HOMEWORK 9: SOLUTIONS - MATH 110 INSTRUCTOR: George Voutsadakis

Problem 1 Let $U = \mathbf{N}$, $A = \{n \in \mathbf{N} : n = 2^p 3^q \text{ for some nonnegative integers } p, q\}$ and $B = \{m \in \mathbf{N} : m = 6^r \text{ for some nonnegative integer } r\}$. Is A = B? Rigorously justify your answer.

Solution:

Note that $2 \in A$, since $2 = 2^1 \cdot 3^0$. But $2 \notin B$, since B only contains powers of 6 and 2 is not a power of 6. Hence $A \neq B$.

Problem 2 Let $U = \{a, b, c, d, e, f, g\}, A = \{a, c, e, g\}$ and $B = \{d, e, f, g\}$. Find $A \cup B, A \cap B, A - B$ and B^c .

Solution:

We have $A \cup B = \{a, c, d, e, f, g\}$. $A \cap B = \{e, g\}$. Also $A - B = \{a, c\}$ and $B^c = \{a, b, c\}$.

Problem 3 Let U be the set of all car owners in the U.S. Let F be the set of all persons in U that own a Ford and C the set of all those that own a Chevy. Describe the members of $F \cap C, F^c \cap C^c, C - F$ and F^c .

Solution:

 $F \cap C$ consists of all car owners that own both a Ford and a Chevy, $F^c \cap C^c$ consists of those car owners that own neither a Ford nor a Chevy. C - F is the set of all those car owners that own a Ford but do not own a Chevy. Finally F^c consists of all those car owners that do not own a Ford.

Problem 4 Let $U = \mathbf{R}$, $A = \{x \in \mathbf{R} : -3 \le x < 1\}$ and $B = \{x \in \mathbf{R} : -3 < x < 3\}$. Find $A \cap B$, $A \cup B$ and B - A.

Solution:

We have

$$A \cap B = \{x \in \mathbf{R} : -3 < x < 1\}.$$
$$A \cup B = \{x \in \mathbf{R} : -3 \le x < 3\}.$$
$$B - A = \{x \in \mathbf{R} : 1 \le x < 3\}.$$

Problem 5 Let $A = \{a, b\}$ and $B = \{0, 1, 2\}$. Write the sets $A \times B, B \times (A \times B)$ and $(B \times B) \times A$.

Solution:

$$\begin{aligned} A\times B &= \{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)\}.\\ B\times (A\times B) &= \{(0,(a,0)),(0,(a,1)),(0,(a,2)),(0,(b,0)),(0,(b,1)),(0,(b,2)),\\ &(1,(a,0)),(1,(a,1)),(1,(a,2)),(1,(b,0)),(1,(b,1)),(1,(b,2)),\\ &(2,(a,0)),(2,(a,1)),(2,(a,2)),(2,(b,0)),(2,(b,1)),(2,(b,2))\}\\ B\times B &= \{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(3,1),(3,2),(3,3)\}.\end{aligned}$$

Therefore

Problem 6 Do you think that for all sets A, B, C it is true that $A \cap (B - C) = (A \cap B) - (A \cap C)$? If yes, prove it. If no, find a universe U and three sets A, B, C in U, such that the above identity fails (i.e., give a **counterexample** to the statement).

Solution:

The given statement is true, for all sets A, B and C. To show this we need to show both $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$ and $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$.

First, we show that $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$. Let x be a particular but arbitrary element of $A \cap (B - C)$. Then, by the definition of intersection, $x \in A$ and $x \in B - C$. Hence, by the definition of difference, $x \in A$ and $x \in B$ and $x \notin C$ are all true. Since $x \in A$ and $x \in B$ are both true, by the definition of intersection, $x \in A \cap B$. Also, since $x \notin C$, we must have $x \notin A \cap C$, since $A \cap C \subseteq C$. Therefore, both $x \in A \cap B$ and $x \notin A \cap C$ are true. Hence, by the definition of difference, $x \in (A \cap B) - (A \cap C)$. So every $x \in A \cap (B - C)$ is also an element in $(A \cap B) - (A \cap C)$. I.e., $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$.

Next, we show that $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$. Let x be a particular but arbitrary element of $(A \cap B) - (A \cap C)$. Then, by the definition of difference, $x \in A \cap B$ and $A \notin A \cap C$. Thus, by the definition of intersection, $x \in A$ and $x \in B$ and at the same time $x \notin A$ or $x \notin C$. Therefore, since $x \in A$ and $x \in B$, for the or statement to be true, we must have $x \notin C$. In other words, $x \in A, x \in B$ and $x \notin C$ are all true. Thus, by the definition of difference $x \in A$ and $x \in B - C$. Thus, by the definition of intersection, $x \in A \cap (B - C)$. Thus, every element of $(A \cap B) - (A \cap C)$ is also an element of $A \cap (B - C)$. This shows that $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$.

Having shown that both $A \cap (B-C) \subseteq (A \cap B) - (A \cap C)$ and $(A \cap B) - (A \cap C) \subseteq A \cap (B-C)$ are true, we may now conclude that $A \cap (B-C) = (A \cap B) - (A \cap C)$.