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Steiner Triple Systems

Definition

A Steiner triple system on a set A is a family S of three-element subsets
of A, such that each pair of distinct elements from A is contained in exactly
one member of S . |A| is called the order of the Steiner triple system.

If |A| = 1, then S =;.

If |A| = 3, then S = {A}.

If |A| = 2, there are no Steiner triple systems on A.
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Necessary Conditions on |A| and |S |

Theorem

If S is a Steiner triple system on a finite set A, then:

(a) |S | =
|A|(|A|−1)

6
;

(b) |A| ≡ 1 or 3 (mod 6).

(a) Note that each member of S contains three distinct pairs of elements
of A. Each pair of elements appears in only one member of S . Thus,
the number of pairs of elements from A is exactly 3|S |, i.e.,
(

|A|

2

)

= 3|S |. This gives
|A|(|A|−1)

2
= 3|S | whence the conclusion follows.

(b) Fix a ∈A and let T1, . . . ,Tk be the members of S to which a belongs.
No pair of elements of A is contained in two distinct triples of S .
Thus, the doubletons T1− {a}, . . . ,Tk − {a} are mutually disjoint. Each
member of A− {a} is in some triple along with the element a. So
A− {a} = (T1− {a})∪·· · ∪ (Tk − {a}). Thus, 2 | |A|−1, so |A| ≡ 1
(mod 2). From (a), |A| ≡ 0 or 1 (mod 3); hence, |A| ≡ 1 or 3 (mod 6).
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The Steiner Triple System of Order 7

After |A| = 3, the next possible size |A| is 7.

The figure shows a Steiner triple system of
order 7, where we require that three num-
bers be in a triple iff they lie on one of the
lines drawn or on the circle.
This is the only Steiner triple system of
order 7 (up to a relabeling of the elements).
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Steiner Quasigroups

To construct new Steiner triple systems from old ones,
we convert it to an algebraic system;
use standard constructions in universal algebra.

A natural way of introducing a binary operation · on A is to require

a ·b = c if {a,b,c} ∈S .

Since a ·a is left undefined, we define a ·a= a.

The associative law for · fails (look at the system of order 3).
Nonetheless, we have the identities:

(Sq1) x ·x ≈ x ;
(Sq2) x ·y ≈ y ·x ;
(Sq3) x · (x ·y)≈ y .

Definition

A groupoid satisfying the identities (Sq1)-(Sq3) above is called a squag (or
Steiner quasigroup).
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Squads Correspond to Steiner Triple Systems

Theorem

If 〈A, ·〉 is a squag, define S to be the set of three-element subsets {a,b,c}

of A, such that the product of any two elements gives the third. Then S is
a Steiner triple system on A.

Suppose a ·b = c holds. Then a · (a ·b)= a ·c , so by (Sq3), b = a ·c .
Similarly, b ·c = a. Thus, in view of (Sq1), if any two are equal, all
three are equal. Consequently, for any two distinct elements of A,
there is a unique third element (distinct from the two) such that the
product of any two gives the third. Thus, S is indeed a Steiner triple
system on A.
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Steiner Loops

Another approach to converting a Steiner triple system S on A to an
algebra is to adjoin a new element, called 1, and replace a ·a= a by

a ·a= 1, a ·1= 1 ·a= a.

This leads to a groupoid with identity 〈A∪ {1}, ·,1〉, satisfying the
identities:

(Sℓ1) x ·x ≈ 1;
(Sℓ2) x ·y ≈ y ·x ;
(Sℓ3) x · (x ·y)≈ y .

Definition

A groupoid with a distinguished element 〈A, ·,1〉 is called a sloop (or
Steiner loop) if the identities (Sℓ1)-(Sℓ3) hold.

George Voutsadakis (LSSU) Universal Algebra June 2020 9 / 44



Selected Topics Steiner Triple Systems, Squags and Sloops

Sloops and Steiner Triple Systems

Theorem

If 〈A, ·,1〉 is a sloop and |A| ≥ 2, define S to be the three-element subsets
of A− {1}, such that the product of any two distinct elements gives the
third. Then S is a Steiner triple system on A− {1}.

Similar to the preceding theorem.
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Quasigroups Formalisms

A quasigroup is usually defined to be a groupoid 〈A, ·〉, such that, for
any elements a,b ∈A, there are unique elements c ,d , satisfying

a ·c = b, d ·a= b.

The previously adopted definition of quasigroups has two extra binary
operations

∖

and
/

, left division and right division respectively, which
allow us to consider quasigroups as an equational class.

Recall that the axioms for quasigroups 〈A,
/

, ·,
∖

〉 are given by

x
∖

(x ·y)≈ y (x ·y)
/

y ≈ x

x · (x
∖

y)≈ y (x
/

y) ·y ≈ x .

To convert a quasigroup 〈A, ·〉 in the usual definition to one in our
definition we let

a
/

b be the unique solution c of c ·b = a;
a
∖

b be the unique solution d of a ·d = b.
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Quasigroups Formalisms (Cont’d)

Conversely, let 〈A,
/

, ·,
∖

〉 be a quasigroup by our definition.

If a,b ∈A, we have a · (a
∖

b)= b. So there is a c := a
∖

b, such that
a ·c = b.
Suppose a,b ∈A and c is such that a ·c = b. Then a

∖

(a ·c)= a
∖

b.
Hence c = a

∖

b. So only one such c is possible.

Similarly, we can show that there is exactly one d , such that d ·a= b,
namely d = b

/

a.

Thus, the two definitions of quasigroups are, in an obvious manner,
equivalent.
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Quasigroups with Identity and Squags

A loop is usually defined to be a quasigroup with an identity element
〈A, ·,1〉. In our definition, we have an algebra 〈A,

/

, ·,
∖

,1〉 and such
loops form an equational class.

Suppose S is a Steiner triple system on A.

The associated squag 〈A, ·〉 is a quasigroup: If a ·c = b, then
a · (a ·c)= a ·b. So c = a ·b. Furthermore, a · (a ·b)= b. Hence, if we
are given a,b, there is a unique c , such that a ·c = b. Similarly, there is
a unique d , such that d ·a= b.

In the case of squags we do not need to introduce the additional
operations

/

and
∖

to obtain an equational class:

In this case
/

,
∖

and · are all the same.

Squags are sometimes called idempotent totally symmetric

quasigroups.
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Cayley Tables and Quasigroups

Given any finite groupoid 〈A, ·〉, we can write
out the multiplication table of 〈A, ·〉 in a square
array, giving the Cayley table of 〈A, ·〉.

Theorem

A finite groupoid A is a quasigroup iff every element of A appears exactly
once in each row and in each column of the Cayley table of 〈A, ·〉.

If we are given a,b ∈A, then there is exactly one c satisfying a ·c = b

iff b occurs exactly once in the a-th row of the Cayley table of 〈A, ·〉

and there is exactly one d , such that d ·a= b iff b occurs exactly once
in the a-th column of the Cayley table.
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Latin Squares

Definition

A Latin square of order n is an n×n matrix (aij) of elements from an n

element set A, such that each member of A occurs exactly once in each
row and each column of the matrix.

The figure shows a Latin square of order 4:

a b c d

d c a b

b a d c

c d b a

From the theorem, Latin squares are in an obvious one-to-one
correspondence with quasigroups by using Cayley tables.
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Orthogonal Latin Squares

Definition

If (aij ) and (bij) are two Latin squares of order n with entries from a set A
with the property that, for each 〈a,b〉 ∈A×A, there is exactly one index ij ,
such that 〈a,b〉 = 〈aij ,bij 〉, then we say that (aij ) and (bij ) are orthogonal

Latin squares.

The figure shows an example of orthogonal Latin squares of order 3.

a b c

b c a

c a b

a b c

c a b

b c a

Euler conjectured that, if n≡ 2 (mod 4), then there do not exist
orthogonal Latin squares of order n.

In 1900 Tarry verified the conjecture for n= 6
Macneish gave a construction for all orders n, where n 6≡ 2 (mod 4).
Bose, Parker, and Shrikhande showed that n= 2,6 are the only values
for which Euler’s conjecture is actually true.
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Pairs of Orthogonal Latin Squares

Two orthogonal Latin squares on a set A correspond to two
quasigroups 〈A,

/

, ·,
∖

〉 and 〈A,
/

◦,◦,
∖

◦〉, such that the map
〈a,b〉 7→ 〈a ·b,a◦b〉 is a permutation of A×A.

For a finite set A, this will be a bijection iff there exist functions ∗ℓ

and ∗r from A×A to A, such that ∗ℓ(a ·b,a◦b)= a, ∗r (a ·b,a◦b)= b.

Definition (Evans)

A pair of orthogonal Latin squares is an algebra 〈A,
/

, ·,
∖

,
/

◦,◦,
∖

◦,∗ℓ,∗r 〉,
with eight binary operations such that:

(i) 〈A,
/

, ·,
∖

〉 is a quasigroup;

(ii) 〈A,
/

◦,◦,
∖

◦〉 is a quasigroup;

(iii) ∗ℓ(x ·y ,x ◦y)≈ x ;

(iv) ∗r (x ·y ,x ◦y)≈ y .

The order of such an algebra is the cardinality of its universe. Let POLS
be the variety of pairs of orthogonal Latin squares.
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Existence of POLS of Prime Power

Lemma

If q is a prime power and q ≥ 3, then there is a member of POLS of order q.

Let 〈K ,+, ·〉 be a finite field of order q, and let e1,e2 be two distinct
nonzero elements of K . Then define two binary operations ä1 and ä2

on K by
aäib = ei ·a+b, i = 1,2.

Claim: The two groupoids 〈K ,ä1〉 and 〈K ,ä2〉 are quasigroups.

aäic = b iff c = b−ei ·a, and däia= b iff d = e−1
i

· (b−a).

Also we have that 〈aä1b,aä2b〉 = 〈cä1d ,cä2d〉 implies
e1 ·a+b = e1 ·c +d , e2 ·a+b = e2 ·c +d . Hence, e1 · (a−c)= d −b,
e2 · (a−c)= d −b. Thus, as e1 6= e2, a= c and b = d .

Thus, the Cayley tables of 〈K ,ä1〉 and 〈K ,ä2〉 give rise to orthogonal
Latin squares of order q.
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Existence of POLS

Theorem

If n ≡ 0,1, or 3 (mod 4), then there is a pair of orthogonal Latin squares of
order n.

Note that n≡ 0,1 or 3 (mod 4) iff n= 2αpα1

1
· · ·p

αk

k
, with α 6= 1, αi ≥ 1,

and each pi is an odd prime.

The case n= 1 is trivial;
For n≥ 3, use the preceding lemma to construct A0,A1, . . . ,Ak in POLS
of order 2α,p

α1
1

, . . . ,p
αk

k
respectively.

Then A0×A1×·· ·×Ak is the desired algebra.
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The Class IPOLS

Definition

An algebra A= 〈A,F 〉 is a binary algebra if each of the fundamental
operations is binary.
A binary algebra A= 〈A,F 〉 is idempotent if f (x ,x)≈ x holds in A, for
each function symbol f .

Definition

Let IPOLS be the variety of idempotent algebras in POLS.
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Binary Idempotent Varieties and 2-Designs

Definition

A variety V of algebras is binary idempotent if:

(i) the members of V are binary idempotent algebras;

(ii) V can be defined by identities involving at most two variables.

Note that IPOLS is a binary idempotent variety.

Definition

A 2-design is a tuple 〈B ,B1, . . . ,Bk 〉 where:

(i) B is a finite set;

(ii) each Bi is a subset of B (called a block);

(iii) |Bi | ≥ 2, for all i ;

(iv) each two-element subset of B is contained in exactly one block.
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2-Designs and Binary Idempotent Algebras in a Variety

Lemma

Let V be a binary idempotent variety and let 〈B ,B1, . . . ,Bk〉 be a 2-design.
Let n= |B |, ni = |Bi |. If V has members of size ni , 1≤ i ≤ k , then V has a
member of size n.

Let Ai ∈V , with |Ai | = ni . We can assume Ai =Bi . Then, for each
binary function symbol f in the type of V , we can find a binary
function f B on B , such that, when we restrict f B to Bi , it agrees with
f Ai (essentially we let f B be the union of the f Ai ). As V can be
defined by two variable identities p(x ,y)≈ q(x ,y) which hold on each
Ai , it follows that we have constructed an algebra B in V , with
|B | = n.
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Existence of IPOLS of Prime Power Order

Lemma

If q is a prime power and q ≥ 4, then there is a member of IPOLS of size q.
In particular, there are members of sizes 5, 7 and 8.

Let K be a field of order q, let e1,e2 be two distinct elements of
K − {0,1}.

Define two binary operations ä1,ä2 on K by

aäib = ei ·a+ (1−ei ) ·b.

aäic = b iff ei ·a+ (1−ei ) ·c = b iff c = (1−ei )
−1(b−ei ·a)

däia= b iff ei ·d + (1−ei ) ·a= b iff d = e−1
i

(b− (1−ei ) ·a);
aäia= ei ·a+ (1−ei ) ·a= a.

Thus, the Cayley tables of 〈K ,ä1〉 and 〈K ,ä2〉 give rise to idempotent
Latin squares.
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Existence of IPOLS of Prime Power Order (Cont’d)

If aä1b = cä1d and aä2b = cä2d , we get
e1 ·a+ (1−e1) ·b = e1 ·c + (1−e1) ·d and
e2 ·a+ (1−e2) ·b = e2 ·c + (1−e2) ·d , whence
e1 · (a−c)= (1−e1) · (d −b) and e2 · (a−c)= (1−e2) · (d −b). Since
e1,e2 6= 0,1 and e1 6= e2, we must have a= c and b = d .

Hence, the Cayley tables of 〈K ,ä1〉 and 〈K ,ä2〉 give rise to an
idempotent pair of orthogonal Latin squares.
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Projective Plane of Order n

Given a finite field F of cardinality n, we form a projective plane Pn

of order n by letting:

the points be the 1-dimensional subspaces U of the vector space F 3;
the lines be the 2-dimensional subspaces V of F 3.

A point U belongs to a line V if U ⊆V .

One can readily verify that:

every line of Pn has n+1 points;
every point of Pn belongs to n+1 lines;
there are n2+n+1 points and n2+n+1 lines.

Finally, we have:

Any two distinct points belong to exactly one line;
Any two distinct lines meet in exactly one point.
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An IPOL of Order 54

Lemma

There is a 2-design 〈B ,B1, . . . ,Bk〉, with |B | = 54 and |Bi | ∈ {5,7,8}, for
1≤ i ≤ k .

Let π be the projective plane of order 7. This has 57 points and each
line contains 8 points. Choose three points on one line and remove
them. Let B be the set of the remaining 54 points, and let the Bi be
the sets obtained by intersecting the lines of π with B . Then
〈B ,B1, . . . ,Bk〉 is easily seen to be a 2-design, since each pair of points
from B lies on a unique line of π, and |Bi | ∈ {5,7,8}.

Theorem

There is an idempotent pair of orthogonal Latin squares of order 54.

Combine the preceding three lemmas.

George Voutsadakis (LSSU) Universal Algebra June 2020 28 / 44



Selected Topics Finite State Acceptors

Subsection 4

Finite State Acceptors
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Finite State Acceptors and Unary Terms

Definition

A finite state acceptor (abbreviated f.s.a.) of type F (where the type is
finite with unary symbols) is a 4-tuple A= 〈A,F ,a0,A0〉, where:

〈A,F 〉 is a finite unary algebra of type F ;

a0 ∈A;

A0 ⊆A.

The set A is the set of states of A, a0 is the initial state, and A0 is the
set of final states.

Definition

If we are given a finite type F of unary algebras, let 〈F∗, ·,1〉 be the
monoid of strings on F . Given a string w ∈F

∗, an f.s.a. A of type F , and
an element a ∈A, let w(a) be the element resulting from applying the
“term” w(x) to a. E.g., if w = fg , then w(a)= f (g(a)), and 1(a)= a.
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Accepted Languages and Regular Languages

Definition

A language of type F is a subset of F
∗. A string w from F

∗ is
accepted by an f.s.a. A= 〈A,F ,a0,A0〉 of type F if w(a0)∈A0.
The language accepted by A, written L (A), is the set of strings from
F

∗ accepted by A.

Definition

Given languages L,L1 and L2 of type F let

L1 ·L2 = {w1 ·w2 :w1 ∈ L1,w2 ∈ L2},

L∗ = the subuniverse of 〈F∗, ·,1〉 generated by L.

The set of regular languages of type F is the smallest collection of
subsets of F

∗ which contains the singleton languages {f }, f ∈F ∪ {1}, and
is closed under the set-theoretic operations, ∪,∩, ′ and the operations · and
∗, defined above.
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Partial Algebras and Partial f.s.a.’s

Definition

A partial unary algebra of type F is a pair 〈A,F 〉, where F is a family of
partially defined unary functions on A indexed by F , i.e., the domain and
range of each function f are contained in A.

Definition

A partial finite state acceptor (partial f.s.a.) A= 〈A,F ,a0,A0〉 of type
F has the same definition as an f.s.a. of type F , except that we only
require that 〈A,F 〉 be a partial unary algebra of type F .
The language accepted by A, L (A), is defined as for an f.s.a. (but, for
a given w ∈F

∗, w(a) might not be defined, for some a ∈A).
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Languages Accepted by Partial f.s.a’s and Ranges

Lemma

Every language accepted by a partial f.s.a. is accepted by some f.s.a.

Let A= 〈A,F ,a0,A0〉 be a partial f.s.a. Choose b 6∈A and let
B =A∪ {b}. For f ∈F and a ∈A∪ {b}, if f (a) is not defined in A, let
f (a)= b. This gives an f.s.a. which accepts the same language as A.

Definition

If 〈A,F ,a0,A0〉 is a partial f.s.a., then, for a ∈A and w ∈F
∗, the range of

w applied to a, written Rg(w ,a), is the set

Rg(w ,a)=

{
{

fn(a), fn−1fn(a), . . . , f1 · · · fn(a)
}

, if w = f1 · · · fn
{a}, if w = 1

George Voutsadakis (LSSU) Universal Algebra June 2020 33 / 44



Selected Topics Finite State Acceptors

f.s.a.’s and Regular Languages

Lemma

The language accepted by any f.s.a. is regular.

Let L be the language of the partial f.s.a. A= 〈A,F ,a0,A0〉. We will
prove the lemma by induction on |A|.

First note that ; is a regular language as ;= {f }∩ {f }′, for any f ∈F .
For the ground case suppose |A| = 1. If A0 =;, then L (A)=;, a
regular language. If A0 = {a0}, let G = {f ∈F : f (a0) is defined}. Then
L (A)=G

∗ = (
⋃

f ∈G {f })∗, also a regular language.
For the induction step assume that |A| > 1, and for any partial f.s.a.
B= 〈B ,F ,b0,B0〉, with |B | < |A| the language L (B) is regular. If
A0 =;, then, as before, L (A)=;, a regular language. So assume
A0 6= ;. The crux of the proof is to decompose any acceptable word
into: (a) a product of words which one can visualize as giving a
sequence of cycles when applied to a0; (b) followed by a noncycle,
mapping from a0 to a member of A0 if a0 6∈A0.
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f.s.a.’s and Regular Languages (Cont’d)

Let C = {〈f1, f2〉 ∈ F ×F : f1wf2(a0) =

a0, for some w ∈ F
∗, f2(a0) 6= a0 and

Rg(w , f2(a0)) ⊆ A− {a0}}. For 〈f1, f2〉 ∈

C , let Cf1f2 = {w ∈ F
∗ : f1wf2(a0) =

a0,Rg(w , f2(a0)) ⊆ A− {a0}}. Then Cf1f2

is the language accepted by
〈A− {a0},F , f2(a0), f −1(a0)− {a0}〉. Hence, by induction, Cf1f2 is regular.
Set H = {f ∈F : f (a0)= a0}∪ {1}, D = {f ∈F : f (a0) 6= a0}. For f ∈D,
let Ef = {w ∈F

∗ :wf (a0) ∈A0,Rg(w , f (a0))⊆A− {a0}}. We see that
Ef is the language accepted by 〈A− {a0},F , f (a0),A0− {a0}〉. Hence, by
induction, it is also regular. Let

E =

{
⋃

f ∈D Ef · {f }, if a0 6∈A0

(
⋃

f ∈D Ef · {f })∪ {1}, if a0 ∈A0
.

Then L=E · (H ∪
⋃

〈f1,f2〉∈C {f1} ·Cf1f2 · {f2})∗, a regular language.
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Deletion Homomorphisms

Definition

Given a type F , t 6∈F , the deletion homomorphism δt : (F ∪ {t})∗ →F
∗

is the homomorphism defined by δt(f )= f , for f ∈F , δt(t)= 1.

Lemma

If L is a language of type F ∪ {t}, where t 6∈F , which is also the language
accepted by some f.s.a., then δt(L) is a language of type F which is the
language accepted by some f.s.a.

Let A= 〈A,F ∪ {t},a0,A0〉 be an f.s.a. with L (A)= L. For w ∈F
∗,

define Sw = {w(a0) :w ∈ (F ∪ {t})∗,δt(w)=w }, B = {Sw :w ∈F
∗}.

This is of course finite as A is finite. For f ∈F , define f (Sw )=Sfw .
This makes sense as Sfw depends only on Sw , not on w . Next let
b0 =S1, and let B0 = {Sw :Sw ∩A0 6= ;}. Then 〈B ,F ,b0,B0〉 accepts w

iff w(S1) ∈B0 iff Sw ∩A0 6= ; iff w(a0)∈A0, for some w ∈ δ−1
t (w), iff

w ∈ L, for some w ∈ δ−1
t (w), iff w ∈ δt(L).
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Kleene’s Theorem

Theorem (Kleene)

Let L be a language. Then L is the language accepted by some f.s.a. iff L

is regular.

(⇒) This has already been proven.

(⇐) By induction.

If L= {f }, then we can use the partial f.s.a. a
f

←− a0, where all functions
not drawn are undefined, and A0 = {a}.
If L= {1} use A=A0 = {a0}, with all f ’s undefined.
Next suppose L1 is the language of 〈A,F ,a0,A0〉 and L2 is the language
of 〈B ,F ,b0,B0〉. Then L1∩L2 is the language of
〈A×B ,F ,〈a0,b0〉,A0×B0〉, where f (〈a,b〉) is defined to be 〈f (a), f (b)〉.
L′
1

is the language of 〈A,F ,a0,A−A0〉.
Combining these we see by De Morgan’s law that L1∪L2 is the
language of a suitable f.s.a..
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Kleene’s Theorem (Cont’d)

To handle L1 ·L2, we first expand our type
to F ∪ {t}. Then, mapping each member
of B0 to the input of a copy of A, we see
that L1·{t}·L2 is the language of some f.s.a.
Hence, if we use the preceding lemma, it
follows that L1 ·L2 is the language of some
f.s.a..

Similarly for L∗1 , let t map each element of
A0 to a0. Then (L1·{t})∗·L1 is the language
of this partial f.s.a.; Hence,

L∗1 = δt [(L1 · {t})∗ ·L1∪ {1}]

is the language of some f.s.a..
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Monoid of Words and Free Algebra

Definition

Let τ be the mapping from F
∗ to T (x), the set of terms of type F over

x , defined by τ(w)=w(x).

Lemma

The mapping τ is an isomorphism between the monoid 〈F∗, ·,1〉 and the
monoid 〈T (x),◦,x〉, where ◦ is “composition”.

If w1 6=w2, then, in T (x), w1(x) 6=w2(x). Thus τ is 1-1;

If w(x) ∈T (x), then τ(w)=w(x) and τ is also onto.

Thus τ is a bijection.

Finally, we have

τ(1)= 1(x)= x ;
τ((f1 · · · fn) · (g1 · · ·gm))= f1(· · · (fn(g1 · · ·(gm(x)) · · · )) · · · )=
(f1 · · · fn)((g1 · · ·gm)(x))= τ(f1 · · · fn)◦τ(g1 · · ·gm).
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Congruences

Definition

For θ ∈Con〈F∗, ·,1〉, let θ(x)= {〈w1(x),w2(x)〉 : 〈w1,w2〉 ∈ θ}.

Lemma

The map θ 7→ θ(x) is a lattice isomorphism from the lattice of congruences
on 〈F∗, ·,1〉 to the lattice of fully invariant congruences on T(x).

Suppose θ ∈Con〈F∗, ·,1〉 and 〈w1,w2〉 ∈ θ.

For u ∈F
∗, we have 〈uw1,uw2〉 ∈ θ. Thus, θ(x) is a congruence on

T(x).

For u ∈F
∗, we have 〈w1u,w2u〉 ∈ θ. Hence, θ(x) is fully invariant.
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Acceptance by f.s.a.’s and Finite Index

Lemma

If L is a language of type F accepted by some f.s.a., then there is a
θ ∈Con〈F∗, ·,1〉, such that θ is of finite index (i.e., 〈F∗, ·,1〉/θ is finite)
and Lθ = L, i.e., L is a union of cosets of θ.

Choose A an f.s.a. of type F , such that L (A)= L. Let FA(x) be the
free algebra freely generated by x in the variety V (〈A,F 〉). Let
α :T(x)→FA(x) be the natural homomorphism defined by α(x)= x ,
and let β :FA(x)→〈A,F 〉 be the homomorphism defined by β(x)= a0.
Then, with L(x)= {w(x) :w ∈ L},

L(x)=α−1(β−1(A0))=
⋃

p∈β−1(A0)

p/kerα.

Hence, L(x)= L(x)kerα. But kerα is a fully invariant congruence on
T(x). Thus, kerα= θ(x), for some θ ∈Con〈F∗, ·,1〉. Hence,
L(x)= L(x)θ(x) and L= Lθ. We know kerα is of finite index. Thus, θ
is also of finite index.
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Myhill’s Theorem

Theorem (Myhill)

Let L be a language of type F . Then L is the language of some f.s.a. iff
there is a θ ∈Con〈F∗, ·,1〉 of finite index such that Lθ = L.

(⇒) This was proved by the preceding lemma.

(⇐) Suppose θ is a congruence of finite index on F
∗, such that Lθ = L. Let

A= {w/θ :w ∈F
∗}, f (w/θ)= fw/θ, for f ∈F ,

a0 = 1/θ, A0 = {w/θ :w ∈ L}.

We have

〈A,F ,a0,A0〉 accepts w iff w(1/θ) ∈A0

iff w/θ ∈A0

iff w/θ = u/θ for some u ∈ L

iff w ∈ L.
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Equivalence of Words Modulo a Language

Definition

Given a language L of type F , define the binary relation ≡L on F
∗ by

w1 ≡L w2 iff (uw1v ∈ L ⇔ uw2v ∈ L, for u,v ∈F
∗).

Lemma

If we are given L, a language of type F , then ≡L is the largest congruence
θ on 〈F∗, ·,1〉, such that Lθ = L.

≡L is an equivalence relation on F
∗. If w1 ≡L w2 and t1 ≡L t2, then for

u,v ∈F
∗, uw1t1v ∈ L iff uw1t2v ∈ L iff uw2t2v ∈ L. Hence,

w1t1 ≡L w2t2 and ≡L is a congruence on 〈F∗, ·,1〉.

Suppose w ∈ L and w ≡L t. Then 1 ·w ·1 ∈ L ⇔ 1 · t ·1 ∈ L implies
t ∈ L. Hence, w/≡L ⊆ L. Thus, L≡L = L.

Finally, suppose Lθ = L. Then, for 〈w1,w2〉 ∈ θ and u,v ∈F
∗,

〈uw1v ,uw2v 〉 ∈ θ, whence, since uw1v/θ = uw2v/θ, we obtain
uw1v ∈ L ⇔ uw2v ∈ L. So w1≡Lw2. Hence, θ ⊆≡L.
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The Syntactic Monoid and Regular Languages

Definition

If we are given a language L of type F , then the syntactic monoid ML of

L is defined by
ML = 〈F

∗
, ·,1〉/≡L.

Theorem

A language L is accepted by some f.s.a. iff ML is finite.

Lis accepted by some f.s.a. iff, by Myhill’s Theorem, there exists
θ ∈Con〈F∗, ·,1〉 of finite index, such that Lθ = L, iff, by the preceding
lemma, L≡L has finite index iff ML = 〈F∗, ·,1〉/≡L is finite.
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