EXAM 1: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the equation of the line that is perpendicular to 2x - 7y = 21 and passes through the point (-2,7).

Solution:

The slope of the given line may be found by solving its equation for y: We have: 7y = 2x - 21, whence $y = \frac{2}{7}x - 3$. Hence $m = \frac{2}{7}$. The unknown line is perpendicular to the given one, whence its slope is also $-\frac{7}{2}$. Since, it goes through the point (-2, 7), its equation is given by the point-slope form:

$$y - 7 = -\frac{7}{2}(x - (-2)),$$
 i.e., $y - 7 = -\frac{7}{2}x - 7,$

or $y = -\frac{7}{2}x$.

Problem 2 Find the equation of the line that goes through the points (-4,3) and (5,27).

Solution:

The slope of the line is given by

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{27 - 3}{5 - (-4)} = \frac{24}{9} = \frac{8}{3}$$

Thus, its equation is $y - 3 = \frac{8}{3}(x - (-4))$ i.e., $y - 3 = \frac{8}{3}x + \frac{32}{3}$ or $y = \frac{8}{3}x + \frac{41}{3}$.

Problem 3 The cost C in terms of the number of items x produced is given by C(x) = 7x + 36 and the revenue by R(x) = 9x. Find the range of values of x for which the company will at least break even and the revenue, when the company breaks even.

Solution:

The company will at least break even when $R(x) \ge C(x)$. Thus we have $9x \ge 7x + 36$, which gives $2x \ge 36$, i.e., $x \ge 18$.

The revenue when the company breaks even is given by $R(18) = 9 \cdot 18 = 162$.

Problem 4 The demand price p of an item in terms of the quantity q is given by $p = -q^2 + 120$ and the supply price p in term of the quantity q by p = 10q. Determine the equilibrium price and the equilibrium supply.

Solution:

To find the equilibrium quantity (both supply and demand) we set $-q^2 + 120 = 10q$, whence $q^2 + 10q - 120 = 0$. We use the quadratic formula to solve for q. The discriminant is

$$D = b^2 - 4ac = 10^2 - 4 \cdot 1 \cdot (-120) = 580.$$

Therefore

$$q_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-10 \pm \sqrt{580}}{2} = \frac{-10 \pm 2\sqrt{145}}{2} = -5 \pm \sqrt{145}$$

and, since the quantity cannot be negative we get $q = -5 + \sqrt{145}$. Now the equilibrium price is given by $p = 10(-5 + \sqrt{145})$.

Problem 5 Solve the inequality $|2x - \frac{7}{3}| - 8 \le 15$.

Solution:

We have $|2x - \frac{7}{3}| - 8 \le 15$ implies $|2x - \frac{7}{3}| \le 23$, whence $-23 \le 2x - \frac{7}{3} \le 23$, and, therefore, $-23 + \frac{7}{3} \le 2x \le 23 + \frac{7}{3}$, i.e., $-\frac{69}{3} + \frac{7}{3} \le 2x \le \frac{69}{3} + \frac{7}{3}$, whence $-\frac{62}{3} \le 2x \le \frac{76}{3}$. Therefore $-\frac{31}{3} \le x \le \frac{38}{3}$.

Problem 6 Find the domain of $f(x) = \sqrt{\frac{x-3}{-x+7}}$.

Solution:

First $-x + 7 \neq 0$, whence $x \neq 7$. Since $\frac{x-3}{-x+7}$ appears underneath a square root, we must also have $\frac{x-3}{-x+7} \ge 0$. We may now set up the sign table to find $3 \le x < 7$.