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Varieties Class Operators and Varieties

Subsection 1

Class Operators and Varieties
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Varieties

Definition
We introduce the following operators mapping classes of algebras to classes
of algebras (all of the same type):

Acl(K) iff A is isomorphic to some member of K

AeS(K) iff Ais a subalgebra of some member of K

AcH(K) iff Ais a homomorphic image of some member of K

AeP(K) iff Ais a direct product of a nonempty family of algebras in K
A€ Pg(K) iff Ais a subdirect product of a nonempty family of algebras in K.

If O and O, are two operators on classes of algebras we write O; O, for
the composition of the two operators. < denotes the usual partial ordering:
01 = 0y if O01(K) € 02(K), for all classes of algebras K. An operator O is
idempotent if 0> = 0. A class K of algebras is closed under an operator

Oif O(K)cK.
o For any operator O above, O(g) = @.

o If [1@ is included (so that P(K) and Ps(K) always contain a trivial
algebra) some problems occur in formulating preservation theorems.

George Voutsadakis (LSSU) Universal Algebra



Varieties

Lemma

The following inequalities hold:

SH<HS, PS<SP, PH<HP.

Also the operators, H,S and IP are idempotent.

o Suppose A e SH(K). Then, for some B € K and onto homomorphism
a:B—C, we have A<C. Thus, a }(A) <B. But a(a !(A))=A.
Hence, A€ HS(K).

If Ae PS(K), then A=T];c; A, for suitable A;<B;e K, iel. But
[Tic;A; <Il;e; B;. Hence, A€ SP(K)

If A€ PH(K), then there are algebras B; € K and epimorphisms
a;:B;— A;, such that A=T]];c; A;. We can show that the mapping
@ [ljc;Bi— [1je/ Aj, defined by a(b)(i) = a;(b(i)) is an epimorphism.
Hence, A€ HP(K).



o Suppose A € H?(K). Then, there exists an epimorphism f:C — A and
an epimorphism a : B — C, where Be K. Thus, foa:B — A is an
epimorphism, with B € K. Hence, A€ H(K). Therefore,

H?(K) < H(K). The reverse inclusion is trivial.

o Suppose A€ S2(K). Then A<C, where C <B, for some Be K.
Thus, A<B, with Be K and, hence, A€ S(K). Therefore,
S2(K) < S(K). The reverse inclusion is trivial.

o Suppose A€ (IP)?(K). Then A=T];e; A;, where, for all i€/,
A; =[ljey Ajj, with Aj e K, for all iel, je J;. But then

A=TIA=TTT1A;= [ As

iel i€l jeJ; iel
Jjedi

Since {Ajj:iel,je i< K, we get that A€ IP(K). Thus,
(IP)?(K) < IP(K). The reverse inclusion is trivial.
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A nonempty class K of algebras of type & is called a variety if it is closed
under subalgebras, homomorphic images and direct products.

o Note that:
o all algebras of type & form a variety;
o the intersection of a class of varieties of type & is again a variety.
Thus, for every class K of algebras of the same type there is a
smallest variety containing K.

If K is a class of algebras of the same type, let V(K denote the smallest
variety containing K. We say that V(K) is the variety generated by K.
If K has a single member A, we write simply V(A). A variety V is finitely
generated if V = V/(K), for some finite set K of finite algebras.
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Varieties Class Operators and Varieties

Tarski's Characterization of Varieties

Theorem (Tarski)
V = HSP.

o Since HV =SV =IPV =V and I =V, we have HSP < HSPV = V.

We also have:

o H(HSP)=HSP;

o S(HSP) < HSSP = HSP;

o P(HSP) < HPSP < HSPP < HSIPIP = HSIP < HSHP < HHSP = HSP.
Hence, for any K, HSP(K) is closed under H,S and P. But V(K) is
the smallest class containing K and closed under H,S and P.
Therefore, V < HSP.

We conclude that V = HSP.
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Varieties Class Operators and Varieties

Birkhoff's Theorem for Varieties

Theorem (Birkhoff's Theorem for Varieties)

If K is a variety, then every member of K is isomorphic to a subdirect
product of subdirectly irreducible members of K.

Corollary

A variety is generated by its subdirectly irreducible members.

o Let K be a variety and A€ K. By Birkhoff's Theorem, A € IPs(Ksy),

where Kg; denotes the class of all subdirectly irreducible members of
K. Now we have

A€ IPs(Ks)) < ISP(Ks) < V(Ks).

Therefore, K is generated by its subdirectly irreducible members.

George Voutsadakis (LSSU) Universal Algebra June 2020 9/76



Varieties = Terms, Term Algebras and Free Algebras

Subsection 2

Terms, Term Algebras and Free Algebras
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Varieties

Definition
Let X be a set of (distinct) objects called variables. Let & be a type of
algebras. The set T(X) of terms of type F over X is the smallest set
such that:

XuZFyc T(X).

If p1,...,pn€ T(X) and f € &, then the “string” f(p1,...,pn) € T(X).

o T(X)#@ iff XuF # 8.

o For a binary function symbol e, we often write p; e p, instead of
*(p1, p2).

o For pe T(X), we often write p as p(xi,...,Xp) to indicate that the
variables occurring in p are among xi,...,Xp.

o A term p is n-ary if the number of variables appearing explicitly in p is

=n.
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Let & consist of a single binary function symbol o. Let X ={x,y,z}.
The following

X, ¥, Z, xsy, yez, xe(yez), (xey)ez

are some of the terms over X.

Let & consist of two binary operation symbols + and -. Let X be as
before. The following

X, ¥, z, x-(y+z), (x-y)+(x-z)

are some of the terms over X.

The classical polynomials over the field of real numbers R are really
the terms of type &, consisting of +,- and —, together with a nullary
function symbol r, for each re R.
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Varieties

Given a term p(xq,...,x,) of type & over some set X and given an algebra
A of type &, we define a mapping p” : A" — A as follows:

if pis a variable x;, then

pA(alr---ran) = 3,',

for a1,...,ap € A, i.e., pA is the i-th projection map;

if p is of the form f(p1(x1-.-,Xn),---, Pk(X1,.-.,Xn)), where f € F, then

pP(aL,...,an) = fA(plA(al,...,a,,),...,p,’?(al,...,an)).
In particular if p=f € %, then p” = fA.

We say p” is the term function on A corresponding to the term p. Often
the superscript ? is omitted.
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Varieties

For any type & and algebras A,B of type &, we have the following:
Let p be an n-ary term of type &. Let 6 € ConA. Suppose (a;, b;) €0,
for 1<i<n. Then pP(ay,...,an) 6 pP(by,...,bn).
If pis an n-ary term of type & and a: A — B is a homomorphism,
then
a(pP(ai,...,an)) = pB(a(ar),...,a(an)),
for ay,...,an € A.
Let S be a subset of A. Then

Sg(S) = 1{pP(a1,...,an): pis an n-ary term of type &,
n<w, ai,...,an € Sh.
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o Given a term p define the length ¢(p) of p to be the number of
occurrences of n-ary operation symbols in p, for n=1. Note that
(p)=0iff pe XU F.

We proceed by induction on ¢(p).

s If £(p) =0, then either p=x;, for some i, or p=ae Fy.

o If p=x;, for some i, (pA(al,...,an),pA(bl,...,b,,)) =(aj, b;) €0,
o If p=a, for some a€ %y, then
(pA(al,... ,an),pA(bl,...,bn)) = (aA,aA) €0.

o Now suppose ¢(p) >0 and the assertion holds for every term g with
¢(q) < €(p). Then we know p is of the form f(p1(x1,...,Xn),---,
pr(x1,.-.,%n)). Since €(p;) <€(p), we must have, for 1 <i<k,
(p;“(al,...,a,,),pf\(bl,...,b,,))66. Hence,

(fA(plA(al,...,an),...,pkA(al,...,an)),
FA(PR (b1 bn),..., PR (b1, bn))) €6.

Consequently (pA(al,...,a,,),pA(bl,...,b,,)) €0.
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The proof of this is an induction argument on ¢(p).
o If £(p)=0, then p=x;, for some i, or p=ae Fy.
o If p=x;, for some i, then

a(pP(ay,....an)) = a(a;) = pB(a(ay),..., a(an)).

o If p=aeFy, then, by definition, a(a?)=aB.

o Suppose ¢(p)>0. Then p=f(p1(x1,.--,%n),---» P(X1,...,Xn)), for some
f € Fk, where €(p1),...,4(px) < €(p). Thus, we get

a(pA(al,...,an)) = afA(pi(al, . an),- .,pkA(al,...,an)))
fB(a(p1 (a1,..-,an)),- ..,a(pkA(al,...,an)))
= B(pP(a(a1),...,a(an)),- ..,
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By induction, we show that, for k=1,

EX(S)<c {p”(a1,...,an): p is an n-ary term;
{(p)<k n<w, a,...,an € S}.

The right side is always = Sg(S) since (by induction) every subuniverse
B of A is closed under the term functions of A.

Thus,
Sg(S) = Uk<oEX(S)
c {pP(a1,...,an): pis an n-ary term of type &,
n<w, ai,...,ap €S}
c  Sg($).
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Given & and X, if T(X)# @, then the term algebra of type F over X,
written T(X), has as its universe the set T(X) and the fundamental

operations satisf:
P Y T py, s po) — F(PLr-es P),

for feZ, and pje T(X), 1<i<n. T(@) exists iff F # @.
o T(X) is generated by X.

Let K be a class of algebras of type & and let U(X) be an algebra of type
& which is generated by X. If, for every A € K and for every map
a: X — A, there is a homomorphism B:U(X)— A, which extends «a (i.e.,
B(x) = a(x), for x € X), then we say U(X) has the universal mapping
property for K over X. X is called a set of free generators of U(X), and
U(X) is said to be freely generated by X.
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Varieties

Lemma
Suppose U(X) has the universal mapping property for K over X. Then, if
we are given A€ K and a: X — A, there is a unique extension f of a, such

that B is a homomorphism from U(X) to A.
X —— U(X)

!

o Suppose B, both extend a and let a€ U(X). Then, there exists
n-ary p and xi,...,x, € X, such that a= pU(X)(xl,...,x,,). Therefore,

ﬁ(a) :B(pU(X)(Xl)---)Xn)) = PA(,B(Xl),...,,B(x,,))
pA((:[;,(Xl)’-'-’,B,(Xn)) = ,B,(PU(X)(Xl,...,Xn))
B'(a).

Universal Algebra
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Varieties

o For a given cardinal m, there is, up to isomorphism, at most one
algebra in a class K which has the universal mapping property for K
over a set of free generators of size m.

Theorem

Suppose U1 (X71) and Uy(X3) are two algebras with the universal mapping
property for K over the indicated sets. If U;(X7),U2(X2) € K and
| X1l =1Xal, then U1(X1) = Ua(X2).

o The identity map ;: X; — Xj, j=1,2, has as its unique extension to a
homomorphism from U;(X;) to U;(X;) the identity map. Now let
a: X1 — Xo be a bijection. Then we have homomorphisms
B :U1(X1) — Uz(X2) extending a, and y: Ua(X2) — U1(X1) extending
a~!. But Boy is an endomorphism of Uy(X>) extending 1o. It follows
that oy is the identity map on Uy(X3). Likewise yo B is the identity
map on U;(X1). Thus, B is a bijection. So U1(X1) = Ua(X2).
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Varieties

Theorem
For any type & and set X of variables, where X # @ if %= @, the term
algebra T(X) has the universal mapping property for the class of all
algebras of type & over X.

o Let a: X — A, where A is of type &. Define §: T(X) — A recursively
by:
o PBx=ax, for xe X;
o Forall fe%, and all py,...,pn € T(X),

B(F(P1r-..,Pn)) = FA(B(p1).... B(Pn)).

Then, for every n-ary term p(xy,...,Xn),

Blp(x1,-rxn)) = PR (1), ., a(xn)),

and B is the desired homomorphism extending .
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Varieties

Definition

Let K be a family of algebras of type &. Given a set X of variables, let
D (X)={peConT(X): T(X)/peIS(K)}.
Define the congruence 0k (X) on T(X) by
Ok (X) =[Pk (X).

Then letting X = X/0k(X), define Fi(X), the K-free algebra over X,

by Fic(X)=T(X)/0k(X).

For x € X, we write X for x/0k(X), and for p=p(x1,...,xp) € T(X), we
write p for pFc(X)(x1,...,%,).

If X is finite, say X = {xy,..., xn}, we often write Fx(x1,...,X,), for FK(Y).
Fic(X) is the universe of Fy(X).
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Fx(X) exists iff T(X) exists iff X #@ or Fo#@, i.e., XUF#Q.
If Fx(X) exists, then X is a set of generators of Fy(X) as X
generates T(X).

If Fo# @, then the algebra Fx (@) is often referred to as an initial
object.

If K =@ or K consists solely of trivial algebras, then Fy(X) is a trivial
algebra as Ok (X)=V.

If K has a nontrivial algebra A and T(X) exists, then

XN (x/0k(X))=1{x} as distinct members x,y of X can be separated
by some homomorphism a: T(X)— A. In this case |X|=|X]|.

If IX| =1Y| and T(X) exists, then clearly Fx(X)=Fk(Y) under an
isomorphism which maps X to Y as T(X)=T(Y) under an
isomorphism mapping X to Y. Thus Fx(X) is determined, up to
isomorphism, by K and |X].
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Varieties

Theorem (Birkhoff)

Suppose T(X) exists, i.e., XUZo#@®. Then F(X) has the universal
mapping property for K over X.

o Given A€ K let a be a map from X to A. Let v: T(X) — Fx(X) be
the natural homomorphism. Then aov maps X into A. By the
universal mapping property of T(X), there is a homomorphism
p: T(X)— A extending (aov) [x. Since T(X)/keru=pu(T(X)) <A,
kerp € @k (X). Thus, Ok (X) < kerp. Hence, there is a homomorphism
B:Fi(X)— A, such that u=Bov, as kerv=0x(X). But then, for
xeX, B(X)=Pov(x)=pu(x)=aov(x)=a(x). So B extends a. Thus,
Fx(X) has the universal mapping property for K over X.

o If Fx(X) €K, then it is, up to isomorphism, the unique algebra in K,
with the universal mapping property freely generated by a set of
generators of size [X]|.
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T(X) is isomorphic to the free algebra for the class K of all algebras
of type & over X, since Ok (X)=A. The corresponding free algebra is
sometimes called the absolutely free algebra F(X) of type &.

Given X, let X* be the set of finite strings of elements of X, including
the empty string. We can construct a monoid (X*,-,1) by defining - to
be concatenation, and 1 is the empty string. By checking the universal
mapping property one sees that (X*,-,1) is, up to isomorphism, the
free monoid freely generated by X.
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Varieties

Corollary

If K is a class of algebras of type & and A € K, then for sufficiently large
X, Ae H(Fk(X)).

9 Choose_IXI >|A| and let @: X — A be a surjection. Then let
B :Fx(X)— A be a homomorphism extending a.

o In general Fx(X) is not isomorphic to a member of K.
. Let K ={L}, where L be a two-element lattice. Then
Fr(xy) ¢ 1(K).
o On the other hand, Fx(X) can be embedded in a product of members
of K.
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Varieties = Terms, Term Algebras and Free Algebras

Free Algebras in Varieties

Theorem (Birkhoff)
Suppose T(X) exists, i.e., XUZFo #@. Then, for K # @, Fi(X) € ISP(K).
Thus, if K is closed under /,S and P, in particular if K is a variety, then
Fx(X)eK.
o We have 0k (X)=N®k(X). Hence,
Fr(X)=T(X)/0k(X) € IPs({T(X)/0:0 € Dk (X)}).
Thus, Fx(X) € IPsIS(K). But Ps <SP and PS < SP. Therefore,

Fx(X) € IPsS(K) < ISPS(K) < ISSP(K) = ISP(K).
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Varieties

o We know that if a variety has a nontrivial algebra in it, then it must
have a nontrivial subdirectly irreducible algebra in it.

Theorem (Magari)

If we are given a variety V with a nontrivial member, then V' contains a
nontrivial simple algebra.

o Let X=1{x,y}, and let S={p(X): pe T(ix})}, a subset of Fy/(X).
First, suppose that ©(S) #V in ConFy(X).
Claim: For 6 €[0(S),V], 6 =V iff (x,y) €.
Suppose O(S) <6 and (x,y)€ 0. Then for any term p(x,y), we have
pFV(Y)(Y,)_/) 0 pFV(Y)(Y,?) 0O(S) x. Hence 6 =V.
By the claim, every chain in [©(S),V]—{V} has a maximal element. By

Zorn's Lemma, [©(S), V] —{V} has a maximal element 6. Then
Fy(X)/0o is a simple algebra and it is in V.
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o Now suppose that ©(S)=V. Then, since © is an algebraic closure
operator, it follows that, for some finite subset Sy of S, we must have
(X, 7)€ 0(Sp). Let S be the subalgebra of Fy/(X), with universe S
(S =Sg({x}1)). Since V is nontrivial, X#Yy in FV(Y). Since
x,y)€0(S), S is nontrivial.

: Vs =0(Sp), where O in this case is understood to be the
appropriate closure operator on S.

Let p(x) €S and let @:Fy(X)— S be the homomorphism defined by

(%) =% a(y)=p(x).

Since (x,7) € O(Sy) in Fy/(X), we get (x,p(X))€O(Sp) in S as

a(So) = 50.

Using Zorn's Lemma, we can find a maximal congruence 6 on S as Vg
is finitely generated. Hence, S/6 is a simple algebra in V.
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An algebra A is locally finite if every finitely generated subalgebra is finite.
A class K of algebras is locally finite if every member of K is locally finite.

A variety V is locally finite iff
X|<w = |Fy(X)l <o.

Clear, since X generates Fy/(X).

Let A be a finitely generated member of V, and let B < A be a finite
set of generators. Choose X, such that we have a bijection a: X — B.
Extend this to a homomorphism f:Fy (X)— A. As B(Fy(X)) is a
subalgebra of A containing B, it must equal A. Thus f§ is surjective,
and as Fy/(X) is finite so is A.
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Varieties

Let K be a finite set of finite algebras. Then V(K) is a locally finite variety.

. P(K) is locally finite.
Let A€ P(K) and S ={ay,...,an} a finite subset of A. We must show
SgA(S) is finite. But

Sg”(S) = {pP(a1,...,an) : p is an n-ary term of type F}.

Thus, it suffices to show that the set T({x1,...,xn})/ ~K'is finite,
where ~K is the equivalence relation on T ({xy,...,xp}), defined, for all
p,g€ T({x1,...,xn}), by

p~Kq iff pX=gX, forall KeK.
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o We must show that the set T(ix,...,x,})/ ~¥ is finite.
This is clear, since, if K={A1,...A} and |A;|=k;, 1<i<m, then
there are at most k{'-kJ'----- k. different functions on n-variables
agreeing on every member of K.
Now note that SP(K) is locally finite.

And, since every finitely generated member of HSP(K) is a
homomorphic image of a finitely generated member of SP(K),
HSP(K) is locally finite. Hence, V is locally finite.
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Varieties Identities, Free Algebras and Birkhoff's Theorem

Subsection 3

Identities, Free Algebras and Birkhoff's Theorem
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Varieties

Definition
An identity of type & over X is an expression of the form p =~ g, where
p,ge T(X). Let Id(X) be the set of identities of type & over X.
An algebra A of type & satisfies an identity p(x1,...,xn) = q(x1,...,xn) if,
for every choice of ay,...,a, € A, we have pP(ay,...,an) = q?(ay1,...,an). If
so, then we say that the identity is true in A, or holds in A, and write
A= p(x1,...,xn) = g(x1,...,Xn), or more briefly Al=p=gq.
o If T is a set of identities, we say A satisfies X, written A =X, if
Al=p=q, for each p=geX.
o A class K of algebras satisfies p ~ g, written K |=p~ g, if each
member of K satisfies p=q. Set ldx(X)={p=qgeld(X): KEp=q}.
o If X is a set of identities, we say K satisfies T, written K |=Z, if
Kl=p=gq, for each pxgeX.
We use the symbol [ for “does not satisfy".
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Varieties

Lemma
If K is a class of algebras of type & and p = q is an identity of type & over
X, then K |= p = q iff, for every A € K and for every homomorphism
a:T(X)— A, we have a(p) =a(q).

Let p=p(x1,...,%n),q=q(x1,...,xn). Suppose K |=p=q, AeK, and
a:T(X)— A is a homomorphism. Then

pA(a(x),...,a(x)) = ¢?(a(x1), ..., a(xn))

> alp" X (x,...,x0)) = a(gTX) (xq,...,Xn))

= a(p)=a(q).
For the converse choose A€ K and ay,...,a, € A. By the universal
mapping property of T(X), there is a homomorphism a: T(X) — A,
such that a(x;)=a;, 1<i<n. But then pA(ay,...,a,) =
pA(a(x1),...,a(xn)) = a(p) = a(q) = ¢*(a(x1),..., a(xn)) =
q”(a1,...,an). So KI=p=gq.



Varieties

For any class K of type &, all of the classes K,/(K),S(K), H(K), P(K)
and V/(K) satisfy the same identities over any set of variables X.

o Clearly K and /(K) satisfy the same identities. As / </S,/ < H and
I <IP, we must have |dK(X) 2 |d5(K)(X),|dH(K)(X),|C|p(K)(X). For
the remainder of the proof suppose K = p(x1,...,xn) = q(x1,...,Xn)-
Let B=<AeK and by,...,b,€ B. As by,...,b, € A, we have
p™(by,...,bn) = g”(by,...,by). Hence, pB(by,...,b,) = qB(by,...,bn).
so BEp=gq. Thus, Idg(X)=Idsk)(X).

Let a: A — B be a surjective homomorphism with A€ K. If
bi,...,bp € B, choose ay,...,an € A, such that a(a;) = by,...,a(a,) =
bn. Then, pA(ay,...,an) = g™ (a1,...,an), implies a(p®(ay,...,a,)) =
a(qA(al,...,an)). Hence pB(bl,...,bn)=qB(b1,...,bn). Thus,
BEp=gq. So ldk(X) = |dH(K)(X).
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Varieties Identities, Free Algebras and Birkhoff's Theorem

Basic Class Operators Preserve Identities (Cont'd)

o Lastly, suppose A;€ K, for iel. Then, for a1,...,an€ A=Tlic; Ai, we

have

pi(a1(i),...,an(i) = g™ (a1(i),..., an(i)),
hence

p*(a1,...,an) (1)) =g (a1,...,an) (i), i€l

pA(al,...,a,,) = qA(al,...,a,,).
Thus, |dK(X) = |dp(K)(X).
As V = HSP, the proof is complete.
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Varieties

Given a class K of algebras of type & and terms p,q € T(X) of type &, we
have:

KEp=q © Fx(X)Eprq © p=qin Fx(X) < (p,q)€Ox(X).

o Let F=Fx(X),p=p(x1,.--,xn),q=q(x1,...,x5) and let v: T(X) - F
be the natural homomorphism.

o Certainly K |=p=q implies F|= p= g, as F € ISP(K).

o Assume Fl=p=gq. Then pF(Yl,...,E,,) = qF(El,...,Y,,), hence p=7q.

o Now suppose p=7g in F. Then v(p)=p=g=v(q). so
(p,q) € kerv =0k (X).

o Finally, suppose (p,q) € 0k (X). Given A€ K and ay,...,a, € A, choose
a:T(X)— A, such that a(x;) =a;, 1 <i<n. We have kera € @k (X).
Hence, kera 2 kerv =0y (X). It follows that there is a homomorphism
B:F— A, such that @ = fov. Then a(p) =fov(p) =Bov(q)=a(q).
Consequently K = p=q.
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Varieties Identities, Free Algebras and Birkhoff's Theorem

Various Sets of Variables

Corollary

Let K be a class of algebras of type &, and suppose p,g€ T(X). Then for
any set of variables Y, with |Y|=|X], we have

Kiep=q iff Fx(Y)Ep=gq.

(~) This is obvious, as Fx(Y) € ISP(K).
(<) Choose Xp= X, such that | Xp| =1Y]|. Then FK(YO) = FK(V), and,
since, by the theorem,

Kep=q iff Fx(Xo)Ep=gq,

it follows that
Kep=q iff Fx(Y)Ep=aq.
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Varieties Identities, Free Algebras and Birkhoff's Theorem

Identities Over Various Sets of Variables

Corollary

Suppose K is a class of algebras of type & and X is a set of variables.
Then, for any infinite set of variables Y/,

Ik (X) = Idg, i (X).
o For p=qgeldk(X), say p=p(x1,..-,Xn),q=q(x1,...,xn), we have
p,ge T({x1,...,xn}). As |{x1,...,xn}| <|YI, by the preceding corollary,
Kiep~q iff Fx(Y)Ep=~q,

so the corollary is proved.
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Definition
Let = be a set of identities of type & and define M(Z) to be the class of
algebras A satisfying . A class K of algebras is an equational class if
there is a set of identities Z, such that K= M(Z). In this case, we say that
K is defined, or axiomatized, by X.

Lemma
If V is a variety and X is an infinite set of variables, then V = M(Id\/(X)).

o Let V'=M(Id\/(X)). V'is a variety by a preceding result. Also,
V'2V and Idy/(X) =1dy(X). So, we get Fy/(X)=Fy(X). Now
given any infinite set of variables Y, we have Idy/(Y) = IdFV/(Y)(Y) =
lde, ) (Y) =1dv(Y). Thus, 8y/(Y)=6v(Y) and Fu (Y)=Fy(Y).
For A€ V', we have for suitable infinite Y, A€ H(F\/(Y)). Thus,
AcH(Fy(Y)). So Ae V. Therefore, V' c V.
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Theorem (Birkhoff)

K is an equational class iff K is a variety.

Suppose K =M(Z). Then V(K)EZ. Hence, V(K)= M(Z)=K. so
V(K)=K, i.e., K is a variety.

By the preceding lemma, K = M(ldk (X)), for an infinite X.

Corollary

Let K be a class of algebras of type Z. If T(X) exists, i.e., XUZFp # @,
and K' is any class of algebras such that K< K’ < V(K), then
Fr/(X)=Fk(X). In particular, if K# @, Fx/(X) € ISP(K).

o Since ldk (X) =Idy(k)(X), it follows that Idx(X) =Idk/(X). Thus
O/ (X) =0k (X), so Fi(X) =Fk(X). The last statement of the
corollary now follows.
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Varieties Identities, Free Algebras and Birkhoff's Theorem

Large K-Free Algebras

Theorem

Let K be a nonempty class of algebras of type &. Then, for some cardinal
m, if [X|=m, we have F(X) € IPs(K).

o Choose a subset K* of K, such that for any X, Idk-(X) =Idk(X):

Choose an infinite set of variables Y. Then select, for each identity
p=qin ld(Y)—Idk(Y) an algebra A€ K, such that Al p=gq.

Now K* is a set. So there exists an infinite upper bound m of
{IAl: Ae K*}.
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o Given X, let Yk+(X)={peConT(X): T(X)/pel(K*)}.
Then Wk« (X) € Pk-(X), whence MW k+(X) 20+ (X). To prove
equality for | X|= m, suppose (p,q) & Ok+(X). Then K* £ p=q.
Hence, for some Ae K*, At p=q. If p=p(x1,...,xn),
q=q(x1,...,%n), choose aj,...,an € A, such that
p™(a1,...,an) # g™ (a1,...,an). As |X|= Al we can find a mapping
a: X — A which is onto and a(x;)=aj,1<i<n. Then a can be
extended to a surjective homomorphism f: Fx-(X) — A and
B(p) # B(q). Thus (p,q) g kerBe¥k-(X). So (p,q) ¢N¥xk-(X).
Consequently

N¥x-(X) =0k (X).

As F(X) =Fk-(X), it follows that Fx(X)=T(X)/N¥x-(X).
Then we have Fk(X) € IPs(K*) < IPs(K).
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Varieties Identities, Free Algebras and Birkhoff's Theorem

Another Characterization of V

Theorem
V = HPs.

o As Ps <SP, we have
HPs<HSP<V.

Given a class K of algebras and sufficiently large X, we have

Fv(k)(X) € IPs(K), by the preceding theorem. Hence,
V(K)< HPs(K), by a preceding result. Thus V = HPs.
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Subsection 4

Mal'cev Conditions
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Varieties

o Properties of varieties characterized by the existence of certain terms
involved in certain identities are referred to as Mal’cev conditions.
Let V be a variety of type &, and let p(x1,...,Xm,y1,---,¥n),

q(x1,---»Xm, Y1,---,¥n) be terms such that in F =Fy(X), where
X ={x1,...,Xm, Y1,---,¥n}, We have

(PF(}L---,me}_/p---,yn)y qF(}]_)---)Ymrylr"'YYn)) € G)(YI""’.VH)'
Then VI=p(x1,-c o Xm Yoo ¥) = q(X1, oo Xy Vo oo YY)

o The homomorphism a:Fy(X1,....Xm Y1,--,¥n) = Fv(X1,---, Xm, ¥),
defined by a(xj)=x;, 1<i<m, and a(y;) =y, 1 <i<n, is such that
0(yq,...¥,) Skera. So
a(p(X1,-- Xm Y1r--¥n)) =a(q(X1,.- -, Xm ¥1,---»¥p)). Thus,

PR e X oo s 7) = G(Xes e Xem Voo s ¥) in Fy(Rree e Xom V).
Hence, V= p(x1,...,Xm Yoo ¥) = q(X1, -, Xmy Voo, ¥)-



Varieties

Theorem (Mal'cev)

Let V be a variety of type &. The variety V is congruence-permutable iff
there is a term p(x,y,z), such that

ViEp(x,x,y)=y and VI=p(x,y,y)=x.

Suppose V is congruence-permutable. In Fy/(X,y,z), we have
(x,Z2)€0O(X,y)00(y,z). So (x,z) € O(y,z)oO(X,y). Hence, there is a
p(x,y,z) € Fy(x,y,z), such that X O(y,z) p(x,y,z) ©(x,y) z. By the
lemma, VI=Ep(x,y,y)=x and V= p(x,x,z) = z.

Let A€ V and ¢, € ConA. Suppose (a,b) € poy, say a ¢ c v b.
Then b=p(c,c,b) ¢ p(a,c,b) w p(a,b,b)=a. So (b,aye poy. Thus,
poy=yog.
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Varieties Mal’cev Conditions

Examples

(1) Groups (A,-,71,1) are congruence-permutable: Let

p(x,y,z)=x-y 'z

(2) Rings (R,+,-,—,0) are congruence-permutable: Let

p(X:y,z) =X—-y+tz

(%) Quasigroups (Q,/,-,\) are congruence-permutable: Let

p(x.y,2)=(x/(y\¥))- (y\2).
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Varieties

Suppose V is a variety for which there is a ternary term M(x,y,z), such

that V= M(x,x,y) = M(x,y,x) = M(y,x,x) = x.

Then V is congruence-distributive.

o Let ¢, v, y € ConA, where A€ V. Suppose (a,byepA(wVy). Then
(a, b) € ¢ and, there exist cy,...,cy, suchthat ay ¢ y & -+- ¥ ¢, x b.
Since M(a,c;, b) ¢ M(a,cj,a) = a, for each i, we get

a=M(a,a,b) (pAw) M(a,c1,b) (pAy) M(a,c,b)---
M(a,cn, b) (pAx) M(a,b,b)=b.

So (a,bye (pAw) Vv (pAy). This suffices to show
On(pvy)=(pAry)v(dAy). So V is congruence-distributive.
. Lattices are congruence-distributive:
M(x,y,z)=(xVvy)A(xVvz)A(yV2z).



Varieties

Definition

A variety V is arithmetical if it is both congruence-distributive and
congruence-permutable.

Theorem (Pixley)

A variety V is arithmetical iff it satisfies either of the equivalent conditions:
There are a congruence permutability term p and a congruence
distributivity term M.

There is a term m(x,y, z), such that
VIEm(x,y,x) = m(x,y,y) = m(y,y,x) = x.

o If Vis arithmetical, then V is congruence-permutable, so there is a
term p. Let Fy/(X,y,Z) be the free algebra in V freely generated by
{x,y,z}. We have (x,z) € ©(x,z)n[0(X,y) v O(y,Z)]. Hence,
x,2)€[0(x,2)nO(X,7)] vV [0(X,Z) nO(¥,Z)].



o Hence, (x,2) € [0(X,Z)nO(X,y)]°[0(X,Z2)nO(Y,Z)]. Choose
M(x,y,z) € Fy(X,y,Z), such that
% [0(x,2) n0(x,7)] M(%,7,Z) [0(x,2)nO(¥,Z)] Z. Then
V= M(x,x,y) = M(x,y,x) = M(y,x,x) = x.
If (a) holds, let m(x,y,z):=p(x,M(x,y,z),z). Verify that
V= m(x,y,x) = m(x,y,y) = m(y,y,x) = x.
If (b) holds, let p(x,y,z):=m(x,y,z) and
M(x,y,z) := m(x,m(x,y,z),z). Verify that V = p(x,x,y) =y,
VIEp(x,y,y)=xand VEM(x,x,y) = M(x,y,x) = M(y,x,x) = x.

Boolean algebras are arithmetical: Let
m(x,y,z)=(xAz)V(xAy' AZ)v (X' Ay AZ).
Heyting algebras are arithmetical: Let
m(x,y,z)=[(x—=y)—=z]A[(z—=y)—=x]A[xVZz].
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Theorem (Jénsson)

A variety V is congruence-distributive iff there is a finite n and terms
po(x,y,2),...,pn(x,y,2), such that V satisfies:

pi(x,y,x) = x O<i=sn

po(x,y,z)zx; p,,(x,y,z)zz

pi(x,x,y) = pi+1(x, %, y) for i even
pi(x,y,y) = pix1(xy,y) for i odd.

We have
e(x,z) r[6(x,y) ve(y,z)] =[6(x,Z) AB(X,y)] v [6(X,Z) AO(Y,Z)].
Thus, in Fy(X,y,2),
x,zy € [0(X,Z2) AO(X,y)] v [0(X,Z) AO(Y,Z)].
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Vet ]

Thus, for some p1(X,y,Z),...,pn-1(X,¥,Z) € Fy/(X,y,Z), we have

X [Q(Y'E) A Q(Y»)_/)] pl(XrY»Z)

pi(xy,2) [0(x,2)A6(y,2)] p2(Xy,2)

pra(X,7.2) [0(%2)A0(7.2)] Z
From these the desired equations fall out.
For ¢,w,y € ConA, Ae V, we need dA(wvy)<S(dAy)v(PpAay).
Let (a,b)epA(w V). Then (a,b) € ¢, and, for some cy,...,ct, we
have a ¥ ¢; x -+ ¢t x b. From these, we get, for 0<i<n,
pi(a,a,b) v pi(a,c1,b) x -+ pi(a,ct,b) x pi(a b,b). Hence,
pi(a,a,b) (¢ Ay) pi(a c1,b) (pAY) - pi(a,ce,b) (pAYx) pi(a b,b).
So pi(a,a,b) [(pAyw)v(pAay)] pi(a, b b), 0<i<n. Then in view of
the given equations, a [(pAw) Vv (PpAy)] b.
So V is congruence-distributive.

George Voutsadakis (LSSU) Universal Algebra



A variety V is congruence permutable (respectively, congruence
distributive) iff F\/(x,y,z) has permutable (respectively, distributive)
congruences.

o This follows by looking at the proofs of the corresponding Mal'cev
conditions.

o A ternary term p satisfying the congruence-permutability conditions for a
variety V is called a Mal’cev term for V;

o A ternary term M satisfying the congruence-distributivity conditions is a
majority term for V;

o A ternary term m satisfying the arithmeticity conditions is a %—minority
term for V.
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Varieties = Equational Logic and Fully Invariant Congruences

Subsection 5

Equational Logic and Fully Invariant Congruences
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A congruence 6 on an algebra A is fully invariant if, for every
endomorphism a on A,

(a,b)e6 = (a(a), a(b))€b.
Let Congi(A) denote the set of fully invariant congruences on A.

Lemma

Congi(A) is closed under arbitrary intersection.

o First, note, that VA is invariant.

Now, suppose {0;:i€ I} < Cong(A) and a is an endomorphism of A.
Then (a, by €Nje;0; implies (a,b) € 6;, i €[, implies (a(a),a(b)) €6;,
iel, implies (a(a), a(b)) € Nies 6;.
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Varieties = Equational Logic and Fully Invariant Congruences

Fully Invariant Congruence Generated by a Set of Pairs

Definition
Given an algebra A and S< Ax A let O (S) denote the least fully invariant

congruence on A containing S.
The congruence Op(S) is called the fully invariant congruence

generated by S.
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Lemma

If we are given an algebra A of type & then O is an algebraic closure
operator on Ax A. Indeed, @ is 2-ary.

o Construct A x A. To the fundamental operations of A x A add the

following:
(a,a) for ac A
s((a,b)) = <(b,a)
[ Aad), ifb=c
t(¢a.b).(c,d)) = { (a,b), otherwise
es((a,b)) = <(o(a),a(b) o endomorphism of A

Then 0 is a fully invariant congruence on A iff 6 is a subuniverse of
the new algebra we have just constructed. Thus, O is an algebraic
closure operator.
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o We show that Oy is 2-ary. Define a new algebra A* by replacing each
n-ary fundamental operation f of A by the set of all unary operations
of form f(as,...,aj-1,%,8i+1,---,@n), a1,---,3j-1,8j+1,---,an E A.

: ConA = ConA*.
Clearly 8 € ConA = 6 € ConA*. For the converse suppose that
0 € ConA* and f € Z,. Then, for (a;,b;)€0, 1<i<n, we have:

<f(31;~-~;3n—1y an)y f(al,...,a,,_l, bn)> €0
(f(al»---»an—lybn); f(aly---;bn—lrbn)> € 0

(f(al,bg,...,bg), f(bl,b2,...,bn)> €0.

Hence (f(a1,...,an),f(b1,...,bn)) €0. Thus, 6 € ConA.

Go back to the beginning of the proof. Take A* instead of A. Keep
the e,'s the same. Then O is the closure operator Sg of an algebra
all of whose operations are of arity at most 2. Tus, O is 2-ary.
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Definition

Given a set of variables X and a type &, let 7:1d(X) — T(X) x T(X) be
the bijection defined by 7(p=q)={(p,q).

Lemma

For K a class of algebras of type & and X a set of variables, 7(ldx (X)) is
a fully invariant congruence on T(X).

o Let p,g,re T(X).

o p=peldk(X). Hence, (p,p)e1(ldg(X)).

o Suppose {p,q) € T(ldk(X)). Then p=qgeldk(X). Thus,
g=peldk(X). Hence, (q,p) € t(ldk(X)).

o Suppose (p,q),{q,r) € T(ldk(X)). Then p=gq,qg=reldk(X). Thus,
p=reldg(X). Hence, (p,r) et(ldg(X)).

Therefore, 7(ldk (X)) is an equivalence relation on T(X).
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o Let fe€Fy, p1,---,PnG1,---,Gn € T(X), such that (p;,g;) € T(ldx (X)),
l<i<n. Then pj=gqjeldk(X), 1<i<n. Thus,
f(p1,--»pPn) = f(q1,-..,qn) € ldk (X). Hence,

(F(p1,---,Pn), F(q1,...,qn)) € T(ldk(X)). So 7(ldk (X)) is a
congruence relation on T(X).

o Finally, let @ be an endomorphism of T(X) and p=p(x,...,xn),
q=q(x1,...,xn) € T(X), such that (p,q) € 7(Idx(X)). Then
p(x1,.--,xn) = q(x1,...,xn) € ld (X). Thus,
p(a(x1),...,a(xn)) = g(a(x1),...,a(xn)) € ldx(X). It follows that
a(p(x1,...,xn)) = a(q(xy,...,xn)) €ld(X), i.e.,

(a(p),a(q)) € t(ldx(X)). Hence, T(Idk(X)) is fully invariant.
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Varieties = Equational Logic and Fully Invariant Congruences

Freeness of T(X)/0

Lemma

Given a set of variables X and a fully invariant congruence 6 on T(X), we
have, for p= geld(X),

T(X)/0=Ep=q < (pqgeo.
Thus, T(X)/6 is free in V(T(X)/0).

(=) If p=p(x1,..,%n), g = q(x1,...,Xn), then

T(X)/0 = p(x1,-..,xn) = q(x1,...,Xn)

= p(x1/0,...,x,/0) =q(x1/6,...,x,/0)
=  p(x1,...,xn)/0=q(x1,...,%n)/0

=  (p(x1,.-,%n), q(X1,...,Xn)) €O

> (p,qy€en.
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Given ri,...,rp € T(X), we can find an endomorphism & of T(X) with
e(x;)=r;, L<i<n. Hence,

(p(x1,-.-,Xn),q(x1,...,%n)) €0

=  (e(p(x1,.--,xn)) €(q(x1,...,%xn))y €O
= (p(n,...,m),q(r,....,ra)) €0
= p(n/6,....,m/0)=q(n/0,...,r/0).

Thus, T(X)/0Ep=q.
For the last claim, given p= g€ ld(X),
pped < T(X)/0Ep=q
o V(T(X)/0)Ep=a.
So T(X)/0 is free in V(T(X)/0).
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Given a subset X of Id(X), one can find a K, such that = =Idk(X) iff 7(X)
is a fully invariant congruence on T(X).

This was proved in a preceding lemma.

Suppose 7(Z) is a fully invariant congruence 6. Let K ={T(X)/6}.
Then by the preceding lemma, KEp=q iff (p,q) €0 iff pxqeX.
Thus X =Idk(X).

A subset X of Id(X) is called an equational theory over X if there is a
class of algebras K, such that X =Idx(X).

Corollary

The equational theories (of type %) over X form an algebraic lattice which
is isomorphic to the lattice of fully invariant congruences on T(X).
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Varieties

Definition

Let X be a set of variables and X a set of identities of type &, with
variables from X. For p,qge T(X), we say X = p=q (read: “Z yields
p=q’, or "X implies p= ¢q") if, given any algebra A, A |=X implies
Al=p=q.

Theorem

If X is a set of identities over X and p = q is an identity over X, then
2= p=qiff {p,q)€Op(1(2)).

o Assume (p,q) € Op(7(Z)) and let A be such that A= X2. 7(Ida(X)) is
a fully invariant congruence on T(X). Hence, Op(7(Z)) < 7(Ida(X)).
Thus, since (p,q) € O (7(Z)), Al=p=q.

Conversely, assume X |= p=q. But T(X)/Op(7(Z)) = Z. Hence,
T(X)/Or(1(X)) Ep=q. Thus, (p,q) €O (1(X)).



Given a term p, the subterms of p are recursively defined by:

The term p is a subterm of p.

If f(p1,...,pn) is a subterm of p and f € &, then each p; is a subterm
of p.

A set of identities T over X is closed under replacement if given any

p=qeZXand any term re T(X), if p occurs as a subterm of r, then letting
s be the result of replacing that occurrence of p by g, we have r~seX.

A set of identities T over X is closed under substitution if for each p= g

in X and for r; € T(X), if we simultaneously replace every occurrence of
each variable x; in p~ g by r;, then the resulting identity is in X.
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If X is a set of identities over X, then the deductive closure D(Z) of X is
the smallest subset of Id(X) containing X, such that:

p=peD(Z), for all pe T(X);

p=qeD(X) = g=peD(Z), for all p,ge T(X);
p=q,q=reD(X) = p=reD(X), forall p,q,re T(X);
D(Z) is closed under replacement;

D(Z) is closed under substitution.
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Given 2cld(X), p=qeld(X), Z=p=qiff pxqge D(Z).

o We first show that 7(D(Z)) = O(7(Z)).
By definition 7(2) < 7(D(X)).
By Properties (1)-(3), 7(D(X)) is an equivalence relation.
By Property (4) (closure under replacement), 7(D(X)) is a congruence
relation.
By Property (5) (closure under substitution) 7(D(ZX)) is fully invariant.
By definition, Op(7(Z)) is the smallest fully invariant congruence
containing 7(Z).
Therefore, Op(7(2)) < 7(D(X)).
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o We show that 7-}(Op(7(Z
(

9
9
o

F ))) contains X and satisfies (1)-(5):
By definition 7(2) € Op(7(Z)). Thus, =<7 (O (7(2))).
(p.p) € OF1(7(2)), i.e., 7(p =~ p) < Oi(7(X)). So p~perH(Op(7(2)));
Suppose pxqeT” (®F1(T(Z))). Then (p,q) € O (7(Z)). Thus,
(@) €On(1(2)). S0 g=per L (On(r(Z))).

o Transitivity is similar.

Suppose p is a term, s = re 77 1(@p(7(Z))) and q results from
substituting an occurrence of s in p by r. By hypothesis,

(s,r) € Op1(7(Z)). Since Op(7(X)) is a congruence, (p,q) € Op(7(X)).
Thus, p~qe 1 (On(x(2)));

Let p(x1,...,Xn) = q(X1,...,X1) €T 1(Op(7(Z))) and r1,...,rm € T(X).
Then (p,q) € Opi(7(X)). Since Opi(7(X)) is fully invariant, (p(ri,..., ),
q(r1,..m)) €OR1(T(2)). So p(r,...,m) =q(r,...) €T 1O (7(T))).

By definition, D(X) is the smallest set that contains X and satisfies
(1)-(5). Hence D(Z) < t7(®i(7(2))). Thus, 1(D(Z)) € O (7(2)).
Now we get X |= p = q iff {p,q) € O (7(2)) iff p= ge7(D(X)) iff
p=qeD(Z).



Varieties

Definition

Let X be a set of identities over X. For px geld(X), we say Z+p=q,
read " proves p = q", if there is a sequence of identities

P1~=4q1,.--,Pn = dn

from 1d(X), such that each p; = g; belongs to Z, or is of the form p=p, or
is a result of applying any of the four closure rules

p~qeD(Z) = q=peD(Z);
p=q, q=reD(Z) > p=reD(Z),
D(Z) is closed under replacement;
D(Z) is closed under substitution

to previous identities in the sequence, and the last identity p, =g, is p=gq.
The sequence p; = q1,...,Pn = qp is called a formal deduction of p~q.
The number n is the length of the deduction.

George Voutsadakis (LSSU) Universal Algebra



Varieties

Theorem (Birkhoff's Completeness Theorem for Equational Logic)

Given < 1d(X) and p= geld(X), we have ZI=p=qiff ZF p=gq.

o In the construction of a formal deduction p; = g1,...,pn = q, of p=gq,
only properties under which D(ZX) is closed are used. Hence, Z+p=gq
implies p~ ge D(Z).

For the converse:

o Zkp=gq, for pxqeZX, and =+ p=p, for pe T(X).

o If 2+ p=gq, then there is a formal deduction p; = q1,...,pn = gn of
p=~q. Now p1 =q1,...,Pn = qn,qn = pp is a formal deduction of g = p.
Hence, 2+ g=p.

o fZ+p=q, ZF-q=r, let p1 =q1,...,pn = qn be a formal deduction of
p=gq and let p; =q1,...,Px = g, be a formal deduction of g~ r. Then
PL=qL,--,Pn=dn, P1=q1r--»Pk =k, Pn =G is a formal deduction
of pxr. Thus, Z-p=r.

George Voutsadakis (LSSU) Universal Algebra



o We continue with the remaining deduction rules:
o IfZ+p=aq, let p1=q1,...,pn = qn be a formal deduction of p=gq. Let
r(...,p,...) denote a term with a specific occurrence of the subterm p.
Then p1=q1,...,pn=qn, (.-, pny...) = r(...,qn,...) is a formal
deduction of r(...,p,...)=r(...,q,...).
o Finally, if £+ p(x1,...,xn) = q(x1,...,%n), let p1=q1,...,Pm = gm,p=q
be a formal deduction of p(x1,...,xn) = g(x1,...,%n) from Z. Then, for

terms MNy...,n, Pl & ql)---vpm = Qm;P(Xl;---;Xn) ~
q(x1,..,%n), p(rL,--- rn) = q(r1,...,rm) is a formal deduction of

p(ri,....rn)=q(r,...,rm) from .
Thus, D(Z)<c{p~q:Z+p=gq}. Hence, D(Z)={p=q:Z+p~=gq}.
Therefore,

S=p=q iff pxqeD(X) iff Zkp=q.

George Voutsadakis (LSSU) Universal Algebra



An identity p = q is balanced if each variable occurs the same number
of times in p as in g.

If = is a balanced set of identities, then, using induction on the length
of a formal deduction, we can show that if Z-p=~=g, then p~q is
balanced.

This is not at all evident if one works with the notion |=.

A famous theorem of Jacobson in ring theory says that, if we are given
n=2, if £ is the set of ring axioms plus x” = x, then Zl=x-y = y-x.

However, there is no published routine way of writing out a formal
deduction, given n, of x-y = y-x.

For special n, such as n=2,3, this is a popular exercise.

George Voutsadakis (LSSU) Universal Algebra



Varieties

Definition

A variety V is trivial if all algebras in V are trivial. A subclass W of a
variety V' which is also a variety is called a subvariety of V. V is a
minimal (or equationally complete) variety, if V is not trivial, but the
only subvariety of V not equal to V is the trivial variety.

Theorem
Let V be a nontrivial variety. Then V contains a minimal subvariety.

o Let V=M(Z), £<ld(X), with X infinite. Then Idy/(X) defines V.
As V is nontrivial, 7(Idy/(X)) is a fully invariant congruence on T(X)
which is not V. But V=0g({x,y)), for any x,y € X, with x# y.
Hence, V is finitely generated (as a fully invariant congruence). This
allows us to use Zorn's lemma to extend 7(ld\/(X)) to a maximal fully
invariant congruence on T(X), say 6. Then 771(0) must define a
minimal variety which is a subvariety of V.

George Voutsadakis (LSSU) Universal Algebra



o The variety of lattices has a unique minimal subvariety, the variety
generated by a two-element chain.

To see this let V' be a minimal subvariety of the variety of lattices. Let
L be a nontrivial lattice in V. As L contains a two-element sublattice,
we can assume L is a two-element lattice. Now V(L) is not trivial,
and V(L)< V, whence V(L)=V.

George Voutsadakis (LSSU) Universal Algebra
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