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Varieties Class Operators and Varieties

Subsection 1

Class Operators and Varieties
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Varieties Class Operators and Varieties

Operators on Classes of Algebras

Definition

We introduce the following operators mapping classes of algebras to classes
of algebras (all of the same type):

A ∈ I (K) iff A is isomorphic to some member of K

A ∈S(K) iff A is a subalgebra of some member of K

A ∈H(K) iff A is a homomorphic image of some member of K

A ∈P(K) iff A is a direct product of a nonempty family of algebras in K

A ∈PS (K) iff A is a subdirect product of a nonempty family of algebras in K .

If O1 and O2 are two operators on classes of algebras we write O1O2 for
the composition of the two operators. ≤ denotes the usual partial ordering:
O1 ≤O2 if O1(K )⊆O2(K ), for all classes of algebras K . An operator O is
idempotent if O2 =O. A class K of algebras is closed under an operator
O if O(K )⊆K .

For any operator O above, O(;)=;.

If
∏

; is included (so that P(K ) and PS(K ) always contain a trivial
algebra) some problems occur in formulating preservation theorems.

George Voutsadakis (LSSU) Universal Algebra June 2020 4 / 76



Varieties Class Operators and Varieties

Operator Inequalities

Lemma

The following inequalities hold:

SH ≤HS , PS ≤ SP , PH ≤HP .

Also the operators, H,S and IP are idempotent.

Suppose A ∈ SH(K ). Then, for some B ∈K and onto homomorphism
α :B→C, we have A≤C. Thus, α−1(A)≤B. But α(α−1(A))=A.
Hence, A ∈HS(K ).

If A ∈PS(K ), then A=
∏

i∈I Ai , for suitable Ai ≤Bi ∈K , i ∈ I . But
∏

i∈I Ai ≤
∏

i∈I Bi . Hence, A ∈ SP(K ).

If A ∈PH(K ), then there are algebras Bi ∈K and epimorphisms
αi :Bi →Ai , such that A=

∏

i∈I Ai . We can show that the mapping
α :

∏

i∈I Bi →
∏

i∈I Ai , defined by α(b)(i)=αi (b(i)) is an epimorphism.
Hence, A ∈HP(K ).
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Varieties Class Operators and Varieties

Operator Inequalities (Cont’d)

Suppose A ∈H2(K ). Then, there exists an epimorphism β :C→A and
an epimorphism α :B→C, where B ∈K . Thus, β◦α :B→A is an
epimorphism, with B ∈K . Hence, A ∈H(K ). Therefore,
H2(K )⊆H(K ). The reverse inclusion is trivial.

Suppose A ∈ S2(K ). Then A≤C, where C≤B, for some B ∈K .
Thus, A≤B, with B ∈K and, hence, A ∈ S(K ). Therefore,
S2(K )⊆ S(K ). The reverse inclusion is trivial.

Suppose A ∈ (IP)2(K ). Then A∼=
∏

i∈I Ai , where, for all i ∈ I ,
Ai

∼=
∏

j∈Ji Aij , with Aij ∈K , for all i ∈ I , j ∈ Ji . But then

A∼=
∏

i∈I

Ai
∼=

∏

i∈I

∏

j∈Ji

Aij
∼=

∏

i∈I
j∈Ji

Aij .

Since {Aij : i ∈ I , j ∈ Ji } ⊆K , we get that A∈ IP(K ). Thus,
(IP)2(K )⊆ IP(K ). The reverse inclusion is trivial.
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Varieties Class Operators and Varieties

Varieties

Definition

A nonempty class K of algebras of type F is called a variety if it is closed
under subalgebras, homomorphic images and direct products.

Note that:

all algebras of type F form a variety;
the intersection of a class of varieties of type F is again a variety.

Thus, for every class K of algebras of the same type there is a
smallest variety containing K .

Definition

If K is a class of algebras of the same type, let V (K ) denote the smallest
variety containing K . We say that V (K ) is the variety generated by K .
If K has a single member A, we write simply V (A). A variety V is finitely

generated if V =V (K ), for some finite set K of finite algebras.
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Varieties Class Operators and Varieties

Tarski’s Characterization of Varieties

Theorem (Tarski)

V =HSP .

Since HV = SV = IPV =V and I ≤V , we have HSP ≤HSPV =V .

We also have:

H(HSP)=HSP ;
S(HSP)≤HSSP =HSP ;
P(HSP)≤HPSP ≤HSPP ≤HSIPIP =HSIP ≤HSHP ≤HHSP =HSP .

Hence, for any K , HSP(K ) is closed under H,S and P . But V (K ) is
the smallest class containing K and closed under H,S and P .
Therefore, V ≤HSP .

We conclude that V =HSP .
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Varieties Class Operators and Varieties

Birkhoff’s Theorem for Varieties

Theorem (Birkhoff’s Theorem for Varieties)

If K is a variety, then every member of K is isomorphic to a subdirect
product of subdirectly irreducible members of K .

Corollary

A variety is generated by its subdirectly irreducible members.

Let K be a variety and A∈K . By Birkhoff’s Theorem, A ∈ IPS (KSI ),
where KSI denotes the class of all subdirectly irreducible members of
K . Now we have

A ∈ IPS(KSI )⊆ ISP(KSI )⊆V (KSI ).

Therefore, K is generated by its subdirectly irreducible members.
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Varieties Terms, Term Algebras and Free Algebras

Subsection 2

Terms, Term Algebras and Free Algebras
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Varieties Terms, Term Algebras and Free Algebras

Terms

Definition

Let X be a set of (distinct) objects called variables. Let F be a type of
algebras. The set T (X ) of terms of type F over X is the smallest set
such that:

(i) X ∪F0 ⊆T (X ).

(ii) If p1, . . . ,pn ∈T (X ) and f ∈Fn, then the “string” f (p1, . . . ,pn) ∈T (X ).

T (X ) 6= ; iff X ∪F0 6= ;.

For a binary function symbol •, we often write p1 •p2 instead of
•(p1,p2).

For p ∈T (X ), we often write p as p(x1, . . . ,xn) to indicate that the
variables occurring in p are among x1, . . . ,xn.

A term p is n-ary if the number of variables appearing explicitly in p is
≤ n.
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Varieties Terms, Term Algebras and Free Algebras

Examples

(1) Let F consist of a single binary function symbol •. Let X = {x ,y ,z }.
The following

x , y , z , x •y , y •z , x • (y •z), (x •y)•z

are some of the terms over X .

(2) Let F consist of two binary operation symbols + and ·. Let X be as
before. The following

x , y , z , x · (y +z), (x ·y)+ (x ·z)

are some of the terms over X .

(3) The classical polynomials over the field of real numbers R are really
the terms of type F , consisting of +, · and −, together with a nullary
function symbol r , for each r ∈R .
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Varieties Terms, Term Algebras and Free Algebras

Term Functions

Definition

Given a term p(x1, . . . ,xn) of type F over some set X and given an algebra
A of type F , we define a mapping pA :An →A as follows:

(1) if p is a variable xi , then

pA(a1, . . . ,an)= ai ,

for a1, . . . ,an ∈A, i.e., pA is the i -th projection map;

(2) if p is of the form f (p1(x1 . . . ,xn), . . . ,pk(x1, . . . ,xn)), where f ∈Fk , then

pA(a1, . . . ,an)= f A(pA

1 (a1, . . . ,an), . . . ,pA

k (a1, . . . ,an)).

In particular if p = f ∈F0, then pA = f A.

We say pA is the term function on A corresponding to the term p. Often
the superscript A is omitted.
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Varieties Terms, Term Algebras and Free Algebras

Properties of Term Functions

Theorem

For any type F and algebras A,B of type F , we have the following:

(a) Let p be an n-ary term of type F . Let θ ∈ConA. Suppose 〈ai ,bi 〉 ∈ θ,
for 1≤ i ≤ n. Then pA(a1, . . . ,an) θ pA(b1, . . . ,bn).

(b) If p is an n-ary term of type F and α :A→B is a homomorphism,
then

α(pA(a1, . . . ,an))= pB(α(a1), . . . ,α(an)),

for a1, . . . ,an ∈A.

(c) Let S be a subset of A. Then

Sg(S) = {pA(a1, . . . ,an) : p is an n-ary term of type F ,
n<ω, a1, . . . ,an ∈ S }.
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Varieties Terms, Term Algebras and Free Algebras

Proof of Part (a)

Given a term p define the length ℓ(p) of p to be the number of
occurrences of n-ary operation symbols in p, for n≥ 1. Note that
ℓ(p)= 0 iff p ∈X ∪F0.

(a) We proceed by induction on ℓ(p).
If ℓ(p)= 0, then either p = xi , for some i , or p = a ∈F0.

If p = xi , for some i , 〈pA(a1, . . . ,an),pA(b1, . . . ,bn)〉 = 〈ai ,bi 〉 ∈ θ;
If p = a, for some a ∈F0, then

〈pA(a1, . . . ,an),pA(b1, . . . ,bn)〉 = 〈aA,aA〉 ∈ θ.

Now suppose ℓ(p)> 0 and the assertion holds for every term q with
ℓ(q)< ℓ(p). Then we know p is of the form f (p1(x1, . . . ,xn), . . . ,

pk(x1, . . . ,xn)). Since ℓ(pi )< ℓ(p), we must have, for 1≤ i ≤ k ,
〈pA

i
(a1, . . . ,an),pA

i
(b1, . . . ,bn)〉 ∈ θ. Hence,

〈f A(pA

1
(a1, . . . ,an), . . . ,pA

k
(a1, . . . ,an)),

f A(pA

1
(b1, . . . ,bn), . . . ,pA

k
(b1, . . . ,bn))〉 ∈ θ.

Consequently 〈pA(a1, . . . ,an),pA(b1, . . . ,bn)〉 ∈ θ.
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Varieties Terms, Term Algebras and Free Algebras

Proof of Part (b)

(b) The proof of this is an induction argument on ℓ(p).
If ℓ(p)= 0, then p = xi , for some i , or p = a ∈F0.

If p = xi , for some i , then

α(pA(a1, . . . ,an))=α(ai )= pB(α(a1), . . . ,α(an)).

If p = a ∈F0, then, by definition, α(aA)= aB.

Suppose ℓ(p)> 0. Then p = f (p1(x1, . . . ,xn), . . . ,pk(x1, . . . ,xn)), for some
f ∈Fk , where ℓ(p1), . . . ,ℓ(pk)< ℓ(p). Thus, we get

α(pA(a1, . . . ,an)) = α(f A(pA

1
(a1, . . . ,an), . . . ,pA

k
(a1, . . . ,an)))

= f B(α(pA

1
(a1, . . . ,an)), . . . ,α(pA

k
(a1, . . . ,an)))

= f B(pB

1
(α(a1), . . . ,α(an)), . . . ,

pB

k
(α(a1), . . . ,α(an)))

= pB(α(a1), . . . ,α(an)).
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Varieties Terms, Term Algebras and Free Algebras

Proof of Part (c)

(c) By induction, we show that, for k ≥ 1,

Ek(S)⊆ {pA(a1, . . . ,an) : p is an n-ary term;
ℓ(p)≤ k , n<ω, a1, . . . ,an ∈ S }.

The right side is always ⊆ Sg(S) since (by induction) every subuniverse
B of A is closed under the term functions of A.

Thus,

Sg(S) =
⋃

k<∞Ek(S)
⊆ {pA(a1, . . . ,an) : p is an n-ary term of type F ,

n<ω, a1, . . . ,an ∈ S}

⊆ Sg(S).
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Varieties Terms, Term Algebras and Free Algebras

The Term Algebra and the Universal Mapping Property

Definition

Given F and X , if T (X ) 6= ;, then the term algebra of type F over X ,
written T(X ), has as its universe the set T (X ) and the fundamental
operations satisfy

f T(X ) : 〈p1, . . . ,pn〉 7→ f (p1, . . . ,pn),

for f ∈Fn and pi ∈T (X ), 1≤ i ≤ n. T(;) exists iff F0 6= ;.

T(X ) is generated by X .

Definition

Let K be a class of algebras of type F and let U(X ) be an algebra of type
F which is generated by X . If, for every A ∈K and for every map
α :X →A, there is a homomorphism β :U(X )→A, which extends α (i.e.,
β(x)=α(x), for x ∈X ), then we say U(X ) has the universal mapping

property for K over X . X is called a set of free generators of U(X ), and
U(X ) is said to be freely generated by X .
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Varieties Terms, Term Algebras and Free Algebras

Uniqueness of the Universal Mapping

Lemma

Suppose U(X ) has the universal mapping property for K over X . Then, if
we are given A ∈K and α :X →A, there is a unique extension β of α, such
that β is a homomorphism from U(X ) to A.

X ⊂ ✲ U(X )

A

β
❄

α ✲

Suppose β,β′ both extend α and let a ∈U(X ). Then, there exists
n-ary p and x1, . . . ,xn ∈X , such that a= pU(X )(x1, . . . ,xn). Therefore,

β(a) = β(pU(X )(x1, . . . ,xn))= pA(β(x1), . . . ,β(xn))

= pA(β′(x1), . . . ,β′(xn))=β′(pU(X )(x1, . . . ,xn))
= β′(a).
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Varieties Terms, Term Algebras and Free Algebras

Uniqueness of the “Free Algebra”

For a given cardinal m, there is, up to isomorphism, at most one
algebra in a class K which has the universal mapping property for K
over a set of free generators of size m.

Theorem

Suppose U1(X1) and U2(X2) are two algebras with the universal mapping
property for K over the indicated sets. If U1(X1),U2(X2) ∈K and
|X1| = |X2|, then U1(X1)∼=U2(X2).

The identity map ιj :Xj →Xj , j = 1,2, has as its unique extension to a
homomorphism from Uj(Xj) to Uj(Xj) the identity map. Now let
α :X1 →X2 be a bijection. Then we have homomorphisms
β :U1(X1)→U2(X2) extending α, and γ :U2(X2)→U1(X1) extending
α−1. But β◦γ is an endomorphism of U2(X2) extending ι2. It follows
that β◦γ is the identity map on U2(X2). Likewise γ◦β is the identity
map on U1(X1). Thus, β is a bijection. So U1(X1)∼=U2(X2).
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Varieties Terms, Term Algebras and Free Algebras

Universal Mapping Property of the Term Algebra

Theorem

For any type F and set X of variables, where X 6= ; if F0 =;, the term
algebra T(X ) has the universal mapping property for the class of all
algebras of type F over X .

Let α :X →A, where A is of type F . Define β :T (X )→A recursively
by:

βx =αx , for x ∈X ;
For all f ∈Fn and all p1, . . . ,pn ∈T (X ),

β(f (p1, . . . ,pn))= f A(β(p1) . . . ,β(pn)).

Then, for every n-ary term p(x1, . . . ,xn),

β(p(x1, . . . ,xn))= pA(α(x1), . . . ,α(xn)),

and β is the desired homomorphism extending α.
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Varieties Terms, Term Algebras and Free Algebras

K -Free Algebras

Definition

Let K be a family of algebras of type F . Given a set X of variables, let

ΦK (X )= {φ ∈ConT(X ) :T(X )/φ ∈ IS(K )}.

Define the congruence θK (X ) on T(X ) by

θK (X )=
⋂

ΦK (X ).

Then letting X =X/θK (X ), define FK (X ), the K -free algebra over X ,
by FK (X )=T(X )/θK (X ).
For x ∈X , we write x for x/θK (X ), and for p = p(x1, . . . ,xn) ∈T (X ), we

write p for pFK (X )(x1, . . . ,xn).
If X is finite, say X = {x1, . . . ,xn}, we often write FK (x1, . . . ,xn), for FK (X ).
FK (X ) is the universe of FK (X ).
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Varieties Terms, Term Algebras and Free Algebras

Remarks on K -Free Algebras

(1) FK (X ) exists iff T(X ) exists iff X 6= ; or F0 6= ;, i.e., X ∪F0 6= ;.

(2) If FK (X ) exists, then X is a set of generators of FK (X ) as X

generates T(X ).

(3) If F0 6= ;, then the algebra FK (;) is often referred to as an initial

object.

(4) If K =; or K consists solely of trivial algebras, then FK (X ) is a trivial
algebra as θK (X )=∇.

(5) If K has a nontrivial algebra A and T(X ) exists, then
X ∩ (x/θK (X ))= {x} as distinct members x ,y of X can be separated
by some homomorphism α :T(X )→A. In this case |X | = |X |.

(6) If |X | = |Y | and T(X ) exists, then clearly FK (X )∼=FK (Y ) under an
isomorphism which maps X to Y as T(X )∼=T(Y ) under an
isomorphism mapping X to Y . Thus FK (X ) is determined, up to
isomorphism, by K and |X |.
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Varieties Terms, Term Algebras and Free Algebras

Universal Mapping Property of FK(X )

Theorem (Birkhoff)

Suppose T(X ) exists, i.e., X ∪F0 6= ;. Then FK (X ) has the universal
mapping property for K over X .

Given A ∈K let α be a map from X to A. Let ν :T(X )→FK (X ) be
the natural homomorphism. Then α◦ν maps X into A. By the
universal mapping property of T(X ), there is a homomorphism
µ :T(X )→A extending (α◦ν) ↾X . Since T(X )/kerµ∼=µ(T(X ))≤A,
kerµ ∈ΦK (X ). Thus, θK (X )⊆ kerµ. Hence, there is a homomorphism
β :FK (X )→A, such that µ=β◦ν, as kerν= θK (X ). But then, for
x ∈X , β(x)=β◦ν(x)=µ(x)=α◦ν(x)=α(x). So β extends α. Thus,
FK (X ) has the universal mapping property for K over X .

If FK (X ) ∈K , then it is, up to isomorphism, the unique algebra in K ,
with the universal mapping property freely generated by a set of
generators of size |X |.
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Varieties Terms, Term Algebras and Free Algebras

Examples

(1) T(X ) is isomorphic to the free algebra for the class K of all algebras
of type F over X , since θK (X )=∆. The corresponding free algebra is
sometimes called the absolutely free algebra F(X ) of type F .

(2) Given X , let X ∗ be the set of finite strings of elements of X , including
the empty string. We can construct a monoid 〈X ∗, ·,1〉 by defining · to
be concatenation, and 1 is the empty string. By checking the universal
mapping property one sees that 〈X ∗, ·,1〉 is, up to isomorphism, the
free monoid freely generated by X .
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Varieties Terms, Term Algebras and Free Algebras

Free Algebras and Algebras

Corollary

If K is a class of algebras of type F and A ∈K , then for sufficiently large
X , A ∈H(FK (X )).

Choose |X | ≥ |A| and let α :X →A be a surjection. Then let
β :FK (X )→A be a homomorphism extending α.

In general FK (X ) is not isomorphic to a member of K .

Example: Let K = {L}, where L be a two-element lattice. Then
FK (x ,y) 6∈ I (K ).

On the other hand, FK (X ) can be embedded in a product of members
of K .
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Varieties Terms, Term Algebras and Free Algebras

Free Algebras in Varieties

Theorem (Birkhoff)

Suppose T(X ) exists, i.e., X ∪F0 6= ;. Then, for K 6= ;, FK (X ) ∈ ISP(K ).
Thus, if K is closed under I ,S and P , in particular if K is a variety, then
FK (X ) ∈K .

We have θK (X )=
⋂

ΦK (X ). Hence,

FK (X )=T(X )/θK (X ) ∈ IPS({T(X )/θ : θ ∈ΦK (X )}).

Thus, FK (X ) ∈ IPS IS(K ). But PS ≤ SP and PS ≤ SP . Therefore,

FK (X ) ∈ IPSS(K )⊆ ISPS(K )⊆ ISSP(K )= ISP(K ).
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Varieties Terms, Term Algebras and Free Algebras

Nontrivial Simple Algebras in Varieties

We know that if a variety has a nontrivial algebra in it, then it must
have a nontrivial subdirectly irreducible algebra in it.

Theorem (Magari)

If we are given a variety V with a nontrivial member, then V contains a
nontrivial simple algebra.

Let X = {x ,y }, and let S =
{

p(x) : p ∈T ({x})
}

, a subset of FV (X ).

First, suppose that Θ(S) 6= ∇ in ConFV (X ).

Claim: For θ ∈ [Θ(S),∇], θ =∇ iff 〈x ,y 〉 ∈ θ.

Suppose Θ(S)⊆ θ and 〈x ,y 〉 ∈ θ. Then for any term p(x ,y), we have

pFV (X )(x ,y) θ pFV (X )(x ,x) Θ(S) x . Hence θ =∇.

By the claim, every chain in [Θ(S),∇]− {∇} has a maximal element. By
Zorn’s Lemma, [Θ(S),∇]− {∇} has a maximal element θ0. Then
FV (X )/θ0 is a simple algebra and it is in V .
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Varieties Terms, Term Algebras and Free Algebras

Nontrivial Simple Algebras in Varieties (Cont’d)

Now suppose that Θ(S)=∇. Then, since Θ is an algebraic closure
operator, it follows that, for some finite subset S0 of S , we must have
〈x ,y〉 ∈Θ(S0). Let S be the subalgebra of FV (X ), with universe S

(S = Sg({x })). Since V is nontrivial, x 6= y in FV (X ). Since
〈x ,y〉 ∈Θ(S), S is nontrivial.

Claim: ∇S =Θ(S0), where Θ in this case is understood to be the
appropriate closure operator on S .

Let p(x) ∈ S and let α :FV (X )→S be the homomorphism defined by

α(x)= x , α(y )= p(x).

Since 〈x ,y 〉 ∈Θ(S0) in FV (X ), we get 〈x ,p(x)〉 ∈Θ(S0) in S as
α(S0)= S0.

Using Zorn’s Lemma, we can find a maximal congruence θ on S as ∇S

is finitely generated. Hence, S/θ is a simple algebra in V .
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Varieties Terms, Term Algebras and Free Algebras

Local Finiteness

Definition

An algebra A is locally finite if every finitely generated subalgebra is finite.
A class K of algebras is locally finite if every member of K is locally finite.

Theorem

A variety V is locally finite iff

|X | <ω ⇒ |FV (X )| <ω.

(⇒): Clear, since X generates FV (X ).

(⇐): Let A be a finitely generated member of V , and let B ⊆A be a finite
set of generators. Choose X , such that we have a bijection α :X →B .
Extend this to a homomorphism β :FV (X )→A. As β(FV (X )) is a
subalgebra of A containing B , it must equal A. Thus β is surjective,
and as FV (X ) is finite so is A.
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Varieties Terms, Term Algebras and Free Algebras

Variety Generated by Finitely Many Finite Algebras

Theorem

Let K be a finite set of finite algebras. Then V (K ) is a locally finite variety.

Claim: P(K ) is locally finite.

Let A ∈P(K ) and S = {a1, . . . ,an} a finite subset of A. We must show
SgA(S) is finite. But

SgA(S)= {pA(a1, . . . ,an) : p is an n-ary term of type F }.

Thus, it suffices to show that the set T ({x1, . . . ,xn})/∼K is finite,
where ∼K is the equivalence relation on T ({x1, . . . ,xn}), defined, for all
p,q ∈T ({x1, . . . ,xn}), by

p ∼
K q iff pK

= qK
, for all K ∈K .
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Variety Generated by Finitely Many Finite Algebras (Cont’d)

We must show that the set T ({x1, . . . ,xn})/∼K is finite.

This is clear, since, if K = {A1, . . .Am} and |Ai | = ki , 1≤ i ≤m, then
there are at most kn1 ·kn2 · · · · ·knm different functions on n-variables
agreeing on every member of K .

Now note that SP(K ) is locally finite.

And, since every finitely generated member of HSP(K ) is a
homomorphic image of a finitely generated member of SP(K ),
HSP(K ) is locally finite. Hence, V is locally finite.
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Subsection 3

Identities, Free Algebras and Birkhoff’s Theorem
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Identities and Satisfiability

Definition

An identity of type F over X is an expression of the form p ≈ q, where
p,q ∈T (X ). Let Id(X ) be the set of identities of type F over X .
An algebra A of type F satisfies an identity p(x1, . . . ,xn)≈ q(x1, . . . ,xn) if,
for every choice of a1, . . . ,an ∈A, we have pA(a1, . . . ,an)= qA(a1, . . . ,an). If
so, then we say that the identity is true in A, or holds in A, and write
A |= p(x1, . . . ,xn)≈ q(x1, . . . ,xn), or more briefly A |= p ≈ q.

If Σ is a set of identities, we say A satisfies Σ, written A |=Σ, if
A |= p ≈ q, for each p ≈ q ∈Σ.

A class K of algebras satisfies p ≈ q, written K |= p ≈ q, if each
member of K satisfies p ≈ q. Set IdK (X )= {p ≈ q ∈ Id(X ) :K |= p ≈ q}.

If Σ is a set of identities, we say K satisfies Σ, written K |=Σ, if
K |= p ≈ q, for each p ≈ q ∈Σ.

We use the symbol 6|= for “does not satisfy".
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Free Algebras and Satisfiability of Identitites

Lemma

If K is a class of algebras of type F and p ≈ q is an identity of type F over
X , then K |= p ≈ q iff, for every A ∈K and for every homomorphism
α :T(X )→A, we have α(p)=α(q).

(⇒) Let p = p(x1, . . . ,xn),q = q(x1, . . . ,xn). Suppose K |= p ≈ q, A ∈K , and
α :T(X )→A is a homomorphism. Then

pA(α(x1), . . . ,α(xn))= qA(α(x1), . . . ,α(xn))

⇒ α(pT(X )(x1, . . . ,xn))=α(qT(X )(x1, . . . ,xn))
⇒ α(p)=α(q).

(⇐) For the converse choose A ∈K and a1, . . . ,an ∈A. By the universal
mapping property of T(X ), there is a homomorphism α :T(X )→A,
such that α(xi )= ai , 1≤ i ≤ n. But then pA(a1, . . . ,an)=
pA(α(x1), . . . ,α(xn))=α(p)=α(q)= qA(α(x1), . . . ,α(xn))=
qA(a1, . . . ,an). So K |= p ≈ q.
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Basic Class Operators Preserve Identities

Lemma

For any class K of type F , all of the classes K , I (K ),S(K ),H(K ),P(K )
and V (K ) satisfy the same identities over any set of variables X .

Clearly K and I (K ) satisfy the same identities. As I ≤ IS , I ≤H and
I ≤ IP , we must have IdK (X )⊇ IdS(K)(X ), IdH(K)(X ), IdP(K)(X ). For
the remainder of the proof suppose K |= p(x1, . . . ,xn)≈ q(x1, . . . ,xn).
Let B≤A ∈K and b1, . . . ,bn ∈B . As b1, . . . ,bn ∈A, we have
pA(b1, . . . ,bn)= qA(b1, . . . ,bn). Hence, pB(b1, . . . ,bn)= qB(b1, . . . ,bn).
so B |= p ≈ q. Thus, IdK (X )= IdS(K)(X ).

Let α :A→B be a surjective homomorphism with A ∈K . If
b1, . . . ,bn ∈B , choose a1, . . . ,an ∈A, such that α(a1)= b1, . . . ,α(an)=
bn. Then, pA(a1, . . . ,an)= qA(a1, . . . ,an), implies α(pA(a1, . . . ,an))=
α(qA(a1, . . . ,an)). Hence pB(b1, . . . ,bn)= qB(b1, . . . ,bn). Thus,
B |= p ≈ q. So IdK (X )= IdH(K)(X ).
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Basic Class Operators Preserve Identities (Cont’d)

Lastly, suppose Ai ∈K , for i ∈ I . Then, for a1, . . . ,an ∈A=
∏

i∈I Ai , we
have

pAi (a1(i), . . . ,an(i))= qAi (a1(i), . . . ,an(i)),

hence
pA(a1, . . . ,an)(i)= qA(a1, . . . ,an)(i), i ∈ I ,

so
pA(a1, . . . ,an)= qA(a1, . . . ,an).

Thus, IdK (X )= IdP(K)(X ).

As V =HSP , the proof is complete.
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Characterization of Satisfiability

Theorem

Given a class K of algebras of type F and terms p,q ∈T (X ) of type F , we
have:

K |= p ≈ q ⇔ FK (X ) |= p ≈ q ⇔ p = q in FK (X ) ⇔ 〈p,q〉 ∈ θK (X ).

Let F=FK (X ),p = p(x1, . . . ,xn),q = q(x1, . . . ,xn) and let ν :T(X )→F
be the natural homomorphism.

Certainly K |= p ≈ q implies F |= p ≈ q, as F∈ ISP(K ).
Assume F |= p ≈ q. Then pF(x1, . . . ,xn)= qF(x1, . . . ,xn), hence p ≈ q.
Now suppose p = q in F. Then ν(p)= p = q = ν(q). so
〈p,q〉 ∈ kerν= θK (X ).
Finally, suppose 〈p,q〉 ∈ θK (X ). Given A ∈K and a1, . . . ,an ∈A, choose
α :T(X )→A, such that α(xi )= ai , 1≤ i ≤ n. We have kerα∈ΦK (X ).
Hence, kerα⊇ kerν= θK (X ). It follows that there is a homomorphism
β :F→A, such that α=β◦ν. Then α(p)=β◦ν(p)=β◦ν(q)=α(q).

Consequently K |= p ≈ q.
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Various Sets of Variables

Corollary

Let K be a class of algebras of type F , and suppose p,q ∈T (X ). Then for
any set of variables Y , with |Y | ≥ |X |, we have

K |= p ≈ q iff FK (Y ) |= p ≈ q.

(⇒) This is obvious, as FK (Y ) ∈ ISP(K ).

(⇐) Choose X0 ⊇X , such that |X0| = |Y |. Then FK (X 0)∼=FK (Y ), and,
since, by the theorem,

K |= p ≈ q iff FK (X 0) |= p ≈ q,

it follows that

K |= p ≈ q iff FK (Y ) |= p ≈ q.
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Identities Over Various Sets of Variables

Corollary

Suppose K is a class of algebras of type F and X is a set of variables.
Then, for any infinite set of variables Y ,

IdK (X )= Id
FK (Y )

(X ).

For p ≈ q ∈ IdK (X ), say p = p(x1, . . . ,xn),q = q(x1, . . . ,xn), we have
p,q ∈T ({x1, . . . ,xn}). As |{x1, . . . ,xn}| < |Y |, by the preceding corollary,

K |= p ≈ q iff FK (Y ) |= p ≈ q,

so the corollary is proved.
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Equational Classes of Algebras

Definition

Let Σ be a set of identities of type F and define M(Σ) to be the class of
algebras A satisfying Σ. A class K of algebras is an equational class if
there is a set of identities Σ, such that K =M(Σ). In this case, we say that
K is defined, or axiomatized, by Σ.

Lemma

If V is a variety and X is an infinite set of variables, then V =M(IdV (X )).

Let V ′ =M(IdV (X )). V ′ is a variety by a preceding result. Also,
V ′ ⊇V and IdV ′(X )= IdV (X ). So, we get FV ′(X )=FV (X ). Now
given any infinite set of variables Y , we have IdV ′(Y )= Id

FV ′ (X )
(Y )=

Id
FV (X )

(Y )= IdV (Y ). Thus, θV ′(Y )= θV (Y ) and FV ′(Y )=FV (Y ).

For A ∈V ′, we have for suitable infinite Y , A ∈H(FV ′(Y )). Thus,
A ∈H(FV (Y )). So A ∈V . Therefore, V ′ ⊆V .
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Birkhoff’s Variety Theorem

Theorem (Birkhoff)

K is an equational class iff K is a variety.

(⇒) Suppose K =M(Σ). Then V (K ) |=Σ. Hence, V (K )⊆M(Σ)=K . so
V (K )=K , i.e., K is a variety.

(⇐) By the preceding lemma, K =M(IdK (X )), for an infinite X .

Corollary

Let K be a class of algebras of type F . If T(X ) exists, i.e., X ∪F0 6= ;,
and K ′ is any class of algebras such that K ⊆K ′ ⊆V (K ), then
FK ′(X )=FK (X ). In particular, if K 6= ;, FK ′(X ) ∈ ISP(K ).

Since IdK (X )= IdV (K)(X ), it follows that IdK (X )= IdK ′(X ). Thus

θK ′(X )= θK (X ), so FK ′(X )=FK (X ). The last statement of the
corollary now follows.
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Large K -Free Algebras

Theorem

Let K be a nonempty class of algebras of type F . Then, for some cardinal
m, if |X | ≥m, we have FK (X ) ∈ IPS (K ).

Choose a subset K∗ of K , such that for any X , IdK∗(X )= IdK (X ):

Choose an infinite set of variables Y . Then select, for each identity
p ≈ q in Id(Y )− IdK (Y ) an algebra A ∈K , such that A 6|= p ≈ q.

Now K∗ is a set. So there exists an infinite upper bound m of
{|A| :A ∈K∗}.
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Large K -Free Algebras (Cont’d)

Given X , let ΨK∗(X )= {φ ∈ConT(X ) :T(X )/φ ∈ I (K∗)}.

Then ΨK∗(X )⊆ΦK∗(X ), whence
⋂

ΨK∗(X )⊇ θK∗(X ). To prove
equality for |X | ≥m, suppose 〈p,q〉 6∈ θK∗(X ). Then K∗ 6|= p ≈ q.
Hence, for some A ∈K∗, A 6|= p ≈ q. If p = p(x1, . . . ,xn),
q = q(x1, . . . ,xn), choose a1, . . . ,an ∈A, such that
pA(a1, . . . ,an) 6= qA(a1, . . . ,an). As |X | ≥ |A|, we can find a mapping
α :X →A which is onto and α(xi )= ai ,1≤ i ≤ n. Then α can be
extended to a surjective homomorphism β :FK∗(X )→A and
β(p) 6=β(q). Thus 〈p,q〉 6∈ kerβ ∈ΨK∗(X ). So 〈p,q〉 6∈

⋂

ΨK∗(X ).
Consequently

⋂

ΨK∗(X )= θK∗(X ).

As FK (X )=FK∗(X ), it follows that FK (X )=T(X )/
⋂

ΨK∗(X ).
Then we have FK (X ) ∈ IPS(K

∗)⊆ IPS(K ).
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Another Characterization of V

Theorem

V =HPS .

As PS ≤ SP , we have
HPS ≤HSP ≤V .

Given a class K of algebras and sufficiently large X , we have
FV (K)(X )∈ IPS(K ), by the preceding theorem. Hence,
V (K )⊆HPS(K ), by a preceding result. Thus V =HPS .
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Subsection 4

Mal’cev Conditions
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Mal’cev Conditions

Properties of varieties characterized by the existence of certain terms
involved in certain identities are referred to as Mal’cev conditions.

Lemma

Let V be a variety of type F , and let p(x1, . . . ,xm,y1, . . . ,yn),
q(x1, . . . ,xm,y1, . . . ,yn) be terms such that in F=FV (X ), where
X = {x1, . . . ,xm,y1, . . . ,yn}, we have

〈pF(x1, . . . ,xm,y1, . . . ,yn),qF(x1, . . . ,xm,y1, . . . ,yn)〉 ∈Θ(y1, . . . ,yn).

Then V |= p(x1, . . . ,xm,y , . . . ,y)≈ q(x1, . . . ,xm,y , . . . ,y).

The homomorphism α :FV (x1, . . . ,xm,y1, . . . ,yn)→FV (x1, . . . ,xm,y),
defined by α(x i )= x i , 1≤ i ≤m, and α(y i )= y , 1≤ i ≤ n, is such that
Θ(y1, . . .yn)⊆ kerα. So
α(p(x1, . . . ,xm,y1, . . . ,yn))=α(q(x1, . . . ,xm,y1, . . . ,yn)). Thus,
p(x1, . . . ,xm,y , . . . ,y)= q(x1, . . . ,xm,y , . . . ,y) in FV (x1, . . . ,xm,y).
Hence, V |= p(x1, . . . ,xm,y , . . . ,y)≈ q(x1, . . . ,xm,y , . . . ,y).
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Mal’cev’s Theorem on Congruence Permutability

Theorem (Mal’cev)

Let V be a variety of type F . The variety V is congruence-permutable iff
there is a term p(x ,y ,z), such that

V |= p(x ,x ,y)≈ y and V |= p(x ,y ,y)≈ x .

(⇒) Suppose V is congruence-permutable. In FV (x ,y ,z), we have
〈x ,z〉 ∈Θ(x ,y)◦Θ(y ,z). So 〈x ,z〉 ∈Θ(y ,z)◦Θ(x ,y). Hence, there is a
p(x ,y ,z) ∈FV (x ,y ,z), such that x Θ(y ,z) p(x ,y ,z) Θ(x ,y) z . By the
lemma, V |= p(x ,y ,y)≈ x and V |= p(x ,x ,z)≈ z .

(⇐) Let A ∈V and φ,ψ ∈ConA. Suppose 〈a,b〉 ∈φ◦ψ, say a φ c ψ b.
Then b = p(c ,c ,b) φ p(a,c ,b) ψ p(a,b,b)= a. So 〈b,a〉 ∈φ◦ψ. Thus,
φ◦ψ=ψ◦φ.
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Examples

(1) Groups 〈A, ·,−1 ,1〉 are congruence-permutable: Let

p(x ,y ,z)= x ·y−1
·z .

(2) Rings 〈R ,+, ·,−,0〉 are congruence-permutable: Let

p(x ,y ,z)= x −y +z .

(3) Quasigroups 〈Q ,
/

, ·,
∖

〉 are congruence-permutable: Let

p(x ,y ,z)= (x
/

(y
∖

y)) · (y
∖

z).
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Congruence Distributivity

Theorem

Suppose V is a variety for which there is a ternary term M(x ,y ,z), such
that

V |=M(x ,x ,y)≈M(x ,y ,x)≈M(y ,x ,x)≈ x .

Then V is congruence-distributive.

Let φ,ψ,χ ∈ConA, where A ∈V . Suppose 〈a,b〉 ∈φ∧ (ψ∨χ). Then
〈a,b〉 ∈φ and, there exist c1, . . . ,cn, such that a ψ c1 χ c2 · · · ψ cn χ b.
Since M(a,ci ,b) φ M(a,ci ,a)= a, for each i , we get

a=M(a,a,b) (φ∧ψ) M(a,c1,b) (φ∧χ) M(a,c2,b) · · ·
M(a,cn,b) (φ∧χ) M(a,b,b)= b.

So 〈a,b〉 ∈ (φ∧ψ)∨ (φ∧χ). This suffices to show
φ∧ (ψ∨χ)= (φ∧ψ)∨ (φ∧χ). So V is congruence-distributive.

Example: Lattices are congruence-distributive:
M(x ,y ,z)= (x ∨y)∧ (x ∨z)∧ (y ∨z).
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Arithmetical Varieties

Definition

A variety V is arithmetical if it is both congruence-distributive and
congruence-permutable.

Theorem (Pixley)

A variety V is arithmetical iff it satisfies either of the equivalent conditions:

(a) There are a congruence permutability term p and a congruence
distributivity term M.

(b) There is a term m(x ,y ,z), such that
V |=m(x ,y ,x)≈m(x ,y ,y)≈m(y ,y ,x)≈ x .

If V is arithmetical, then V is congruence-permutable, so there is a
term p. Let FV (x ,y ,z) be the free algebra in V freely generated by
{x ,y ,z }. We have 〈x ,z〉 ∈Θ(x ,z)∩ [Θ(x ,y)∨Θ(y ,z)]. Hence,
〈x ,z〉 ∈ [Θ(x ,z)∩Θ(x ,y)]∨ [Θ(x ,z)∩Θ(y ,z)].
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Arithmetical Varieties (Cont’d)

Hence, 〈x ,z〉 ∈ [Θ(x ,z)∩Θ(x ,y)]◦ [Θ(x ,z)∩Θ(y ,z)]. Choose
M(x ,y ,z) ∈FV (x ,y ,z), such that
x [Θ(x ,z)∩Θ(x ,y)] M(x ,y ,z) [Θ(x ,z)∩Θ(y ,z)] z . Then
V |=M(x ,x ,y)≈M(x ,y ,x)≈M(y ,x ,x)≈ x .

If (a) holds, let m(x ,y ,z) := p(x ,M(x ,y ,z),z). Verify that
V |=m(x ,y ,x)≈m(x ,y ,y)≈m(y ,y ,x)≈ x .

If (b) holds, let p(x ,y ,z) :=m(x ,y ,z) and
M(x ,y ,z) :=m(x ,m(x ,y ,z),z). Verify that V |= p(x ,x ,y)≈ y ,
V |= p(x ,y ,y)≈ x and V |=M(x ,x ,y)≈M(x ,y ,x)≈M(y ,x ,x)≈ x .

Examples:

(1) Boolean algebras are arithmetical: Let
m(x ,y ,z)= (x ∧z)∨ (x ∧y ′∧z ′)∨ (x ′∧y ′∧z).

(2) Heyting algebras are arithmetical: Let
m(x ,y ,z)= [(x → y)→ z]∧ [(z → y)→ x ]∧ [x ∨z].
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Congruence-Distributivity

Theorem (Jónsson)

A variety V is congruence-distributive iff there is a finite n and terms
p0(x ,y ,z), . . . ,pn(x ,y ,z), such that V satisfies:

pi (x ,y ,x)≈ x 0≤ i ≤ n

p0(x ,y ,z)≈ x ; pn(x ,y ,z)≈ z

pi (x ,x ,y)≈ pi+1(x ,x ,y) for i even
pi (x ,y ,y)≈ pi+1(x ,y ,y) for i odd.

(⇒) We have

Θ(x ,z)∧ [Θ(x ,y)∨Θ(y ,z)]= [Θ(x ,z)∧Θ(x ,y)]∨ [Θ(x ,z)∧Θ(y ,z)].

Thus, in FV (x ,y ,z),

〈x ,z〉 ∈ [Θ(x ,z)∧Θ(x ,y)]∨ [Θ(x ,z)∧Θ(y ,z)].
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Congruence-Distributivity (Cont’d)

Thus, for some p1(x ,y ,z), . . . ,pn−1(x ,y ,z) ∈FV (x ,y ,z), we have

x [Θ(x ,z)∧Θ(x ,y)] p1(x ,y ,z)
p1(x ,y ,z) [Θ(x ,z)∧Θ(y ,z)] p2(x ,y ,z)

...
pn−1(x ,y ,z) [Θ(x ,z)∧Θ(y ,z)] z .

From these the desired equations fall out.

(⇐) For φ,ψ,χ ∈ConA, A∈V , we need φ∧ (ψ∨χ)⊆ (φ∧ψ)∨ (φ∧χ).

Let 〈a,b〉 ∈φ∧ (ψ∨χ). Then 〈a,b〉 ∈φ, and, for some c1, . . . ,ct , we
have a ψ c1 χ · · · ct χ b. From these, we get, for 0≤ i ≤ n,
pi(a,a,b) ψ pi (a,c1,b) χ · · · pi(a,ct ,b) χ pi(a,b,b). Hence,
pi(a,a,b) (φ∧ψ) pi (a,c1,b) (φ∧χ) · · · pi(a,ct ,b) (φ∧χ) pi (a,b,b).
So pi (a,a,b) [(φ∧ψ)∨ (φ∧χ)] pi (a,b,b), 0≤ i ≤ n. Then in view of
the given equations, a [(φ∧ψ)∨ (φ∧χ)] b.

So V is congruence-distributive.
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Additional Characterizations and Terminology

Theorem

A variety V is congruence permutable (respectively, congruence
distributive) iff FV (x ,y ,z) has permutable (respectively, distributive)
congruences.

This follows by looking at the proofs of the corresponding Mal’cev
conditions.

Definition

A ternary term p satisfying the congruence-permutability conditions for a
variety V is called a Mal’cev term for V ;

A ternary term M satisfying the congruence-distributivity conditions is a
majority term for V ;

A ternary term m satisfying the arithmeticity conditions is a 2
3 -minority

term for V .
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Subsection 5

Equational Logic and Fully Invariant Congruences
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Fully Invariant Congruences

Definition

A congruence θ on an algebra A is fully invariant if, for every
endomorphism α on A,

〈a,b〉 ∈ θ ⇒ 〈α(a),α(b)〉 ∈ θ.

Let ConFI(A) denote the set of fully invariant congruences on A.

Lemma

ConFI(A) is closed under arbitrary intersection.

First, note, that ∇A is invariant.

Now, suppose {θi : i ∈ I } ⊆ConFI(A) and α is an endomorphism of A.
Then 〈a,b〉 ∈

⋂

i∈I θi implies 〈a,b〉 ∈ θi , i ∈ I , implies 〈α(a),α(b)〉 ∈ θi ,
i ∈ I , implies 〈α(a),α(b)〉 ∈

⋂

i∈I θi .
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Fully Invariant Congruence Generated by a Set of Pairs

Definition

Given an algebra A and S ⊆A×A let ΘFI(S) denote the least fully invariant
congruence on A containing S .
The congruence ΘFI(S) is called the fully invariant congruence

generated by S .
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The Fully Invariant Congruence ΘFI

Lemma

If we are given an algebra A of type F then ΘFI is an algebraic closure
operator on A×A. Indeed, ΘFI is 2-ary.

Construct A×A. To the fundamental operations of A×A add the
following:

〈a,a〉 for a ∈A
s(〈a,b〉) = 〈b,a〉

t(〈a,b〉,〈c ,d〉) =

{

〈a,d〉, if b = c

〈a,b〉, otherwise
eσ(〈a,b〉) = 〈σ(a),σ(b)〉 σ endomorphism of A

Then θ is a fully invariant congruence on A iff θ is a subuniverse of
the new algebra we have just constructed. Thus, ΘFI is an algebraic
closure operator.
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The Fully Invariant Congruence ΘFI (Cont’d)

We show that ΘFI is 2-ary. Define a new algebra A∗ by replacing each
n-ary fundamental operation f of A by the set of all unary operations
of form f (a1, . . . ,ai−1,x ,ai+1, . . . ,an), a1, . . . ,ai−1,ai+1, . . . ,an ∈A.

Claim: ConA=ConA∗.

Clearly θ ∈ConA⇒ θ ∈ConA∗. For the converse suppose that
θ ∈ConA∗ and f ∈Fn. Then, for 〈ai ,bi 〉 ∈ θ, 1≤ i ≤ n, we have:

〈f (a1, . . . ,an−1,an), f (a1, . . . ,an−1,bn)〉 ∈ θ

〈f (a1, . . . ,an−1,bn), f (a1, . . . ,bn−1,bn)〉 ∈ θ
...

〈f (a1,b2, . . . ,b2), f (b1,b2, . . . ,bn)〉 ∈ θ.

Hence 〈f (a1, . . . ,an), f (b1, . . . ,bn)〉 ∈ θ. Thus, θ ∈ConA.

Go back to the beginning of the proof. Take A∗ instead of A. Keep
the eσ’s the same. Then ΘFI is the closure operator Sg of an algebra
all of whose operations are of arity at most 2. Tus, ΘFI is 2-ary.
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From Identities to Congruences

Definition

Given a set of variables X and a type F , let τ : Id(X )→T (X )×T (X ) be
the bijection defined by τ(p ≈ q)= 〈p,q〉.

Lemma

For K a class of algebras of type F and X a set of variables, τ(IdK (X )) is
a fully invariant congruence on T(X ).

Let p,q,r ∈T (X ).

p ≈ p ∈ IdK (X ). Hence, 〈p,p〉 ∈ τ(IdK (X )).
Suppose 〈p,q〉 ∈ τ(IdK (X )). Then p ≈ q ∈ IdK (X ). Thus,
q ≈ p ∈ IdK (X ). Hence, 〈q,p〉 ∈ τ(IdK (X )).
Suppose 〈p,q〉,〈q,r〉 ∈ τ(IdK (X )). Then p ≈ q,q ≈ r ∈ IdK (X ). Thus,
p ≈ r ∈ IdK (X ). Hence, 〈p,r〉 ∈ τ(IdK (X )).

Therefore, τ(IdK (X )) is an equivalence relation on T (X ).
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From Identities to Congruences (Cont’d)

Let f ∈Fn, p1, . . . ,pn,q1, . . . ,qn ∈T (X ), such that 〈pi ,qi 〉 ∈ τ(IdK (X )),
1≤ i ≤ n. Then pi ≈ qi ∈ IdK (X ), 1≤ i ≤ n. Thus,
f (p1, . . . ,pn)≈ f (q1, . . . ,qn) ∈ IdK (X ). Hence,
〈f (p1, . . . ,pn), f (q1, . . . ,qn)〉 ∈ τ(IdK (X )). So τ(IdK (X )) is a
congruence relation on T(X ).

Finally, let α be an endomorphism of T(X ) and p = p(x1, . . . ,xn),
q = q(x1, . . . ,xn) ∈T (X ), such that 〈p,q〉 ∈ τ(IdK (X )). Then
p(x1, . . . ,xn)≈ q(x1, . . . ,xn) ∈ IdK (X ). Thus,
p(α(x1), . . . ,α(xn))≈ q(α(x1), . . . ,α(xn)) ∈ IdK (X ). It follows that
α(p(x1, . . . ,xn))≈α(q(x1, . . . ,xn)) ∈ IdK (X ), i.e.,
〈α(p),α(q)〉 ∈ τ(IdK (X )). Hence, τ(IdK (X )) is fully invariant.
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Freeness of T(X )/θ

Lemma

Given a set of variables X and a fully invariant congruence θ on T(X ), we
have, for p ≈ q ∈ Id(X ),

T(X )/θ |= p ≈ q ⇔ 〈p,q〉 ∈ θ.

Thus, T(X )/θ is free in V (T(X )/θ).

(⇒) If p = p(x1, . . . ,xn),q = q(x1, . . . ,xn), then

T(X )/θ |= p(x1, . . . ,xn)≈ q(x1, . . . ,xn)
⇒ p(x1/θ, . . . ,xn/θ)= q(x1/θ, . . . ,xn/θ)
⇒ p(x1, . . . ,xn)/θ = q(x1, . . . ,xn)/θ
⇒ 〈p(x1, . . . ,xn),q(x1, . . . ,xn)〉 ∈ θ

⇒ 〈p,q〉 ∈ θ.
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Freeness of T(X )/θ (Converse)

(⇐) Given r1, . . . ,rn ∈T (X ), we can find an endomorphism ε of T(X ) with
ε(xi )= ri , 1≤ i ≤ n. Hence,

〈p(x1, . . . ,xn),q(x1, . . . ,xn)〉 ∈ θ

⇒ 〈ε(p(x1, . . . ,xn)),ε(q(x1, . . . ,xn))〉 ∈ θ

⇒ 〈p(r1, . . . ,rn),q(r1, . . . ,rn)〉 ∈ θ

⇒ p(r1/θ, . . . ,rn/θ)= q(r1/θ, . . . ,rn/θ).

Thus, T(X )/θ |= p ≈ q.

For the last claim, given p ≈ q ∈ Id(X ),

〈p,q〉 ∈ θ ⇔ T(X )/θ |= p ≈ q

⇔ V (T(X )/θ) |= p ≈ q.

So T(X )/θ is free in V (T(X )/θ).
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Fully Invariant Congruences and Equational Theories

Theorem

Given a subset Σ of Id(X ), one can find a K , such that Σ= IdK (X ) iff τ(Σ)
is a fully invariant congruence on T(X ).

(⇒) This was proved in a preceding lemma.

(⇐) Suppose τ(Σ) is a fully invariant congruence θ. Let K = {T(X )/θ}.
Then by the preceding lemma, K |= p ≈ q iff 〈p,q〉 ∈ θ iff p ≈ q ∈Σ.
Thus Σ= IdK (X ).

Definition

A subset Σ of Id(X ) is called an equational theory over X if there is a
class of algebras K , such that Σ= IdK (X ).

Corollary

The equational theories (of type F ) over X form an algebraic lattice which
is isomorphic to the lattice of fully invariant congruences on T(X ).
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Validity

Definition

Let X be a set of variables and Σ a set of identities of type F , with
variables from X . For p,q ∈T (X ), we say Σ |= p ≈ q (read: “Σ yields

p ≈ q”, or “Σ implies p ≈ q”) if, given any algebra A, A |=Σ implies
A |= p ≈ q.

Theorem

If Σ is a set of identities over X and p ≈ q is an identity over X , then
Σ |= p ≈ q iff 〈p,q〉 ∈ΘFI(τ(Σ)).

Assume 〈p,q〉 ∈ΘFI(τ(Σ)) and let A be such that A |=Σ. τ(IdA(X )) is
a fully invariant congruence on T(X ). Hence, ΘFI(τ(Σ))⊆ τ(IdA(X )).
Thus, since 〈p,q〉 ∈ΘFI(τ(Σ)), A |= p ≈ q.

Conversely, assume Σ |= p ≈ q. But T(X )/ΘFI(τ(Σ)) |=Σ. Hence,
T(X )/ΘFI(τ(Σ)) |= p ≈ q. Thus, 〈p,q〉 ∈ΘFI(τ(Σ)).
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Replacements and Substitutions

Definition

Given a term p, the subterms of p are recursively defined by:

(1) The term p is a subterm of p.

(2) If f (p1, . . . ,pn) is a subterm of p and f ∈Fn, then each pi is a subterm
of p.

Definition

A set of identities Σ over X is closed under replacement if given any
p ≈ q ∈Σ and any term r ∈T (X ), if p occurs as a subterm of r , then letting
s be the result of replacing that occurrence of p by q, we have r ≈ s ∈Σ.

Definition

A set of identities Σ over X is closed under substitution if for each p ≈ q

in Σ and for ri ∈T (X ), if we simultaneously replace every occurrence of
each variable xi in p ≈ q by ri , then the resulting identity is in Σ.
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Deductive Closure

Definition

If Σ is a set of identities over X , then the deductive closure D(Σ) of Σ is
the smallest subset of Id(X ) containing Σ, such that:

(1) p ≈ p ∈D(Σ), for all p ∈T (X );

(2) p ≈ q ∈D(Σ) ⇒ q ≈ p ∈D(Σ), for all p,q ∈T (X );

(3) p ≈ q,q ≈ r ∈D(Σ) ⇒ p ≈ r ∈D(Σ), for all p,q,r ∈T (X );

(4) D(Σ) is closed under replacement;

(5) D(Σ) is closed under substitution.
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Deductive Closure and Fully Invariant Congruences

Theorem

Given Σ⊆ Id(X ), p ≈ q ∈ Id(X ), Σ |= p ≈ q iff p ≈ q ∈D(Σ).

We first show that τ(D(Σ))=ΘFI(τ(Σ)).
By definition τ(Σ)⊆ τ(D(Σ)).
By Properties (1)-(3), τ(D(Σ)) is an equivalence relation.
By Property (4) (closure under replacement), τ(D(Σ)) is a congruence
relation.
By Property (5) (closure under substitution) τ(D(Σ)) is fully invariant.
By definition, ΘFI(τ(Σ)) is the smallest fully invariant congruence
containing τ(Σ).
Therefore, ΘFI(τ(Σ))⊆ τ(D(Σ)).
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Deductive Closure and Fully Invariant Congruences (Cont’d)

We show that τ−1(ΘFI(τ(Σ))) contains Σ and satisfies (1)-(5):
By definition τ(Σ)⊆ΘFI(τ(Σ)). Thus, Σ⊆ τ−1(ΘFI(τ(Σ))).
〈p,p〉 ∈ΘFI(τ(Σ)), i.e., τ(p ≈ p)⊆ΘFI(τ(Σ)). So p ≈ p ∈ τ−1(ΘFI(τ(Σ)));
Suppose p ≈ q ∈ τ−1(ΘFI(τ(Σ))). Then 〈p,q〉 ∈ΘFI(τ(Σ)). Thus,
〈q,p〉 ∈ΘFI(τ(Σ)). So q ≈ p ∈ τ−1(ΘFI(τ(Σ))).
Transitivity is similar.
Suppose p is a term, s ≈ r ∈ τ−1(ΘFI(τ(Σ))) and q results from
substituting an occurrence of s in p by r . By hypothesis,
〈s ,r〉 ∈ΘFI(τ(Σ)). Since ΘFI(τ(Σ)) is a congruence, 〈p,q〉 ∈ΘFI(τ(Σ)).
Thus, p ≈ q ∈ τ−1(ΘFI(τ(Σ)));
Let p(x1, . . . ,xn)≈ q(x1, . . . ,xn) ∈ τ−1(ΘFI(τ(Σ))) and r1, . . . ,rn ∈T (X ).
Then 〈p,q〉 ∈ΘFI(τ(Σ)). Since ΘFI(τ(Σ)) is fully invariant, 〈p(r1, . . . ,rn),

q(r1, . . . ,rn)〉 ∈ΘFI(τ(Σ)). So p(r1, . . . ,rn)≈ q(r1, . . .) ∈ τ−1(ΘFI(τ(Σ))).

By definition, D(Σ) is the smallest set that contains Σ and satisfies
(1)-(5). Hence D(Σ)⊆ τ−1(ΘFI(τ(Σ))). Thus, τ(D(Σ))⊆ΘFI(τ(Σ)).
Now we get Σ |= p ≈ q iff 〈p,q〉 ∈ΘFI(τ(Σ)) iff p ≈ q ∈ τ(D(Σ)) iff
p ≈ q ∈D(Σ).
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Formal Deduction and Provability

Definition

Let Σ be a set of identities over X . For p ≈ q ∈ Id(X ), we say Σ⊢ p ≈ q,
read “Σ proves p ≈ q”, if there is a sequence of identities

p1 ≈ q1, . . . ,pn ≈ qn

from Id(X ), such that each pi ≈ qi belongs to Σ, or is of the form p ≈ p, or
is a result of applying any of the four closure rules

p ≈ q ∈D(Σ) ⇒ q ≈ p ∈D(Σ);
p ≈ q, q ≈ r ∈D(Σ) ⇒ p ≈ r ∈D(Σ);
D(Σ) is closed under replacement;
D(Σ) is closed under substitution

to previous identities in the sequence, and the last identity pn ≈ qn is p ≈ q.
The sequence p1 ≈ q1, . . . ,pn ≈ qn is called a formal deduction of p ≈ q.
The number n is the length of the deduction.
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The Completeness Theorem for Equational Logic

Theorem (Birkhoff’s Completeness Theorem for Equational Logic)

Given Σ⊆ Id(X ) and p ≈ q ∈ Id(X ), we have Σ |= p ≈ q iff Σ⊢ p ≈ q.

In the construction of a formal deduction p1 ≈ q1, . . . ,pn ≈ qn of p ≈ q,
only properties under which D(Σ) is closed are used. Hence, Σ⊢ p ≈ q

implies p ≈ q ∈D(Σ).

For the converse:

Σ⊢ p ≈ q, for p ≈ q ∈Σ, and Σ⊢ p ≈ p, for p ∈T (X ).
If Σ⊢ p ≈ q, then there is a formal deduction p1 ≈ q1, . . . ,pn ≈ qn of
p ≈ q. Now p1 ≈ q1, . . . ,pn ≈ qn,qn ≈ pn is a formal deduction of q ≈ p.
Hence, Σ⊢ q ≈ p.
If Σ⊢ p ≈ q, Σ⊢ q ≈ r , let p1 ≈ q1, . . . ,pn ≈ qn be a formal deduction of
p ≈ q and let p1 ≈ q1, . . . ,pk ≈ qk be a formal deduction of q ≈ r . Then
p1 ≈ q1, . . . ,pn ≈ qn, p1 ≈ q1, . . . ,pk ≈ qk , pn ≈ qk is a formal deduction
of p ≈ r . Thus, Σ⊢ p ≈ r .
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The Completeness Theorem for Equational Logic (Cont’d)

We continue with the remaining deduction rules:

If Σ⊢ p ≈ q, let p1 ≈ q1, . . . ,pn ≈ qn be a formal deduction of p ≈ q. Let
r(. . . ,p, . . .) denote a term with a specific occurrence of the subterm p.
Then p1 ≈ q1, . . . ,pn ≈ qn,r(. . . ,pn, . . .)≈ r(. . . ,qn, . . .) is a formal
deduction of r(. . . ,p, . . .)≈ r(. . . ,q, . . .).
Finally, if Σ⊢ p(x1, . . . ,xn)≈ q(x1, . . . ,xn), let p1 ≈ q1, . . . ,pm ≈ qm,p ≈ q

be a formal deduction of p(x1, . . . ,xn)≈ q(x1, . . . ,xn) from Σ. Then, for
terms r1, . . . ,rn, p1 ≈ q1, . . . ,pm ≈ qm,p(x1, . . . ,xn)≈
q(x1, . . . ,xn),p(r1, . . . ,rn)≈ q(r1, . . . ,rn) is a formal deduction of
p(r1, . . . ,rn)≈ q(r1, . . . ,rn) from Σ.

Thus, D(Σ)⊆ {p ≈ q :Σ⊢ p ≈ q}. Hence, D(Σ)= {p ≈ q :Σ⊢ p ≈ q}.
Therefore,

Σ |= p ≈ q iff p ≈ q ∈D(Σ) iff Σ⊢ p ≈ q.
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Examples

(1) An identity p ≈ q is balanced if each variable occurs the same number
of times in p as in q.

If Σ is a balanced set of identities, then, using induction on the length
of a formal deduction, we can show that if Σ⊢ p ≈ q, then p ≈ q is
balanced.

This is not at all evident if one works with the notion |=.

(2) A famous theorem of Jacobson in ring theory says that, if we are given
n≥ 2, if Σ is the set of ring axioms plus xn ≈ x , then Σ |= x ·y ≈ y ·x .

However, there is no published routine way of writing out a formal
deduction, given n, of x ·y ≈ y ·x .

For special n, such as n= 2,3, this is a popular exercise.
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Minimal Subvarieties

Definition

A variety V is trivial if all algebras in V are trivial. A subclass W of a
variety V which is also a variety is called a subvariety of V . V is a
minimal (or equationally complete) variety, if V is not trivial, but the
only subvariety of V not equal to V is the trivial variety.

Theorem

Let V be a nontrivial variety. Then V contains a minimal subvariety.

Let V =M(Σ), Σ⊆ Id(X ), with X infinite. Then IdV (X ) defines V .
As V is nontrivial, τ(IdV (X )) is a fully invariant congruence on T(X )
which is not ∇. But ∇=ΘFI(〈x ,y 〉), for any x ,y ∈X , with x 6= y .
Hence, ∇ is finitely generated (as a fully invariant congruence). This
allows us to use Zorn’s lemma to extend τ(IdV (X )) to a maximal fully
invariant congruence on T(X ), say θ. Then τ−1(θ) must define a
minimal variety which is a subvariety of V .
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Example: Lattices

The variety of lattices has a unique minimal subvariety, the variety
generated by a two-element chain.

To see this let V be a minimal subvariety of the variety of lattices. Let
L be a nontrivial lattice in V . As L contains a two-element sublattice,
we can assume L is a two-element lattice. Now V (L) is not trivial,
and V (L)⊆V , whence V (L)=V .
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