HOMEWORK 7: SOLUTIONS - MATH 110
INSTRUCTOR: George Voutsadakis

Problem 1 Is the matriz A = [ ; _52 } invertible? If yes, can you find its inverse A~

and verify that AA™' = A 1A=17

Solution:

We have‘ 21)) —2 ‘:1-5—(—2)-3:54—6:117&0. Hence A is invertible and
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1| -3 1 -3 4

To verify that A~! is the matrix computed above, we multiply A on the left and on the
right by A~! and check whether we get Iy as the result of both multiplications.
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Problem 2 Is the matriz A = [ 5 3 ] vertible? If yes, find its inverse.
Solution:
We have ‘ ? _31 ‘ =2-3—(—-1)-5=6+5=11%#0. Hence A is invertible and
3 1
1 A I
11| -5 2 -9 i
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Problem 3 Use the Gauss-Jordan method to solve the system of equations

2z4+y+2z = 6
—x+5—2z = -—10
2z -3y+z =



Solution:
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We take the augmented matrix of the system and perform row operations to find the
solutions:
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Hence (z,y,z) = (2,—1,3).

Problem 4 Use the inverse matrix method to compute the solution of the system

2e+y = 5
—3r+2y = 3 |°
Solution:
We have
2 M43 —720
-3 2| o '
Thus, the matrix A = 2 1 is invertible with inverse A= = 1 2 -1 _
us, € matrix = 3 9 S 1mve eWwW verse =7 3 2 =

Therefore

|-15]
ie., (z,y) = (1,3).

Problem 5 Let — be the connective that is defined by the following truth table

P Q|P—Q
F F| T
F T T
T F| F
T T T
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Use the truth table method to show that =(PV Q) = =P A—Q and P — Q = -Q — —P.



Solution:
‘We construct the truth tables

P Q|-P -Q PVQ|-(PVQ) -PA-Q
F F|T T F T T
FT|\T F T F a
T F|F T T F F
T T|\F F T F F

Since the last two columns agree on all rows, we have =(P V Q) = =P A =Q. We proceed
similarly with the second logical equivalence

P Q|-P -Q|P—Q -Q—-P
F F|\T T T T
F T|T F T T
T F| F T F F
T T| F F T T
Since the last two columns agree on all rows, we have P — Q) = -Q — —P. |

Problem 6 The logical connective |, called Sheffer stroke is defined by the following truth
table

F
F
T
T

Create the truth table for P|P and for (P|Q)|(P|Q). What do you observe?

Solution:
We have
P Q| PQ|(PIOIPIQ)
P| PP F F| T F
F| T F T\ T F
T| F T F| T F
T T| F T
We observe that P|P = =P and that (P|Q)|(P|Q) =P A Q. [ ]

Problem 7 Use truth tables to determine whether the following argument form s valid

P—-Q,Q—P
PVQ




Solution:

We have
P Q|P—-Q Q=P PVQ
F F T T F
F T T F T
T F F T T
T T T T T

Since in the first row both P — @ and Q — P are true but PV Q is false, one may not
conclude PV @ from the assumptions P — @ and Q — P. Hence, the given argument form
is not valid. |



