Introduction to Universal Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Varieties

- Class Operators and Varieties
- Terms, Term Algebras and Free Algebras
- Identities, Free Algebras and Birkhoff's Theorem
- Mal'cev Conditions
- Equational Logic and Fully Invariant Congruences

Subsection 1

Class Operators and Varieties

Operators on Classes of Algebras

Definition

We introduce the following operators mapping classes of algebras to classes of algebras (all of the same type):
$\mathbf{A} \in I(K) \quad$ iff $\quad \mathbf{A}$ is isomorphic to some member of K
$\mathbf{A} \in S(K) \quad$ iff $\quad \mathbf{A}$ is a subalgebra of some member of K
$A \in H(K) \quad$ iff $\quad \mathbf{A}$ is a homomorphic image of some member of K
$\mathbf{A} \in P(K) \quad$ iff $\quad \mathbf{A}$ is a direct product of a nonempty family of algebras in K
$\mathbf{A} \in P_{S}(K) \quad$ iff $\quad \mathbf{A}$ is a subdirect product of a nonempty family of algebras in K. If O_{1} and O_{2} are two operators on classes of algebras we write $O_{1} O_{2}$ for the composition of the two operators. \leq denotes the usual partial ordering: $O_{1} \leq O_{2}$ if $O_{1}(K) \subseteq O_{2}(K)$, for all classes of algebras K. An operator O is idempotent if $O^{2}=O$. A class K of algebras is closed under an operator O if $O(K) \subseteq K$.

- For any operator O above, $O(\varnothing)=\varnothing$.
- If $\Pi \varnothing$ is included (so that $P(K)$ and $P_{S}(K)$ always contain a trivial algebra) some problems occur in formulating preservation theorems.

Operator Inequalities

Lemma

The following inequalities hold:

$$
S H \leq H S, \quad P S \leq S P, \quad P H \leq H P .
$$

Also the operators, H, S and $I P$ are idempotent.

- Suppose $\mathbf{A} \in S H(K)$. Then, for some $\mathbf{B} \in K$ and onto homomorphism $\alpha: \mathbf{B} \rightarrow \mathbf{C}$, we have $\mathbf{A} \leq \mathbf{C}$. Thus, $\alpha^{-1}(\mathbf{A}) \leq \mathbf{B}$. But $\alpha\left(\alpha^{-1}(\mathbf{A})\right)=\mathbf{A}$. Hence, $\mathbf{A} \in H S(K)$.
If $\mathbf{A} \in P S(K)$, then $\mathbf{A}=\prod_{i \in I} \mathbf{A}_{i}$, for suitable $\mathbf{A}_{i} \leq \mathbf{B}_{i} \in K, i \in I$. But $\prod_{i \in I} \mathbf{A}_{i} \leq \prod_{i \in I} \mathbf{B}_{i}$. Hence, $\mathbf{A} \in S P(K)$.
If $\mathbf{A} \in P H(K)$, then there are algebras $\mathbf{B}_{i} \in K$ and epimorphisms $\alpha_{i}: \mathbf{B}_{i} \rightarrow \mathbf{A}_{i}$, such that $\mathbf{A}=\prod_{i \in I} \mathbf{A}_{i}$. We can show that the mapping $\alpha: \prod_{i \in I} \mathbf{B}_{i} \rightarrow \prod_{i \in I} \mathbf{A}_{i}$, defined by $\alpha(b)(i)=\alpha_{i}(b(i))$ is an epimorphism. Hence, $\mathbf{A} \in H P(K)$.

Operator Inequalities (Cont'd)

- Suppose $\mathbf{A} \in H^{2}(K)$. Then, there exists an epimorphism $\beta: \mathbf{C} \rightarrow \mathbf{A}$ and an epimorphism $\alpha: \mathbf{B} \rightarrow \mathbf{C}$, where $\mathbf{B} \in K$. Thus, $\beta \circ \alpha: \mathbf{B} \rightarrow \mathbf{A}$ is an epimorphism, with $\mathbf{B} \in K$. Hence, $\mathbf{A} \in H(K)$. Therefore, $H^{2}(K) \subseteq H(K)$. The reverse inclusion is trivial.
- Suppose $\mathbf{A} \in S^{2}(K)$. Then $\mathbf{A} \leq \mathbf{C}$, where $\mathbf{C} \leq \mathbf{B}$, for some $\mathbf{B} \in K$. Thus, $\mathrm{A} \leq \mathrm{B}$, with $\mathrm{B} \in K$ and, hence, $\mathrm{A} \in S(K)$. Therefore, $S^{2}(K) \subseteq S(K)$. The reverse inclusion is trivial.
- Suppose $\mathbf{A} \in(I P)^{2}(K)$. Then $\mathbf{A} \cong \prod_{i \in I} \mathbf{A}_{i}$, where, for all $i \in I$, $\mathbf{A}_{i} \cong \prod_{j \in J_{i}} \mathbf{A}_{i j}$, with $\mathbf{A}_{i j} \in K$, for all $i \in I, j \in J_{i}$. But then

$$
\mathbf{A} \cong \prod_{i \in I} \mathbf{A}_{i} \cong \prod_{i \in I} \prod_{j \in J_{i}} \mathbf{A}_{i j} \cong \prod_{\substack{i \in I \\ j \in J_{i}}} \mathbf{A}_{i j} .
$$

Since $\left\{\mathbf{A}_{i j}: i \in I, j \in J_{i}\right\} \subseteq K$, we get that $\mathbf{A} \in I P(K)$. Thus, $(I P)^{2}(K) \subseteq I P(K)$. The reverse inclusion is trivial.

Varieties

Definition

A nonempty class K of algebras of type \mathscr{F} is called a variety if it is closed under subalgebras, homomorphic images and direct products.

- Note that:
- all algebras of type \mathscr{F} form a variety;
- the intersection of a class of varieties of type \mathscr{F} is again a variety.

Thus, for every class K of algebras of the same type there is a smallest variety containing K.

Definition

If K is a class of algebras of the same type, let $V(K)$ denote the smallest variety containing K. We say that $V(K)$ is the variety generated by K. If K has a single member \mathbf{A}, we write simply $V(\mathbf{A})$. A variety V is finitely generated if $V=V(K)$, for some finite set K of finite algebras.

Tarski's Characterization of Varieties

Theorem (Tarski)

$V=H S P$.

- Since $H V=S V=I P V=V$ and $I \leq V$, we have $H S P \leq H S P V=V$.

We also have:

- $H(H S P)=H S P$;
- $S(H S P) \leq H S S P=H S P$;
- $P(H S P) \leq H P S P \leq H S P P \leq H S I P I P=H S I P \leq H S H P \leq H H S P=H S P$. Hence, for any $K, \operatorname{HSP}(K)$ is closed under H, S and P. But $V(K)$ is the smallest class containing K and closed under H, S and P.
Therefore, $V \leq H S P$.
We conclude that $V=H S P$.

Birkhoff's Theorem for Varieties

Theorem (Birkhoff's Theorem for Varieties)

If K is a variety, then every member of K is isomorphic to a subdirect product of subdirectly irreducible members of K.

Corollary

A variety is generated by its subdirectly irreducible members.

- Let K be a variety and $\mathbf{A} \in K$. By Birkhoff's Theorem, $\mathbf{A} \in I P_{S}\left(K_{S I}\right)$, where $K_{S I}$ denotes the class of all subdirectly irreducible members of K. Now we have

$$
\mathbf{A} \in I P_{S}\left(K_{S I}\right) \subseteq I S P\left(K_{S I}\right) \subseteq V\left(K_{S I}\right)
$$

Therefore, K is generated by its subdirectly irreducible members.

Subsection 2

Terms, Term Algebras and Free Algebras

Terms

Definition

Let X be a set of (distinct) objects called variables. Let \mathscr{F} be a type of algebras. The set $T(X)$ of terms of type \mathscr{F} over X is the smallest set such that:
(i) $X \cup \mathscr{F}_{0} \subseteq T(X)$.
(ii) If $p_{1}, \ldots, p_{n} \in T(X)$ and $f \in \mathscr{F}_{n}$, then the "string" $f\left(p_{1}, \ldots, p_{n}\right) \in T(X)$.

- $T(X) \neq \varnothing$ iff $X \cup \mathscr{F}_{0} \neq \varnothing$.
- For a binary function symbol •, we often write $p_{1} \bullet p_{2}$ instead of - $\left(p_{1}, p_{2}\right)$.
- For $p \in T(X)$, we often write p as $p\left(x_{1}, \ldots, x_{n}\right)$ to indicate that the variables occurring in p are among x_{1}, \ldots, x_{n}.
- A term p is n-ary if the number of variables appearing explicitly in p is $\leq n$.

Examples

(1) Let \mathscr{F} consist of a single binary function symbol \cdot. Let $X=\{x, y, z\}$. The following

$$
x, \quad y, \quad z, \quad x \bullet y, \quad y \bullet z, \quad x \bullet(y \bullet z), \quad(x \bullet y) \bullet z
$$

are some of the terms over X.
(2) Let \mathscr{F} consist of two binary operation symbols + and \cdot. Let X be as before. The following

$$
x, \quad y, \quad z, \quad x \cdot(y+z), \quad(x \cdot y)+(x \cdot z)
$$

are some of the terms over X.
(3) The classical polynomials over the field of real numbers \mathbb{R} are really the terms of type \mathscr{F}, consisting of,$+ \cdot$ and - , together with a nullary function symbol r, for each $r \in R$.

Term Functions

Definition

Given a term $p\left(x_{1}, \ldots, x_{n}\right)$ of type \mathscr{F} over some set X and given an algebra A of type \mathscr{F}, we define a mapping $p^{\mathbf{A}}: A^{n} \rightarrow A$ as follows:
(1) if p is a variable x_{i}, then

$$
p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=a_{i}
$$

for $a_{1}, \ldots, a_{n} \in A$, i.e., $p^{\mathbf{A}}$ is the i-th projection map;
(2) if p is of the form $f\left(p_{1}\left(x_{1} \ldots, x_{n}\right), \ldots, p_{k}\left(x_{1}, \ldots, x_{n}\right)\right)$, where $f \in \mathscr{F}_{k}$, then

$$
p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=f^{\mathbf{A}}\left(p_{1}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), \ldots, p_{k}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) .
$$

In particular if $p=f \in \mathscr{F}_{0}$, then $p^{\mathbf{A}}=f^{\mathbf{A}}$.
We say $p^{\mathbf{A}}$ is the term function on \mathbf{A} corresponding to the term p. Often the superscript ${ }^{\mathbf{A}}$ is omitted.

Properties of Term Functions

Theorem

For any type \mathscr{F} and algebras \mathbf{A}, B of type \mathscr{F}, we have the following:
(a) Let p be an n-ary term of type \mathscr{F}. Let $\theta \in$ ConA. Suppose $\left\langle a_{i}, b_{i}\right\rangle \in \theta$, for $1 \leq i \leq n$. Then $p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \theta p^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)$.
(b) If p is an n-ary term of type \mathscr{F} and $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ is a homomorphism, then

$$
\alpha\left(p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=p^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right),
$$

for $a_{1}, \ldots, a_{n} \in A$.
(c) Let S be a subset of A. Then

$$
\begin{gathered}
\operatorname{Sg}(S)=\left\{p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right): p \text { is an } n \text {-ary term of type } \mathscr{F},\right. \\
\left.n<\omega, a_{1}, \ldots, a_{n} \in S\right\} .
\end{gathered}
$$

Proof of Part (a)

- Given a term p define the length $\ell(p)$ of p to be the number of occurrences of n-ary operation symbols in p, for $n \geq 1$. Note that $\ell(p)=0$ iff $p \in X \cup \mathscr{F}_{0}$.
(a) We proceed by induction on $\ell(p)$.
- If $\ell(p)=0$, then either $p=x_{i}$, for some i, or $p=a \in \mathscr{F}_{0}$.
- If $p=x_{i}$, for some $i,\left\langle p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), p^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle=\left\langle a_{i}, b_{i}\right\rangle \in \theta$;
- If $p=a$, for some $a \in \mathscr{F}_{0}$, then

$$
\left\langle p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), p^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle=\left\langle a^{\mathbf{A}}, a^{\mathbf{A}}\right\rangle \in \theta .
$$

- Now suppose $\ell(p)>0$ and the assertion holds for every term q with $\ell(q)<\ell(p)$. Then we know p is of the form $f\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots\right.$, $\left.p_{k}\left(x_{1}, \ldots, x_{n}\right)\right)$. Since $\ell\left(p_{i}\right)<\ell(p)$, we must have, for $1 \leq i \leq k$, $\left\langle p_{i}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), p_{i}^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \theta$. Hence,

$$
\begin{aligned}
& \left\langle f^{\mathbf{A}}\left(p_{1}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), \ldots, p_{k}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right),\right. \\
& \left.\quad f^{\mathbf{A}}\left(p_{1}^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right), \ldots, p_{k}^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right)\right\rangle \in \theta .
\end{aligned}
$$

Consequently $\left\langle p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), p^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \theta$.

Proof of Part (b)

(b) The proof of this is an induction argument on $\ell(p)$.

- If $\ell(p)=0$, then $p=x_{i}$, for some i, or $p=a \in \mathscr{F} 0$.
- If $p=x_{i}$, for some i, then

$$
\alpha\left(p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=\alpha\left(a_{i}\right)=p^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right) .
$$

- If $p=a \in \mathscr{F}_{0}$, then, by definition, $\alpha\left(a^{\mathbf{A}}\right)=a^{\mathbf{B}}$.
- Suppose $\ell(p)>0$. Then $p=f\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{k}\left(x_{1}, \ldots, x_{n}\right)\right)$, for some $f \in \mathscr{F}_{k}$, where $\ell\left(p_{1}\right), \ldots, \ell\left(p_{k}\right)<\ell(p)$. Thus, we get

$$
\begin{aligned}
\alpha\left(p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right) & =\alpha\left(f^{\mathbf{A}}\left(p_{1}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), \ldots, p_{k}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)\right) \\
& =f^{\mathbf{B}}\left(\alpha\left(p_{1}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right), \ldots, \alpha\left(p_{k}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)\right) \\
& =f^{\mathbf{B}}\left(p_{1}^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right), \ldots,\right. \\
& \left.=p_{k}^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)\right) \\
& =p^{\mathbf{B}}\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right) .
\end{aligned}
$$

Proof of Part (c)

(c) By induction, we show that, for $k \geq 1$,

$$
\begin{aligned}
& E^{k}(S) \subseteq\left\{p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right): p \text { is an } n\right. \text {-ary term; } \\
& \left.\ell(p) \leq k, n<\omega, a_{1}, \ldots, a_{n} \in S\right\} .
\end{aligned}
$$

The right side is always $\subseteq \operatorname{Sg}(S)$ since (by induction) every subuniverse B of \mathbf{A} is closed under the term functions of \mathbf{A}.
Thus,

$$
\begin{aligned}
\operatorname{Sg}(S) & =\cup_{k<\infty} E^{k}(S) \\
& \subseteq\left\{p^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right): p \text { is an } n \text {-ary term of type } \mathscr{F},\right. \\
& \subseteq \operatorname{Sg}(S) .
\end{aligned}
$$

The Term Algebra and the Universal Mapping Property

Definition

Given \mathscr{F} and X, if $T(X) \neq \varnothing$, then the term algebra of type \mathscr{F} over X, written $\mathrm{T}(X)$, has as its universe the set $T(X)$ and the fundamental operations satisfy

$$
f^{\boldsymbol{\top}(X)}:\left\langle p_{1}, \ldots, p_{n}\right\rangle \mapsto f\left(p_{1}, \ldots, p_{n}\right)
$$

for $f \in \mathscr{F}_{n}$ and $p_{i} \in T(X), 1 \leq i \leq n . \mathbf{T}(\varnothing)$ exists iff $\mathscr{F}_{0} \neq \varnothing$.

- $\mathbf{T}(X)$ is generated by X.

Definition

Let K be a class of algebras of type \mathscr{F} and let $\mathbf{U}(X)$ be an algebra of type \mathscr{F} which is generated by X. If, for every $\mathbf{A} \in K$ and for every map $\alpha: X \rightarrow A$, there is a homomorphism $\beta: \mathbf{U}(X) \rightarrow \mathbf{A}$, which extends α (i.e., $\beta(x)=\alpha(x)$, for $x \in X)$, then we say $\mathrm{U}(X)$ has the universal mapping property for K over $X . X$ is called a set of free generators of $U(X)$, and $\mathrm{U}(X)$ is said to be freely generated by X.

Uniqueness of the Universal Mapping

Lemma

Suppose $\mathbf{U}(X)$ has the universal mapping property for K over X. Then, if we are given $\mathbf{A} \in K$ and $\alpha: X \rightarrow A$, there is a unique extension β of α, such that β is a homomorphism from $\mathbf{U}(X)$ to \mathbf{A}.

- Suppose β, β^{\prime} both extend α and let $a \in \mathbf{U}(X)$. Then, there exists n-ary p and $x_{1}, \ldots, x_{n} \in X$, such that $a=p^{\mathbf{U}(X)}\left(x_{1}, \ldots, x_{n}\right)$. Therefore,

$$
\begin{aligned}
\beta(a) & =\beta\left(p^{\mathbf{U}}(X)\left(x_{1}, \ldots, x_{n}\right)\right)=p^{\mathbf{A}}\left(\beta\left(x_{1}\right), \ldots, \beta\left(x_{n}\right)\right) \\
& =p^{\mathbf{A}}\left(\beta^{\prime}\left(x_{1}\right), \ldots, \beta^{\prime}\left(x_{n}\right)\right)=\beta^{\prime}\left(p^{\mathbf{U}(X)}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\beta^{\prime}(a) .
\end{aligned}
$$

Uniqueness of the "Free Algebra"

- For a given cardinal m, there is, up to isomorphism, at most one algebra in a class K which has the universal mapping property for K over a set of free generators of size m.

Theorem

Suppose $\mathbf{U}_{1}\left(X_{1}\right)$ and $\mathbf{U}_{2}\left(X_{2}\right)$ are two algebras with the universal mapping property for K over the indicated sets. If $\mathbf{U}_{1}\left(X_{1}\right), \mathbf{U}_{2}\left(X_{2}\right) \in K$ and $\left|X_{1}\right|=\left|X_{2}\right|$, then $\mathbf{U}_{1}\left(X_{1}\right) \cong \mathbf{U}_{2}\left(X_{2}\right)$.

- The identity map $\iota_{j}: X_{j} \rightarrow X_{j}, j=1,2$, has as its unique extension to a homomorphism from $\mathbf{U}_{j}\left(X_{j}\right)$ to $\mathbf{U}_{j}\left(X_{j}\right)$ the identity map. Now let $\alpha: X_{1} \rightarrow X_{2}$ be a bijection. Then we have homomorphisms $\beta: \mathbf{U}_{1}\left(X_{1}\right) \rightarrow \mathbf{U}_{2}\left(X_{2}\right)$ extending α, and $\gamma: \mathbf{U}_{2}\left(X_{2}\right) \rightarrow \mathbf{U}_{1}\left(X_{1}\right)$ extending α^{-1}. But $\beta \circ \gamma$ is an endomorphism of $\mathbf{U}_{2}\left(X_{2}\right)$ extending t_{2}. It follows that $\beta \circ \gamma$ is the identity map on $\mathbf{U}_{2}\left(X_{2}\right)$. Likewise $\gamma \circ \beta$ is the identity map on $\mathbf{U}_{1}\left(X_{1}\right)$. Thus, β is a bijection. So $\mathbf{U}_{1}\left(X_{1}\right) \cong \mathbf{U}_{2}\left(X_{2}\right)$.

Universal Mapping Property of the Term Algebra

Theorem

For any type \mathscr{F} and set X of variables, where $X \neq \varnothing$ if $\mathscr{F}_{0}=\varnothing$, the term algebra $\mathbf{T}(X)$ has the universal mapping property for the class of all algebras of type \mathscr{F} over X.

- Let $\alpha: X \rightarrow A$, where \mathbf{A} is of type \mathscr{F}. Define $\beta: T(X) \rightarrow A$ recursively by:
- $\beta x=\alpha x$, for $x \in X$;
- For all $f \in \mathscr{F}_{n}$ and all $p_{1}, \ldots, p_{n} \in T(X)$,

$$
\beta\left(f\left(p_{1}, \ldots, p_{n}\right)\right)=f^{\mathbf{A}}\left(\beta\left(p_{1}\right) \ldots, \beta\left(p_{n}\right)\right) .
$$

Then, for every n-ary term $p\left(x_{1}, \ldots, x_{n}\right)$,

$$
\beta\left(p\left(x_{1}, \ldots, x_{n}\right)\right)=p^{\mathbf{A}}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right),
$$

and β is the desired homomorphism extending α.

K-Free Algebras

Definition

Let K be a family of algebras of type \mathscr{F}. Given a set X of variables, let

$$
\Phi_{K}(X)=\{\phi \in \operatorname{Con} \mathbf{T}(X): \mathbf{T}(X) / \phi \in I S(K)\} .
$$

Define the congruence $\theta_{K}(X)$ on $\mathrm{T}(X)$ by

$$
\theta_{K}(X)=\bigcap \Phi_{K}(X)
$$

Then letting $\bar{X}=X / \theta_{K}(X)$, define $\mathrm{F}_{K}(\bar{X})$, the K-free algebra over \bar{X}, by $\mathrm{F}_{K}(\bar{X})=\mathrm{T}(X) / \theta_{K}(X)$.
For $x \in X$, we write \bar{x} for $x / \theta_{K}(X)$, and for $p=p\left(x_{1}, \ldots, x_{n}\right) \in T(X)$, we write \bar{p} for $p^{\mathbf{F}_{K}(\bar{X})}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$.
If X is finite, say $X=\left\{x_{1}, \ldots, x_{n}\right\}$, we often write $\mathbf{F}_{K}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$, for $\mathbf{F}_{K}(\bar{X})$. $F_{K}(\bar{X})$ is the universe of $\mathrm{F}_{K}(\bar{X})$.

Remarks on K-Free Algebras

(1) $\mathbf{F}_{K}(\bar{X})$ exists iff $\mathbf{T}(X)$ exists iff $X \neq \varnothing$ or $\mathscr{F}_{0} \neq \varnothing$, i.e., $X \cup \mathscr{F}_{0} \neq \varnothing$.
(2) If $\mathrm{F}_{K}(\bar{X})$ exists, then \bar{X} is a set of generators of $\mathrm{F}_{K}(\bar{X})$ as X generates $\mathrm{T}(X)$.
(3) If $\mathscr{F}_{0} \neq \varnothing$, then the algebra $\mathbf{F}_{K}(\bar{\varnothing})$ is often referred to as an initial object.
(4) If $K=\varnothing$ or K consists solely of trivial algebras, then $\mathrm{F}_{K}(\bar{X})$ is a trivial algebra as $\theta_{K}(X)=\nabla$.
(5) If K has a nontrivial algebra \mathbf{A} and $\mathbf{T}(X)$ exists, then $X \cap\left(x / \theta_{K}(X)\right)=\{x\}$ as distinct members x, y of X can be separated by some homomorphism $\alpha: \mathbf{T}(X) \rightarrow \mathbf{A}$. In this case $|\bar{X}|=|X|$.
(6) If $|X|=|Y|$ and $\mathbf{T}(X)$ exists, then clearly $\mathbf{F}_{K}(\bar{X}) \cong \mathbf{F}_{K}(\bar{Y})$ under an isomorphism which maps X to Y as $\mathbf{T}(X) \cong \mathbf{T}(Y)$ under an isomorphism mapping X to Y. Thus $\mathrm{F}_{K}(\bar{X})$ is determined, up to isomorphism, by K and $|X|$.

Universal Mapping Property of $F_{K}(\bar{X})$

Theorem (Birkhoff)

Suppose $\mathbf{T}(X)$ exists, i.e., $X \cup \mathscr{F}_{0} \neq \varnothing$. Then $\mathrm{F}_{K}(\bar{X})$ has the universal mapping property for K over \bar{X}.

- Given $\mathbf{A} \in K$ let α be a map from \bar{X} to A. Let $v: \mathbf{T}(X) \rightarrow \mathbf{F}_{K}(\bar{X})$ be the natural homomorphism. Then $\alpha \circ v$ maps X into A. By the universal mapping property of $\mathrm{T}(X)$, there is a homomorphism $\mu: \mathbf{T}(X) \rightarrow \mathbf{A}$ extending $(\alpha \circ v) \upharpoonright_{X}$. Since $\mathbf{T}(X) / \operatorname{ker} \mu \cong \mu(\mathbf{T}(X)) \leq \mathbf{A}$, $\operatorname{ker} \mu \in \Phi_{K}(X)$. Thus, $\theta_{K}(X) \subseteq$ ker μ. Hence, there is a homomorphism $\beta: \mathbf{F}_{K}(\bar{X}) \rightarrow \mathbf{A}$, such that $\mu=\beta \circ v$, as $\operatorname{ker} v=\theta_{K}(X)$. But then, for $x \in X, \beta(\bar{x})=\beta \circ v(x)=\mu(x)=\alpha \circ v(x)=\alpha(\bar{x})$. So β extends α. Thus, $\mathrm{F}_{K}(\bar{X})$ has the universal mapping property for K over \bar{X}.
- If $\mathrm{F}_{K}(\bar{X}) \in K$, then it is, up to isomorphism, the unique algebra in K, with the universal mapping property freely generated by a set of generators of size $|\bar{X}|$.

Examples

(1) $\mathbf{T}(X)$ is isomorphic to the free algebra for the class K of all algebras of type \mathscr{F} over X, since $\theta_{K}(X)=\Delta$. The corresponding free algebra is sometimes called the absolutely free algebra $\mathrm{F}(\bar{X})$ of type \mathscr{F}.
(2) Given X, let X^{*} be the set of finite strings of elements of X, including the empty string. We can construct a monoid $\left\langle X^{*}, \cdot, 1\right\rangle$ by defining \cdot to be concatenation, and 1 is the empty string. By checking the universal mapping property one sees that $\left\langle X^{*}, \cdot, 1\right\rangle$ is, up to isomorphism, the free monoid freely generated by \bar{X}.

Free Algebras and Algebras

Corollary

If K is a class of algebras of type \mathscr{F} and $\mathbf{A} \in K$, then for sufficiently large $X, \mathbf{A} \in H\left(\mathbf{F}_{K}(\bar{X})\right)$.

- Choose $|X| \geq|A|$ and let $\alpha: \bar{X} \rightarrow A$ be a surjection. Then let $\beta: \mathbf{F}_{K}(\bar{X}) \rightarrow \mathbf{A}$ be a homomorphism extending α.
- In general $\mathrm{F}_{K}(\bar{X})$ is not isomorphic to a member of K.

Example: Let $K=\{\mathbf{L}\}$, where \mathbf{L} be a two-element lattice. Then $\mathbf{F}_{K}(\bar{x}, \bar{y}) \notin I(K)$.

- On the other hand, $\mathbf{F}_{K}(\bar{X})$ can be embedded in a product of members of K.

Free Algebras in Varieties

Theorem (Birkhoff)

Suppose $\mathbf{T}(X)$ exists, i.e., $X \cup \mathscr{F}_{0} \neq \varnothing$. Then, for $K \neq \varnothing, \mathbf{F}_{K}(\bar{X}) \in I S P(K)$. Thus, if K is closed under I, S and P, in particular if K is a variety, then $\mathrm{F}_{K}(\bar{X}) \in K$.

- We have $\theta_{K}(X)=\cap \Phi_{K}(X)$. Hence,

$$
\mathbf{F}_{K}(\bar{X})=\mathbf{T}(X) / \theta_{K}(X) \in I P_{S}\left(\left\{\mathbf{T}(X) / \theta: \theta \in \Phi_{K}(X)\right\}\right) .
$$

Thus, $\mathbf{F}_{K}(\bar{X}) \in I P_{S} I S(K)$. But $P_{S} \leq S P$ and $P S \leq S P$. Therefore,

$$
\mathrm{F}_{K}(\bar{X}) \in I P_{S} S(K) \subseteq I S P S(K) \subseteq I S S P(K)=I S P(K)
$$

Nontrivial Simple Algebras in Varieties

- We know that if a variety has a nontrivial algebra in it, then it must have a nontrivial subdirectly irreducible algebra in it.

Theorem (Magari)

If we are given a variety V with a nontrivial member, then V contains a nontrivial simple algebra.

- Let $X=\{x, y\}$, and let $S=\{p(\bar{x}): p \in T(\{x\})\}$, a subset of $F_{V}(\bar{X})$. First, suppose that $\Theta(S) \neq \nabla$ in $\operatorname{ConF}_{V}(\bar{X})$.
Claim: For $\theta \in[\Theta(S), \nabla], \theta=\nabla$ iff $\langle\bar{x}, \bar{y}\rangle \in \theta$.
Suppose $\Theta(S) \subseteq \theta$ and $\langle\bar{x}, \bar{y}\rangle \in \theta$. Then for any term $p(x, y)$, we have $p^{\mathbf{F}_{V}(\bar{X})}(\bar{x}, \bar{y}) \theta p^{\mathbf{F}_{V}(\bar{X})}(\bar{x}, \bar{x}) \Theta(S) \bar{x}$. Hence $\theta=\nabla$.
By the claim, every chain in $[\Theta(S), \nabla]-\{\nabla\}$ has a maximal element. By Zorn's Lemma, $[\Theta(S), \nabla]-\{\nabla\}$ has a maximal element θ_{0}. Then $\mathrm{F}_{V}(\bar{X}) / \theta_{0}$ is a simple algebra and it is in V.

Nontrivial Simple Algebras in Varieties (Cont'd)

- Now suppose that $\Theta(S)=\nabla$. Then, since Θ is an algebraic closure operator, it follows that, for some finite subset S_{0} of S, we must have $\langle\bar{x}, \bar{y}\rangle \in \Theta\left(S_{0}\right)$. Let S be the subalgebra of $F_{V}(\bar{X})$, with universe S $(S=\operatorname{Sg}(\{\bar{x}\}))$. Since V is nontrivial, $\bar{x} \neq \bar{y}$ in $\mathrm{F}_{V}(\bar{X})$. Since $\langle\bar{x}, \bar{y}\rangle \in \Theta(S), S$ is nontrivial.
Claim: $\nabla_{S}=\Theta\left(S_{0}\right)$, where Θ in this case is understood to be the appropriate closure operator on S.
Let $p(\bar{x}) \in S$ and let $\alpha: \mathbf{F}_{V}(\bar{X}) \rightarrow \mathbf{S}$ be the homomorphism defined by

$$
\alpha(\bar{x})=\bar{x}, \quad \alpha(\bar{y})=p(\bar{x}) .
$$

Since $\langle\bar{x}, \bar{y}\rangle \in \Theta\left(S_{0}\right)$ in $\mathbf{F}_{V}(\bar{X})$, we get $\langle\bar{x}, p(\bar{x})\rangle \in \Theta\left(S_{0}\right)$ in \mathbf{S} as $\alpha\left(S_{0}\right)=S_{0}$.
Using Zorn's Lemma, we can find a maximal congruence θ on S as ∇_{S} is finitely generated. Hence, \mathbf{S} / θ is a simple algebra in V.

Local Finiteness

Definition

An algebra \mathbf{A} is locally finite if every finitely generated subalgebra is finite. A class K of algebras is locally finite if every member of K is locally finite.

Theorem

A variety V is locally finite iff

$$
|X|<\omega \Rightarrow\left|F_{V}(\bar{X})\right|<\omega .
$$

(\Rightarrow) : Clear, since \bar{X} generates $\mathrm{F}_{V}(\bar{X})$.
(\Leftarrow) : Let \mathbf{A} be a finitely generated member of V, and let $B \subseteq A$ be a finite set of generators. Choose X, such that we have a bijection $\alpha: \bar{X} \rightarrow B$. Extend this to a homomorphism $\beta: \mathbf{F}_{V}(\bar{X}) \rightarrow \mathbf{A}$. As $\beta\left(\mathbf{F}_{V}(\bar{X})\right)$ is a subalgebra of \mathbf{A} containing B, it must equal \mathbf{A}. Thus β is surjective, and as $\mathrm{F}_{V}(\bar{X})$ is finite so is \mathbf{A}.

Variety Generated by Finitely Many Finite Algebras

Theorem

Let K be a finite set of finite algebras. Then $V(K)$ is a locally finite variety.
Claim: $P(K)$ is locally finite.
Let $\mathbf{A} \in P(K)$ and $S=\left\{a_{1}, \ldots, a_{n}\right\}$ a finite subset of \mathbf{A}. We must show $\mathrm{Sg}^{\mathbf{A}}(S)$ is finite. But

$$
\operatorname{Sg}^{\mathbf{A}}(S)=\left\{p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right): p \text { is an } n \text {-ary term of type } \mathscr{F}\right\} .
$$

Thus, it suffices to show that the set $T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right) / \sim^{K}$ is finite, where \sim^{K} is the equivalence relation on $T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$, defined, for all $p, q \in T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$, by

$$
p \sim^{K} q \text { iff } p^{K}=q^{K}, \text { for all } K \in K .
$$

Variety Generated by Finitely Many Finite Algebras (Cont'd)

- We must show that the set $T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right) / \sim^{K}$ is finite.

This is clear, since, if $K=\left\{\mathbf{A}_{1}, \ldots \mathbf{A}_{m}\right\}$ and $\left|A_{i}\right|=k_{i}, 1 \leq i \leq m$, then there are at most $k_{1}^{n} \cdot k_{2}^{n} \cdots \cdots k_{m}^{n}$ different functions on n-variables agreeing on every member of K.
Now note that $S P(K)$ is locally finite.
And, since every finitely generated member of $H S P(K)$ is a homomorphic image of a finitely generated member of $S P(K)$, $H S P(K)$ is locally finite. Hence, V is locally finite.

Subsection 3

Identities, Free Algebras and Birkhoff's Theorem

Identities and Satisfiability

Definition

An identity of type \mathscr{F} over X is an expression of the form $p \approx q$, where $p, q \in T(X)$. Let $\operatorname{Id}(X)$ be the set of identities of type \mathscr{F} over X. An algebra \mathbf{A} of type \mathscr{F} satisfies an identity $p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$ if, for every choice of $a_{1}, \ldots, a_{n} \in A$, we have $p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=q^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$. If so, then we say that the identity is true in \mathbf{A}, or holds in \mathbf{A}, and write $\mathbf{A} \vDash p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$, or more briefly $\mathbf{A} \vDash p \approx q$.

- If Σ is a set of identities, we say \mathbf{A} satisfies Σ, written $\mathbf{A} \vDash \Sigma$, if $\mathrm{A} \mid=p \approx q$, for each $p \approx q \in \Sigma$.
- A class K of algebras satisfies $p \approx q$, written $K \vDash p \approx q$, if each member of K satisfies $p \approx q$. Set $\operatorname{ld}_{K}(X)=\{p \approx q \in \operatorname{ld}(X): K \vDash p \approx q\}$.
- If Σ is a set of identities, we say K satisfies Σ, written $K \vDash \Sigma$, if $K \vDash p \approx q$, for each $p \approx q \in \Sigma$.
We use the symbol $\not \vDash$ for "does not satisfy".

Free Algebras and Satisfiability of Identitites

Lemma

If K is a class of algebras of type \mathscr{F} and $p \approx q$ is an identity of type \mathscr{F} over X, then $K \vDash p \approx q$ iff, for every $\mathbf{A} \in K$ and for every homomorphism $\alpha: \mathbf{T}(X) \rightarrow \mathbf{A}$, we have $\alpha(p)=\alpha(q)$.
\Leftrightarrow Let $p=p\left(x_{1}, \ldots, x_{n}\right), q=q\left(x_{1}, \ldots, x_{n}\right)$. Suppose $K \vDash p \approx q, \mathbf{A} \in K$, and $\alpha: \mathbf{T}(X) \rightarrow \mathbf{A}$ is a homomorphism. Then

$$
\begin{aligned}
& p^{\mathbf{A}}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right)=q^{\mathbf{A}}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right) \\
& \Rightarrow \quad \alpha\left(p^{\mathbf{T}(X)}\left(x_{1}, \ldots, x_{n}\right)\right)=\alpha\left(q^{\mathbf{T}(X)}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \Rightarrow \quad \alpha(p)=\alpha(q) .
\end{aligned}
$$

(\Leftrightarrow) For the converse choose $\mathbf{A} \in K$ and $a_{1}, \ldots, a_{n} \in A$. By the universal mapping property of $\mathrm{T}(X)$, there is a homomorphism $\alpha: \mathbf{T}(X) \rightarrow \mathbf{A}$, such that $\alpha\left(x_{i}\right)=a_{i}, 1 \leq i \leq n$. But then $p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=$ $p^{\mathbf{A}}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right)=\alpha(p)=\alpha(q)=q^{\mathbf{A}}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right)=$ $q^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$. So $K \vDash p \approx q$.

Basic Class Operators Preserve Identities

Lemma

For any class K of type \mathscr{F}, all of the classes $K, I(K), S(K), H(K), P(K)$ and $V(K)$ satisfy the same identities over any set of variables X.

- Clearly K and $I(K)$ satisfy the same identities. As $I \leq I S, I \leq H$ and $I \leq I P$, we must have $\operatorname{ld}_{K}(X) \supseteq \operatorname{ld}_{S(K)}(X), \operatorname{ld}_{H(K)}(X), \operatorname{ld}_{P(K)}(X)$. For the remainder of the proof suppose $K \vDash p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$. Let $\mathbf{B} \leq \mathbf{A} \in K$ and $b_{1}, \ldots, b_{n} \in B$. As $b_{1}, \ldots, b_{n} \in A$, we have $p^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)=q^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)$. Hence, $p^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right)=q^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right)$. so $\mathbf{B}=p \approx q$. Thus, $\operatorname{Id}_{K}(X)=\operatorname{ld}_{S(K)}(X)$.
Let $\alpha: \mathbf{A} \rightarrow \mathbf{B}$ be a surjective homomorphism with $\mathbf{A} \in K$. If $b_{1}, \ldots, b_{n} \in B$, choose $a_{1}, \ldots, a_{n} \in A$, such that $\alpha\left(a_{1}\right)=b_{1}, \ldots, \alpha\left(a_{n}\right)=$ b_{n}. Then, $p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=q^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$, implies $\alpha\left(p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=$ $\alpha\left(q^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)$. Hence $p^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right)=q^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right)$. Thus, $\mathrm{B} \vDash p \approx q$. So $\operatorname{ld}_{K}(X)=\operatorname{ld}_{H(K)}(X)$.

Basic Class Operators Preserve Identities (Cont'd)

- Lastly, suppose $\mathbf{A}_{i} \in K$, for $i \in I$. Then, for $a_{1}, \ldots, a_{n} \in A=\prod_{i \in I} A_{i}$, we have

$$
p^{\mathbf{A}_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)=q^{\mathbf{A}_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)
$$

hence

$$
p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)(i)=q^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)(i), \quad i \in I,
$$

SO

$$
p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=q^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) .
$$

Thus, $\operatorname{Id}_{K}(X)=\operatorname{Id}_{P(K)}(X)$.
As $V=H S P$, the proof is complete.

Characterization of Satisfiability

Theorem

Given a class K of algebras of type \mathscr{F} and terms $p, q \in T(X)$ of type \mathscr{F}, we have:

$$
K \vDash p \approx q \Leftrightarrow F_{K}(\bar{X}) \vDash p \approx q \Leftrightarrow \bar{p}=\bar{q} \text { in } F_{K}(\bar{X}) \Leftrightarrow\langle p, q\rangle \in \theta_{K}(X) .
$$

- Let $\mathbf{F}=\mathbf{F}_{K}(\bar{X}), p=p\left(x_{1}, \ldots, x_{n}\right), q=q\left(x_{1}, \ldots, x_{n}\right)$ and let $v: \mathbf{T}(X) \rightarrow \mathbf{F}$ be the natural homomorphism.
- Certainly $K \vDash p \approx q$ implies $\mathbf{F} \vDash p \approx q$, as $\mathbf{F} \in I S P(K)$.
- Assume $\mathbf{F} \vDash p \approx q$. Then $p^{\mathbf{F}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)=q^{\mathbf{F}}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$, hence $\bar{p} \approx \bar{q}$.
- Now suppose $\bar{p}=\bar{q}$ in \mathbf{F}. Then $v(p)=\bar{p}=\bar{q}=v(q)$. so $\langle p, q\rangle \in \operatorname{kerv}=\theta_{K}(X)$.
- Finally, suppose $\langle p, q\rangle \in \theta_{K}(X)$. Given $\mathbf{A} \in K$ and $a_{1}, \ldots, a_{n} \in A$, choose $\alpha: \mathbf{T}(X) \rightarrow \mathbf{A}$, such that $\alpha\left(x_{i}\right)=a_{i}, 1 \leq i \leq n$. We have $\operatorname{ker} \alpha \in \Phi_{K}(X)$. Hence, $\operatorname{ker} \alpha \supseteq \operatorname{ker} v=\theta_{K}(X)$. It follows that there is a homomorphism $\beta: \mathbf{F} \rightarrow \mathbf{A}$, such that $\alpha=\beta \circ v$. Then $\alpha(p)=\beta \circ v(p)=\beta \circ v(q)=\alpha(q)$. Consequently $K \vDash p \approx q$.

Various Sets of Variables

Corollary

Let K be a class of algebras of type \mathscr{F}, and suppose $p, q \in T(X)$. Then for any set of variables Y, with $|Y| \geq|X|$, we have

$$
K \vDash p \approx q \quad \text { iff } \quad F_{K}(\bar{Y}) \vDash p \approx q .
$$

(\Rightarrow) This is obvious, as $\mathrm{F}_{K}(\bar{Y}) \in I S P(K)$.
(\Leftarrow) Choose $X_{0} \supseteq X$, such that $\left|X_{0}\right|=|Y|$. Then $\mathrm{F}_{K}\left(\bar{X}_{0}\right) \cong \mathrm{F}_{K}(\bar{Y})$, and, since, by the theorem,

$$
K \vDash p \approx q \quad \text { iff } \quad F_{K}\left(\bar{X}_{0}\right) \mid=p \approx q,
$$

it follows that

$$
K \mid=p \approx q \quad \text { iff } \quad F_{K}(\bar{Y}) \mid=p \approx q .
$$

Identities Over Various Sets of Variables

Corollary

Suppose K is a class of algebras of type \mathscr{F} and X is a set of variables. Then, for any infinite set of variables Y,

$$
\operatorname{ld}_{K}(X)=\operatorname{ld}_{\mathbf{F}_{K}(\bar{Y})}(X)
$$

- For $p \approx q \in \operatorname{ld}_{K}(X)$, say $p=p\left(x_{1}, \ldots, x_{n}\right), q=q\left(x_{1}, \ldots, x_{n}\right)$, we have $p, q \in T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$. As $\left|\left\{x_{1}, \ldots, x_{n}\right\}\right|<|Y|$, by the preceding corollary,

$$
K \mid=p \approx q \quad \text { iff } \quad F_{K}(\bar{Y}) \mid=p \approx q,
$$

so the corollary is proved.

Equational Classes of Algebras

Definition

Let Σ be a set of identities of type \mathscr{F} and define $M(\Sigma)$ to be the class of algebras \mathbf{A} satisfying Σ. A class K of algebras is an equational class if there is a set of identities Σ, such that $K=M(\Sigma)$. In this case, we say that K is defined, or axiomatized, by Σ.

Lemma

If V is a variety and X is an infinite set of variables, then $V=M\left(\operatorname{Id}_{V}(X)\right)$.

- Let $V^{\prime}=M(\operatorname{Id} V(X)) . V^{\prime}$ is a variety by a preceding result. Also, $V^{\prime} \supseteq V$ and $\operatorname{Id}_{V^{\prime}}(X)=\operatorname{ld}_{V}(X)$. So, we get $\mathrm{F}_{V^{\prime}}(\bar{X})=\mathrm{F}_{V}(\bar{X})$. Now given any infinite set of variables Y, we have $\operatorname{ld}_{V^{\prime}}(Y)=\operatorname{ld}_{\mathbf{F}_{V^{\prime}}(\bar{X})}(Y)=$ $\operatorname{ld}_{\mathbf{F}_{V}(\bar{X})}(Y)=\operatorname{ld} V_{V}(Y)$. Thus, $\theta_{V^{\prime}}(Y)=\theta_{V}(Y)$ and $\mathbf{F}_{V^{\prime}}(\bar{Y})=\mathbf{F}_{V}(\bar{Y})$.
For $\mathbf{A} \in V^{\prime}$, we have for suitable infinite $Y, \mathbf{A} \in H\left(\mathbf{F}_{V^{\prime}}(\bar{Y})\right)$. Thus, $\mathbf{A} \in H\left(\mathbf{F}_{V}(\bar{Y})\right)$. So $\mathbf{A} \in V$. Therefore, $V^{\prime} \subseteq V$.

Birkhoff's Variety Theorem

Theorem (Birkhoff)

K is an equational class iff K is a variety.
(\Rightarrow) Suppose $K=M(\Sigma)$. Then $V(K) \vDash \Sigma$. Hence, $V(K) \subseteq M(\Sigma)=K$. so $V(K)=K$, i.e., K is a variety.
(\Leftarrow) By the preceding lemma, $K=M\left(\operatorname{ld}_{K}(X)\right)$, for an infinite X.

Corollary

Let K be a class of algebras of type \mathscr{F}. If $\mathrm{T}(X)$ exists, i.e., $X \cup \mathscr{F}_{0} \neq \varnothing$, and K^{\prime} is any class of algebras such that $K \subseteq K^{\prime} \subseteq V(K)$, then $\mathbf{F}_{K^{\prime}}(\bar{X})=\mathbf{F}_{K}(\bar{X})$. In particular, if $K \neq \varnothing, \mathbf{F}_{K^{\prime}}(\bar{X}) \in I S P(K)$.

- Since $\operatorname{ld}_{K}(X)=\operatorname{ld}_{V(K)}(X)$, it follows that $\operatorname{ld}_{K}(X)=\operatorname{ld}_{K^{\prime}}(X)$. Thus $\theta_{K^{\prime}}(X)=\theta_{K}(X)$, so $\mathbf{F}_{K^{\prime}}(\bar{X})=\mathbf{F}_{K}(\bar{X})$. The last statement of the corollary now follows.

Large K-Free Algebras

Theorem

Let K be a nonempty class of algebras of type \mathscr{F}. Then, for some cardinal m, if $|X| \geq m$, we have $\mathrm{F}_{K}(\bar{X}) \in I P_{S}(K)$.

- Choose a subset K^{*} of K, such that for any $X, \operatorname{ld}_{K^{*}}(X)=\operatorname{ld}_{K}(X)$:

Choose an infinite set of variables Y. Then select, for each identity $p \approx q$ in $\operatorname{Id}(Y)-\operatorname{ld}_{K}(Y)$ an algebra $\mathbf{A} \in K$, such that $\mathbf{A} \not \models p \approx q$. Now K^{*} is a set. So there exists an infinite upper bound m of $\left\{|A|: \mathbf{A} \in K^{*}\right\}$.

Large K-Free Algebras (Cont'd)

- Given X, let $\Psi_{K^{*}}(X)=\left\{\phi \in \operatorname{ConT}(X): \mathbf{T}(X) / \phi \in I\left(K^{*}\right)\right\}$. Then $\Psi_{K^{*}}(X) \subseteq \Phi_{K^{*}}(X)$, whence $\cap \Psi_{K^{*}}(X) \supseteq \theta_{K^{*}}(X)$. To prove equality for $|X| \geq m$, suppose $\langle p, q\rangle \notin \theta_{K^{*}}(X)$. Then $K^{*} \not \vDash p \approx q$. Hence, for some $\mathbf{A} \in K^{*}, \mathbf{A} \not \vDash p \approx q$. If $p=p\left(x_{1}, \ldots, x_{n}\right)$, $q=q\left(x_{1}, \ldots, x_{n}\right)$, choose $a_{1}, \ldots, a_{n} \in A$, such that $p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \neq q^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$. As $|X| \geq|A|$, we can find a mapping $\alpha: X \rightarrow A$ which is onto and $\alpha\left(x_{i}\right)=a_{i}, 1 \leq i \leq n$. Then α can be extended to a surjective homomorphism $\beta: \mathbf{F}_{K^{*}}(\bar{X}) \rightarrow \mathbf{A}$ and $\beta(p) \neq \beta(q)$. Thus $\langle p, q\rangle \notin \operatorname{ker} \beta \in \Psi_{K^{*}}(X)$. So $\langle p, q\rangle \notin \cap \Psi_{K^{*}}(X)$. Consequently

$$
\bigcap \Psi_{K^{*}}(X)=\theta_{K^{*}}(X)
$$

As $\mathbf{F}_{K}(\bar{X})=\mathbf{F}_{K^{*}}(\bar{X})$, it follows that $\mathbf{F}_{K}(\bar{X})=\mathbf{T}(X) / \cap \Psi_{K^{*}}(X)$. Then we have $\mathrm{F}_{K}(\bar{X}) \in I P_{S}\left(K^{*}\right) \subseteq I P_{S}(K)$.

Another Characterization of V

Theorem

$V=H P_{S}$.

- As $P_{S} \leq S P$, we have

$$
H P_{S} \leq H S P \leq V
$$

Given a class K of algebras and sufficiently large X, we have $\mathrm{F}_{V(K)}(\bar{X}) \in I P_{S}(K)$, by the preceding theorem. Hence, $V(K) \subseteq H P_{S}(K)$, by a preceding result. Thus $V=H P_{S}$.

Subsection 4

Mal'cev Conditions

Mal'cev Conditions

- Properties of varieties characterized by the existence of certain terms involved in certain identities are referred to as Mal'cev conditions.

Lemma

Let V be a variety of type \mathscr{F}, and let $p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$, $q\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ be terms such that in $\mathrm{F}=\mathrm{F}_{V}(\bar{X})$, where $X=\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\}$, we have

$$
\left\langle p^{\mathbf{F}}\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right), q^{\mathbf{F}}\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right)\right\rangle \in \Theta\left(\bar{y}_{1}, \ldots, \bar{y}_{n}\right) .
$$

Then $V \vDash p\left(x_{1}, \ldots, x_{m}, y, \ldots, y\right) \approx q\left(x_{1}, \ldots, x_{m}, y, \ldots, y\right)$.

- The homomorphism $\alpha: \mathbf{F}_{V}\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right) \rightarrow \mathbf{F}_{V}\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}\right)$, defined by $\alpha\left(\bar{x}_{i}\right)=\bar{x}_{i}, 1 \leq i \leq m$, and $\alpha\left(\bar{y}_{i}\right)=\bar{y}, 1 \leq i \leq n$, is such that $\Theta\left(\bar{y}_{1}, \ldots \bar{y}_{n}\right) \subseteq \operatorname{ker} \alpha$. So
$\alpha\left(p\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right)\right)=\alpha\left(q\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right)\right)$. Thus, $p\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}, \ldots, \bar{y}\right)=q\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}, \ldots, \bar{y}\right)$ in $\mathbf{F}_{V}\left(\bar{x}_{1}, \ldots, \bar{x}_{m}, \bar{y}\right)$. Hence, $V \vDash p\left(x_{1}, \ldots, x_{m}, y, \ldots, y\right) \approx q\left(x_{1}, \ldots, x_{m}, y, \ldots, y\right)$.

Mal'cev's Theorem on Congruence Permutability

Theorem (Mal'cev)

Let V be a variety of type \mathscr{F}. The variety V is congruence-permutable iff there is a term $p(x, y, z)$, such that

$$
V \vDash p(x, x, y) \approx y \quad \text { and } \quad V \vDash p(x, y, y) \approx x .
$$

(\Rightarrow) Suppose V is congruence-permutable. In $\mathrm{F}_{V}(\bar{x}, \bar{y}, \bar{z})$, we have $\langle\bar{x}, \bar{z}\rangle \in \Theta(\bar{x}, \bar{y}) \circ \Theta(\bar{y}, \bar{z})$. So $\langle\bar{x}, \bar{z}\rangle \in \Theta(\bar{y}, \bar{z}) \circ \Theta(\bar{x}, \bar{y})$. Hence, there is a $p(\bar{x}, \bar{y}, \bar{z}) \in F_{V}(\bar{x}, \bar{y}, \bar{z})$, such that $\bar{x} \Theta(\bar{y}, \bar{z}) p(\bar{x}, \bar{y}, \bar{z}) \Theta(\bar{x}, \bar{y}) \bar{z}$. By the lemma, $V \vDash p(x, y, y) \approx x$ and $V \vDash p(x, x, z) \approx z$.
(\Leftarrow) Let $\mathbf{A} \in V$ and $\phi, \psi \in$ ConA. Suppose $\langle a, b\rangle \in \phi \circ \psi$, say a $\phi \subset \psi b$. Then $b=p(c, c, b) \phi p(a, c, b) \psi p(a, b, b)=a$. So $\langle b, a\rangle \in \phi \circ \psi$. Thus, $\phi \circ \psi=\psi \circ \phi$.

Examples

(1) Groups $\left\langle A, \cdot,^{-1}, 1\right\rangle$ are congruence-permutable: Let

$$
p(x, y, z)=x \cdot y^{-1} \cdot z
$$

(2) Rings $\langle R,+, \cdot,-, 0\rangle$ are congruence-permutable: Let

$$
p(x, y, z)=x-y+z
$$

(3) Quasigroups $\langle Q, /, \cdot, \backslash\rangle$ are congruence-permutable: Let

$$
p(x, y, z)=(x /(y \backslash y)) \cdot(y \backslash z) .
$$

Congruence Distributivity

Theorem

Suppose V is a variety for which there is a ternary term $M(x, y, z)$, such that

$$
V \vDash M(x, x, y) \approx M(x, y, x) \approx M(y, x, x) \approx x .
$$

Then V is congruence-distributive.

- Let $\phi, \psi, \chi \in \operatorname{ConA}$, where $\mathbf{A} \in V$. Suppose $\langle a, b\rangle \in \phi \wedge(\psi \vee \chi)$. Then $\langle a, b\rangle \in \phi$ and, there exist c_{1}, \ldots, c_{n}, such that a $\psi c_{1} \chi c_{2} \cdots \psi c_{n} \chi b$. Since $M\left(a, c_{i}, b\right) \phi M\left(a, c_{i}, a\right)=a$, for each i, we get

$$
\begin{array}{r}
a=M(a, a, b)(\phi \wedge \psi) M\left(a, c_{1}, b\right)(\phi \wedge \chi) M\left(a, c_{2}, b\right) \cdots \\
M\left(a, c_{n}, b\right)(\phi \wedge \chi) M(a, b, b)=b .
\end{array}
$$

So $\langle a, b\rangle \in(\phi \wedge \psi) \vee(\phi \wedge \chi)$. This suffices to show $\phi \wedge(\psi \vee \chi)=(\phi \wedge \psi) \vee(\phi \wedge \chi)$. So V is congruence-distributive.
Example: Lattices are congruence-distributive:

$$
M(x, y, z)=(x \vee y) \wedge(x \vee z) \wedge(y \vee z)
$$

Arithmetical Varieties

Definition

A variety V is arithmetical if it is both congruence-distributive and congruence-permutable.

Theorem (Pixley)

A variety V is arithmetical iff it satisfies either of the equivalent conditions:
(a) There are a congruence permutability term p and a congruence distributivity term M.
(b) There is a term $m(x, y, z)$, such that $V \vDash m(x, y, x) \approx m(x, y, y) \approx m(y, y, x) \approx x$.

- If V is arithmetical, then V is congruence-permutable, so there is a term p. Let $\mathbf{F}_{V}(\bar{x}, \bar{y}, \bar{z})$ be the free algebra in V freely generated by $\{\bar{x}, \bar{y}, \bar{z}\}$. We have $\langle\bar{x}, \bar{z}\rangle \in \Theta(\bar{x}, \bar{z}) \cap[\Theta(\bar{x}, \bar{y}) \vee \Theta(\bar{y}, \bar{z})]$. Hence, $\langle\bar{x}, \bar{z}\rangle \in[\Theta(\bar{x}, \bar{z}) \cap \Theta(\bar{x}, \bar{y})] \vee[\Theta(\bar{x}, \bar{z}) \cap \Theta(\bar{y}, \bar{z})]$.

Arithmetical Varieties (Cont'd)

- Hence, $\langle\bar{x}, \bar{z}\rangle \in[\Theta(\bar{x}, \bar{z}) \cap \Theta(\bar{x}, \bar{y})] \circ[\Theta(\bar{x}, \bar{z}) \cap \Theta(\bar{y}, \bar{z})]$. Choose $M(\bar{x}, \bar{y}, \bar{z}) \in F_{V}(\bar{x}, \bar{y}, \bar{z})$, such that $\bar{x}[\Theta(\bar{x}, \bar{z}) \cap \Theta(\bar{x}, \bar{y})] M(\bar{x}, \bar{y}, \bar{z})[\Theta(\bar{x}, \bar{z}) \cap \Theta(\bar{y}, \bar{z})] \bar{z}$. Then $V \vDash M(x, x, y) \approx M(x, y, x) \approx M(y, x, x) \approx x$.
If (a) holds, let $m(x, y, z):=p(x, M(x, y, z), z)$. Verify that $V \vDash m(x, y, x) \approx m(x, y, y) \approx m(y, y, x) \approx x$.
If (b) holds, let $p(x, y, z):=m(x, y, z)$ and
$M(x, y, z):=m(x, m(x, y, z), z)$. Verify that $V \vDash p(x, x, y) \approx y$, $V \vDash p(x, y, y) \approx x$ and $V \vDash M(x, x, y) \approx M(x, y, x) \approx M(y, x, x) \approx x$.

Examples:

(1) Boolean algebras are arithmetical: Let

$$
m(x, y, z)=(x \wedge z) \vee\left(x \wedge y^{\prime} \wedge z^{\prime}\right) \vee\left(x^{\prime} \wedge y^{\prime} \wedge z\right)
$$

(2) Heyting algebras are arithmetical: Let

$$
m(x, y, z)=[(x \rightarrow y) \rightarrow z] \wedge[(z \rightarrow y) \rightarrow x] \wedge[x \vee z] .
$$

Congruence-Distributivity

Theorem (Jónsson)

A variety V is congruence-distributive iff there is a finite n and terms $p_{0}(x, y, z), \ldots, p_{n}(x, y, z)$, such that V satisfies:

$$
\begin{array}{ll}
p_{i}(x, y, x) \approx x & 0 \leq i \leq n \\
p_{0}(x, y, z) \approx x ; \quad p_{n}(x, y, z) \approx z & \\
p_{i}(x, x, y) \approx p_{i+1}(x, x, y) & \text { for } i \text { even } \\
p_{i}(x, y, y) \approx p_{i+1}(x, y, y) & \text { for } i \text { odd. }
\end{array}
$$

(\Rightarrow) We have

$$
\Theta(\bar{x}, \bar{z}) \wedge[\Theta(\bar{x}, \bar{y}) \vee \Theta(\bar{y}, \bar{z})]=[\Theta(\bar{x}, \bar{z}) \wedge \Theta(\bar{x}, \bar{y})] \vee[\Theta(\bar{x}, \bar{z}) \wedge \Theta(\bar{y}, \bar{z})] .
$$

Thus, in $\mathbf{F}_{V}(\bar{x}, \bar{y}, \bar{z})$,

$$
\langle\bar{x}, \bar{z}\rangle \in[\Theta(\bar{x}, \bar{z}) \wedge \Theta(\bar{x}, \bar{y})] \vee[\Theta(\bar{x}, \bar{z}) \wedge \Theta(\bar{y}, \bar{z})] .
$$

Congruence-Distributivity (Cont'd)

Thus, for some $p_{1}(\bar{x}, \bar{y}, \bar{z}), \ldots, p_{n-1}(\bar{x}, \bar{y}, \bar{z}) \in F_{V}(\bar{x}, \bar{y}, \bar{z})$, we have

$$
\begin{array}{rcl}
\bar{x} & {[\Theta(\bar{x}, \bar{z}) \wedge \Theta(\bar{x}, \bar{y})]} & p_{1}(\bar{x}, \bar{y}, \bar{z}) \\
p_{1}(\bar{x}, \bar{y}, \bar{z}) & {[\Theta(\bar{x}, \bar{z}) \wedge \Theta(\bar{y}, \bar{z})]} & p_{2}(\bar{x}, \bar{y}, \bar{z}) \\
& & \vdots \\
p_{n-1}(\bar{x}, \bar{y}, \bar{z}) & {[\Theta(\bar{x}, \bar{z}) \wedge \Theta(\bar{y}, \bar{z})]} & \bar{z} .
\end{array}
$$

From these the desired equations fall out.
(\Leftarrow) For $\phi, \psi, \chi \in \operatorname{ConA}, \mathbf{A} \in V$, we need $\phi \wedge(\psi \vee \chi) \subseteq(\phi \wedge \psi) \vee(\phi \wedge \chi)$. Let $\langle a, b\rangle \in \phi \wedge(\psi \vee \chi)$. Then $\langle a, b\rangle \in \phi$, and, for some c_{1}, \ldots, c_{t}, we have a $\psi c_{1} \chi \cdots c_{t} \chi b$. From these, we get, for $0 \leq i \leq n$, $p_{i}(a, a, b) \psi p_{i}\left(a, c_{1}, b\right) \chi \cdots p_{i}\left(a, c_{t}, b\right) \chi p_{i}(a, b, b)$. Hence, $p_{i}(a, a, b)(\phi \wedge \psi) p_{i}\left(a, c_{1}, b\right)(\phi \wedge \chi) \cdots p_{i}\left(a, c_{t}, b\right)(\phi \wedge \chi) p_{i}(a, b, b)$. So $p_{i}(a, a, b)[(\phi \wedge \psi) \vee(\phi \wedge \chi)] p_{i}(a, b, b), 0 \leq i \leq n$. Then in view of the given equations, $a[(\phi \wedge \psi) \vee(\phi \wedge \chi)] b$.
So V is congruence-distributive.

Additional Characterizations and Terminology

Theorem

A variety V is congruence permutable (respectively, congruence distributive) iff $\mathrm{F}_{V}(\bar{x}, \bar{y}, \bar{z})$ has permutable (respectively, distributive) congruences.

- This follows by looking at the proofs of the corresponding Mal'cev conditions.

Definition

- A ternary term p satisfying the congruence-permutability conditions for a variety V is called a Mal'cev term for V;
- A ternary term M satisfying the congruence-distributivity conditions is a majority term for V;
- A ternary term m satisfying the arithmeticity conditions is a $\frac{2}{3}$-minority term for V.

Subsection 5

Equational Logic and Fully Invariant Congruences

Fully Invariant Congruences

Definition

A congruence θ on an algebra \mathbf{A} is fully invariant if, for every endomorphism α on A,

$$
\langle a, b\rangle \in \theta \quad \Rightarrow \quad\langle\alpha(a), \alpha(b)\rangle \in \theta .
$$

Let $\mathrm{Con}_{\mathrm{FI}}(\mathbf{A})$ denote the set of fully invariant congruences on \mathbf{A}.

Lemma

$\operatorname{Con}_{\mathrm{FI}}(\mathrm{A})$ is closed under arbitrary intersection.

- First, note, that $\nabla^{\mathbf{A}}$ is invariant.

Now, suppose $\left\{\theta_{i}: i \in I\right\} \subseteq \operatorname{Con}_{\mathrm{FI}}(\mathbf{A})$ and α is an endomorphism of \mathbf{A}. Then $\langle a, b\rangle \in \bigcap_{i \in I} \theta_{i}$ implies $\langle a, b\rangle \in \theta_{i}, i \in I$, implies $\langle\alpha(a), \alpha(b)\rangle \in \theta_{i}$, $i \in I$, implies $\langle\alpha(a), \alpha(b)\rangle \in \bigcap_{i \in I} \theta_{i}$.

Fully Invariant Congruence Generated by a Set of Pairs

Definition

Given an algebra \mathbf{A} and $S \subseteq A \times A$ let $\Theta_{\mathrm{FI}}(S)$ denote the least fully invariant congruence on A containing S.
The congruence $\Theta_{\mathrm{FI}}(S)$ is called the fully invariant congruence generated by S.

The Fully Invariant Congruence Θ_{FI}

Lemma

If we are given an algebra \mathbf{A} of type \mathscr{F} then Θ_{FI} is an algebraic closure operator on $A \times A$. Indeed, Θ_{FI} is 2-ary.

- Construct $\mathbf{A} \times \mathbf{A}$. To the fundamental operations of $\mathbf{A} \times \mathbf{A}$ add the following:

$$
\begin{array}{rlr}
s(\langle a, b\rangle) & =\langle a, a\rangle & \text { for } a \in A \\
t(\langle a, b\rangle,\langle c, d\rangle) & = \begin{cases}\langle a, d\rangle, & \text { if } b=c \\
\langle a, b\rangle, & \text { otherwise }\end{cases} \\
e_{\sigma}(\langle a, b\rangle) & =\langle\sigma(a), \sigma(b)\rangle & \sigma \text { endomorphism of } \mathbf{A}
\end{array}
$$

Then θ is a fully invariant congruence on \mathbf{A} iff θ is a subuniverse of the new algebra we have just constructed. Thus, Θ_{FI} is an algebraic closure operator.

The Fully Invariant Congruence Θ_{FI} (Cont'd)

- We show that $\Theta_{\text {FI }}$ is 2-ary. Define a new algebra \mathbf{A}^{*} by replacing each n-ary fundamental operation f of \mathbf{A} by the set of all unary operations of form $f\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right), a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n} \in A$. Claim: $\operatorname{ConA}=$ ConA*.
Clearly $\theta \in \operatorname{Con} \mathbf{A} \Rightarrow \theta \in \operatorname{Con} \mathbf{A}^{*}$. For the converse suppose that $\theta \in \operatorname{Con} \mathbf{A}^{*}$ and $f \in \mathscr{F}_{n}$. Then, for $\left\langle a_{i}, b_{i}\right\rangle \in \theta, 1 \leq i \leq n$, we have:

$$
\begin{gathered}
\left\langle f\left(a_{1}, \ldots, a_{n-1}, a_{n}\right), f\left(a_{1}, \ldots, a_{n-1}, b_{n}\right)\right\rangle \in \theta \\
\left\langle f\left(a_{1}, \ldots, a_{n-1}, b_{n}\right), f\left(a_{1}, \ldots, b_{n-1}, b_{n}\right)\right\rangle \in \theta \\
\vdots \\
\left\langle f\left(a_{1}, b_{2}, \ldots, b_{2}\right), f\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right\rangle \in \theta
\end{gathered}
$$

Hence $\left\langle f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \theta$. Thus, $\theta \in \operatorname{ConA}$.
Go back to the beginning of the proof. Take \mathbf{A}^{*} instead of \mathbf{A}. Keep the e_{σ} 's the same. Then Θ_{FI} is the closure operator Sg of an algebra all of whose operations are of arity at most 2 . Tus, Θ_{FI} is 2-ary.

From Identities to Congruences

Definition

Given a set of variables X and a type \mathscr{F}, let $\tau: \operatorname{ld}(X) \rightarrow T(X) \times T(X)$ be the bijection defined by $\tau(p \approx q)=\langle p, q\rangle$.

Lemma

For K a class of algebras of type \mathscr{F} and X a set of variables, $\tau\left(\operatorname{ld}_{K}(X)\right)$ is a fully invariant congruence on $\mathrm{T}(X)$.

- Let $p, q, r \in T(X)$.
- $p \approx p \in \operatorname{ld}_{K}(X)$. Hence, $\langle p, p\rangle \in \tau\left(\operatorname{ld}_{K}(X)\right)$.
- Suppose $\langle p, q\rangle \in \tau\left(\operatorname{ld}_{K}(X)\right)$. Then $p \approx q \in \operatorname{ld}_{K}(X)$. Thus, $q \approx p \in \operatorname{ld}_{K}(X)$. Hence, $\langle q, p\rangle \in \tau\left(\operatorname{Id}_{K}(X)\right)$.
- Suppose $\langle p, q\rangle,\langle q, r\rangle \in \tau\left(\operatorname{Id}_{K}(X)\right)$. Then $p \approx q, q \approx r \in \operatorname{Id}_{K}(X)$. Thus, $p \approx r \in \operatorname{ld}_{K}(X)$. Hence, $\langle p, r\rangle \in \tau\left(\operatorname{ld}_{K}(X)\right)$.
Therefore, $\tau\left(\operatorname{ld}_{K}(X)\right)$ is an equivalence relation on $T(X)$.

From Identities to Congruences (Cont'd)

- Let $f \in \mathscr{F}_{n}, p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n} \in T(X)$, such that $\left\langle p_{i}, q_{i}\right\rangle \in \tau\left(\operatorname{ld}_{K}(X)\right)$, $1 \leq i \leq n$. Then $p_{i} \approx q_{i} \in \operatorname{ld}_{K}(X), 1 \leq i \leq n$. Thus, $f\left(p_{1}, \ldots, p_{n}\right) \approx f\left(q_{1}, \ldots, q_{n}\right) \in \operatorname{ld}_{K}(X)$. Hence, $\left\langle f\left(p_{1}, \ldots, p_{n}\right), f\left(q_{1}, \ldots, q_{n}\right)\right\rangle \in \tau\left(\operatorname{ld}_{K}(X)\right)$. So $\tau\left(\operatorname{Id}_{K}(X)\right)$ is a congruence relation on $\mathrm{T}(X)$.
- Finally, let α be an endomorphism of $\mathbf{T}(X)$ and $p=p\left(x_{1}, \ldots, x_{n}\right)$, $q=q\left(x_{1}, \ldots, x_{n}\right) \in T(X)$, such that $\langle p, q\rangle \in \tau\left(\operatorname{ld}_{K}(X)\right)$. Then $p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{ld}_{K}(X)$. Thus, $p\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right) \approx q\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right) \in \operatorname{Id}_{K}(X)$. It follows that $\alpha\left(p\left(x_{1}, \ldots, x_{n}\right)\right) \approx \alpha\left(q\left(x_{1}, \ldots, x_{n}\right)\right) \in \operatorname{ld}_{K}(X)$, i.e., $\langle\alpha(p), \alpha(q)\rangle \in \tau\left(\operatorname{ld}_{K}(X)\right)$. Hence, $\tau\left(\operatorname{ld}_{K}(X)\right)$ is fully invariant.

Freeness of $T(X) / \theta$

Lemma

Given a set of variables X and a fully invariant congruence θ on $\mathrm{T}(X)$, we have, for $p \approx q \in \operatorname{ld}(X)$,

$$
\mathbf{T}(X) / \theta \vDash p \approx q \quad \Leftrightarrow \quad\langle p, q\rangle \in \theta .
$$

Thus, $\mathbf{T}(X) / \theta$ is free in $V(\mathbf{T}(X) / \theta)$.
(\Rightarrow) If $p=p\left(x_{1}, \ldots, x_{n}\right), q=q\left(x_{1}, \ldots, x_{n}\right)$, then

$$
\begin{aligned}
& \mathrm{T}(X) / \theta \mid=p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right) \\
& \Rightarrow \quad p\left(x_{1} / \theta, \ldots, x_{n} / \theta\right)=q\left(x_{1} / \theta, \ldots, x_{n} / \theta\right) \\
& \Rightarrow \quad p\left(x_{1}, \ldots, x_{n}\right) / \theta=q\left(x_{1}, \ldots, x_{n}\right) / \theta \\
& \Rightarrow \quad\left\langle p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)\right\rangle \in \theta \\
& \Rightarrow \quad\langle p, q\rangle \in \theta .
\end{aligned}
$$

Freeness of $T(X) / \theta$ (Converse)

(\Leftarrow) Given $r_{1}, \ldots, r_{n} \in T(X)$, we can find an endomorphism ε of $\mathrm{T}(X)$ with $\varepsilon\left(x_{i}\right)=r_{i}, 1 \leq i \leq n$. Hence,

$$
\begin{aligned}
& \left\langle p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)\right\rangle \in \theta \\
& \Rightarrow \quad\left\langle\varepsilon\left(p\left(x_{1}, \ldots, x_{n}\right)\right), \varepsilon\left(q\left(x_{1}, \ldots, x_{n}\right)\right)\right\rangle \in \theta \\
& \Rightarrow \quad\left\langle p\left(r_{1}, \ldots, r_{n}\right), q\left(r_{1}, \ldots, r_{n}\right)\right\rangle \in \theta \\
& \Rightarrow \quad p\left(r_{1} / \theta, \ldots, r_{n} / \theta\right)=q\left(r_{1} / \theta, \ldots, r_{n} / \theta\right) .
\end{aligned}
$$

Thus, $\mathbf{T}(X) / \theta=p \approx q$.
For the last claim, given $p \approx q \in \operatorname{ld}(X)$,

$$
\begin{aligned}
\langle p, q\rangle \in \theta & \Leftrightarrow \mathrm{T}(X) / \theta \vDash p \approx q \\
& \Leftrightarrow V(\mathbf{T}(X) / \theta) \mid=p \approx q .
\end{aligned}
$$

So $\mathbf{T}(X) / \theta$ is free in $V(\mathbf{T}(X) / \theta)$.

Fully Invariant Congruences and Equational Theories

Theorem

Given a subset Σ of $\operatorname{Id}(X)$, one can find a K, such that $\Sigma=\operatorname{ld}_{K}(X)$ iff $\tau(\Sigma)$ is a fully invariant congruence on $\mathrm{T}(X)$.
(\Rightarrow) This was proved in a preceding lemma.
(\Leftarrow) Suppose $\tau(\Sigma)$ is a fully invariant congruence θ. Let $K=\{\mathbf{T}(X) / \theta\}$. Then by the preceding lemma, $K \vDash p \approx q$ iff $\langle p, q\rangle \in \theta$ iff $p \approx q \in \Sigma$. Thus $\Sigma=\operatorname{ld}_{K}(X)$.

Definition

A subset Σ of $\operatorname{Id}(X)$ is called an equational theory over X if there is a class of algebras K, such that $\Sigma=\operatorname{ld}_{K}(X)$.

Corollary

The equational theories (of type \mathscr{F}) over X form an algebraic lattice which is isomorphic to the lattice of fully invariant congruences on $\mathrm{T}(X)$.

Validity

Definition

Let X be a set of variables and Σ a set of identities of type \mathscr{F}, with variables from X. For $p, q \in T(X)$, we say $\Sigma \vDash p \approx q$ (read: " Σ yields $p \approx q$ ", or " Σ implies $p \approx q$ ") if, given any algebra $\mathbf{A}, \mathbf{A} \vDash \Sigma$ implies $\mathbf{A} \vDash p \approx q$.

Theorem

If Σ is a set of identities over X and $p \approx q$ is an identity over X, then $\Sigma \vDash p \approx q$ iff $\langle p, q\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$.

- Assume $\langle p, q\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$ and let \mathbf{A} be such that $\mathbf{A} \vDash \Sigma . \tau\left(\operatorname{ld}_{\mathbf{A}}(X)\right)$ is a fully invariant congruence on $\mathbf{T}(X)$. Hence, $\Theta_{\mathrm{FI}}(\tau(\Sigma)) \subseteq \tau\left(\operatorname{ld}_{\mathbf{A}}(X)\right)$. Thus, since $\langle p, q\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma)), \mathbf{A} \vDash p \approx q$.
Conversely, assume $\Sigma \vDash p \approx q$. But $\mathbf{T}(X) / \Theta_{\mathrm{FI}}(\tau(\Sigma)) \vDash \Sigma$. Hence, $\mathrm{T}(X) / \Theta_{\mathrm{FI}}(\tau(\Sigma)) \mid=p \approx q$. Thus, $\langle p, q\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$.

Replacements and Substitutions

Definition

Given a term p, the subterms of p are recursively defined by:
(1) The term p is a subterm of p.
(2) If $f\left(p_{1}, \ldots, p_{n}\right)$ is a subterm of p and $f \in \mathscr{F}_{n}$, then each p_{i} is a subterm of p.

Definition

A set of identities Σ over X is closed under replacement if given any $p \approx q \in \Sigma$ and any term $r \in T(X)$, if p occurs as a subterm of r, then letting s be the result of replacing that occurrence of p by q, we have $r \approx s \in \Sigma$.

Definition

A set of identities Σ over X is closed under substitution if for each $p \approx q$ in Σ and for $r_{i} \in T(X)$, if we simultaneously replace every occurrence of each variable x_{i} in $p \approx q$ by r_{i}, then the resulting identity is in Σ.

Deductive Closure

Definition

If Σ is a set of identities over X, then the deductive closure $D(\Sigma)$ of Σ is the smallest subset of $\operatorname{Id}(X)$ containing Σ, such that:
(1) $p \approx p \in D(\Sigma)$, for all $p \in T(X)$;
(2) $p \approx q \in D(\Sigma) \Rightarrow q \approx p \in D(\Sigma)$, for all $p, q \in T(X)$;
(3) $p \approx q, q \approx r \in D(\Sigma) \Rightarrow p \approx r \in D(\Sigma)$, for all $p, q, r \in T(X)$;
(4) $D(\Sigma)$ is closed under replacement;
(5) $D(\Sigma)$ is closed under substitution.

Deductive Closure and Fully Invariant Congruences

Theorem

Given $\Sigma \subseteq \operatorname{ld}(X), p \approx q \in \operatorname{ld}(X), \Sigma \vDash p \approx q$ iff $p \approx q \in D(\Sigma)$.

- We first show that $\tau(D(\Sigma))=\Theta_{\mathrm{FI}}(\tau(\Sigma))$.

By definition $\tau(\Sigma) \subseteq \tau(D(\Sigma))$.
By Properties (1)-(3), $\tau(D(\Sigma))$ is an equivalence relation.
By Property (4) (closure under replacement), $\tau(D(\Sigma))$ is a congruence relation.
By Property (5) (closure under substitution) $\tau(D(\Sigma))$ is fully invariant. By definition, $\Theta_{\mathrm{FI}}(\tau(\Sigma))$ is the smallest fully invariant congruence containing $\tau(\Sigma)$.
Therefore, $\Theta_{\mathrm{FI}}(\tau(\Sigma)) \subseteq \tau(D(\Sigma))$.

Deductive Closure and Fully Invariant Congruences (Cont'd)

- We show that $\tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$ contains Σ and satisfies (1)-(5):
- By definition $\tau(\Sigma) \subseteq \Theta_{\mathrm{FI}}(\tau(\Sigma))$. Thus, $\Sigma \subseteq \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$.
- $\langle p, p\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$, i.e., $\tau(p \approx p) \subseteq \Theta_{\mathrm{FI}}(\tau(\Sigma))$. So $p \approx p \in \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$;
- Suppose $p \approx q \in \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$. Then $\langle p, q\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. Thus, $\langle q, p\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. So $q \approx p \in \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$.
- Transitivity is similar.
- Suppose p is a term, $s \approx r \in \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$ and q results from substituting an occurrence of s in p by r. By hypothesis, $\langle s, r\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. Since $\Theta_{\mathrm{FI}}(\tau(\Sigma))$ is a congruence, $\langle p, q\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$.
Thus, $p \approx q \in \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$;
- Let $p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right) \in \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$ and $r_{1}, \ldots, r_{n} \in T(X)$. Then $\langle p, q\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. Since $\Theta_{\mathrm{FI}}(\tau(\Sigma))$ is fully invariant, $\left\langle p\left(r_{1}, \ldots, r_{n}\right)\right.$, $\left.q\left(r_{1}, \ldots, r_{n}\right)\right\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. So $p\left(r_{1}, \ldots, r_{n}\right) \approx q\left(r_{1}, \ldots\right) \in \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$.
By definition, $D(\Sigma)$ is the smallest set that contains Σ and satisfies (1)-(5). Hence $D(\Sigma) \subseteq \tau^{-1}\left(\Theta_{\mathrm{FI}}(\tau(\Sigma))\right)$. Thus, $\tau(D(\Sigma)) \subseteq \Theta_{\mathrm{FI}}(\tau(\Sigma))$. Now we get $\Sigma=p \approx q$ iff $\langle p, q\rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$ iff $p \approx q \in \tau(D(\Sigma))$ iff $p \approx q \in D(\Sigma)$.

Formal Deduction and Provability

Definition

Let Σ be a set of identities over X. For $p \approx q \in \operatorname{ld}(X)$, we say $\Sigma \vdash p \approx q$, read " Σ proves $p \approx q$ ", if there is a sequence of identities

$$
p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}
$$

from $\operatorname{Id}(X)$, such that each $p_{i} \approx q_{i}$ belongs to Σ, or is of the form $p \approx p$, or is a result of applying any of the four closure rules

$$
\begin{aligned}
& p \approx q \in D(\Sigma) \Rightarrow q \approx p \in D(\Sigma) ; \\
& p \approx q, q \approx r \in D(\Sigma) \Rightarrow p \approx r \in D(\Sigma) ; \\
& D(\Sigma) \text { is closed under replacement; } \\
& D(\Sigma) \text { is closed under substitution }
\end{aligned}
$$

to previous identities in the sequence, and the last identity $p_{n} \approx q_{n}$ is $p \approx q$. The sequence $p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}$ is called a formal deduction of $p \approx q$. The number n is the length of the deduction.

The Completeness Theorem for Equational Logic

Theorem (Birkhoff's Completeness Theorem for Equational Logic)

Given $\Sigma \subseteq \operatorname{ld}(X)$ and $p \approx q \in \operatorname{ld}(X)$, we have $\Sigma \vDash p \approx q$ iff $\Sigma \vdash p \approx q$.

- In the construction of a formal deduction $p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}$ of $p \approx q$, only properties under which $D(\Sigma)$ is closed are used. Hence, $\Sigma \vdash p \approx q$ implies $p \approx q \in D(\Sigma)$.
For the converse:
- $\Sigma \vdash p \approx q$, for $p \approx q \in \Sigma$, and $\Sigma \vdash p \approx p$, for $p \in T(X)$.
- If $\Sigma \vdash p \approx q$, then there is a formal deduction $p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}$ of $p \approx q$. Now $p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}, q_{n} \approx p_{n}$ is a formal deduction of $q \approx p$. Hence, $\Sigma \vdash q \approx p$.
- If $\Sigma \vdash p \approx q, \Sigma \vdash q \approx r$, let $p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}$ be a formal deduction of $p \approx q$ and let $\bar{p}_{1} \approx \bar{q}_{1}, \ldots, \bar{p}_{k} \approx \bar{q}_{k}$ be a formal deduction of $q \approx r$. Then $p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}, \bar{p}_{1} \approx \bar{q}_{1}, \ldots, \bar{p}_{k} \approx \bar{q}_{k}, p_{n} \approx \bar{q}_{k}$ is a formal deduction of $p \approx r$. Thus, $\Sigma \vdash p \approx r$.

The Completeness Theorem for Equational Logic (Cont'd)

- We continue with the remaining deduction rules:
- If $\Sigma \vdash p \approx q$, let $p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}$ be a formal deduction of $p \approx q$. Let $r(\ldots, p, \ldots)$ denote a term with a specific occurrence of the subterm p. Then $p_{1} \approx q_{1}, \ldots, p_{n} \approx q_{n}, r\left(\ldots, p_{n}, \ldots\right) \approx r\left(\ldots, q_{n}, \ldots\right)$ is a formal deduction of $r(\ldots, p, \ldots) \approx r(\ldots, q, \ldots)$.
- Finally, if $\Sigma \vdash p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$, let $p_{1} \approx q_{1}, \ldots, p_{m} \approx q_{m}, p \approx q$ be a formal deduction of $p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$ from Σ. Then, for terms $r_{1}, \ldots, r_{n}, p_{1} \approx q_{1}, \ldots, p_{m} \approx q_{m}, p\left(x_{1}, \ldots, x_{n}\right) \approx$ $q\left(x_{1}, \ldots, x_{n}\right), p\left(r_{1}, \ldots, r_{n}\right) \approx q\left(r_{1}, \ldots, r_{n}\right)$ is a formal deduction of $p\left(r_{1}, \ldots, r_{n}\right) \approx q\left(r_{1}, \ldots, r_{n}\right)$ from Σ.
Thus, $D(\Sigma) \subseteq\{p \approx q: \Sigma \vdash p \approx q\}$. Hence, $D(\Sigma)=\{p \approx q: \Sigma \vdash p \approx q\}$. Therefore,

$$
\Sigma \vDash p \approx q \quad \text { iff } \quad p \approx q \in D(\Sigma) \quad \text { iff } \quad \Sigma \vdash p \approx q .
$$

Examples

(1) An identity $p \approx q$ is balanced if each variable occurs the same number of times in p as in q.
If Σ is a balanced set of identities, then, using induction on the length of a formal deduction, we can show that if $\Sigma \vdash p \approx q$, then $p \approx q$ is balanced.
This is not at all evident if one works with the notion \vDash.
(2) A famous theorem of Jacobson in ring theory says that, if we are given $n \geq 2$, if Σ is the set of ring axioms plus $x^{n} \approx x$, then $\Sigma \vDash x \cdot y \approx y \cdot x$. However, there is no published routine way of writing out a formal deduction, given n, of $x \cdot y \approx y \cdot x$.
For special n, such as $n=2,3$, this is a popular exercise.

Minimal Subvarieties

Definition

A variety V is trivial if all algebras in V are trivial. A subclass W of a variety V which is also a variety is called a subvariety of $V . V$ is a minimal (or equationally complete) variety, if V is not trivial, but the only subvariety of V not equal to V is the trivial variety.

Theorem

Let V be a nontrivial variety. Then V contains a minimal subvariety.

- Let $V=M(\Sigma), \Sigma \subseteq \operatorname{ld}(X)$, with X infinite. Then $\operatorname{Id} V(X)$ defines V. As V is nontrivial, $\tau(\operatorname{ld} V(X))$ is a fully invariant congruence on $\mathrm{T}(X)$ which is not ∇. But $\nabla=\Theta_{\mathrm{FI}}(\langle x, y\rangle)$, for any $x, y \in X$, with $x \neq y$. Hence, ∇ is finitely generated (as a fully invariant congruence). This allows us to use Zorn's lemma to extend $\tau(\operatorname{Id} V(X))$ to a maximal fully invariant congruence on $\mathrm{T}(X)$, say θ. Then $\tau^{-1}(\theta)$ must define a minimal variety which is a subvariety of V.

Example: Lattices

- The variety of lattices has a unique minimal subvariety, the variety generated by a two-element chain.
To see this let V be a minimal subvariety of the variety of lattices. Let L be a nontrivial lattice in V. As L contains a two-element sublattice, we can assume \mathbf{L} is a two-element lattice. Now $V(\mathbf{L})$ is not trivial, and $V(\mathrm{~L}) \subseteq V$, whence $V(\mathrm{~L})=V$.

