ3). Then, since θ1∨θ3 = θ1 ◦θ3, there is a
c , such that a θ1 c θ3 b. By symmetry, 〈c ,a〉 ∈ θ1. Hence 〈c ,a〉 ∈ θ2.
Then, by transitivity, 〈c ,b〉 ∈ θ2. Thus, 〈c ,b〉 ∈ θ2∩θ3. So we get
a θ1 c (θ2 ∩θ3) b. Therefore,

〈a,b〉 ∈ θ1 ◦ (θ2∩θ3)⊆ θ1∨ (θ2∩θ3).
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Subsection 5

Homomorphisms and the Homomorphism Theorems
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Homomorphisms

Definition

Suppose A and B are two algebras of the same type F . A mapping
α :A→B is called a homomorphism from A to B if

α(f A(a1, . . . ,an))= f B(α(a1), . . . ,α(an)),

for each n-ary f in F and each sequence a1, . . . ,an from A.
If, in addition, the mapping α is onto, then α is called an epimorphism

and B is said to be a homomorphic image of A. In this terminology an
isomorphism is a homomorphism which is one-to-one and onto.
In case A=B, a homomorphism is also called an endomorphism and an
isomorphism is referred to as an automorphism.
The phrase “α :A→B is a homomorphism” is often used to express the
fact that α is a homomorphism from A to B.

Example: Lattice, group, ring, module, and monoid homomorphisms
are all special cases of homomorphisms as defined above.
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Equality of Homomorphisms

Theorem

Let A be an algebra generated by a set X . If α :A→B and β :A→B are
two homomorphisms which agree on X (i.e., α(a)=β(a), for a ∈X ), then
α=β.

Recall the definition of E :

E (X ) = X ∪ {f (a1, . . . ,an) : f is a fundamental n-ary operation
on A,n ∈ω, and a1, . . . ,an ∈X }.

Note that if α and β agree on X , then α and β agree on E (X ): If f is
an n-ary function symbol and a1, . . . ,an ∈X , then

α(f A(a1, . . . ,an)) = f B(α(a1), . . . ,α(an))
= f B(β(a1), . . . ,β(an))
= β(f A(a1, . . . ,an)).

Thus, by induction, if α and β agree on X , then they agree on
En(X ), for n<ω. Hence, they agree on Sg(X ).
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Images and Inverse Images of Subuniverses

Theorem

Let α :A→B be a homomorphism. Then the image of a subuniverse of A

under α is a subuniverse of B, and the inverse image of a subuniverse of B

is a subuniverse of A.

Let S be a subuniverse of A. Let f be an n-ary member of F and let
a1, . . . ,an ∈ S . Then f B(α(a1), . . . ,α(an))=α(f A(a1, . . . ,an)) ∈α(S). So
α(S) is a subuniverse of B.

If S is a subuniverse of B and α(a1), . . . ,α(an) ∈ S , then, by the
preceding equation, α(f A(a1, . . . ,an)) ∈ S . So f A(a1, . . . ,an) is in
α−1(S). Thus, α−1(S) is a subuniverse of A.

Definition

If α :A→B is a homomorphism and C≤A, D≤B, let α(C) be the
subalgebra of B, with universe α(C ), and let α−1(D) be the subalgebra of
A, with universe α−1(D), provided α−1(D) 6= ;.
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Composition of Homomorphisms

Theorem

Suppose α :A→B and β :B→C are homomorphisms. Then the
composition β◦α is a homomorphism from A to C.

For f an n-ary function symbol and a1, . . . ,an ∈A, we have

(β◦α)(f A(a1, . . . ,an)) = β(α(f A(a1, . . . ,an)))
= β(f B(α(a1), . . . ,α(an)))
= f C(β(α(a1)), . . . ,β(α(an)))
= f C((β◦α)(a1), . . . ,(β◦α)(an)).
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Homomorphisms and Generation

Theorem

If α :A→B is a homomorphism and X is a subset of A, then

α(Sg(X ))=Sg(α(X )).

We have, for all Y ⊆A,

α(E (Y )) = α(Y ∪ {f A(a1, . . . ,an) : f ∈Fn,n ∈ω,a1, . . . ,an ∈Y })
= α(Y )∪ {α(f A(a1, . . . ,an)) : f ∈Fn,n ∈ω,a1, . . . ,an ∈Y }

= α(Y )∪ {f B(α(a1), . . . ,α(an)) : f ∈Fn,n ∈ω,a1, . . . ,an ∈Y }

= α(Y )∪ {f B(b1, . . . ,bn) : f ∈Fn,n ∈ω,b1, . . . ,bn ∈α(Y )}

= E (α(Y )).

Thus, by induction on n, α(En(X ))=En(α(X )), for n≥ 1. Hence

α(Sg(X )) = α(X ∪E (X )∪E 2(X )∪·· · )
= α(X )∪α(E (X ))∪α(E 2(X ))∪·· ·

= α(X )∪E (α(X ))∪E 2(α(X ))∪·· · = Sg(α(X )).
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The Kernel of a Homomorphism

Definition

Let α :A→B be a homomorphism. Then the kernel of α, written ker(α),
and sometimes just kerα, is defined by

ker(α)= {〈a,b〉 ∈A2 :α(a)=α(b)}.

Theorem

Let α :A→B be a homomorphism. Then ker(α) is a congruence on A.

If 〈ai ,bi 〉 ∈ ker(α), for 1≤ i ≤ n and f is n-ary in F , then

α(f A(a1, . . . ,an)) = f B(α(a1), . . . ,α(an))
= f B(α(b1), . . . ,α(bn))
= α(f A(b1, . . . ,bn)).

Hence 〈f A(a1, . . . ,an), f A(b1, . . . ,bn)〉 ∈ ker(α). Clearly ker(α) is an
equivalence relation. Thus, ker(α) is actually a congruence on A.
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The Natural Map

Definition

Let A be an algebra and let θ ∈ConA. The natural map νθ :A→A/θ is
defined by

νθ(a)= a/θ.

When there is no ambiguity we write simply ν instead of νθ.

The figure shows how one might visualize the natural map:
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The Natural Homomorphism

Theorem

The natural map from an algebra to a quotient of the algebra is an onto
homomorphism.

Let θ ∈ConA and let ν :A→A/θ be the natural map. Then, for f an
n-ary function symbol and a1, . . . ,an ∈A, we have

ν(f A(a1, . . . ,an)) = f A(a1, . . . ,an)/θ

= f A/θ(a1/θ, . . . ,an/θ)

= f A/θ(ν(a1), . . . ,ν(an)).

So ν is a homomorphism. Clearly ν is onto.

Definition

The natural homomorphism from an algebra to a quotient of the algebra
is given by the natural map.
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The Homomorphism Theorem

Theorem (Homomorphism Theorem)

Suppose α :A→B is a homomorphism
onto B. Then there is an isomorphism β

from A/ker(α) to B defined by α=β◦ν,
where ν is the natural homomorphism
from A to A/ker(α).

First note that if α=β◦ν, then we must have β(a/θ)=α(a). The
second of these equalities does indeed define a function β and β
satisfies α=β◦ν. We verify that β is a bijection:

If b ∈B, exists a ∈A, such that b =α(a). Then β(a/kerα)=α(a)= b;
Suppose a,a′ ∈A. Then β(a/kerα)=β(a′/kerα) iff α(a)=α(a′) iff
〈a,a′〉 ∈ kerα iff a/kerα= a′/kerα.
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The Homomorphism Theorem (Cont’d)

To show that β is actually an isomorphism, suppose f is an n-ary
function symbol and a1, . . . ,an ∈A. Then

β(f A/θ(a1/θ, . . . ,an/θ)) = β(f A(a1, . . . ,an)/θ)
= α(f A(a1, . . . ,an))
= f B(α(a1), . . . ,α(an))
= f B(β(a1/θ), . . . ,β(an/θ)).

An algebra is a homomorphic image of an algebra A iff it is isomorphic
to a quotient of the algebra A.

Thus, the “external” problem of finding all homomorphic images of A

reduces to the “internal” problem of finding all congruences on A.

The Homomorphism Theorem is also called “The First Isomorphism
Theorem”.
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Quotient of a Congruence by a Smaller Congruence

Definition

Suppose A is an algebra and φ,θ ∈ConA, with θ ⊆φ. Then, let

φ/θ = {〈a/θ,b/θ〉 ∈ (A/θ)2 : 〈a,b〉 ∈φ}.

Lemma

If φ,θ ∈ConA and θ ⊆φ, then φ/θ is a congruence on A/θ.

Let f be an n-ary function symbol and suppose 〈ai/θ,bi/θ〉 ∈φ/θ, for
1≤ i ≤ n. Then 〈ai ,bi 〉 ∈φ. So 〈f A(a1, . . . ,an), f A(b1, . . . ,bn)〉 ∈φ, and,
thus, 〈f A(a1, . . . ,an)/θ, f A(b1, . . . ,bn)/θ〉 ∈φ/θ. Therefore,
〈f A/θ(a1/θ, . . . ,an/θ), f A/θ(b1/θ, . . . ,bn/θ)〉 ∈φ/θ.
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Second Isomorphism Theorem

Theorem (Second Isomorphism Theorem)

If φ,θ ∈ ConA and θ ⊆ φ, then the
map α : (A/θ)/(φ/θ) → A/φ, de-
fined by

α((a/θ)/(φ/θ)) = a/φ

is an isomorphism from
(A/θ)/(φ/θ) to A/φ.

Let a,b ∈A. From (a/θ)/(φ/θ)= (b/θ)/(φ/θ) iff a/φ= b/φ, it
follows that α is a well-defined bijection.
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Second Isomorphism Theorem (Cont’d)

For f an n-ary function symbol and a1, . . . ,an ∈A, we have

α(f (A/θ)/(φ/θ)((a1/θ)/(φ/θ), . . . ,(an/θ)/(φ/θ)))

=α(f A/θ(a1/θ, . . . ,an/θ)/(φ/θ))
=α((f A(a1, . . . ,an)/θ)/(φ/θ))
= f A(a1, . . . ,an)/φ

= f A/φ(a1/φ, . . . ,an/φ)

= f A/φ(α((a1/θ)/(φ/θ)), . . . ,α((an/θ)/(φ/θ))).

So α is an isomorphism.
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Restriction of a Congruence to a Subset

Definition

Let A be an algebra. Suppose B is a subset of A and θ is a congruence on
A. Let

Bθ
= {a ∈A :B ∩a/θ 6= ;}.

Let Bθ be the subalgebra of A generated by Bθ. Also define θ↾B to be
θ∩B2, the restriction of θ to B .

The dashed-line subdivisions of A are
the equivalence classes of θ.
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Lemma on the Restriction of a Congruence to a Subset

Lemma

If B is a subalgebra of A and θ ∈ConA, then

(a) The universe of Bθ is Bθ.

(b) θ↾B is a congruence on B.

(a) Suppose f is an n-ary function symbol. Let a1, . . . ,an ∈B
θ. Then one

can find b1, . . . ,bn ∈B , such that 〈ai ,bi 〉 ∈ θ, 1≤ i ≤ n. Hence,
〈f A(a1, . . . ,an), f A(b1, . . . ,bn)〉 ∈ θ, so f A(a1, . . . ,an) ∈B

θ. Thus, Bθ is a
subuniverse of A.

(b) To verify that θ↾B is a congruence on B, let f be an n-ary function
symbol in F , a1, . . . ,an,b1, . . . ,bn ∈B , such that 〈ai ,bi 〉 ∈ θ, 1≤ i ≤ n.
Then

f B(a1, . . . ,an)= f A(a1, . . . ,an) θ f A(b1, . . . ,bn)= f B(b1, . . . ,bn).

Hence, 〈f B(a1, . . . ,an), f B(b1, . . . ,bn)〉 ∈ θ↾B .
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The Third Isomorphism Theorem

Theorem (Third Isomorphism Theorem)

If B is a subalgebra of A and θ ∈

ConA, then

B/θ↾B ∼=Bθ/θ↾Bθ .

We can verify that the map α which is defined by

α(b/θ↾B )= b/θ↾Bθ

gives the desired isomorphism.
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The Correspondence Theorem

If L is a lattice and a,b ∈ L, with a≤ b, then the interval [a,b] is a
subuniverse of L.

Definition

For [a,b] a closed interval of a lattice L, where a≤ b, let [a,b] denote the
corresponding sublattice of L.

Theorem (Correspondence Theorem)

Let A be an algebra and let θ ∈ ConA.
Then the mapping α defined on [θ,∇A] by

α(φ)=φ/θ

is a lattice isomorphism from [θ,∇A] to
ConA/θ, where [θ,∇A] is a sublattice of
ConA.
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Proof of the Correspondence Theorem

To see that α is one-to-one, let φ,ψ ∈ [θ,∇A], with φ 6=ψ. Then,
without loss of generality, we can assume that there are elements
a,b ∈A, with 〈a,b〉 ∈φ−ψ. Thus, 〈a/θ,b/θ〉 ∈ (φ/θ)− (ψ/θ). So
α(φ) 6=α(ψ).

To show that α is onto, let ψ ∈ConA/θ. Define φ to be ker(νψνθ).
Then for a,b ∈A,

〈a/θ,b/θ〉 ∈φ/θ iff 〈a,b〉 ∈φ iff 〈a/θ,b/θ〉 ∈ψ.

So φ/θ =ψ.

Finally, we will show that α is an isomorphism. If φ,ψ ∈ [θ,∇A], then it
is clear that

φ⊆ψ iff φ/θ ⊆ψ/θ iff α(φ)⊆α(ψ).
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Subsection 6

Direct Products and Factor Congruences

George Voutsadakis (LSSU) Universal Algebra June 2020 64 / 85



Algebras, Subalgebras, Homomorphisms & Direct Products Direct Products and Factor Congruences

Direct Products

Subalgebras and quotient algebras, do not give a means of creating
algebras of larger cardinality than what we start with, or of combining
several algebras into one.

Definition

Let A1 and A2 be two algebras of the same type F . Define the (direct)
product A1×A2 to be the algebra whose universe is the set A1×A2 and
such that for f ∈Fn and ai ∈A1,a′

i
∈A2,1≤ i ≤ n,

f A1×A2(〈a1,a′1〉, . . . ,〈an,a′n〉)= 〈f A1(a1, . . . ,an), f A2(a′1, . . . ,a′n)〉.

In general neither A1 nor A2 is embeddable in A1×A2; In special
cases, e.g., groups, this is possible because there is always a trivial
subalgebra.

Definition

The mapping πi :A1×A2 →Ai , i ∈ {1,2}, defined by πi(〈a1,a2〉)= ai , is
called the projection map on the i -th coordinate of A1×A2.
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Properties of Projection Maps

Theorem

For i = 1 or 2, the mapping πi :A1×A2 →Ai is a surjective homomorphism
from A=A1×A2 to Ai . Furthermore, in ConA1×A2 we have:

(a) kerπ1×kerπ2 =∆;

(b) kerπ1 and kerπ2 permute;

(c) kerπ1∨kerπ2 =∇.

Clearly πi is surjective. If f ∈Fn and ai ∈A1, a
′
i
∈A2, 1≤ i ≤ n, then

π1(f
A(〈a1,a′1〉, . . . ,〈an,a′n〉) = π1(〈f

A1(a1, . . . ,an), f A2(a′1, . . . ,a′n)〉)
= f A1(a1, . . . ,an)
= f A1(π1(〈a1,a′1〉), . . . ,π1(〈an,a′n〉)).

So π1 is a homomorphism. Similarly, π2 is a homomorphism.
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Properties of Projection Maps (Cont’d)

We have

〈〈a1,a2〉,〈b1,b2〉〉 ∈ kerπi iff πi(〈a1,a2〉)=πi(〈b1,b2〉)
iff ai = bi .

Thus, kerπ1∩kerπ2 =∆.

Also, if 〈a1,a2〉,〈b1,b2〉 are any two elements of A1×A2, then

〈a1,a2〉 kerπ1 〈a1,b2〉 kerπ2 〈b1,b2〉.

So ∇= kerπ1 ◦kerπ2. But then kerπ1 and kerπ2 permute, and their
join is ∇.
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Factor Congruences

Definition

A congruence θ on A is a factor congruence if there is a congruence θ∗

on A, such that

θ∩θ∗ =∆, θ∨θ∗ =∇, θ permutes with θ∗.

The pair θ,θ∗ is called a pair of factor congruences on A.

Theorem

If θ,θ∗ is a pair of factor congruences on A, then A∼=A/θ×A/θ∗ under
the map α(a)= 〈a/θ,a/θ∗〉.

If a,b ∈A, and α(a)=α(b), then a/θ = b/θ and a/θ∗ = b/θ∗, so
〈a,b〉 ∈ θ and 〈a,b〉 ∈ θ∗, whence a= b. Therefore, α is injective.

Next, given a,b ∈A, there is a c ∈A, with a θ c θ∗ b. Hence,
α(c)= 〈c/θ,c/θ∗〉 = 〈a/θ,b/θ∗〉, whence α is onto.
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Factor Congruences (Cont’d)

Finally, for f ∈Fn and a1, . . . ,an ∈A,

α(f A(a1, . . . ,an)) = 〈f A(a1, . . . ,an)/θ, f A(a1, . . . ,an)/θ
∗〉

= 〈f A/θ(a1/θ, . . . ,an/θ), f A/θ∗

(a1/θ
∗, . . . ,an/θ

∗)〉

= f A/θ×A/θ∗

(〈a1/θ,a1/θ
∗〉, . . . ,〈an/θ,an/θ

∗〉)

= f A/θ×A/θ∗

(α(a1), . . . ,α(an)).

Hence α is indeed an isomorphism.
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Direct Indecomposability

Definition

An algebra A is (directly) indecomposable if A is not isomorphic to a
direct product of two nontrivial algebras.

Example: Any finite algebra A, with |A| a prime number must be
directly indecomposable.

Corollary

A is directly indecomposable iff the only factor congruences on A are ∆

and ∇.
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Direct Products in General

Definition

Let (Ai )i∈I be an indexed family of algebras of type F . The (direct)
product A=

∏

i∈I Ai is an algebra with universe
∏

i∈I Ai and such that for
f ∈Fn and a1, . . . ,an ∈

∏

i∈I Ai ,

f A(a1, . . . ,an)(i)= f Ai (a1(i), . . . ,an(i)), i ∈ I ,

i.e., f A is defined coordinate-wise.
The empty product

∏

; is the trivial algebra with universe {;}.
As before, we have projection maps πj :

∏

i∈I Ai →Aj , for j ∈ I , defined by
πj(a)= a(j), which give surjective homomorphisms πj :

∏

i∈I Ai →Aj .
If I = {1,2, . . . ,n}, we also write A1×·· ·×An.
If I is arbitrary but Ai =A, for all i ∈ I , then we usually write AI for the
direct product, and call it a (direct) power of A. A; is a trivial algebra.
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Visualization and Basic Properties of Direct Products

A direct product
∏

i∈I Ai of sets is often visualized as a rectangle with
base I and vertical cross sections Ai .

An element a of
∏

i∈I Ai is then a curve.

Theorem

If A1,A2 and A3 are of type F , then:

(a) A1×A2
∼=A2×A1 under α(〈a1,a2〉)= 〈a2,a1〉.

(b) A1× (A2×A3)∼=A1×A2×A3 under α(〈a1,〈a2,a3〉〉)= 〈a1,a2,a3〉.
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Direct Product Decomposition of Finite Algebras

Theorem

Every finite algebra is isomorphic to a direct product of directly
indecomposable algebras.

Let A be a finite algebra. We proceed by induction on |A|.

If A is trivial, then A is indecomposable.
Suppose A is a nontrivial finite algebra such that for every B, with
|B | < |A|, we know that B is isomorphic to a product of
indecomposable algebras.

If A is indecomposable we are finished.
If not, then A∼=A1×A2, with 1< |A1|, |A2|. Then, |A1|, |A2| < |A|. So,
by the induction hypothesis, A1

∼=B1×·· · ×Bm; A2
∼=C1×·· · ×Cn,

where the Bi and Cj are indecomposable. Consequently,
A∼=B1×·· · ×Bm×C1 ×·· ·×Cn .
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Combining Homomorphisms Using Products

Using direct products there are two obvious ways of combining families
of homomorphisms into single homomorphisms.

Definition

(i) If we are given maps αi :A→Ai , i ∈ I , then the natural map α :A→
∏

i∈I Ai

is defined by (α(a))(i)=αi (a).

(ii) If we are given maps αi :Ai →Bi , i ∈ I , then the natural map

α :
∏

i∈I Ai →
∏

i∈I Bi is defined by (α(a))(i)=αi (a(i)).

Theorem

(a) If αi :A→Ai , i ∈ I , is an indexed family of homomorphisms, then the
natural map α is a homomorphism from A to A∗ =

∏

i∈I Ai .

(b) If αi :Ai →Bi , i ∈ I , is an indexed family of homomorphisms, then the
natural map α is a homomorphism from A∗ =

∏

i∈I Ai to B∗ =
∏

i∈I Bi .
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Proof of the Natural Map Theorem

Suppose αi :A→Ai is a homomorphism for i ∈ I . Then for
a1, . . . ,an ∈A and f ∈Fn, we have, for i ∈ I ,

(α(f A(a1, . . . ,an)))(i) = αi (f
A(a1, . . . ,an))

= f Ai (αi (a1), . . . ,αi (an))
= f Ai ((α(a1))(i), . . . ,(α(an))(i))

= f A
∗

(α(a1), . . . ,α(an))(i).

Hence, α(f A(a1, . . . ,an))= f A
∗

(α(a1), . . . ,α(an)), so α is indeed a
homomorphism.

Case (b) is a consequence of (a) using the homomorphisms αi ◦πi :

A∗
πi✲ Ai

αi✲ Bi

B∗

✻
natural

✲
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Separation of Points

Definition

If a1,a2 ∈A and α :A→B is a map, we say α separates a1 and a2 if

α(a1) 6=α(a2).

The maps αi :A→Ai , i ∈ I , separate points if for each a1,a2 ∈A, with
a1 6= a2, there is an αi , such that αi(a1) 6=αi(a2).

Lemma

For an indexed family of maps αi :A→Ai , i ∈ I , the following are
equivalent:

(a) The maps αi separate points.

(b) The natural map α :A→
∏

i∈I Ai is injective.

(c)
⋂

i∈I kerαi =∆.
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Proof of the Separation of Points Lema

(a)⇒(b): Suppose a1,a2 ∈A and a1 6= a2. Then, for some i ,
αi (a1) 6=αi (a2). Hence (α(a1))(i) 6= (α(a2))(i). So α(a1) 6=α(a2).

(b)⇒(c): For a1,a2 ∈A, with a1 6= a2, we have α(a1) 6=α(a2), hence
(α(a1))(i) 6= (α(a2))(i), for some i ; so αi (a1) 6=αi (a2), for some i ; and
this implies 〈a1,a2〉 6∈ kerαi , so

⋂

i∈I kerαi =∆.

(c)⇒(a): For a1,a2 ∈A, with a1 6= a2, 〈a1,a2〉 6∈
⋂

i∈I kerαi so, for some
i , 〈a1,a2〉 6∈ kerαi , hence αi(a1) 6=αi(a2).

Theorem

If we are given an indexed family of homomorphisms αi :A→Ai , i ∈ I , then
the natural homomorphism α :A→

∏

i∈I Ai is an embedding iff
⋂

i∈I kerαi =∆ iff the maps αi separate points.

This is immediate from the lemma.
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Subsection 7

Subdirect Products and Simple Algebras
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Subdirect Products and Subdirect Embeddings

Definition

An algebra A is a subdirect product of an indexed family (Ai )i∈I of
algebras if:

(i) A≤
∏

i∈I Ai ;

(ii) πi(A)=Ai , for each i ∈ I .

An embedding α :A→
∏

i∈I Ai is subdirect if α(A) is a subdirect product
of the Ai .

If I =;, then A is a subdirect product of ; iff A=
∏

;, a trivial
algebra.
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The Subdirect Embedding Lemma

Lemma

If θi ∈ConA, for i ∈ I , and
⋂

i∈I θi =∆, then the natural homomorphism
ν :A→

∏

i∈I A/θi , defined by

ν(a)(i)= a/θi

is a subdirect embedding.

Let νi be the natural homomorphism from A to A/θi , for i ∈ I .

Since kerνi = θi and
⋂

i∈I θi =∆, it follows that ν is an embedding.
Since each νi is surjective, ν is a subdirect embedding.
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Subdirect Irreducibility

Definition

An algebra A is subdirectly irreducible if, for every subdirect embedding

α :A→
∏

i∈I

Ai ,

there is an i ∈ I , such that πi ◦α :A→Ai is an isomorphism.

Theorem

An algebra A is subdirectly irreducible iff A is trivial or
there is a minimum congruence in ConA− {∆}. In the
latter case the minimum element is

⋂

(ConA− {∆}), a
principal congruence, and the congruence lattice of A

looks as in the diagram.
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Subdirect Irreducibility (Cont’d)

(⇒): If A is not trivial and ConA− {∆} has no minimum element, then
⋂

(ConA− {∆})=∆. Let I =ConA− {∆}. Then the natural map
α :A→

∏

θ∈I A/θ is a subdirect embedding by the lemma. The natural
map A→A/θ is not injective for θ ∈ I , whence A is not subdirectly
irreducible.

(⇐): If A is trivial and α :A→
∏

i∈I Ai is a subdirect embedding then each
Ai is trivial. Hence, each πi ◦α is an isomorphism.

So suppose A is not trivial, and let θ =
⋂

(ConA− {∆}) 6=∆. Choose
〈a,b〉 ∈ θ, a 6= b. If α :A→

∏

i∈I Ai is a subdirect embedding, then for
some i , (α(a))(i) 6= (α(b))(i). Hence (πi ◦α)(a) 6= (πi ◦α)(b). Thus,
〈a,b〉 6∈ ker(πi ◦α) so θ* ker(πi ◦α). This implies ker(πi ◦α)=∆ so
πi ◦α :A→Ai is an isomorphism. Consequently, A is subdirectly
irreducible.

If ConA− {∆} has a minimum element θ, then for a 6= b and 〈a,b〉 ∈ θ,
we have Θ(a,b)⊆ θ, whence θ =Θ(a,b).
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Subdirect Irreducibility and Direct Indecomposability

Examples:

(1) A finite Abelian group G is subdirectly irreducible iff it is cyclic and
|G | = pn, for some prime p.

(2) Given a prime number p, the Prüfer p-group Zp∞ , the group of pn-th
roots of unity, n ∈ω, is subdirectly irreducible.

(3) Every simple group is subdirectly irreducible.
(4) A vector space over a field F is subdirectly irreducible iff it is trivial or

one-dimensional.
(5) Any two-element algebra is subdirectly irreducible.

A directly indecomposable algebra need not be subdirectly irreducible -
for example, a three-element chain as a lattice.

Theorem

A subdirectly irreducible algebra is directly indecomposable.

Clearly the only factor congruences on a subdirectly irreducible algebra
are ∆ and ∇. Such an algebra is directly indecomposable.
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Subdirect Decomposability

Theorem (Birkhoff)

Every algebra A is isomorphic to a subdirect product of subdirectly
irreducible algebras (which are homomorphic images of A).

As trivial algebras are subdirectly irreducible, we only need to consider
the case of nontrivial A. For a,b ∈A, with a 6= b, we can find, using
Zorn’s lemma, a congruence θa,b on A which is maximal with respect
to the property 〈a,b〉 6∈ θa,b. Then clearly Θ(a,b)∨θa,b is the smallest
congruence in [θa,b,∇]− {θa,b}, so we see that A/θa,b is subdirectly
irreducible. As

⋂

{θa,b : a 6= b}=∆, we can apply a preceding result to
show that A is subdirectly embeddable in the product of the indexed
family of subdirectly irreducible algebras (A/θa,b)a 6=b.

Corollary

Every finite algebra is isomorphic to a subdirect product of a finite number
of subdirectly irreducible finite algebras.
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Simple Algebras

Definition

An algebra A is simple if ConA= {∆,∇}. A congruence θ on an algebra A

is maximal if the interval [θ,∇] of ConA has exactly two elements.

We do not require that a simple algebra be nontrivial.

Just as the quotient of a group by a normal subgroup is simple and
nontrivial iff the normal subgroup if maximal, we have a similar result
for arbitrary algebras.

Theorem

Let θ ∈ConA. Then A/θ is a simple algebra iff θ is a maximal congruence
on A or θ=∇.

We know that ConA/θ ∼= [θ,∇A]. So the theorem is an immediate
consequence of the definition.
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