Introduction to Universal Algebra

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

Universal Algebra

June 2020 1 / 76

- Class Operators and Varieties
- Terms, Term Algebras and Free Algebras
- Identities, Free Algebras and Birkhoff's Theorem
- Mal'cev Conditions
- Equational Logic and Fully Invariant Congruences

Subsection 1

Class Operators and Varieties

Operators on Classes of Algebras

Definition

We introduce the following operators mapping classes of algebras to classes of algebras (all of the same type):

A ∈ <i>I</i> (<i>K</i>)	iff	A is isomorphic to some member of <i>K</i>
$\mathbf{A} \in S(K)$	iff	A is a subalgebra of some member of K
$\mathbf{A} \in H(K)$	iff	A is a homomorphic image of some member of K
$\mathbf{A} \in P(K)$	iff	A is a direct product of a nonempty family of algebras in K
$\mathbf{A} \in P_S(K)$	iff	A is a subdirect product of a nonempty family of algebras in K .

If O_1 and O_2 are two operators on classes of algebras we write O_1O_2 for the composition of the two operators. \leq denotes the usual partial ordering: $O_1 \leq O_2$ if $O_1(K) \subseteq O_2(K)$, for all classes of algebras K. An operator O is **idempotent** if $O^2 = O$. A class K of algebras is **closed** under an operator O if $O(K) \subseteq K$.

- For any operator O above, $O(\emptyset) = \emptyset$.
- If ∏ Ø is included (so that P(K) and P_S(K) always contain a trivial algebra) some problems occur in formulating preservation theorems.

Operator Inequalities

Lemma

The following inequalities hold:

 $SH \leq HS$, $PS \leq SP$, $PH \leq HP$.

Also the operators, H, S and IP are idempotent.

• Suppose $\mathbf{A} \in SH(K)$. Then, for some $\mathbf{B} \in K$ and onto homomorphism $\alpha : \mathbf{B} \to \mathbf{C}$, we have $\mathbf{A} \leq \mathbf{C}$. Thus, $\alpha^{-1}(\mathbf{A}) \leq \mathbf{B}$. But $\alpha(\alpha^{-1}(\mathbf{A})) = \mathbf{A}$. Hence, $\mathbf{A} \in HS(K)$. If $\mathbf{A} \in PS(K)$, then $\mathbf{A} = \prod_{i \in I} \mathbf{A}_i$, for suitable $\mathbf{A}_i \leq \mathbf{B}_i \in K$, $i \in I$. But $\prod_{i \in I} \mathbf{A}_i \leq \prod_{i \in I} \mathbf{B}_i$. Hence, $\mathbf{A} \in SP(K)$. If $\mathbf{A} \in PH(K)$, then there are algebras $\mathbf{B}_i \in K$ and epimorphisms $\alpha_i : \mathbf{B}_i \to \mathbf{A}_i$, such that $\mathbf{A} = \prod_{i \in I} \mathbf{A}_i$. We can show that the mapping $\alpha : \prod_{i \in I} \mathbf{B}_i \to \prod_{i \in I} \mathbf{A}_i$, defined by $\alpha(b)(i) = \alpha_i(b(i))$ is an epimorphism. Hence, $\mathbf{A} \in HP(K)$.

Operator Inequalities (Cont'd)

- Suppose A ∈ H²(K). Then, there exists an epimorphism β: C → A and an epimorphism α: B → C, where B ∈ K. Thus, β ∘ α: B → A is an epimorphism, with B ∈ K. Hence, A ∈ H(K). Therefore, H²(K) ⊆ H(K). The reverse inclusion is trivial.
- Suppose $\mathbf{A} \in S^2(K)$. Then $\mathbf{A} \leq \mathbf{C}$, where $\mathbf{C} \leq \mathbf{B}$, for some $\mathbf{B} \in K$. Thus, $\mathbf{A} \leq \mathbf{B}$, with $\mathbf{B} \in K$ and, hence, $\mathbf{A} \in S(K)$. Therefore, $S^2(K) \subseteq S(K)$. The reverse inclusion is trivial.
- Suppose $\mathbf{A} \in (IP)^2(K)$. Then $\mathbf{A} \cong \prod_{i \in I} \mathbf{A}_i$, where, for all $i \in I$, $\mathbf{A}_i \cong \prod_{j \in J_i} \mathbf{A}_{ij}$, with $\mathbf{A}_{ij} \in K$, for all $i \in I$, $j \in J_i$. But then

$$\mathbf{A} \cong \prod_{i \in I} \mathbf{A}_i \cong \prod_{i \in I} \prod_{j \in J_i} \mathbf{A}_{ij} \cong \prod_{\substack{i \in I \\ j \in J_i}} \mathbf{A}_{ij}.$$

Since $\{\mathbf{A}_{ij} : i \in I, j \in J_i\} \subseteq K$, we get that $\mathbf{A} \in IP(K)$. Thus, $(IP)^2(K) \subseteq IP(K)$. The reverse inclusion is trivial.

Varieties

Definition

A nonempty class K of algebras of type \mathscr{F} is called a **variety** if it is closed under subalgebras, homomorphic images and direct products.

Note that:

- all algebras of type \mathscr{F} form a variety;
- $\bullet\,$ the intersection of a class of varieties of type ${\mathscr F}\,$ is again a variety.

Thus, for every class K of algebras of the same type there is a smallest variety containing K.

Definition

If K is a class of algebras of the same type, let V(K) denote the smallest variety containing K. We say that V(K) is the **variety generated by** K. If K has a single member **A**, we write simply $V(\mathbf{A})$. A variety V is **finitely generated** if V = V(K), for some finite set K of finite algebras.

Tarski's Characterization of Varieties

Theorem (Tarski)

V = HSP.

- Since HV = SV = IPV = V and I ≤ V, we have HSP ≤ HSPV = V.
 We also have:
 - H(HSP) = HSP;
 - $S(HSP) \leq HSSP = HSP;$
 - $P(HSP) \le HPSP \le HSPP \le HSIPIP = HSIP \le HSHP \le HHSP = HSP$.

Hence, for any K, HSP(K) is closed under H, S and P. But V(K) is the smallest class containing K and closed under H, S and P. Therefore, $V \leq HSP$.

We conclude that V = HSP.

Birkhoff's Theorem for Varieties

Theorem (Birkhoff's Theorem for Varieties)

If K is a variety, then every member of K is isomorphic to a subdirect product of subdirectly irreducible members of K.

Corollary

A variety is generated by its subdirectly irreducible members.

• Let K be a variety and $\mathbf{A} \in K$. By Birkhoff's Theorem, $\mathbf{A} \in IP_S(K_{SI})$, where K_{SI} denotes the class of all subdirectly irreducible members of K. Now we have

$$\mathbf{A} \in IP_{\mathcal{S}}(K_{\mathcal{S}I}) \subseteq ISP(K_{\mathcal{S}I}) \subseteq V(K_{\mathcal{S}I}).$$

Therefore, K is generated by its subdirectly irreducible members.

Subsection 2

Terms, Term Algebras and Free Algebras

Terms

Definition

Let X be a set of (distinct) objects called variables. Let \mathscr{F} be a type of algebras. The set $\mathcal{T}(X)$ of terms of type \mathscr{F} over X is the smallest set such that:

(i)
$$X \cup \mathscr{F}_0 \subseteq T(X)$$
.

(ii) If $p_1, \ldots, p_n \in T(X)$ and $f \in \mathscr{F}_n$, then the "string" $f(p_1, \ldots, p_n) \in T(X)$.

•
$$T(X) \neq \emptyset$$
 iff $X \cup \mathscr{F}_0 \neq \emptyset$.

- For a binary function symbol •, we often write p₁ p₂ instead of •(p₁, p₂).
- For p∈T(X), we often write p as p(x₁,...,x_n) to indicate that the variables occurring in p are among x₁,...,x_n.
- A term p is n-ary if the number of variables appearing explicitly in p is ≤ n.

Examples

(1) Let \mathscr{F} consist of a single binary function symbol •. Let $X = \{x, y, z\}$. The following

$$x, y, z, x \bullet y, y \bullet z, x \bullet (y \bullet z), (x \bullet y) \bullet z$$

are some of the terms over X.

(2) Let \mathscr{F} consist of two binary operation symbols + and \cdot . Let X be as before. The following

$$x, y, z, x \cdot (y+z), (x \cdot y) + (x \cdot z)$$

are some of the terms over X.

(3) The classical polynomials over the field of real numbers ℝ are really the terms of type 𝔅, consisting of +, · and -, together with a nullary function symbol r, for each r ∈ R.

Term Functions

Definition

Given a term $p(x_1,...,x_n)$ of type \mathscr{F} over some set X and given an algebra A of type \mathscr{F} , we define a mapping $p^{\mathbf{A}} : A^n \to A$ as follows: (1) if p is a variable x_i , then

$$p^{\mathbf{A}}(a_1,\ldots,a_n)=a_i,$$

for $a_1, \ldots, a_n \in A$, i.e., p^A is the *i*-th projection map;

(2) if p is of the form $f(p_1(x_1...,x_n),...,p_k(x_1,...,x_n))$, where $f \in \mathcal{F}_k$, then

$$p^{\mathbf{A}}(a_1,...,a_n) = f^{\mathbf{A}}(p_1^{\mathbf{A}}(a_1,...,a_n),...,p_k^{\mathbf{A}}(a_1,...,a_n)).$$

In particular if $p = f \in \mathscr{F}_0$, then $p^{\mathbf{A}} = f^{\mathbf{A}}$.

We say $p^{\mathbf{A}}$ is the **term function** on **A** corresponding to the term p. Often the superscript $^{\mathbf{A}}$ is omitted.

George Voutsadakis (LSSU)

Properties of Term Functions

Theorem

For any type \mathscr{F} and algebras A, B of type \mathscr{F} , we have the following:

- (a) Let p be an n-ary term of type \mathscr{F} . Let $\theta \in \text{Con} A$. Suppose $\langle a_i, b_i \rangle \in \theta$, for $1 \le i \le n$. Then $p^A(a_1, ..., a_n) \theta p^A(b_1, ..., b_n)$.
- (b) If p is an n-ary term of type \mathscr{F} and $\alpha : \mathbf{A} \to \mathbf{B}$ is a homomorphism, then

$$\alpha(p^{\mathbf{A}}(a_1,\ldots,a_n))=p^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)),$$

for $a_1, \ldots, a_n \in A$.

(c) Let S be a subset of A. Then

$$Sg(S) = \{p^{\mathbf{A}}(a_1,...,a_n) : p \text{ is an } n\text{-ary term of type } \mathscr{F}, \\ n < \omega, a_1,...,a_n \in S\}.$$

Proof of Part (a)

Given a term p define the length ℓ(p) of p to be the number of occurrences of n-ary operation symbols in p, for n≥1. Note that ℓ(p) = 0 iff p ∈ X ∪ 𝔅₀.

(a) We proceed by induction on $\ell(p)$.

- If $\ell(p) = 0$, then either $p = x_i$, for some *i*, or $p = a \in \mathscr{F}_0$.
 - If $p = x_i$, for some i, $\langle p^{\mathbf{A}}(a_1, \dots, a_n), p^{\mathbf{A}}(b_1, \dots, b_n) \rangle = \langle a_i, b_i \rangle \in \theta$;

If
$$p = a$$
, for some $a \in \mathscr{P}_0$, then
 $\langle p^{\mathbf{A}}(a_1, \dots, a_n), p^{\mathbf{A}}(b_1, \dots, b_n) \rangle = \langle a^{\mathbf{A}}, a^{\mathbf{A}} \rangle \in \theta$

• Now suppose $\ell(p) > 0$ and the assertion holds for every term q with $\ell(q) < \ell(p)$. Then we know p is of the form $f(p_1(x_1, ..., x_n), ..., p_k(x_1, ..., x_n))$. Since $\ell(p_i) < \ell(p)$, we must have, for $1 \le i \le k$, $\langle p_i^{\mathbf{A}}(a_1, ..., a_n), p_i^{\mathbf{A}}(b_1, ..., b_n) \rangle \in \theta$. Hence,

$$\langle f^{\mathbf{A}}(p_{1}^{\mathbf{A}}(a_{1},...,a_{n}),...,p_{k}^{\mathbf{A}}(a_{1},...,a_{n})), \\ f^{\mathbf{A}}(p_{1}^{\mathbf{A}}(b_{1},...,b_{n}),...,p_{k}^{\mathbf{A}}(b_{1},...,b_{n}))\rangle \in \theta.$$
Consequently $\langle p^{\mathbf{A}}(a_{1},...,a_{n}), p^{\mathbf{A}}(b_{1},...,b_{n})\rangle \in \theta.$

Proof of Part (b)

(b) The proof of this is an induction argument on $\ell(p)$. • If $\ell(p) = 0$, then $p = x_i$, for some *i*, or $p = a \in \mathscr{F}_0$. • If $p = x_i$, for some *i*, then $\alpha(p^{\mathbf{A}}(a_1,\ldots,a_n)) = \alpha(a_i) = p^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)).$ • If $p = a \in \mathscr{F}_0$, then, by definition, $\alpha(a^{\mathbf{A}}) = a^{\mathbf{B}}$. • Suppose $\ell(p) > 0$. Then $p = f(p_1(x_1, ..., x_n), ..., p_k(x_1, ..., x_n))$, for some $f \in \mathscr{F}_k$, where $\ell(p_1), \ldots, \ell(p_k) < \ell(p)$. Thus, we get $\begin{aligned} \alpha(p^{\mathbf{A}}(a_1,\ldots,a_n)) &= & \alpha(f^{\mathbf{A}}(p_1^{\mathbf{A}}(a_1,\ldots,a_n),\ldots,p_k^{\mathbf{A}}(a_1,\ldots,a_n))) \\ &= & f^{\mathbf{B}}(\alpha(p_1^{\mathbf{A}}(a_1,\ldots,a_n)),\ldots,\alpha(p_k^{\mathbf{A}}(a_1,\ldots,a_n))) \end{aligned}$ $= f^{\mathbf{B}}(p_1^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)),\ldots,$ $p_{k}^{\mathbf{B}}(\alpha(a_{1}),\ldots,\alpha(a_{n})))$ $= p^{\mathbf{B}}(\alpha(a_1),\ldots,\alpha(a_n)).$

Proof of Part (c)

(c) By induction, we show that, for $k \ge 1$,

$$E^{k}(S) \subseteq \{p^{\mathbf{A}}(a_{1},...,a_{n}) : p \text{ is an } n\text{-ary term}; \\ \ell(p) \leq k, n < \omega, a_{1},...,a_{n} \in S\}.$$

The right side is always \subseteq Sg(S) since (by induction) every subuniverse B of A is closed under the term functions of A. Thus,

$$\begin{array}{rcl} \mathsf{Sg}(S) &=& \bigcup_{k < \infty} E^k(S) \\ &\subseteq& \{p^{\mathbf{A}}(a_1, \dots, a_n) : p \text{ is an } n \text{-ary term of type } \mathscr{F}, \\ && n < \omega, \ a_1, \dots, a_n \in S\} \\ &\subseteq& \mathsf{Sg}(S). \end{array}$$

The Term Algebra and the Universal Mapping Property

Definition

Given \mathscr{F} and X, if $T(X) \neq \emptyset$, then the **term algebra of type** \mathscr{F} over X, written T(X), has as its universe the set T(X) and the fundamental operations satisfy $f^{T(X)}: \langle p_1, \dots, p_n \rangle \mapsto f(p_1, \dots, p_n),$

for $f \in \mathscr{F}_n$ and $p_i \in T(X)$, $1 \le i \le n$. $\mathbf{T}(\emptyset)$ exists iff $\mathscr{F}_0 \ne \emptyset$.

• T(X) is generated by X.

Definition

Let *K* be a class of algebras of type \mathscr{F} and let $\mathbf{U}(X)$ be an algebra of type \mathscr{F} which is generated by *X*. If, for every $\mathbf{A} \in K$ and for every map $\alpha : X \to A$, there is a homomorphism $\beta : \mathbf{U}(X) \to \mathbf{A}$, which extends α (i.e., $\beta(x) = \alpha(x)$, for $x \in X$), then we say $\mathbf{U}(X)$ has the **universal mapping** property for *K* over *X*. *X* is called a set of free generators of $\mathbf{U}(X)$, and $\mathbf{U}(X)$ is said to be freely generated by *X*.

Uniqueness of the Universal Mapping

Lemma

Suppose U(X) has the universal mapping property for K over X. Then, if we are given $A \in K$ and $\alpha : X \to A$, there is a unique extension β of α , such that β is a homomorphism from U(X) to A.

• Suppose β , β' both extend α and let $a \in U(X)$. Then, there exists *n*-ary p and $x_1, \ldots, x_n \in X$, such that $a = p^{U(X)}(x_1, \ldots, x_n)$. Therefore,

$$(a) = \beta(p^{\mathbf{U}(X)}(x_1,...,x_n)) = p^{\mathbf{A}}(\beta(x_1),...,\beta(x_n)) = p^{\mathbf{A}}(\beta'(x_1),...,\beta'(x_n)) = \beta'(p^{\mathbf{U}(X)}(x_1,...,x_n)) = \beta'(a).$$

β

Uniqueness of the "Free Algebra'

• For a given cardinal *m*, there is, up to isomorphism, at most one algebra in a class *K* which has the universal mapping property for *K* over a set of free generators of size *m*.

Theorem

Suppose $U_1(X_1)$ and $U_2(X_2)$ are two algebras with the universal mapping property for K over the indicated sets. If $U_1(X_1), U_2(X_2) \in K$ and $|X_1| = |X_2|$, then $U_1(X_1) \cong U_2(X_2)$.

The identity map ι_j: X_j → X_j, j = 1,2, has as its unique extension to a homomorphism from U_j(X_j) to U_j(X_j) the identity map. Now let α: X₁ → X₂ be a bijection. Then we have homomorphisms β: U₁(X₁) → U₂(X₂) extending α, and γ: U₂(X₂) → U₁(X₁) extending α⁻¹. But β∘γ is an endomorphism of U₂(X₂) extending ι₂. It follows that β∘γ is the identity map on U₂(X₂). Likewise γ∘β is the identity map on U₁(X₁). Thus, β is a bijection. So U₁(X₁) ≅ U₂(X₂).

Universal Mapping Property of the Term Algebra

Theorem

For any type \mathscr{F} and set X of variables, where $X \neq \emptyset$ if $\mathscr{F}_0 = \emptyset$, the term algebra T(X) has the universal mapping property for the class of all algebras of type \mathscr{F} over X.

- Let $\alpha : X \to A$, where **A** is of type \mathscr{F} . Define $\beta : T(X) \to A$ recursively by:
 - $\beta x = \alpha x$, for $x \in X$;
 - For all $f \in \mathcal{F}_n$ and all $p_1, \ldots, p_n \in T(X)$,

$$\beta(f(p_1,\ldots,p_n))=f^{\mathbf{A}}(\beta(p_1)\ldots,\beta(p_n)).$$

Then, for every *n*-ary term $p(x_1,...,x_n)$,

$$\beta(p(x_1,\ldots,x_n))=p^{\mathbf{A}}(\alpha(x_1),\ldots,\alpha(x_n)),$$

and β is the desired homomorphism extending α .

K-Free Algebras

Definition

Let K be a family of algebras of type \mathcal{F} . Given a set X of variables, let

$$\Phi_{\mathcal{K}}(X) = \{\phi \in \operatorname{Con} \mathsf{T}(X) : \mathsf{T}(X) / \phi \in IS(\mathcal{K})\}.$$

Define the congruence $\theta_{\mathcal{K}}(X)$ on $\mathbf{T}(X)$ by

$$\theta_{\mathcal{K}}(X) = \bigcap \Phi_{\mathcal{K}}(X).$$

Then letting $\overline{X} = X/\theta_K(X)$, define $F_K(\overline{X})$, the *K*-free algebra over \overline{X} , by $F_K(\overline{X}) = T(X)/\theta_K(X)$. For $x \in X$, we write \overline{x} for $x/\theta_K(X)$, and for $p = p(x_1, ..., x_n) \in T(X)$, we write \overline{p} for $p^{F_K(\overline{X})}(\overline{x}_1, ..., \overline{x}_n)$. If X is finite, say $X = \{x_1, ..., x_n\}$, we often write $F_K(\overline{x}_1, ..., \overline{x}_n)$, for $F_K(\overline{X})$. $F_K(\overline{X})$ is the universe of $F_K(\overline{X})$.

Remarks on *K*-Free Algebras

- (1) $\mathbf{F}_{\mathcal{K}}(\overline{X})$ exists iff $\mathbf{T}(X)$ exists iff $X \neq \emptyset$ or $\mathscr{F}_0 \neq \emptyset$, i.e., $X \cup \mathscr{F}_0 \neq \emptyset$.
- (2) If F_K(X) exists, then X is a set of generators of F_K(X) as X generates T(X).
- (3) If $\mathscr{F}_0 \neq \emptyset$, then the algebra $\mathsf{F}_{\mathcal{K}}(\overline{\emptyset})$ is often referred to as an initial object.
- (4) If $K = \emptyset$ or K consists solely of trivial algebras, then $\mathbf{F}_{K}(\overline{X})$ is a trivial algebra as $\theta_{K}(X) = \nabla$.
- (5) If K has a nontrivial algebra A and T(X) exists, then X ∩ (x/θ_K(X)) = {x} as distinct members x, y of X can be separated by some homomorphism α : T(X) → A. In this case |X| = |X|.
- (6) If |X| = |Y| and T(X) exists, then clearly F_K(X) ≅ F_K(Y) under an isomorphism which maps X to Y as T(X) ≅ T(Y) under an isomorphism mapping X to Y. Thus F_K(X) is determined, up to isomorphism, by K and |X|.

Universal Mapping Property of $F_{\kappa}(X)$

Theorem (Birkhoff)

Suppose $\mathbf{T}(X)$ exists, i.e., $X \cup \mathscr{F}_0 \neq \emptyset$. Then $\mathbf{F}_{\mathcal{K}}(\overline{X})$ has the universal mapping property for \mathcal{K} over \overline{X} .

- Given A ∈ K let α be a map from X to A. Let v: T(X) → F_K(X) be the natural homomorphism. Then α ∘ v maps X into A. By the universal mapping property of T(X), there is a homomorphism μ: T(X) → A extending (α ∘ v) ↾_X. Since T(X)/kerμ ≅ μ(T(X)) ≤ A, kerμ ∈ Φ_K(X). Thus, θ_K(X) ⊆ kerμ. Hence, there is a homomorphism β: F_K(X) → A, such that μ = β ∘ v, as kerv = θ_K(X). But then, for x ∈ X, β(x̄) = β ∘ v(x) = μ(x) = α ∘ v(x) = α(x̄). So β extends α. Thus, F_K(X) has the universal mapping property for K over X.
- If F_K(X) ∈ K, then it is, up to isomorphism, the unique algebra in K, with the universal mapping property freely generated by a set of generators of size |X|.

Examples

- (1) T(X) is isomorphic to the free algebra for the class K of all algebras of type \mathscr{F} over X, since $\theta_K(X) = \Delta$. The corresponding free algebra is sometimes called the **absolutely free algebra** $F(\overline{X})$ of type \mathscr{F} .
- (2) Given X, let X* be the set of finite strings of elements of X, including the empty string. We can construct a monoid ⟨X*,·,1⟩ by defining · to be concatenation, and 1 is the empty string. By checking the universal mapping property one sees that ⟨X*,·,1⟩ is, up to isomorphism, the free monoid freely generated by X.

Free Algebras and Algebras

Corollary

If K is a class of algebras of type \mathscr{F} and $\mathbf{A} \in K$, then for sufficiently large X, $\mathbf{A} \in H(\mathbf{F}_{K}(\overline{X}))$.

- Choose $|X| \ge |A|$ and let $\alpha : \overline{X} \to A$ be a surjection. Then let $\beta : \mathbf{F}_{\mathcal{K}}(\overline{X}) \to \mathbf{A}$ be a homomorphism extending α .
- In general $F_{\mathcal{K}}(\overline{X})$ is not isomorphic to a member of \mathcal{K} .

Example: Let $K = \{L\}$, where L be a two-element lattice. Then $F_{K}(\overline{x}, \overline{y}) \notin I(K)$.

• On the other hand, $F_{\mathcal{K}}(\overline{X})$ can be embedded in a product of members of \mathcal{K} .

Free Algebras in Varieties

Theorem (Birkhoff)

Suppose T(X) exists, i.e., $X \cup \mathscr{F}_0 \neq \emptyset$. Then, for $K \neq \emptyset$, $F_K(\overline{X}) \in ISP(K)$. Thus, if K is closed under I, S and P, in particular if K is a variety, then $F_K(\overline{X}) \in K$.

• We have $\theta_{\mathcal{K}}(X) = \bigcap \Phi_{\mathcal{K}}(X)$. Hence,

$$\mathbf{F}_{\mathcal{K}}(\overline{X}) = \mathbf{T}(X)/\theta_{\mathcal{K}}(X) \in IP_{\mathcal{S}}(\{\mathbf{T}(X)/\theta : \theta \in \Phi_{\mathcal{K}}(X)\}).$$

Thus, $\mathbf{F}_{\mathcal{K}}(\overline{X}) \in IP_S IS(\mathcal{K})$. But $P_S \leq SP$ and $PS \leq SP$. Therefore,

 $\mathbf{F}_{\mathcal{K}}(\overline{X}) \in IP_{\mathcal{S}}S(\mathcal{K}) \subseteq ISPS(\mathcal{K}) \subseteq ISSP(\mathcal{K}) = ISP(\mathcal{K}).$

Nontrivial Simple Algebras in Varieties

• We know that if a variety has a nontrivial algebra in it, then it must have a nontrivial subdirectly irreducible algebra in it.

Theorem (Magari)

If we are given a variety V with a nontrivial member, then V contains a nontrivial simple algebra.

Let X = {x,y}, and let S = {p(x) : p ∈ T({x})}, a subset of F_V(X). First, suppose that Θ(S) ≠ ∇ in ConF_V(X).
Claim: For θ ∈ [Θ(S), ∇], θ = ∇ iff ⟨x,y⟩ ∈ θ.
Suppose Θ(S) ⊆ θ and ⟨x,y⟩ ∈ θ. Then for any term p(x,y), we have p^{F_V(X)}(x,y) θ p^{F_V(X)}(x,x) Θ(S) x. Hence θ = ∇.
By the claim, every chain in [Θ(S), ∇] - {∇} has a maximal element. By Zorn's Lemma, [Θ(S), ∇] - {∇} has a maximal element θ₀. Then F_V(X)/θ₀ is a simple algebra and it is in V.

Nontrivial Simple Algebras in Varieties (Cont'd)

Now suppose that Θ(S) = ∇. Then, since Θ is an algebraic closure operator, it follows that, for some finite subset S₀ of S, we must have (x, y) ∈ Θ(S₀). Let S be the subalgebra of F_V(X), with universe S (S = Sg({x})). Since V is nontrivial, x ≠ y in F_V(X). Since (x, y) ∈ Θ(S), S is nontrivial.

Claim: $\nabla_S = \Theta(S_0)$, where Θ in this case is understood to be the appropriate closure operator on S.

Let $p(\overline{x}) \in S$ and let $\alpha : \mathbf{F}_V(\overline{X}) \to \mathbf{S}$ be the homomorphism defined by

$$\alpha(\overline{x}) = \overline{x}, \quad \alpha(\overline{y}) = p(\overline{x}).$$

Since $\langle \overline{x}, \overline{y} \rangle \in \Theta(S_0)$ in $F_V(\overline{X})$, we get $\langle \overline{x}, p(\overline{x}) \rangle \in \Theta(S_0)$ in **S** as $\alpha(S_0) = S_0$.

Using Zorn's Lemma, we can find a maximal congruence θ on **S** as ∇_S is finitely generated. Hence, **S**/ θ is a simple algebra in *V*.

Local Finiteness

Definition

An algebra **A** is **locally finite** if every finitely generated subalgebra is finite. A class K of algebras is **locally finite** if every member of K is locally finite.

Theorem

A variety V is locally finite iff

$$|X| < \omega \implies |F_V(\overline{X})| < \omega.$$

 (\Rightarrow) : Clear, since \overline{X} generates $F_V(\overline{X})$.

(\Leftarrow): Let **A** be a finitely generated member of *V*, and let $B \subseteq A$ be a finite set of generators. Choose *X*, such that we have a bijection $\alpha : \overline{X} \to B$. Extend this to a homomorphism $\beta : F_V(\overline{X}) \to A$. As $\beta(F_V(\overline{X}))$ is a subalgebra of **A** containing *B*, it must equal **A**. Thus β is surjective, and as $F_V(\overline{X})$ is finite so is **A**.

Variety Generated by Finitely Many Finite Algebras

Theorem

Let K be a finite set of finite algebras. Then V(K) is a locally finite variety.

Claim: P(K) is locally finite. Let $\mathbf{A} \in P(K)$ and $S = \{a_1, \dots, a_n\}$ a finite subset of \mathbf{A} . We must show $Sg^{\mathbf{A}}(S)$ is finite. But

$$\operatorname{Sg}^{\mathbf{A}}(S) = \{ p^{\mathbf{A}}(a_1, \dots, a_n) : p \text{ is an } n \text{-ary term of type } \mathscr{F} \}.$$

Thus, it suffices to show that the set $T(\{x_1,...,x_n\})/\sim^K$ is finite, where \sim^K is the equivalence relation on $T(\{x_1,...,x_n\})$, defined, for all $p, q \in T(\{x_1,...,x_n\})$, by

$$p \sim^{K} q$$
 iff $p^{K} = q^{K}$, for all $K \in K$.

Variety Generated by Finitely Many Finite Algebras (Cont'd)

• We must show that the set $T(\{x_1,...,x_n\})/\sim^K$ is finite.

This is clear, since, if $K = \{A_1, \dots, A_m\}$ and $|A_i| = k_i$, $1 \le i \le m$, then there are at most $k_1^n \cdot k_2^n \cdot \dots \cdot k_m^n$ different functions on *n*-variables agreeing on every member of K.

Now note that SP(K) is locally finite.

And, since every finitely generated member of HSP(K) is a homomorphic image of a finitely generated member of SP(K), HSP(K) is locally finite. Hence, V is locally finite.

Subsection 3

Identities, Free Algebras and Birkhoff's Theorem

Identities and Satisfiability

Definition

An **identity** of type \mathscr{F} over X is an expression of the form $p \approx q$, where $p, q \in T(X)$. Let Id(X) be the set of identities of type \mathscr{F} over X. An algebra **A** of type \mathscr{F} **satisfies** an identity $p(x_1,...,x_n) \approx q(x_1,...,x_n)$ if, for every choice of $a_1,...,a_n \in A$, we have $p^{\mathbf{A}}(a_1,...,a_n) = q^{\mathbf{A}}(a_1,...,a_n)$. If so, then we say that the identity is **true in A**, or **holds in A**, and write $\mathbf{A} \models p(x_1,...,x_n) \approx q(x_1,...,x_n)$, or more briefly $\mathbf{A} \models p \approx q$.

- If Σ is a set of identities, we say **A** satisfies Σ , written $\mathbf{A} \models \Sigma$, if $\mathbf{A} \models p \approx q$, for each $p \approx q \in \Sigma$.
- A class K of algebras satisfies p≈q, written K ⊨ p≈q, if each member of K satisfies p≈q. Set Id_K(X) = {p≈q∈ Id(X): K ⊨ p≈q}.
- If Σ is a set of identities, we say K satisfies Σ, written K ⊨ Σ, if K ⊨ p ≈ q, for each p ≈ q ∈ Σ.

We use the symbol $\not\models$ for "does not satisfy".

Free Algebras and Satisfiability of Identitites

Lemma

If K is a class of algebras of type \mathscr{F} and $p \approx q$ is an identity of type \mathscr{F} over X, then $K \models p \approx q$ iff, for every $\mathbf{A} \in K$ and for every homomorphism $\alpha : \mathbf{T}(X) \to \mathbf{A}$, we have $\alpha(p) = \alpha(q)$.

(⇒) Let $p = p(x_1,...,x_n), q = q(x_1,...,x_n)$. Suppose $K \models p \approx q$, $\mathbf{A} \in K$, and $\alpha : \mathbf{T}(X) \rightarrow \mathbf{A}$ is a homomorphism. Then $p^{\mathbf{A}}(\alpha(x_1),...,\alpha(x_n)) = q^{\mathbf{A}}(\alpha(x_1),...,\alpha(x_n))$

$$\Rightarrow \quad \alpha(p^{\intercal(X)}(x_1,...,x_n)) = \alpha(q^{\intercal(X)}(x_1,...,x_n)) \Rightarrow \quad \alpha(p) = \alpha(q).$$

(\Leftarrow) For the converse choose $\mathbf{A} \in K$ and $a_1, \dots, a_n \in A$. By the universal mapping property of $\mathbf{T}(X)$, there is a homomorphism $\alpha : \mathbf{T}(X) \to \mathbf{A}$, such that $\alpha(x_i) = a_i, 1 \le i \le n$. But then $p^{\mathbf{A}}(a_1, \dots, a_n) = p^{\mathbf{A}}(\alpha(x_1), \dots, \alpha(x_n)) = \alpha(p) = \alpha(q) = q^{\mathbf{A}}(\alpha(x_1), \dots, \alpha(x_n)) = q^{\mathbf{A}}(a_1, \dots, a_n)$. So $K \models p \approx q$.

Basic Class Operators Preserve Identities

Lemma

For any class K of type \mathscr{F} , all of the classes K, I(K), S(K), H(K), P(K)and V(K) satisfy the same identities over any set of variables X.

• Clearly K and I(K) satisfy the same identities. As $I \leq IS, I \leq H$ and $I \leq IP$, we must have $Id_{K}(X) \supseteq Id_{S(K)}(X), Id_{H(K)}(X), Id_{P(K)}(X)$. For the remainder of the proof suppose $K \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$. Let $\mathbf{B} \leq \mathbf{A} \in K$ and $b_1, \ldots, b_n \in B$. As $b_1, \ldots, b_n \in A$, we have $p^{\mathbf{A}}(b_1,...,b_n) = q^{\mathbf{A}}(b_1,...,b_n)$. Hence, $p^{\mathbf{B}}(b_1,...,b_n) = q^{\mathbf{B}}(b_1,...,b_n)$. so $\mathbf{B} \models p \approx q$. Thus, $\mathrm{Id}_{\mathcal{K}}(X) = \mathrm{Id}_{\mathcal{S}(\mathcal{K})}(X)$. Let $\alpha : \mathbf{A} \to \mathbf{B}$ be a surjective homomorphism with $\mathbf{A} \in K$. If $b_1, \ldots, b_n \in B$, choose $a_1, \ldots, a_n \in A$, such that $\alpha(a_1) = b_1, \ldots, \alpha(a_n) = b_1$ b_n . Then, $p^{\mathbf{A}}(a_1,\ldots,a_n) = q^{\mathbf{A}}(a_1,\ldots,a_n)$, implies $\alpha(p^{\mathbf{A}}(a_1,\ldots,a_n)) =$ $\alpha(q^{\mathbf{A}}(a_1,...,a_n))$. Hence $p^{\mathbf{B}}(b_1,...,b_n) = q^{\mathbf{B}}(b_1,...,b_n)$. Thus, $\mathbf{B} \models p \approx q$. So $\mathrm{Id}_{K}(X) = \mathrm{Id}_{H(K)}(X)$.
Basic Class Operators Preserve Identities (Cont'd)

• Lastly, suppose $A_i \in K$, for $i \in I$. Then, for $a_1, \ldots, a_n \in A = \prod_{i \in I} A_i$, we have

$$p^{\mathbf{A}_i}(a_1(i),\ldots,a_n(i)) = q^{\mathbf{A}_i}(a_1(i),\ldots,a_n(i)),$$

hence

$$p^{\mathbf{A}}(a_1,\ldots,a_n)(i)=q^{\mathbf{A}}(a_1,\ldots,a_n)(i), \quad i\in I,$$

SO

$$p^{\mathbf{A}}(a_1,\ldots,a_n)=q^{\mathbf{A}}(a_1,\ldots,a_n).$$

Thus, $Id_{\mathcal{K}}(X) = Id_{\mathcal{P}(\mathcal{K})}(X)$. As V = HSP, the proof is complete.

George Voutsadakis (LSSU)

Characterization of Satisfiability

Theorem

Given a class K of algebras of type \mathscr{F} and terms $p, q \in T(X)$ of type \mathscr{F} , we have:

$$\mathcal{K} \models p \approx q \Leftrightarrow \mathbf{F}_{\mathcal{K}}(\overline{X}) \models p \approx q \Leftrightarrow \overline{p} = \overline{q} \text{ in } \mathbf{F}_{\mathcal{K}}(\overline{X}) \Leftrightarrow \langle p, q \rangle \in \theta_{\mathcal{K}}(X).$$

- Let $\mathbf{F} = \mathbf{F}_{\mathcal{K}}(\overline{X}), p = p(x_1, \dots, x_n), q = q(x_1, \dots, x_n)$ and let $v : \mathbf{T}(X) \to \mathbf{F}$ be the natural homomorphism.
 - Certainly $K \models p \approx q$ implies $\mathbf{F} \models p \approx q$, as $\mathbf{F} \in ISP(K)$.
 - Assume $\mathbf{F} \models p \approx q$. Then $p^{\mathbf{F}}(\overline{x}_1,...,\overline{x}_n) = q^{\mathbf{F}}(\overline{x}_1,...,\overline{x}_n)$, hence $\overline{p} \approx \overline{q}$.
 - Now suppose $\overline{p} = \overline{q}$ in **F**. Then $v(p) = \overline{p} = \overline{q} = v(q)$. so $\langle p, q \rangle \in \text{ker}v = \theta_{\mathcal{K}}(X)$.
 - Finally, suppose $\langle p,q \rangle \in \theta_K(X)$. Given $\mathbf{A} \in K$ and $a_1, \dots, a_n \in A$, choose $\alpha : \mathbf{T}(X) \to \mathbf{A}$, such that $\alpha(x_i) = a_i$, $1 \le i \le n$. We have ker $\alpha \in \Phi_K(X)$. Hence, ker $\alpha \supseteq \text{ker}v = \theta_K(X)$. It follows that there is a homomorphism $\beta : \mathbf{F} \to \mathbf{A}$, such that $\alpha = \beta \circ v$. Then $\alpha(p) = \beta \circ v(p) = \beta \circ v(q) = \alpha(q)$. Consequently $K \models p \approx q$.

George Voutsadakis (LSSU)

Various Sets of Variables

Corollary

Let K be a class of algebras of type \mathscr{F} , and suppose $p, q \in T(X)$. Then for any set of variables Y, with $|Y| \ge |X|$, we have

$$K \models p \approx q$$
 iff $\mathbf{F}_{\mathcal{K}}(\overline{Y}) \models p \approx q$.

(⇒) This is obvious, as $F_K(\overline{Y}) \in ISP(K)$.

(⇐) Choose $X_0 \supseteq X$, such that $|X_0| = |Y|$. Then $\mathbf{F}_{\mathcal{K}}(\overline{X}_0) \cong \mathbf{F}_{\mathcal{K}}(\overline{Y})$, and, since, by the theorem,

$$K \models p \approx q$$
 iff $\mathbf{F}_{\mathcal{K}}(\overline{X}_0) \models p \approx q$,

it follows that

$$K \models p \approx q$$
 iff $\mathbf{F}_{K}(\overline{Y}) \models p \approx q$.

Identities Over Various Sets of Variables

Corollary

Suppose K is a class of algebras of type \mathscr{F} and X is a set of variables. Then, for any infinite set of variables Y,

 $\mathsf{Id}_{\mathcal{K}}(X) = \mathsf{Id}_{\mathbf{F}_{\mathcal{K}}(\overline{Y})}(X).$

 For p≈q∈ Id_K(X), say p = p(x₁,...,x_n), q = q(x₁,...,x_n), we have p,q∈ T({x₁,...,x_n}). As |{x₁,...,x_n}| < |Y|, by the preceding corollary,

$$K \models p \approx q$$
 iff $\mathbf{F}_{\mathcal{K}}(\overline{Y}) \models p \approx q$,

so the corollary is proved.

Equational Classes of Algebras

Definition

Let Σ be a set of identities of type \mathscr{F} and define $M(\Sigma)$ to be the class of algebras **A** satisfying Σ . A class K of algebras is an **equational class** if there is a set of identities Σ , such that $K = M(\Sigma)$. In this case, we say that K is **defined**, or **axiomatized**, by Σ .

Lemma

If V is a variety and X is an infinite set of variables, then $V = M(Id_V(X))$.

• Let $V' = M(\operatorname{Id}_V(X))$. V' is a variety by a preceding result. Also, $V' \supseteq V$ and $\operatorname{Id}_{V'}(X) = \operatorname{Id}_V(X)$. So, we get $F_{V'}(\overline{X}) = F_V(\overline{X})$. Now given any infinite set of variables Y, we have $\operatorname{Id}_{V'}(Y) = \operatorname{Id}_{F_{V'}(\overline{X})}(Y) =$ $\operatorname{Id}_{F_V(\overline{X})}(Y) = \operatorname{Id}_V(Y)$. Thus, $\theta_{V'}(Y) = \theta_V(Y)$ and $F_{V'}(\overline{Y}) = F_V(\overline{Y})$. For $A \in V'$, we have for suitable infinite Y, $A \in H(F_{V'}(\overline{Y}))$. Thus, $A \in H(F_V(\overline{Y}))$. So $A \in V$. Therefore, $V' \subseteq V$.

Birkhoff's Variety Theorem

Theorem (Birkhoff)

K is an equational class iff K is a variety.

- (⇒) Suppose $K = M(\Sigma)$. Then $V(K) \models \Sigma$. Hence, $V(K) \subseteq M(\Sigma) = K$. so V(K) = K, i.e., K is a variety.
- (\Leftarrow) By the preceding lemma, $K = M(Id_K(X))$, for an infinite X.

Corollary

Let *K* be a class of algebras of type \mathscr{F} . If $\mathbf{T}(X)$ exists, i.e., $X \cup \mathscr{F}_0 \neq \emptyset$, and *K'* is any class of algebras such that $K \subseteq K' \subseteq V(K)$, then $\mathbf{F}_{K'}(\overline{X}) = \mathbf{F}_K(\overline{X})$. In particular, if $K \neq \emptyset$, $\mathbf{F}_{K'}(\overline{X}) \in ISP(K)$.

 Since Id_K(X) = Id_{V(K)}(X), it follows that Id_K(X) = Id_{K'}(X). Thus θ_{K'}(X) = θ_K(X), so F_{K'}(X) = F_K(X). The last statement of the corollary now follows.

Large *K*-Free Algebras

Theorem

Let K be a nonempty class of algebras of type \mathscr{F} . Then, for some cardinal m, if $|X| \ge m$, we have $\mathbf{F}_{K}(\overline{X}) \in IP_{S}(K)$.

Choose a subset K* of K, such that for any X, Id_{K*}(X) = Id_K(X): Choose an infinite set of variables Y. Then select, for each identity p≈ q in Id(Y) - Id_K(Y) an algebra A ∈ K, such that A ⊭ p≈ q. Now K* is a set. So there exists an infinite upper bound m of {|A| : A ∈ K*}.

Large *K*-Free Algebras (Cont'd)

• Given X, let $\Psi_{K^*}(X) = \{\phi \in \text{Con}\mathbf{T}(X) : \mathbf{T}(X)/\phi \in I(K^*)\}.$ Then $\Psi_{K^*}(X) \subseteq \Phi_{K^*}(X)$, whence $\bigcap \Psi_{K^*}(X) \supseteq \theta_{K^*}(X)$. To prove equality for $|X| \ge m$, suppose $\langle p, q \rangle \notin \theta_{K^*}(X)$. Then $K^* \not\models p \approx q$. Hence, for some $\mathbf{A} \in K^*$, $\mathbf{A} \not\models p \approx q$. If $p = p(x_1, \dots, x_n)$, $q = q(x_1, \ldots, x_n)$, choose $a_1, \ldots, a_n \in A$, such that $p^{\mathbf{A}}(a_1,\ldots,a_n) \neq q^{\mathbf{A}}(a_1,\ldots,a_n)$. As $|X| \geq |A|$, we can find a mapping $\alpha: X \to A$ which is onto and $\alpha(x_i) = a_i, 1 \le i \le n$. Then α can be extended to a surjective homomorphism $\beta : \mathbf{F}_{K^*}(\overline{X}) \to \mathbf{A}$ and $\beta(p) \neq \beta(q)$. Thus $\langle p,q \rangle \notin \ker \beta \in \Psi_{K^*}(X)$. So $\langle p,q \rangle \notin \bigcap \Psi_{K^*}(X)$. Consequently

$$\bigcap \Psi_{K^*}(X) = \theta_{K^*}(X).$$

As $F_{\mathcal{K}}(\overline{X}) = F_{\mathcal{K}^*}(\overline{X})$, it follows that $F_{\mathcal{K}}(\overline{X}) = T(X) / \bigcap \Psi_{\mathcal{K}^*}(X)$. Then we have $F_{\mathcal{K}}(\overline{X}) \in IP_{\mathcal{S}}(\mathcal{K}^*) \subseteq IP_{\mathcal{S}}(\mathcal{K})$.

Another Characterization of V

Theorem

 $V = HP_S$.

• As $P_S \leq SP$, we have

 $HP_S \leq HSP \leq V$.

Given a class K of algebras and sufficiently large X, we have $F_{V(K)}(\overline{X}) \in IP_S(K)$, by the preceding theorem. Hence, $V(K) \subseteq HP_S(K)$, by a preceding result. Thus $V = HP_S$.

Subsection 4

Mal'cev Conditions

Mal'cev Conditions

• Properties of varieties characterized by the existence of certain terms involved in certain identities are referred to as **Mal'cev conditions**.

Lemma

Let V be a variety of type \mathscr{F} , and let $p(x_1,...,x_m,y_1,...,y_n)$, $q(x_1,...,x_m,y_1,...,y_n)$ be terms such that in $\mathbf{F} = \mathbf{F}_V(\overline{X})$, where $X = \{x_1,...,x_m,y_1,...,y_n\}$, we have

$$\langle \rho^{\mathsf{F}}(\overline{x}_1,\ldots,\overline{x}_m,\overline{y}_1,\ldots,\overline{y}_n), q^{\mathsf{F}}(\overline{x}_1,\ldots,\overline{x}_m,\overline{y}_1,\ldots,\overline{y}_n)\rangle \in \Theta(\overline{y}_1,\ldots,\overline{y}_n).$$

Then $V \models p(x_1, ..., x_m, y, ..., y) \approx q(x_1, ..., x_m, y, ..., y).$

• The homomorphism $\alpha : \mathbf{F}_{V}(\overline{x}_{1},...,\overline{x}_{m},\overline{y}_{1},...,\overline{y}_{n}) \to \mathbf{F}_{V}(\overline{x}_{1},...,\overline{x}_{m},\overline{y}),$ defined by $\alpha(\overline{x}_{i}) = \overline{x}_{i}, 1 \le i \le m$, and $\alpha(\overline{y}_{i}) = \overline{y}, 1 \le i \le n$, is such that $\Theta(\overline{y}_{1},...,\overline{y}_{n}) \subseteq \ker \alpha$. So $\alpha(p(\overline{x}_{1},...,\overline{x}_{m},\overline{y}_{1},...,\overline{y}_{n})) = \alpha(q(\overline{x}_{1},...,\overline{x}_{m},\overline{y}_{1},...,\overline{y}_{n})).$ Thus, $p(\overline{x}_{1},...,\overline{x}_{m},\overline{y},...,\overline{y}) = q(\overline{x}_{1},...,\overline{x}_{m},\overline{y},...,\overline{y})$ in $\mathbf{F}_{V}(\overline{x}_{1},...,\overline{x}_{m},\overline{y}).$ Hence, $V \models p(x_{1},...,x_{m},y,...,y) \approx q(x_{1},...,x_{m},y,...,y).$

Mal'cev's Theorem on Congruence Permutability

Theorem (Mal'cev)

Let V be a variety of type \mathscr{F} . The variety V is congruence-permutable iff there is a term p(x, y, z), such that

 $V \models p(x, x, y) \approx y$ and $V \models p(x, y, y) \approx x$.

(⇒) Suppose V is congruence-permutable. In $F_V(\overline{x}, \overline{y}, \overline{z})$, we have $\langle \overline{x}, \overline{z} \rangle \in \Theta(\overline{x}, \overline{y}) \circ \Theta(\overline{y}, \overline{z})$. So $\langle \overline{x}, \overline{z} \rangle \in \Theta(\overline{y}, \overline{z}) \circ \Theta(\overline{x}, \overline{y})$. Hence, there is a $p(\overline{x}, \overline{y}, \overline{z}) \in F_V(\overline{x}, \overline{y}, \overline{z})$, such that $\overline{x} \Theta(\overline{y}, \overline{z}) p(\overline{x}, \overline{y}, \overline{z}) \Theta(\overline{x}, \overline{y}) \overline{z}$. By the lemma, $V \models p(x, y, y) \approx x$ and $V \models p(x, x, z) \approx z$.

(\Leftarrow) Let $\mathbf{A} \in V$ and $\phi, \psi \in \text{Con}\mathbf{A}$. Suppose $\langle a, b \rangle \in \phi \circ \psi$, say $a \phi c \psi b$. Then $b = p(c, c, b) \phi p(a, c, b) \psi p(a, b, b) = a$. So $\langle b, a \rangle \in \phi \circ \psi$. Thus, $\phi \circ \psi = \psi \circ \phi$.

Examples

(1) Groups $\langle A, \cdot, -1, 1 \rangle$ are congruence-permutable: Let

$$p(x, y, z) = x \cdot y^{-1} \cdot z.$$

2) Rings $\langle R, +, \cdot, -, 0 \rangle$ are congruence-permutable: Let

$$p(x,y,z) = x - y + z.$$

(3) Quasigroups $\langle Q, /, \cdot, \rangle$ are congruence-permutable: Let $p(x, y, z) = (x/(y \setminus y)) \cdot (y \setminus z).$

Congruence Distributivity

Theorem

Suppose V is a variety for which there is a ternary term M(x,y,z), such that $V \models M(x,x,y) \approx M(x,y,x) \approx M(y,x,x) \approx x.$

Then V is congruence-distributive.

• Let $\phi, \psi, \chi \in \text{Con} \mathbf{A}$, where $\mathbf{A} \in V$. Suppose $\langle a, b \rangle \in \phi \land (\psi \lor \chi)$. Then $\langle a, b \rangle \in \phi$ and, there exist c_1, \ldots, c_n , such that $a \psi c_1 \chi c_2 \cdots \psi c_n \chi b$. Since $M(a, c_i, b) \phi M(a, c_i, a) = a$, for each *i*, we get

$$a = M(a, a, b) (\phi \land \psi) M(a, c_1, b) (\phi \land \chi) M(a, c_2, b) \cdots M(a, c_n, b) (\phi \land \chi) M(a, b, b) = b.$$

So $\langle a, b \rangle \in (\phi \land \psi) \lor (\phi \land \chi)$. This suffices to show $\phi \land (\psi \lor \chi) = (\phi \land \psi) \lor (\phi \land \chi)$. So V is congruence-distributive. Example: Lattices are congruence-distributive: $M(x, y, z) = (x \lor y) \land (x \lor z) \land (y \lor z)$.

Arithmetical Varieties

Definition

A variety V is **arithmetical** if it is both congruence-distributive and congruence-permutable.

Theorem (Pixley)

A variety V is arithmetical iff it satisfies either of the equivalent conditions:

- (a) There are a congruence permutability term *p* and a congruence distributivity term *M*.
- (b) There is a term m(x, y, z), such that $V \models m(x, y, x) \approx m(x, y, y) \approx m(y, y, x) \approx x$.
 - If V is arithmetical, then V is congruence-permutable, so there is a term p. Let F_V(x̄, ȳ, z̄) be the free algebra in V freely generated by {x̄, ȳ, z̄}. We have ⟨x̄, z̄⟩ ∈ Θ(x̄, z̄) ∩ [Θ(x̄, ȳ) ∨ Θ(ȳ, z̄)]. Hence, ⟨x̄, z̄⟩ ∈ [Θ(x̄, z̄) ∩ Θ(x̄, ȳ)] ∨ [Θ(x̄, z̄) ∩ Θ(ȳ, z̄)].

Arithmetical Varieties (Cont'd)

• Hence,
$$\langle \overline{x}, \overline{z} \rangle \in [\Theta(\overline{x}, \overline{z}) \cap \Theta(\overline{x}, \overline{y})] \circ [\Theta(\overline{x}, \overline{z}) \cap \Theta(\overline{y}, \overline{z})]$$
. Choose $M(\overline{x}, \overline{y}, \overline{z}) \in F_V(\overline{x}, \overline{y}, \overline{z})$, such that
 $\overline{x} [\Theta(\overline{x}, \overline{z}) \cap \Theta(\overline{x}, \overline{y})] M(\overline{x}, \overline{y}, \overline{z}) [\Theta(\overline{x}, \overline{z}) \cap \Theta(\overline{y}, \overline{z})] \overline{z}$. Then
 $V \models M(x, x, y) \approx M(x, y, x) \approx M(y, x, x) \approx x$.
If (a) holds, let $m(x, y, z) := p(x, M(x, y, z), z)$. Verify that
 $V \models m(x, y, x) \approx m(x, y, y) \approx m(y, y, x) \approx x$.
If (b) holds, let $p(x, y, z) := m(x, y, z)$ and
 $M(x, y, z) := m(x, m(x, y, z), z)$. Verify that $V \models p(x, x, y) \approx y$,
 $V \models p(x, y, y) \approx x$ and $V \models M(x, x, y) \approx M(x, y, x) \approx M(y, x, x) \approx x$.
Examples:

 Boolean algebras are arithmetical: Let m(x,y,z) = (x ∧ z) ∨ (x ∧ y' ∧ z') ∨ (x' ∧ y' ∧ z).
 Heyting algebras are arithmetical: Let m(x,y,z) = [(x → y) → z] ∧ [(z → y) → x] ∧ [x ∨ z].

Congruence-Distributivity

Theorem (Jónsson)

A variety V is congruence-distributive iff there is a finite n and terms $p_0(x, y, z), \dots, p_n(x, y, z)$, such that V satisfies:

$$\begin{array}{ll} p_i(x,y,x) \approx x & 0 \leq i \leq n \\ p_0(x,y,z) \approx x; & p_n(x,y,z) \approx z \\ p_i(x,x,y) \approx p_{i+1}(x,x,y) & \text{for } i \text{ even} \\ p_i(x,y,y) \approx p_{i+1}(x,y,y) & \text{for } i \text{ odd.} \end{array}$$

 (\Rightarrow) We have

 $\Theta(\overline{x},\overline{z}) \wedge [\Theta(\overline{x},\overline{y}) \vee \Theta(\overline{y},\overline{z})] = [\Theta(\overline{x},\overline{z}) \wedge \Theta(\overline{x},\overline{y})] \vee [\Theta(\overline{x},\overline{z}) \wedge \Theta(\overline{y},\overline{z})].$ Thus, in $\mathbf{F}_V(\overline{x},\overline{y},\overline{z})$,

 $\langle \overline{x},\overline{z}\rangle \in \big[\Theta\big(\overline{x},\overline{z}\big) \land \Theta\big(\overline{x},\overline{y}\big)\big] \lor \big[\Theta\big(\overline{x},\overline{z}\big) \land \Theta\big(\overline{y},\overline{z}\big)\big].$

Congruence-Distributivity (Cont'd)

Thus, for some
$$p_1(\overline{x}, \overline{y}, \overline{z}), \dots, p_{n-1}(\overline{x}, \overline{y}, \overline{z}) \in F_V(\overline{x}, \overline{y}, \overline{z})$$
, we have

$$\overline{\mathbf{x}} \quad \begin{bmatrix} \Theta(\overline{\mathbf{x}}, \overline{\mathbf{z}}) \land \Theta(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \end{bmatrix} \quad p_1(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}}) \\ p_1(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}}) \quad \begin{bmatrix} \Theta(\overline{\mathbf{x}}, \overline{\mathbf{z}}) \land \Theta(\overline{\mathbf{y}}, \overline{\mathbf{z}}) \end{bmatrix} \quad p_2(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$$

 $p_{n-1}(\overline{x},\overline{y},\overline{z}) \quad \left[\Theta(\overline{x},\overline{z}) \land \Theta(\overline{y},\overline{z})\right] \quad \overline{z}.$

From these the desired equations fall out.

(\Leftarrow) For $\phi, \psi, \chi \in \text{Con} \mathbf{A}$, $\mathbf{A} \in V$, we need $\phi \land (\psi \lor \chi) \subseteq (\phi \land \psi) \lor (\phi \land \chi)$. Let $\langle a, b \rangle \in \phi \land (\psi \lor \chi)$. Then $\langle a, b \rangle \in \phi$, and, for some c_1, \dots, c_t , we have $a \ \psi \ c_1 \ \chi \ \cdots \ c_t \ \chi \ b$. From these, we get, for $0 \le i \le n$, $p_i(a, a, b) \ \psi \ p_i(a, c_1, b) \ \chi \ \cdots \ p_i(a, c_t, b) \ \chi \ p_i(a, b, b)$. Hence, $p_i(a, a, b) \ (\phi \land \psi) \ p_i(a, c_1, b) \ (\phi \land \chi) \ \cdots \ p_i(a, c_t, b) \ (\phi \land \chi) \ p_i(a, b, b)$. So $p_i(a, a, b) \ [(\phi \land \psi) \lor (\phi \land \chi)] \ p_i(a, b, b), \ 0 \le i \le n$. Then in view of the given equations, $a \ [(\phi \land \psi) \lor (\phi \land \chi)] \ b$. So V is congruence-distributive.

George Voutsadakis (LSSU)

Additional Characterizations and Terminology

Theorem

A variety V is congruence permutable (respectively, congruence distributive) iff $\mathbf{F}_{V}(\overline{x}, \overline{y}, \overline{z})$ has permutable (respectively, distributive) congruences.

• This follows by looking at the proofs of the corresponding Mal'cev conditions.

Definition

- A ternary term *p* satisfying the congruence-permutability conditions for a variety *V* is called a **Mal'cev term** for *V*;
- A ternary term *M* satisfying the congruence-distributivity conditions is a **majority term** for *V*;
- A ternary term *m* satisfying the arithmeticity conditions is a $\frac{2}{3}$ -minority term for *V*.

Subsection 5

Equational Logic and Fully Invariant Congruences

Fully Invariant Congruences

Definition

A congruence θ on an algebra **A** is **fully invariant** if, for every endomorphism α on **A**,

$$\langle a,b\rangle \in \theta \quad \Rightarrow \quad \langle \alpha(a),\alpha(b)\rangle \in \theta.$$

Let $Con_{FI}(A)$ denote the set of fully invariant congruences on A.

Lemma

 $Con_{FI}(A)$ is closed under arbitrary intersection.

• First, note, that $\nabla^{\mathbf{A}}$ is invariant.

Now, suppose $\{\theta_i : i \in I\} \subseteq \text{Con}_{\text{FI}}(\mathbf{A})$ and α is an endomorphism of \mathbf{A} . Then $\langle a, b \rangle \in \bigcap_{i \in I} \theta_i$ implies $\langle a, b \rangle \in \theta_i$, $i \in I$, implies $\langle \alpha(a), \alpha(b) \rangle \in \theta_i$, $i \in I$, implies $\langle \alpha(a), \alpha(b) \rangle \in \bigcap_{i \in I} \theta_i$.

Fully Invariant Congruence Generated by a Set of Pairs

Definition

Given an algebra **A** and $S \subseteq A \times A$ let $\Theta_{FI}(S)$ denote the least fully invariant congruence on A containing S. The congruence $\Theta_{FI}(S)$ is called the **fully invariant congruence generated by** S.

The Fully Invariant Congruence Θ_{FI}

Lemma

If we are given an algebra **A** of type \mathscr{F} then Θ_{FI} is an algebraic closure operator on $A \times A$. Indeed, Θ_{FI} is 2-ary.

 Construct A × A. To the fundamental operations of A × A add the following:

$$\begin{array}{rcl} \langle a, a \rangle & \text{for } a \in A \\ s(\langle a, b \rangle) &= \langle b, a \rangle \\ t(\langle a, b \rangle, \langle c, d \rangle) &= \begin{cases} \langle a, d \rangle, & \text{if } b = c \\ \langle a, b \rangle, & \text{otherwise} \\ e_{\sigma}(\langle a, b \rangle) &= \langle \sigma(a), \sigma(b) \rangle & \sigma \text{ endomorphism of } A \end{array}$$

Then θ is a fully invariant congruence on **A** iff θ is a subuniverse of the new algebra we have just constructed. Thus, Θ_{FI} is an algebraic closure operator.

George Voutsadakis (LSSU)

The Fully Invariant Congruence Θ_{FI} (Cont'd)

We show that Θ_{FI} is 2-ary. Define a new algebra A* by replacing each *n*-ary fundamental operation *f* of A by the set of all unary operations of form *f*(*a*₁,...,*a*_{*i*-1},*x*,*a*_{*i*+1},...,*a*_{*n*}), *a*₁,...,*a*_{*i*-1},*a*_{*i*+1},...,*a*_{*n*} ∈ A. Claim: ConA = ConA*.

Clearly $\theta \in \text{Con} \mathbf{A} \Rightarrow \theta \in \text{Con} \mathbf{A}^*$. For the converse suppose that $\theta \in \text{Con} \mathbf{A}^*$ and $f \in \mathscr{F}_n$. Then, for $\langle a_i, b_i \rangle \in \theta$, $1 \le i \le n$, we have:

$$\langle f(a_1, \dots, a_{n-1}, a_n), f(a_1, \dots, a_{n-1}, b_n) \rangle \in \theta$$

$$\langle f(a_1, \dots, a_{n-1}, b_n), f(a_1, \dots, b_{n-1}, b_n) \rangle \in \theta$$

$$\vdots$$

$$\langle f(a_1, b_2, \dots, b_2), f(b_1, b_2, \dots, b_n) \rangle \in \theta.$$

Hence $\langle f(a_1,...,a_n), f(b_1,...,b_n) \rangle \in \theta$. Thus, $\theta \in Con A$.

Go back to the beginning of the proof. Take A^* instead of A. Keep the e_{σ} 's the same. Then Θ_{FI} is the closure operator Sg of an algebra all of whose operations are of arity at most 2. Tus, Θ_{FI} is 2-ary.

George Voutsadakis (LSSU)

From Identities to Congruences

Definition

Given a set of variables X and a type \mathscr{F} , let $\tau : Id(X) \to T(X) \times T(X)$ be the bijection defined by $\tau(p \approx q) = \langle p, q \rangle$.

Lemma

For K a class of algebras of type \mathscr{F} and X a set of variables, $\tau(Id_{\mathcal{K}}(X))$ is a fully invariant congruence on T(X).

• Let
$$p, q, r \in T(X)$$
.

- $p \approx p \in Id_{\mathcal{K}}(X)$. Hence, $\langle p, p \rangle \in \tau(Id_{\mathcal{K}}(X))$.
- Suppose $\langle p,q \rangle \in \tau(\mathrm{Id}_{\mathcal{K}}(X))$. Then $p \approx q \in \mathrm{Id}_{\mathcal{K}}(X)$. Thus, $q \approx p \in \mathrm{Id}_{\mathcal{K}}(X)$. Hence, $\langle q,p \rangle \in \tau(\mathrm{Id}_{\mathcal{K}}(X))$.
- Suppose $\langle p,q \rangle, \langle q,r \rangle \in \tau(\mathrm{Id}_{\mathcal{K}}(X))$. Then $p \approx q, q \approx r \in \mathrm{Id}_{\mathcal{K}}(X)$. Thus, $p \approx r \in \mathrm{Id}_{\mathcal{K}}(X)$. Hence, $\langle p,r \rangle \in \tau(\mathrm{Id}_{\mathcal{K}}(X))$.

Therefore, $\tau(Id_{\mathcal{K}}(X))$ is an equivalence relation on T(X).

From Identities to Congruences (Cont'd)

- Let $f \in \mathscr{F}_n$, $p_1, \ldots, p_n, q_1, \ldots, q_n \in T(X)$, such that $\langle p_i, q_i \rangle \in \tau(\mathrm{Id}_K(X))$, $1 \le i \le n$. Then $p_i \approx q_i \in \mathrm{Id}_K(X)$, $1 \le i \le n$. Thus, $f(p_1, \ldots, p_n) \approx f(q_1, \ldots, q_n) \in \mathrm{Id}_K(X)$. Hence, $\langle f(p_1, \ldots, p_n), f(q_1, \ldots, q_n) \rangle \in \tau(\mathrm{Id}_K(X))$. So $\tau(\mathrm{Id}_K(X))$ is a congruence relation on T(X).
- Finally, let α be an endomorphism of T(X) and $p = p(x_1, ..., x_n)$, $q = q(x_1, ..., x_n) \in T(X)$, such that $\langle p, q \rangle \in \tau(\operatorname{Id}_K(X))$. Then $p(x_1, ..., x_n) \approx q(x_1, ..., x_n) \in \operatorname{Id}_K(X)$. Thus, $p(\alpha(x_1), ..., \alpha(x_n)) \approx q(\alpha(x_1), ..., \alpha(x_n)) \in \operatorname{Id}_K(X)$. It follows that $\alpha(p(x_1, ..., x_n)) \approx \alpha(q(x_1, ..., x_n)) \in \operatorname{Id}_K(X)$, i.e., $\langle \alpha(p), \alpha(q) \rangle \in \tau(\operatorname{Id}_K(X))$. Hence, $\tau(\operatorname{Id}_K(X))$ is fully invariant.

Freeness of $T(X)/\theta$

Lemma

Given a set of variables X and a fully invariant congruence θ on T(X), we have, for $p \approx q \in Id(X)$,

$$\mathbf{T}(X)/\theta \models p \approx q \quad \Leftrightarrow \quad \langle p,q \rangle \in \theta.$$

Thus, $\mathbf{T}(X)/\theta$ is free in $V(\mathbf{T}(X)/\theta)$.

$$(\Rightarrow)$$
 If $p = p(x_1, ..., x_n), q = q(x_1, ..., x_n)$, then

$$T(X)/\theta \models p(x_1,...,x_n) \approx q(x_1,...,x_n)$$

$$\Rightarrow \quad p(x_1/\theta,...,x_n/\theta) = q(x_1/\theta,...,x_n/\theta)$$

$$\Rightarrow \quad p(x_1,...,x_n)/\theta = q(x_1,...,x_n)/\theta$$

$$\Rightarrow \quad \langle p(x_1,...,x_n), q(x_1,...,x_n) \rangle \in \theta$$

$$\Rightarrow \quad \langle p,q \rangle \in \theta.$$

Freeness of $T(X)/\theta$ (Converse)

(\Leftarrow) Given $r_1, \ldots, r_n \in T(X)$, we can find an endomorphism ε of T(X) with $\varepsilon(x_i) = r_i, 1 \le i \le n$. Hence,

$$\begin{array}{l} \langle p(x_1,\ldots,x_n),q(x_1,\ldots,x_n)\rangle \in \theta \\ \Rightarrow \quad \langle \varepsilon(p(x_1,\ldots,x_n)),\varepsilon(q(x_1,\ldots,x_n))\rangle \in \theta \\ \Rightarrow \quad \langle p(r_1,\ldots,r_n),q(r_1,\ldots,r_n)\rangle \in \theta \\ \Rightarrow \quad p(r_1/\theta,\ldots,r_n/\theta) = q(r_1/\theta,\ldots,r_n/\theta). \end{array}$$

Thus, $\mathbf{T}(X)/\theta \models p \approx q$.

For the last claim, given $p \approx q \in Id(X)$,

$$\langle p,q \rangle \in \theta \quad \Leftrightarrow \quad \mathsf{T}(X)/\theta \models p \approx q$$

 $\Leftrightarrow \quad V(\mathsf{T}(X)/\theta) \models p \approx q.$

So $T(X)/\theta$ is free in $V(T(X)/\theta)$.

Fully Invariant Congruences and Equational Theories

Theorem

Given a subset Σ of Id(X), one can find a K, such that $\Sigma = Id_{K}(X)$ iff $\tau(\Sigma)$ is a fully invariant congruence on T(X).

- \Rightarrow) This was proved in a preceding lemma.
- (\Leftarrow) Suppose $\tau(\Sigma)$ is a fully invariant congruence θ . Let $K = \{\mathbf{T}(X)/\theta\}$. Then by the preceding lemma, $K \models p \approx q$ iff $\langle p, q \rangle \in \theta$ iff $p \approx q \in \Sigma$. Thus $\Sigma = Id_K(X)$.

Definition

A subset Σ of Id(X) is called an **equational theory over** X if there is a class of algebras K, such that $\Sigma = Id_K(X)$.

Corollary

The equational theories (of type \mathscr{F}) over X form an algebraic lattice which is isomorphic to the lattice of fully invariant congruences on T(X).

George Voutsadakis (LSSU)

Universal Algebra

Validity

Definition

Let X be a set of variables and Σ a set of identities of type \mathscr{F} , with variables from X. For $p, q \in T(X)$, we say $\Sigma \models p \approx q$ (read: " Σ yields $p \approx q$ ", or " Σ implies $p \approx q$ ") if, given any algebra A, $A \models \Sigma$ implies $A \models p \approx q$.

Theorem

If Σ is a set of identities over X and $p \approx q$ is an identity over X, then $\Sigma \models p \approx q$ iff $\langle p, q \rangle \in \Theta_{\text{FI}}(\tau(\Sigma))$.

• Assume $\langle p,q \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$ and let **A** be such that $\mathbf{A} \models \Sigma$. $\tau(\mathrm{Id}_{\mathbf{A}}(X))$ is a fully invariant congruence on $\mathbf{T}(X)$. Hence, $\Theta_{\mathrm{FI}}(\tau(\Sigma)) \subseteq \tau(\mathrm{Id}_{\mathbf{A}}(X))$. Thus, since $\langle p,q \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$, $\mathbf{A} \models p \approx q$.

Conversely, assume $\Sigma \models p \approx q$. But $\mathbf{T}(X) / \Theta_{\mathrm{FI}}(\tau(\Sigma)) \models \Sigma$. Hence, $\mathbf{T}(X) / \Theta_{\mathrm{FI}}(\tau(\Sigma)) \models p \approx q$. Thus, $\langle p, q \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$.

Replacements and Substitutions

Definition

Given a term p, the subterms of p are recursively defined by:

- (1) The term p is a subterm of p.
- (2) If $f(p_1,...,p_n)$ is a subterm of p and $f \in \mathcal{F}_n$, then each p_i is a subterm of p.

Definition

A set of identities Σ over X is **closed under replacement** if given any $p \approx q \in \Sigma$ and any term $r \in T(X)$, if p occurs as a subterm of r, then letting s be the result of replacing that occurrence of p by q, we have $r \approx s \in \Sigma$.

Definition

A set of identities Σ over X is **closed under substitution** if for each $p \approx q$ in Σ and for $r_i \in T(X)$, if we simultaneously replace every occurrence of each variable x_i in $p \approx q$ by r_i , then the resulting identity is in Σ .

Deductive Closure

Definition

If Σ is a set of identities over X, then the **deductive closure** $D(\Sigma)$ of Σ is the smallest subset of Id(X) containing Σ , such that:

(1)
$$p \approx p \in D(\Sigma)$$
, for all $p \in T(X)$;

- (2) $p \approx q \in D(\Sigma) \Rightarrow q \approx p \in D(\Sigma)$, for all $p, q \in T(X)$;
- (3) $p \approx q, q \approx r \in D(\Sigma) \Rightarrow p \approx r \in D(\Sigma)$, for all $p, q, r \in T(X)$;
- (4) $D(\Sigma)$ is closed under replacement;
- (5) $D(\Sigma)$ is closed under substitution.

Deductive Closure and Fully Invariant Congruences

Theorem

Given $\Sigma \subseteq Id(X)$, $p \approx q \in Id(X)$, $\Sigma \models p \approx q$ iff $p \approx q \in D(\Sigma)$.

 We first show that τ(D(Σ)) = Θ_{FI}(τ(Σ)). By definition τ(Σ) ⊆ τ(D(Σ)). By Properties (1)-(3), τ(D(Σ)) is an equivalence relation. By Property (4) (closure under replacement), τ(D(Σ)) is a congruence relation.

By Property (5) (closure under substitution) $\tau(D(\Sigma))$ is fully invariant. By definition, $\Theta_{\text{FI}}(\tau(\Sigma))$ is the smallest fully invariant congruence containing $\tau(\Sigma)$.

Therefore, $\Theta_{\mathrm{FI}}(\tau(\Sigma)) \subseteq \tau(D(\Sigma))$.

Deductive Closure and Fully Invariant Congruences (Cont'd)

- We show that $\tau^{-1}(\Theta_{FI}(\tau(\Sigma)))$ contains Σ and satisfies (1)-(5):
 - By definition $\tau(\Sigma) \subseteq \Theta_{FI}(\tau(\Sigma))$. Thus, $\Sigma \subseteq \tau^{-1}(\Theta_{FI}(\tau(\Sigma)))$.
 - $\langle p, p \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$, i.e., $\tau(p \approx p) \subseteq \Theta_{\mathrm{FI}}(\tau(\Sigma))$. So $p \approx p \in \tau^{-1}(\Theta_{\mathrm{FI}}(\tau(\Sigma)))$;
 - Suppose $p \approx q \in \tau^{-1}(\Theta_{\mathrm{FI}}(\tau(\Sigma)))$. Then $\langle p, q \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. Thus, $\langle q, p \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. So $q \approx p \in \tau^{-1}(\Theta_{\mathrm{FI}}(\tau(\Sigma)))$.
 - Transitivity is similar.
 - Suppose p is a term, s ≈ r ∈ τ⁻¹(Θ_{FI}(τ(Σ))) and q results from substituting an occurrence of s in p by r. By hypothesis, (s, r) ∈ Θ_{FI}(τ(Σ)). Since Θ_{FI}(τ(Σ)) is a congruence, (p, q) ∈ Θ_{FI}(τ(Σ)). Thus, p ≈ q ∈ τ⁻¹(Θ_{FI}(τ(Σ)));
 - Let $p(x_1,...,x_n) \approx q(x_1,...,x_n) \in \tau^{-1}(\Theta_{\mathrm{FI}}(\tau(\Sigma)))$ and $r_1,...,r_n \in T(X)$. Then $\langle p,q \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. Since $\Theta_{\mathrm{FI}}(\tau(\Sigma))$ is fully invariant, $\langle p(r_1,...,r_n), q(r_1,...,r_n) \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$. So $p(r_1,...,r_n) \approx q(r_1,...) \in \tau^{-1}(\Theta_{\mathrm{FI}}(\tau(\Sigma)))$.

By definition, $D(\Sigma)$ is the smallest set that contains Σ and satisfies (1)-(5). Hence $D(\Sigma) \subseteq \tau^{-1}(\Theta_{\mathrm{FI}}(\tau(\Sigma)))$. Thus, $\tau(D(\Sigma)) \subseteq \Theta_{\mathrm{FI}}(\tau(\Sigma))$. Now we get $\Sigma \models p \approx q$ iff $\langle p, q \rangle \in \Theta_{\mathrm{FI}}(\tau(\Sigma))$ iff $p \approx q \in \tau(D(\Sigma))$ iff $p \approx q \in D(\Sigma)$.

George Voutsadakis (LSSU)

Formal Deduction and Provability

Definition

Let Σ be a set of identities over X. For $p \approx q \in Id(X)$, we say $\Sigma \vdash p \approx q$, read " Σ proves $p \approx q$ ", if there is a sequence of identities

$$p_1 \approx q_1, \ldots, p_n \approx q_n$$

from Id(X), such that each $p_i \approx q_i$ belongs to Σ , or is of the form $p \approx p$, or is a result of applying any of the four closure rules

 $p \approx q \in D(\Sigma) \Rightarrow q \approx p \in D(\Sigma);$ $p \approx q, q \approx r \in D(\Sigma) \Rightarrow p \approx r \in D(\Sigma);$ $D(\Sigma) \text{ is closed under replacement;}$ $D(\Sigma) \text{ is closed under substitution}$

to previous identities in the sequence, and the last identity $p_n \approx q_n$ is $p \approx q$. The sequence $p_1 \approx q_1, \dots, p_n \approx q_n$ is called a **formal deduction** of $p \approx q$. The number *n* is the **length** of the deduction.

The Completeness Theorem for Equational Logic

Theorem (Birkhoff's Completeness Theorem for Equational Logic)

Given $\Sigma \subseteq Id(X)$ and $p \approx q \in Id(X)$, we have $\Sigma \models p \approx q$ iff $\Sigma \vdash p \approx q$.

In the construction of a formal deduction p₁ ≈ q₁,..., p_n ≈ q_n of p ≈ q, only properties under which D(Σ) is closed are used. Hence, Σ⊢ p ≈ q implies p ≈ q ∈ D(Σ).

For the converse:

- $\Sigma \vdash p \approx q$, for $p \approx q \in \Sigma$, and $\Sigma \vdash p \approx p$, for $p \in T(X)$.
- If Σ⊢ p≈q, then there is a formal deduction p₁ ≈ q₁,..., p_n ≈ q_n of p≈q. Now p₁ ≈ q₁,..., p_n ≈ q_n, q_n ≈ p_n is a formal deduction of q≈p. Hence, Σ⊢ q≈p.
- If $\Sigma \vdash p \approx q$, $\Sigma \vdash q \approx r$, let $p_1 \approx q_1, \dots, p_n \approx q_n$ be a formal deduction of $p \approx q$ and let $\overline{p}_1 \approx \overline{q}_1, \dots, \overline{p}_k \approx \overline{q}_k$ be a formal deduction of $q \approx r$. Then $p_1 \approx q_1, \dots, p_n \approx q_n$, $\overline{p}_1 \approx \overline{q}_1, \dots, \overline{p}_k \approx \overline{q}_k$, $p_n \approx \overline{q}_k$ is a formal deduction of $p \approx r$. Thus, $\Sigma \vdash p \approx r$.
The Completeness Theorem for Equational Logic (Cont'd)

- We continue with the remaining deduction rules:
 - If Σ⊢ p≈ q, let p1≈ q1,..., pn≈ qn be a formal deduction of p≈ q. Let r(..., p,...) denote a term with a specific occurrence of the subterm p. Then p1≈ q1,..., pn≈ qn, r(..., pn,...) ≈ r(..., qn,...) is a formal deduction of r(..., p,...) ≈ r(..., q,...).
 - Finally, if $\Sigma \vdash p(x_1,...,x_n) \approx q(x_1,...,x_n)$, let $p_1 \approx q_1,...,p_m \approx q_m, p \approx q$ be a formal deduction of $p(x_1,...,x_n) \approx q(x_1,...,x_n)$ from Σ . Then, for terms $r_1,...,r_n$, $p_1 \approx q_1,...,p_m \approx q_m, p(x_1,...,x_n) \approx$ $q(x_1,...,x_n), p(r_1,...,r_n) \approx q(r_1,...,r_n)$ is a formal deduction of $p(r_1,...,r_n) \approx q(r_1,...,r_n)$ from Σ .

Thus, $D(\Sigma) \subseteq \{p \approx q : \Sigma \vdash p \approx q\}$. Hence, $D(\Sigma) = \{p \approx q : \Sigma \vdash p \approx q\}$. Therefore,

$$\Sigma \models p \approx q$$
 iff $p \approx q \in D(\Sigma)$ iff $\Sigma \vdash p \approx q$.

Examples

(1) An identity $p \approx q$ is **balanced** if each variable occurs the same number of times in p as in q.

If Σ is a balanced set of identities, then, using induction on the length of a formal deduction, we can show that if $\Sigma \vdash p \approx q$, then $p \approx q$ is balanced.

This is not at all evident if one works with the notion \models .

(2) A famous theorem of Jacobson in ring theory says that, if we are given n≥2, if Σ is the set of ring axioms plus xⁿ ≈ x, then Σ ⊨ x ⋅ y ≈ y ⋅ x. However, there is no published routine way of writing out a formal deduction, given n, of x ⋅ y ≈ y ⋅ x.

For special *n*, such as n = 2, 3, this is a popular exercise.

Minimal Subvarieties

Definition

A variety V is **trivial** if all algebras in V are trivial. A subclass W of a variety V which is also a variety is called a **subvariety** of V. V is a **minimal** (or **equationally complete**) variety, if V is not trivial, but the only subvariety of V not equal to V is the trivial variety.

Theorem

Let V be a nontrivial variety. Then V contains a minimal subvariety.

 Let V = M(Σ), Σ ⊆ Id(X), with X infinite. Then Id_V(X) defines V. As V is nontrivial, τ(Id_V(X)) is a fully invariant congruence on T(X) which is not ∇. But ∇ = Θ_{FI}(⟨x,y⟩), for any x, y ∈ X, with x ≠ y. Hence, ∇ is finitely generated (as a fully invariant congruence). This allows us to use Zorn's lemma to extend τ(Id_V(X)) to a maximal fully invariant congruence on T(X), say θ. Then τ⁻¹(θ) must define a minimal variety which is a subvariety of V.

Example: Lattices

• The variety of lattices has a unique minimal subvariety, the variety generated by a two-element chain.

To see this let V be a minimal subvariety of the variety of lattices. Let L be a nontrivial lattice in V. As L contains a two-element sublattice, we can assume L is a two-element lattice. Now V(L) is not trivial, and $V(L) \subseteq V$, whence V(L) = V.