Introduction to Universal Algebra

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Selected Topics

- Steiner Triple Systems, Squags and Sloops
- Quasigroups, Loops and Latin Squares
- Orthogonal Latin Squares
- Finite State Acceptors

Subsection 1

Steiner Triple Systems, Squags and Sloops

Steiner Triple Systems

Definition

A Steiner triple system on a set A is a family \mathscr{S} of three-element subsets of A, such that each pair of distinct elements from A is contained in exactly one member of $\mathscr{S} .|A|$ is called the order of the Steiner triple system.

- If $|A|=1$, then $\mathscr{S}=\varnothing$.
- If $|A|=3$, then $\mathscr{S}=\{A\}$.
- If $|A|=2$, there are no Steiner triple systems on A.

Theorem

If \mathscr{S} is a Steiner triple system on a finite set A, then:
(a) $|\mathscr{S}|=\frac{|A|(|A|-1)}{6}$;
(b) $|A| \equiv 1$ or $3(\bmod 6)$.
(a) Note that each member of \mathscr{S} contains three distinct pairs of elements of A. Each pair of elements appears in only one member of S. Thus, the number of pairs of elements from A is exactly $3|S|$, i.e., $\binom{|A|}{2}=3|\mathscr{S}|$. This gives $\frac{|A|(|A|-1)}{2}=3|\mathscr{S}|$ whence the conclusion follows.
(b) Fix $a \in A$ and let T_{1}, \ldots, T_{k} be the members of \mathscr{S} to which a belongs. No pair of elements of A is contained in two distinct triples of \mathscr{S}. Thus, the doubletons $T_{1}-\{a\}, \ldots, T_{k}-\{a\}$ are mutually disjoint. Each member of $A-\{a\}$ is in some triple along with the element a. So $A-\{a\}=\left(T_{1}-\{a\}\right) \cup \cdots \cup\left(T_{k}-\{a\}\right)$. Thus, $2||A|-1$, so $| A \mid \equiv 1$ $(\bmod 2)$. From $(a),|A| \equiv 0$ or $1(\bmod 3)$; hence, $|A| \equiv 1$ or $3(\bmod 6)$.

The Steiner Triple System of Order 7

- After $|A|=3$, the next possible size $|A|$ is 7 .

The figure shows a Steiner triple system of order 7 , where we require that three numbers be in a triple iff they lie on one of the lines drawn or on the circle.
This is the only Steiner triple system of order 7 (up to a relabeling of the elements).

Steiner Quasigroups

- To construct new Steiner triple systems from old ones,
- we convert it to an algebraic system;
- use standard constructions in universal algebra.
- A natural way of introducing a binary operation - on A is to require

$$
a \cdot b=c \quad \text { if }\{a, b, c\} \in \mathscr{S} .
$$

Since $a \cdot a$ is left undefined, we define $a \cdot a=a$.

- The associative law for • fails (look at the system of order 3).
- Nonetheless, we have the identities:
(Sq1) $x \cdot x \approx x$;
(Sq2) $x \cdot y \approx y \cdot x$;
(Sq3) $x \cdot(x \cdot y) \approx y$.

Definition

A groupoid satisfying the identities (Sq1)-(Sq3) above is called a squag (or Steiner quasigroup).

Squads Correspond to Steiner Triple Systems

Theorem

If $\langle A, \cdot\rangle$ is a squag, define \mathscr{S} to be the set of three-element subsets $\{a, b, c\}$ of A, such that the product of any two elements gives the third. Then \mathscr{S} is a Steiner triple system on A.

- Suppose $a \cdot b=c$ holds. Then $a \cdot(a \cdot b)=a \cdot c$, so by (Sq3), $b=a \cdot c$. Similarly, $b \cdot c=a$. Thus, in view of (Sq1), if any two are equal, all three are equal. Consequently, for any two distinct elements of A, there is a unique third element (distinct from the two) such that the product of any two gives the third. Thus, \mathscr{S} is indeed a Steiner triple system on A.

Steiner Loops

- Another approach to converting a Steiner triple system \mathscr{S} on A to an algebra is to adjoin a new element, called 1 , and replace $a \cdot a=a$ by

$$
a \cdot a=1, \quad a \cdot 1=1 \cdot a=a .
$$

- This leads to a groupoid with identity $\langle A \cup\{1\}, \cdot, 1\rangle$, satisfying the identities:
(Sl1) $x \cdot x \approx 1$;
(Sl2) $x \cdot y \approx y \cdot x$;
$(\mathrm{Se3}) x \cdot(x \cdot y) \approx y$.

Definition

A groupoid with a distinguished element $\langle A, \cdot, 1\rangle$ is called a sloop (or Steiner loop) if the identities $(\mathrm{S} \ell 1)-(\mathrm{S} \ell 3)$ hold.

Sloops and Steiner Triple Systems

Theorem

If $\langle A, \cdot, 1\rangle$ is a sloop and $|A| \geq 2$, define \mathscr{S} to be the three-element subsets of $A-\{1\}$, such that the product of any two distinct elements gives the third. Then \mathscr{S} is a Steiner triple system on $A-\{1\}$.

- Similar to the preceding theorem.

Subsection 2

Quasigroups, Loops and Latin Squares

Quasigroups Formalisms

- A quasigroup is usually defined to be a groupoid $\langle A, \cdot\rangle$, such that, for any elements $a, b \in A$, there are unique elements c, d, satisfying

$$
a \cdot c=b, \quad d \cdot a=b .
$$

- The previously adopted definition of quasigroups has two extra binary operations \and /, left division and right division respectively, which allow us to consider quasigroups as an equational class.
- Recall that the axioms for quasigroups $\langle A, /, \cdot, \backslash\rangle$ are given by

$$
\begin{array}{ll}
x \backslash(x \cdot y) \approx y & (x \cdot y) / y \approx x \\
x \cdot(x \backslash y) \approx y & (x / y) \cdot y \approx x
\end{array}
$$

- To convert a quasigroup $\langle A, \cdot\rangle$ in the usual definition to one in our definition we let
- a / b be the unique solution c of $c \cdot b=a$;
- $a \backslash b$ be the unique solution d of $a \cdot d=b$.

Quasigroups Formalisms (Cont'd)

- Conversely, let $\langle A, /, \cdot, \backslash\rangle$ be a quasigroup by our definition.
- If $a, b \in A$, we have $a \cdot(a \backslash b)=b$. So there is a $c:=a \backslash b$, such that $a \cdot c=b$.
- Suppose $a, b \in A$ and c is such that $a \cdot c=b$. Then $a \backslash(a \cdot c)=a \backslash b$. Hence $c=a \backslash b$. So only one such c is possible.
Similarly, we can show that there is exactly one d, such that $d \cdot a=b$, namely $d=b / a$.
Thus, the two definitions of quasigroups are, in an obvious manner, equivalent.

Quasigroups with Identity and Squags

- A loop is usually defined to be a quasigroup with an identity element $\langle A, \cdot, 1\rangle$. In our definition, we have an algebra $\langle A, /, \cdot\rangle, 1$,$\rangle and such$ loops form an equational class.
- Suppose \mathscr{S} is a Steiner triple system on A.

The associated squag $\langle A, \cdot\rangle$ is a quasigroup: If $a \cdot c=b$, then $a \cdot(a \cdot c)=a \cdot b$. So $c=a \cdot b$. Furthermore, $a \cdot(a \cdot b)=b$. Hence, if we are given a, b, there is a unique c, such that $a \cdot c=b$. Similarly, there is a unique d, such that $d \cdot a=b$.

- In the case of squags we do not need to introduce the additional operations / and \backslash to obtain an equational class: In this case /, \and • are all the same.
- Squags are sometimes called idempotent totally symmetric quasigroups.

Cayley Tables and Quasigroups

- Given any finite groupoid $\langle A, \cdot\rangle$, we can write out the multiplication table of $\langle A, \cdot\rangle$ in a square array, giving the Cayley table of $\langle A, \cdot\rangle$.

Theorem

A finite groupoid \mathbf{A} is a quasigroup iff every element of A appears exactly once in each row and in each column of the Cayley table of $\langle A, \cdot\rangle$.

- If we are given $a, b \in A$, then there is exactly one c satisfying $a \cdot c=b$ iff b occurs exactly once in the a-th row of the Cayley table of $\langle A, \cdot\rangle$ and there is exactly one d, such that $d \cdot a=b$ iff b occurs exactly once in the a-th column of the Cayley table.

Latin Squares

Definition

A Latin square of order n is an $n \times n$ matrix $\left(a_{i j}\right)$ of elements from an n element set A, such that each member of A occurs exactly once in each row and each column of the matrix.

- The figure shows a Latin square of order 4:

a	b	c	d
d	c	a	b
b	a	d	c
c	d	b	a

- From the theorem, Latin squares are in an obvious one-to-one correspondence with quasigroups by using Cayley tables.

Subsection 3

Orthogonal Latin Squares

Orthogonal Latin Squares

Definition

If $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$ are two Latin squares of order n with entries from a set A with the property that, for each $\langle a, b\rangle \in A \times A$, there is exactly one index $i j$, such that $\langle a, b\rangle=\left\langle a_{i j}, b_{i j}\right\rangle$, then we say that $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$ are orthogonal Latin squares.

- The figure shows an example of orthogonal Latin squares of order 3.

a	b	c
b	c	a
c	a	b

a	b	c
c	a	b
b	c	a

- Euler conjectured that, if $n \equiv 2(\bmod 4)$, then there do not exist orthogonal Latin squares of order n.
- In 1900 Tarry verified the conjecture for $n=6$
- Macneish gave a construction for all orders n, where $n \neq 2(\bmod 4)$.
- Bose, Parker, and Shrikhande showed that $n=2,6$ are the only values for which Euler's conjecture is actually true.

Pairs of Orthogonal Latin Squares

- Two orthogonal Latin squares on a set A correspond to two quasigroups $\langle A, /, \cdot\rangle$,$\rangle and \langle A, \phi, \circ, \phi\rangle$, such that the map $\langle a, b\rangle \mapsto\langle a \cdot b, a \circ b\rangle$ is a permutation of $A \times A$.
- For a finite set A, this will be a bijection iff there exist functions $*_{\ell}$ and $*_{r}$ from $A \times A$ to A, such that $*_{\ell}(a \cdot b, a \circ b)=a, *_{r}(a \cdot b, a \circ b)=b$.

Definition (Evans)

A pair of orthogonal Latin squares is an algebra $\left.\langle A, /, \cdot\rangle,, \phi, \circ, \phi, *_{\ell}, *_{r}\right\rangle$, with eight binary operations such that:
(i) $\langle A, /, \cdot\rangle$,$\rangle is a quasigroup;$
(ii) $\langle A, \phi, \circ, \phi\rangle$ is a quasigroup;
(iii) $*_{\ell}(x \cdot y, x \circ y) \approx x$;
(iv) $*_{r}(x \cdot y, x \circ y) \approx y$.

The order of such an algebra is the cardinality of its universe. Let POLS be the variety of pairs of orthogonal Latin squares.

Existence of POLS of Prime Power

Lemma

If q is a prime power and $q \geq 3$, then there is a member of POLS of order q.

- Let $\langle K,+, \cdot\rangle$ be a finite field of order q, and let e_{1}, e_{2} be two distinct nonzero elements of K. Then define two binary operations \square_{1} and \square_{2} on K by

$$
a \square_{i} b=e_{i} \cdot a+b, \quad i=1,2 .
$$

Claim: The two groupoids $\left\langle K, \square_{1}\right\rangle$ and $\left\langle K, \square_{2}\right\rangle$ are quasigroups. $a \square_{i} c=b$ iff $c=b-e_{i} \cdot a$, and $d \square_{i} a=b$ iff $d=e_{i}^{-1} \cdot(b-a)$.
Also we have that $\left\langle a \square_{1} b, a \square_{2} b\right\rangle=\left\langle c \square_{1} d, c \square_{2} d\right\rangle$ implies $e_{1} \cdot a+b=e_{1} \cdot c+d, e_{2} \cdot a+b=e_{2} \cdot c+d$. Hence, $e_{1} \cdot(a-c)=d-b$, $e_{2} \cdot(a-c)=d-b$. Thus, as $e_{1} \neq e_{2}, a=c$ and $b=d$.
Thus, the Cayley tables of $\left\langle K, \square_{1}\right\rangle$ and $\left\langle K, \square_{2}\right\rangle$ give rise to orthogonal Latin squares of order q.

Existence of POLS

Theorem

If $n \equiv 0,1$, or $3(\bmod 4)$, then there is a pair of orthogonal Latin squares of order n.

- Note that $n \equiv 0,1$ or $3(\bmod 4)$ iff $n=2^{\alpha} p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$, with $\alpha \neq 1, \alpha_{i} \geq 1$, and each p_{i} is an odd prime.
- The case $n=1$ is trivial;
- For $n \geq 3$, use the preceding lemma to construct $\mathbf{A}_{0}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$ in POLS of order $2^{\alpha}, p_{1}^{\alpha_{1}}, \ldots, p_{k}^{\alpha_{k}}$ respectively. Then $\mathbf{A}_{0} \times \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{k}$ is the desired algebra.

The Class IPOLS

Definition

An algebra $\mathbf{A}=\langle A, F\rangle$ is a binary algebra if each of the fundamental operations is binary.
A binary algebra $\mathbf{A}=\langle A, F\rangle$ is idempotent if $f(x, x) \approx x$ holds in \mathbf{A}, for each function symbol f.

Definition

Let IPOLS be the variety of idempotent algebras in POLS.

Binary Idempotent Varieties and 2-Designs

Definition

A variety V of algebras is binary idempotent if:
(i) the members of V are binary idempotent algebras;
(ii) V can be defined by identities involving at most two variables.

- Note that IPOLS is a binary idempotent variety.

Definition

A 2-design is a tuple $\left\langle B, B_{1}, \ldots, B_{k}\right\rangle$ where:
(i) B is a finite set;
(ii) each B_{i} is a subset of B (called a block);
(iii) $\left|B_{i}\right| \geq 2$, for all i;
(iv) each two-element subset of B is contained in exactly one block.

2-Designs and Binary Idempotent Algebras in a Variety

Lemma

Let V be a binary idempotent variety and let $\left\langle B, B_{1}, \ldots, B_{k}\right\rangle$ be a 2-design. Let $n=|B|, n_{i}=\left|B_{i}\right|$. If V has members of size $n_{i}, 1 \leq i \leq k$, then V has a member of size n.

- Let $\mathbf{A}_{i} \in V$, with $\left|A_{i}\right|=n_{i}$. We can assume $A_{i}=B_{i}$. Then, for each binary function symbol f in the type of V, we can find a binary function f^{B} on B, such that, when we restrict f^{B} to B_{i}, it agrees with $f^{\mathbf{A}_{i}}$ (essentially we let f^{B} be the union of the $f^{\mathbf{A}_{i}}$). As V can be defined by two variable identities $p(x, y) \approx q(x, y)$ which hold on each \mathbf{A}_{i}, it follows that we have constructed an algebra B in V, with $|B|=n$.

Existence of IPOLS of Prime Power Order

Lemma

If q is a prime power and $q \geq 4$, then there is a member of IPOLS of size q. In particular, there are members of sizes 5, 7 and 8.

- Let K be a field of order q, let e_{1}, e_{2} be two distinct elements of $K-\{0,1\}$.
Define two binary operations \square_{1}, \square_{2} on K by

$$
a \square_{i} b=e_{i} \cdot a+\left(1-e_{i}\right) \cdot b
$$

$$
\begin{aligned}
& a \square_{i} c=b \text { iff } e_{i} \cdot a+\left(1-e_{i}\right) \cdot c=b \text { iff } c=\left(1-e_{i}\right)^{-1}\left(b-e_{i} \cdot a\right) \\
& d \square_{i} a=b \text { iff } e_{i} \cdot d+\left(1-e_{i}\right) \cdot a=b \text { iff } d=e_{i}^{-1}\left(b-\left(1-e_{i}\right) \cdot a\right) \\
& a \square_{i} a=e_{i} \cdot a+\left(1-e_{i}\right) \cdot a=a
\end{aligned}
$$

Thus, the Cayley tables of $\left\langle K, \square_{1}\right\rangle$ and $\left\langle K, \square_{2}\right\rangle$ give rise to idempotent Latin squares.

Existence of IPOLS of Prime Power Order (Cont'd)

- If $a \square_{1} b=c \square_{1} d$ and $a \square_{2} b=c \square_{2} d$, we get $e_{1} \cdot a+\left(1-e_{1}\right) \cdot b=e_{1} \cdot c+\left(1-e_{1}\right) \cdot d$ and $e_{2} \cdot a+\left(1-e_{2}\right) \cdot b=e_{2} \cdot c+\left(1-e_{2}\right) \cdot d$, whence $e_{1} \cdot(a-c)=\left(1-e_{1}\right) \cdot(d-b)$ and $e_{2} \cdot(a-c)=\left(1-e_{2}\right) \cdot(d-b)$. Since $e_{1}, e_{2} \neq 0,1$ and $e_{1} \neq e_{2}$, we must have $a=c$ and $b=d$. Hence, the Cayley tables of $\left\langle K, \square_{1}\right\rangle$ and $\left\langle K, \square_{2}\right\rangle$ give rise to an idempotent pair of orthogonal Latin squares.

Projective Plane of Order n

- Given a finite field F of cardinality n, we form a projective plane \mathscr{P}_{n} of order n by letting:
- the points be the 1 -dimensional subspaces U of the vector space F^{3};
- the lines be the 2-dimensional subspaces V of F^{3}.

A point U belongs to a line V if $U \subseteq V$.

- One can readily verify that:
- every line of \mathscr{P}_{n} has $n+1$ points;
- every point of \mathscr{P}_{n} belongs to $n+1$ lines;
- there are $n^{2}+n+1$ points and $n^{2}+n+1$ lines.
- Finally, we have:
- Any two distinct points belong to exactly one line;
- Any two distinct lines meet in exactly one point.

An IPOL of Order 54

Lemma

There is a 2-design $\left\langle B, B_{1}, \ldots, B_{k}\right\rangle$, with $|B|=54$ and $\left|B_{i}\right| \in\{5,7,8\}$, for $1 \leq i \leq k$.

- Let π be the projective plane of order 7 . This has 57 points and each line contains 8 points. Choose three points on one line and remove them. Let B be the set of the remaining 54 points, and let the B_{i} be the sets obtained by intersecting the lines of π with B. Then $\left\langle B, B_{1}, \ldots, B_{k}\right\rangle$ is easily seen to be a 2-design, since each pair of points from B lies on a unique line of π, and $\left|B_{i}\right| \in\{5,7,8\}$.

Theorem

There is an idempotent pair of orthogonal Latin squares of order 54.

- Combine the preceding three lemmas.

Subsection 4

Finite State Acceptors

Finite State Acceptors and Unary Terms

Definition

A finite state acceptor (abbreviated f.s.a.) of type \mathscr{F} (where the type is finite with unary symbols) is a 4-tuple $\mathbf{A}=\left\langle A, F, a_{0}, A_{0}\right\rangle$, where:

- $\langle A, F\rangle$ is a finite unary algebra of type \mathscr{F};
- $a_{0} \in A$;
- $A_{0} \subseteq A$.

The set A is the set of states of \mathbf{A}, a_{0} is the initial state, and A_{0} is the set of final states.

Definition

If we are given a finite type \mathscr{F} of unary algebras, let $\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$ be the monoid of strings on \mathscr{F}. Given a string $w \in \mathscr{F}^{*}$, an f.s.a. A of type \mathscr{F}, and an element $a \in A$, let $w(a)$ be the element resulting from applying the "term" $w(x)$ to a. E.g., if $w=f g$, then $w(a)=f(g(a))$, and $1(a)=a$.

Accepted Languages and Regular Languages

Definition

A language of type \mathscr{F} is a subset of \mathscr{F}^{*}. A string w from \mathscr{F}^{*} is accepted by an f.s.a. $\mathbf{A}=\left\langle A, F, a_{0}, A_{0}\right\rangle$ of type \mathscr{F} if $w\left(a_{0}\right) \in A_{0}$. The language accepted by \mathbf{A}, written $\mathscr{L}(\mathbf{A})$, is the set of strings from \mathscr{F}^{*} accepted by A.

Definition

Given languages L, L_{1} and L_{2} of type \mathscr{F} let

$$
\begin{aligned}
L_{1} \cdot L_{2} & =\left\{w_{1} \cdot w_{2}: w_{1} \in L_{1}, w_{2} \in L_{2}\right\}, \\
L^{*} & =\text { the subuniverse of }\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle \text { generated by } L .
\end{aligned}
$$

The set of regular languages of type \mathscr{F} is the smallest collection of subsets of \mathscr{F}^{*} which contains the singleton languages $\{f\}, f \in \mathscr{F} \cup\{1\}$, and is closed under the set-theoretic operations, $\cup, \cap, '$ and the operations \cdot and *, defined above.

Partial Algebras and Partial f.s.a.'s

Definition

A partial unary algebra of type \mathscr{F} is a pair $\langle A, F\rangle$, where F is a family of partially defined unary functions on A indexed by \mathscr{F}, i.e., the domain and range of each function f are contained in A.

Definition

A partial finite state acceptor (partial f.s.a.) $\mathbf{A}=\left\langle A, F, a_{0}, A_{0}\right\rangle$ of type \mathscr{F} has the same definition as an f.s.a. of type \mathscr{F}, except that we only require that $\langle A, F\rangle$ be a partial unary algebra of type \mathscr{F}. The language accepted by $\mathbf{A}, \mathscr{L}(\mathbf{A})$, is defined as for an f.s.a. (but, for a given $w \in \mathscr{F}^{*}, w(a)$ might not be defined, for some $a \in A$).

Languages Accepted by Partial f.s.a's and Ranges

Lemma

Every language accepted by a partial f.s.a. is accepted by some f.s.a.

- Let $\mathbf{A}=\left\langle A, F, a_{0}, A_{0}\right\rangle$ be a partial f.s.a. Choose $b \notin A$ and let $B=A \cup\{b\}$. For $f \in \mathscr{F}$ and $a \in A \cup\{b\}$, if $f(a)$ is not defined in \mathbf{A}, let $f(a)=b$. This gives an f.s.a. which accepts the same language as \mathbf{A}.

Definition

If $\left\langle A, F, a_{0}, A_{0}\right\rangle$ is a partial f.s.a., then, for $a \in A$ and $w \in \mathscr{F}^{*}$, the range of w applied to a, written $\operatorname{Rg}(w, a)$, is the set

$$
\operatorname{Rg}(w, a)= \begin{cases}\left\{f_{n}(a), f_{n-1} f_{n}(a), \ldots, f_{1} \cdots f_{n}(a)\right\}, & \text { if } w=f_{1} \cdots f_{n} \\ \{a\}, & \text { if } w=1\end{cases}
$$

f.s.a.'s and Regular Languages

Lemma

The language accepted by any f.s.a. is regular.

- Let L be the language of the partial f.s.a. $\mathbf{A}=\left\langle A, F, a_{0}, A_{0}\right\rangle$. We will prove the lemma by induction on $|A|$.
- First note that \varnothing is a regular language as $\varnothing=\{f\} \cap\{f\}^{\prime}$, for any $f \in \mathscr{F}$.

For the ground case suppose $|A|=1$. If $A_{0}=\varnothing$, then $\mathscr{L}(\mathbf{A})=\varnothing$, a regular language. If $A_{0}=\left\{a_{0}\right\}$, let $\mathscr{G}=\left\{f \in \mathscr{F}: f\left(a_{0}\right)\right.$ is defined $\}$. Then $\mathscr{L}(\mathbf{A})=\mathscr{G}^{*}=\left(\bigcup_{f \in \mathscr{G}}\{f\}\right)^{*}$, also a regular language.

- For the induction step assume that $|A|>1$, and for any partial f.s.a. $\mathbf{B}=\left\langle B, F, b_{0}, B_{0}\right\rangle$, with $|B|<|A|$ the language $\mathscr{L}(\mathbf{B})$ is regular. If $A_{0}=\varnothing$, then, as before, $\mathscr{L}(\mathbf{A})=\varnothing$, a regular language. So assume $A_{0} \neq \varnothing$. The crux of the proof is to decompose any acceptable word into: (a) a product of words which one can visualize as giving a sequence of cycles when applied to a_{0}; (b) followed by a noncycle, mapping from a_{0} to a member of A_{0} if $a_{0} \notin A_{0}$.

f.s.a.'s and Regular Languages (Cont'd)

- Let $C=\left\{\left\langle f_{1}, f_{2}\right\rangle \in \mathscr{F} \times \mathscr{F}: f_{1} w f_{2}\left(a_{0}\right)=\right.$ a_{0}, for some $w \in \mathscr{F}^{*}, f_{2}\left(a_{0}\right) \neq a_{0}$ and $\left.\operatorname{Rg}\left(w, f_{2}\left(a_{0}\right)\right) \subseteq A-\left\{a_{0}\right\}\right\}$. For $\left\langle f_{1}, f_{2}\right\rangle \in$ C, let $C_{f_{1} f_{2}}=\left\{w \in \mathscr{F}^{*}: f_{1} w f_{2}\left(a_{0}\right)=\right.$ $\left.a_{0}, \operatorname{Rg}\left(w, f_{2}\left(a_{0}\right)\right) \subseteq A-\left\{a_{0}\right\}\right\}$. Then $C_{f_{1} f_{2}}$ is the language accepted by

$\left\langle A-\left\{a_{0}\right\}, F, f_{2}\left(a_{0}\right), f^{-1}\left(a_{0}\right)-\left\{a_{0}\right\}\right\rangle$. Hence, by induction, $C_{f_{1} f_{2}}$ is regular. Set $\mathscr{H}=\left\{f \in \mathscr{F}: f\left(a_{0}\right)=a_{0}\right\} \cup\{1\}, \mathscr{D}=\left\{f \in \mathscr{F}: f\left(a_{0}\right) \neq a_{0}\right\}$. For $f \in \mathscr{D}$, let $E_{f}=\left\{w \in \mathscr{F}^{*}: w f\left(a_{0}\right) \in A_{0}, \operatorname{Rg}\left(w, f\left(a_{0}\right)\right) \subseteq A-\left\{a_{0}\right\}\right\}$. We see that E_{f} is the language accepted by $\left\langle A-\left\{a_{0}\right\}, F, f\left(a_{0}\right), A_{0}-\left\{a_{0}\right\}\right\rangle$. Hence, by induction, it is also regular. Let

$$
E=\left\{\begin{array}{ll}
\bigcup_{f \in \mathscr{D}} E_{f} \cdot\{f\}, & \text { if } a_{0} \notin A_{0} \\
\left(\bigcup_{f \in \mathscr{D}} E_{f} \cdot\{f\}\right) \cup\{1\}, & \text { if } a_{0} \in A_{0}
\end{array} .\right.
$$

Then $L=E \cdot\left(\mathscr{H} \cup \bigcup_{\left\langle f_{1}, f_{2}\right\rangle \in C}\left\{f_{1}\right\} \cdot C_{f_{1} f_{2}} \cdot\left\{f_{2}\right\}\right)^{*}$, a regular language.

Deletion Homomorphisms

Definition

Given a type $\mathscr{F}, t \notin \mathscr{F}$, the deletion homomorphism $\delta_{t}:(\mathscr{F} \cup\{t\})^{*} \rightarrow \mathscr{F}^{*}$ is the homomorphism defined by $\delta_{t}(f)=f$, for $f \in \mathscr{F}, \delta_{t}(t)=1$.

Lemma

If L is a language of type $\mathscr{F} \cup\{t\}$, where $t \notin \mathscr{F}$, which is also the language accepted by some f.s.a., then $\delta_{t}(L)$ is a language of type \mathscr{F} which is the language accepted by some f.s.a.

- Let $\mathbf{A}=\left\langle A, F \cup\{t\}, a_{0}, A_{0}\right\rangle$ be an f.s.a. with $\mathscr{L}(\mathbf{A})=L$. For $w \in \mathscr{F}^{*}$, define $S_{w}=\left\{\bar{w}\left(a_{0}\right): \bar{w} \in(\mathscr{F} \cup\{t\})^{*}, \delta_{t}(\bar{w})=w\right\}, B=\left\{S_{w}: w \in \mathscr{F}^{*}\right\}$. This is of course finite as A is finite. For $f \in \mathscr{F}$, define $f\left(S_{w}\right)=S_{f w}$. This makes sense as $S_{f w}$ depends only on S_{w}, not on w. Next let $b_{0}=S_{1}$, and let $B_{0}=\left\{S_{w}: S_{w} \cap A_{0} \neq \varnothing\right\}$. Then $\left\langle B, F, b_{0}, B_{0}\right\rangle$ accepts w iff $w\left(S_{1}\right) \in B_{0}$ iff $S_{w} \cap A_{0} \neq \varnothing$ iff $\bar{w}\left(a_{0}\right) \in A_{0}$, for some $\bar{w} \in \delta_{t}^{-1}(w)$, iff $\bar{w} \in L$, for some $\bar{w} \in \delta_{t}^{-1}(w)$, iff $w \in \delta_{t}(L)$.

Kleene's Theorem

Theorem (Kleene)

Let L be a language. Then L is the language accepted by some f.s.a. iff L is regular.
(\Rightarrow) This has already been proven.
(\Leftarrow) By induction.

- If $L=\{f\}$, then we can use the partial f.s.a. $a \stackrel{f}{\leftrightarrows} a_{0}$, where all functions not drawn are undefined, and $A_{0}=\{a\}$.
- If $L=\{1\}$ use $A=A_{0}=\left\{a_{0}\right\}$, with all f^{\prime} 's undefined.
- Next suppose L_{1} is the language of $\left\langle A, F, a_{0}, A_{0}\right\rangle$ and L_{2} is the language of $\left\langle B, F, b_{0}, B_{0}\right\rangle$. Then $L_{1} \cap L_{2}$ is the language of $\left\langle A \times B, F,\left\langle a_{0}, b_{0}\right\rangle, A_{0} \times B_{0}\right\rangle$, where $f(\langle a, b\rangle)$ is defined to be $\langle f(a), f(b)\rangle$.
- L_{1}^{\prime} is the language of $\left\langle A, F, a_{0}, A-A_{0}\right\rangle$.
- Combining these we see by De Morgan's law that $L_{1} \cup L_{2}$ is the language of a suitable f.s.a..

Kleene's Theorem (Cont'd)

- To handle $L_{1} \cdot L_{2}$, we first expand our type to $\mathscr{F} \cup\{t\}$. Then, mapping each member of B_{0} to the input of a copy of A, we see that $L_{1} \cdot\{t\} \cdot L_{2}$ is the language of some f.s.a. Hence, if we use the preceding lemma, it follows that $L_{1} \cdot L_{2}$ is the language of some
 f.s.a..

Similarly for L_{1}^{*}, let t map each element of A_{0} to a_{0}. Then $\left(L_{1} \cdot\{t\}\right)^{*} \cdot L_{1}$ is the language of this partial f.s.a.; Hence,

$$
L_{1}^{*}=\delta_{t}\left[\left(L_{1} \cdot\{t\}\right)^{*} \cdot L_{1} \cup\{1\}\right]
$$

is the language of some f.s.a..

Monoid of Words and Free Algebra

Definition

Let τ be the mapping from \mathscr{F}^{*} to $T(x)$, the set of terms of type \mathscr{F} over x, defined by $\tau(w)=w(x)$.

Lemma

The mapping τ is an isomorphism between the monoid $\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$ and the monoid $\langle T(x), \circ, x\rangle$, where \circ is "composition".

- If $w_{1} \neq w_{2}$, then, in $T(x), w_{1}(x) \neq w_{2}(x)$. Thus τ is $1-1$; If $w(x) \in T(x)$, then $\tau(w)=w(x)$ and τ is also onto.
Thus τ is a bijection.
Finally, we have

$$
\begin{array}{ll}
- & \tau(1)=1(x)=x ; \\
-\tau\left(\left(f_{1} \cdots f_{n}\right) \cdot\left(g_{1} \cdots g_{m}\right)\right)=f_{1}\left(\cdots\left(f_{n}\left(g_{1} \cdots\left(g_{m}(x)\right) \cdots\right)\right) \cdots\right)= \\
& \left(f_{1} \cdots f_{n}\right)\left(\left(g_{1} \cdots g_{m}\right)(x)\right)=\tau\left(f_{1} \cdots f_{n}\right) \circ \tau\left(g_{1} \cdots g_{m}\right) .
\end{array}
$$

Congruences

Definition

For $\theta \in \operatorname{Con}\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$, let $\theta(x)=\left\{\left\langle w_{1}(x), w_{2}(x)\right\rangle:\left\langle w_{1}, w_{2}\right\rangle \in \theta\right\}$.

Lemma

The map $\theta \mapsto \theta(x)$ is a lattice isomorphism from the lattice of congruences on $\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$ to the lattice of fully invariant congruences on $\mathrm{T}(x)$.

- Suppose $\theta \in \operatorname{Con}\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$ and $\left\langle w_{1}, w_{2}\right\rangle \in \theta$.

For $u \in \mathscr{F}^{*}$, we have $\left\langle u w_{1}, u w_{2}\right\rangle \in \theta$. Thus, $\theta(x)$ is a congruence on $\mathrm{T}(x)$.
For $u \in \mathscr{F}^{*}$, we have $\left\langle w_{1} u, w_{2} u\right\rangle \in \theta$. Hence, $\theta(x)$ is fully invariant.

Acceptance by f.s.a.'s and Finite Index

Lemma

If L is a language of type \mathscr{F} accepted by some f.s.a., then there is a $\theta \in \operatorname{Con}\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$, such that θ is of finite index (i.e., $\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle / \theta$ is finite) and $L^{\theta}=L$, i.e., L is a union of cosets of θ.

- Choose \mathbf{A} an f.s.a. of type \mathscr{F}, such that $\mathscr{L}(\mathbf{A})=L$. Let $\mathbf{F}_{A}(\bar{x})$ be the free algebra freely generated by \bar{x} in the variety $V(\langle A, F\rangle)$. Let $\alpha: \mathbf{T}(x) \rightarrow \mathbf{F}_{A}(\bar{x})$ be the natural homomorphism defined by $\alpha(x)=\bar{x}$, and let $\beta: \mathbf{F}_{A}(\bar{x}) \rightarrow\langle A, F\rangle$ be the homomorphism defined by $\beta(\bar{x})=a_{0}$.
Then, with $L(x)=\{w(x): w \in L\}$,

$$
L(x)=\alpha^{-1}\left(\beta^{-1}\left(A_{0}\right)\right)=\bigcup_{p \in \beta^{-1}\left(A_{0}\right)} p / \operatorname{ker} \alpha .
$$

Hence, $L(x)=L(x)^{\text {ker } \alpha}$. But ker α is a fully invariant congruence on $\mathbf{T}(x)$. Thus, ker $\alpha=\theta(x)$, for some $\theta \in \operatorname{Con}\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$. Hence, $L(x)=L(x)^{\theta(x)}$ and $L=L^{\theta}$. We know ker α is of finite index. Thus, θ is also of finite index.

Myhill's Theorem

Theorem (Myhill)

Let L be a language of type \mathscr{F}. Then L is the language of some f.s.a. iff there is a $\theta \in \operatorname{Con}\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$ of finite index such that $L^{\theta}=L$.
(\Rightarrow) This was proved by the preceding lemma.
(\Leftrightarrow) Suppose θ is a congruence of finite index on \mathscr{F}^{*}, such that $L^{\theta}=L$. Let

$$
\begin{array}{ll}
A=\left\{w / \theta: w \in \mathscr{F}^{*}\right\}, & f(w / \theta)=f w / \theta, \text { for } f \in \mathscr{F}, \\
a_{0}=1 / \theta, & A_{0}=\{w / \theta: w \in L\} .
\end{array}
$$

We have

$$
\begin{array}{lll}
\left\langle A, F, a_{0}, A_{0}\right\rangle \text { accepts } w & \text { iff } w(1 / \theta) \in A_{0} \\
& \text { iff } w / \theta \in A_{0} \\
& \text { iff } w / \theta=u / \theta \text { for some } u \in L \\
& \text { iff } w \in L .
\end{array}
$$

Equivalence of Words Modulo a Language

Definition

Given a language L of type \mathscr{F}, define the binary relation \equiv ㅇn \mathscr{F}^{*} by

$$
w_{1} \equiv L w_{2} \quad \text { iff } \quad\left(u w_{1} v \in L \Leftrightarrow u w_{2} v \in L, \text { for } u, v \in \mathscr{F}^{*}\right) .
$$

Lemma

If we are given L, a language of type \mathscr{F}, then \equiv_{L} is the largest congruence θ on $\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$, such that $L^{\theta}=L$.

- \equiv_{L} is an equivalence relation on \mathscr{F}^{*}. If $w_{1} \equiv_{L} w_{2}$ and $t_{1} \equiv_{L} t_{2}$, then for $u, v \in \mathscr{F}^{*}, u w_{1} t_{1} v \in L$ iff $u w_{1} t_{2} v \in L$ iff $u w_{2} t_{2} v \in L$. Hence, $w_{1} t_{1} \equiv L w_{2} t_{2}$ and $\equiv L$ is a congruence on $\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$.
Suppose $w \in L$ and $w \equiv_{L} t$. Then $1 \cdot w \cdot 1 \in L \Leftrightarrow 1 \cdot t \cdot 1 \in L$ implies $t \in L$. Hence, $w / \equiv L \subseteq L$. Thus, $L^{\equiv L}=L$.
Finally, suppose $L^{\theta}=L$. Then, for $\left\langle w_{1}, w_{2}\right\rangle \in \theta$ and $u, v \in \mathscr{F}^{*}$, $\left\langle u w_{1} v, u w_{2} v\right\rangle \in \theta$, whence, since $u w_{1} v / \theta=u w_{2} v / \theta$, we obtain $u w_{1} v \in L \Leftrightarrow u w_{2} v \in L$. So $w_{1} \equiv w_{2}$. Hence, $\theta \subseteq \equiv \equiv_{L}$.

The Syntactic Monoid and Regular Languages

Definition

If we are given a language L of type \mathscr{F}, then the syntactic monoid M_{L} of L is defined by

$$
M_{L}=\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle / \equiv L .
$$

Theorem

A language L is accepted by some f.s.a. iff M_{L} is finite.

- Lis accepted by some f.s.a. iff, by Myhill's Theorem, there exists $\theta \in \operatorname{Con}\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle$ of finite index, such that $L^{\theta}=L$, iff, by the preceding lemma, L^{\equiv} has finite index iff $M_{L}=\left\langle\mathscr{F}^{*}, \cdot, 1\right\rangle / \equiv L$ is finite.

