HOMEWORK 1: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Sketch the graph of $y = \frac{1}{2}x - 2$.

Solution:

Problem 2 Find the x- and y-intercepts of the graph in 1.

Solution:

For the x-intercept, set y = 0. Then $\frac{1}{2}x - 2 = 0$, whence x = 4. For the y-intercept, set x = 0. Then y = -2.

Problem 3 Sketch the graph of y = -2x - 5.

Solution:

Problem 4 Find the x- and y-intercepts of the graph in 3.

Solution:

For the x-intercept, set y = 0. Then -2x - 5 = 0, whence $x = -\frac{5}{2}$. For the y-intercept, set x = 0. Then y = -5.

Problem 5 Find the slope of the line passing through the points (-2, 3) and (2, -9).

Solution:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-9 - 3}{2 - (-2)} = -\frac{12}{4} = -3.$$

Problem 6 Find the equation of the line having slope $m = \frac{1}{3}$ and y-intercept b = -2.

Solution:

Use the slope intercept form y = mx + b. Since the slope $m = \frac{1}{3}$ and the *y*-intercept is b = -2, we have $y = \frac{1}{3}x - 2$.

Problem 7 Find the equation of the line that is parallel to $y = -\frac{1}{3}x + 5$ and goes through the point (2,5).

Solution:

The slopes of the two lines will have to be the same since they are parallel. Thus the slope of the line we are looking for is $m = -\frac{1}{3}$. Now since we also have the point (a, b) = (2, 5) on that line we may use the point-slope form y - b = m(x - a). We get $y - 5 = -\frac{1}{3}(x - 2)$ or $y - 5 = -\frac{1}{3}x + \frac{2}{3}$, i.e., $y = -\frac{1}{3}x + \frac{17}{3}$.

Problem 8 Find the equation of the line that has slope $m = -\frac{1}{4}$ and goes through the point (-4,3).

Solution:

Working in the same way as in 7, with $m = -\frac{1}{4}$ and (a, b) = (-4, 3), we get $y - 3 = -\frac{1}{4}(x+4)$ or $y = -\frac{1}{4}x + 2$.