HOMEWORK 7: SOLUTIONS - MATH 110 INSTRUCTOR: George Voutsadakis

Problem 1 Is the matrix $A = \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$ invertible? If yes, can you find its inverse A^{-1} and verify that $AA^{-1} = A^{-1}A = I$?

Solution:

We have $\begin{vmatrix} 1 & -2 \\ 3 & 5 \end{vmatrix} = 1 \cdot 5 - (-2) \cdot 3 = 5 + 6 = 11 \neq 0$. Hence A is invertible and $A^{-1} = \frac{1}{11} \begin{bmatrix} 5 & 2\\ -3 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{11} & \frac{2}{11}\\ -\frac{3}{11} & \frac{1}{11} \end{bmatrix}$

To verify that A^{-1} is the matrix computed above, we multiply A on the left and on the right by A^{-1} and check whether we get \mathbf{I}_2 as the result of both multiplications.

$$A \cdot A^{-1} = \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} \frac{5}{11} & \frac{2}{11} \\ -\frac{3}{11} & \frac{1}{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}_2.$$

Similarly,

$$A^{-1} \cdot A = \begin{bmatrix} \frac{5}{11} & \frac{2}{11} \\ -\frac{3}{11} & \frac{1}{11} \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}_2.$$

Problem 2 Is the matrix $A = \begin{bmatrix} 2 & -1 \\ 5 & 3 \end{bmatrix}$ invertible? If yes, find its inverse.

Solution: We have $\begin{vmatrix} 2 & -1 \\ 5 & 3 \end{vmatrix} = 2 \cdot 3 - (-1) \cdot 5 = 6 + 5 = 11 \neq 0$. Hence A is invertible and $A^{-1} = \frac{1}{11} \begin{bmatrix} 3 & 1 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{11} & \frac{1}{11} \\ -\frac{5}{11} & \frac{2}{11} \end{bmatrix}.$

Problem 3 Use the Gauss-Jordan method to solve the system of equations

Solution:

We take the augmented matrix of the system and perform row operations to find the solutions:

$$\begin{bmatrix} 2 & 1 & 1 & | & 6 \\ -1 & 5 & -1 & | & -10 \\ -2 & -3 & 1 & | & 2 \end{bmatrix}^{r_1 \leftrightarrow r_2} \begin{bmatrix} -1 & 5 & -1 & | & -10 \\ 2 & 1 & 1 & | & 6 \\ -2 & -3 & 1 & | & 2 \end{bmatrix}^{r_1 \leftarrow r_2} \begin{bmatrix} 1 & -5 & 1 & | & 10 \\ -2 & -3 & 1 & | & 2 \end{bmatrix}^{r_1 \leftarrow r_2 - 2r_1} \begin{bmatrix} 1 & -5 & 1 & | & 10 \\ 0 & 11 & -1 & | & -14 \\ -2 & -3 & 1 & | & 2 \end{bmatrix}^{r_3 \leftarrow r_3 + 2r_1} \begin{bmatrix} 1 & -5 & 1 & | & 10 \\ 0 & 11 & -1 & | & -14 \\ 0 & -13 & 3 & | & 22 \end{bmatrix}^{r_2 \leftarrow \frac{1}{11}r_2} \begin{bmatrix} 1 & -5 & 1 & | & 10 \\ 0 & 1 & -\frac{1}{11} & | & -\frac{14}{11} \\ 0 & -13 & 3 & | & 22 \end{bmatrix}^{r_1 \leftarrow r_1 + 5r_2} \begin{bmatrix} 1 & 0 & \frac{6}{11} & | & \frac{40}{11} \\ 0 & 1 & -\frac{1}{11} & | & -\frac{14}{11} \\ 0 & -13 & 3 & | & 22 \end{bmatrix}^{r_3 \leftarrow r_3 + 13r_2} \begin{bmatrix} 1 & 0 & \frac{6}{11} & | & \frac{40}{11} \\ 0 & 1 & -\frac{1}{11} & | & -\frac{14}{11} \\ 0 & 0 & \frac{20}{11} & | & \frac{60}{11} \end{bmatrix}^{r_3 \leftarrow \frac{11}{20}r_3} \begin{bmatrix} 1 & 0 & \frac{6}{11} & | & \frac{40}{11} \\ 0 & 1 & -\frac{1}{11} & | & -\frac{14}{11} \\ 0 & 0 & 1 & | & 3 \end{bmatrix}^{r_1 \leftarrow r_1 - \frac{6}{11}r_3} \prod_{r_2 \leftarrow r_2 + \frac{1}{11}r_3} \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & 3 \end{bmatrix}$$

Hence (x, y, z) = (2, -1, 3).

Problem 4 Use the inverse matrix method to compute the solution of the system

$$\left\{\begin{array}{rrrr} 2x+y&=&5\\ -3x+2y&=&3\end{array}\right\}.$$

Solution:

We have

$$\begin{vmatrix} 2 & 1 \\ -3 & 2 \end{vmatrix} = 4 + 3 = 7 \neq 0.$$

Thus, the matrix $A = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$ is invertible with inverse $A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{7} & -\frac{1}{7} \\ \frac{3}{7} & \frac{2}{7} \end{bmatrix}$. Therefore $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{2}{7} & -\frac{1}{7} \\ \frac{3}{7} & \frac{2}{7} \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$,

i.e., (x, y) = (1, 3).

Problem 5 Let \rightarrow be the connective that is defined by the following truth table

$$\begin{array}{c|ccc} P & Q & P \rightarrow Q \\ \hline F & F & T \\ F & T & T \\ T & F & F \\ T & T & T \end{array}$$

- 1

Use the truth table method to show that $\neg(P \lor Q) \equiv \neg P \land \neg Q$ and $P \to Q \equiv \neg Q \to \neg P$.

Solution:

We construct the truth tables

					$\neg (P \lor Q)$	$\neg P \wedge \neg Q$
F	F	T	T	F	T	T
F	T	T	F	T	F	F
T	F	F	T	T	F	F
T	T	F	F	F T T T	F	F

Since the last two columns agree on all rows, we have $\neg(P \lor Q) \equiv \neg P \land \neg Q$. We proceed similarly with the second logical equivalence

					$\neg Q \rightarrow \neg P$
F	F	T	T	T T	Т
F	T	T	F	T	T
Τ	F	F	T	F	F
Τ	T	F	T F		T

Since the last two columns agree on all rows, we have $P \to Q \equiv \neg Q \to \neg P$.

Problem 6 The logical connective |, called **Sheffer stroke** is defined by the following truth table

Create the truth table for P|P and for (P|Q)|(P|Q). What do you observe?

Solution:

We have

	P	Q	P Q	(P Q) (P Q)
$P \mid P \mid P$	\overline{F}	F	Т	F
F T	F	T	T	F
T F	T	F	T	F
1	T	T	F	T

We observe that $P|P \equiv \neg P$ and that $(P|Q)|(P|Q) \equiv P \land Q$.

Problem 7 Use truth tables to determine whether the following argument form is valid

$$\frac{P \to Q, Q \to P}{P \lor Q}.$$

Solution:

We have

Ρ	Q	$P \to Q$	$Q \to P$	$P \vee Q$
F	F	Т	T	F
F	T	T	F	T
T	F	F	T	T
T	T	T	T	T

Since in the first row both $P \to Q$ and $Q \to P$ are true but $P \lor Q$ is false, one may not conclude $P \lor Q$ from the assumptions $P \to Q$ and $Q \to P$. Hence, the given argument form is not valid.