HOMEWORK 4: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the domain of the function $f(x) = \sqrt{\frac{x^2 - 3x - 18}{x + 1}}$.

Solution:

We need to ensure that $x+1\neq 0$ and that $\frac{x^2-3x-18}{x+1}\geq 0$. The first one gives $x+1\neq 0$, whence we must have $x\neq -1$. The second one gives $\frac{(x-6)(x+3)}{x+1}\geq 0$. We may now construct the sign table for the fraction $\frac{(x-6)(x+3)}{x+1}$ and this will give us that $\frac{(x-6)(x+3)}{x+1}\geq 0$ if $-3\leq x<-1$ or $x\geq 6$. Hence $D(f)=\{x:-3\leq x<-1 \text{ or } x\geq 6\}$.

Problem 2 Graph the piece-wise linear function

$$f(x) = \begin{cases} x + 6, & \text{if } x \le 2\\ -\frac{1}{2}x + 1, & \text{if } x > 2 \end{cases}$$

Solution:

we graph x+6 and keep the part of its graph for $x \le 2$ and on the same system of coordinates then graph $-\frac{1}{2}x+1$ and keep the part with x>2. The graph would have been shown below:

Problem 3 Consider the function $g(x) = -x^2 + x + 6$. Its graph is a parabola. Find its vertex and x-intercepts, state whether it opens up or down and make a rough sketch of it.

Solution:

The vertex is $V=(-\frac{b}{2a},f(-\frac{b}{2a}))=(-\frac{1}{2(-1)},f(\frac{1}{2}))=(\frac{1}{2},\frac{25}{4})$. For the x-intercepts, we set y=0 and find $-x^2+x+6=0$, whence $x^2-x-6=0$, i.e., (x-3)(x+2)=0 and we have x=-2 or x=3. the graph opens down since a=-1<0. The sketch would have appeared here:

Problem 4 Consider the function $g(x) = x^2 + 3x$. Its graph is a parabola. Find its vertex and x-intercepts, state whether it opens up or down and make a rough sketch of it.

Solution:

The vertex is $V=(-\frac{b}{2a},f(-\frac{b}{2a}))=(-\frac{3}{2\cdot 1},f(-\frac{3}{2}))=(-\frac{3}{2},-\frac{9}{4})$. For the x-intercepts, we set y=0 and find $x^2+3x=0$, whence x(x+3)=0, i.e., x=-3 or x=0. the graph opens up since a=1>0. The sketch would have appeared here:

Problem 5 Find the equation of the function whose graph is a parabola with vertex V = (1, -3) passing through (3, 9).

Solution:

In the form $f(x) = a(x-h)^2 + k$ we have that the vertex is located at (h,k) = (1,-3). Whence the equation is $f(x) = a(x-1)^2 - 3$. But the parabola also goes through the point (3,9), whence we must have

$$9 = a(3-1)^2 - 3$$
, i.e., $9 = a \cdot 2^2 - 3$

which yields 4a - 3 = 9, and therefore a = 3. Hence the equation is $f(x) = 3(x - 1)^2 - 3$.

Problem 6 When the price of a bizz is p(x) = 300 - 2x, then x bizz are sold. Find an expression for the revenue R(x) in terms of the number x of bizz. Find the number of bizz that have to be sold to maximize the revenue and the maximum revenue.

Solution:

We know that the revenue is given by the product of the number of items sold times the price of each item. Thus R(x) = x(300-2x) which yields an equation $R(x) = -2x^2 + 300x$ which is quadratic in x, i.e., whose graph is a parabola and it opens down since a = -1 < 0. Hence it has a maximum that is attained at its vertex: $V = (-\frac{b}{2a}, R(-\frac{b}{2a})) = (-\frac{300}{2(-2)}, R(\frac{300}{4})) = (75, 11250)$. Thus the maximum revenue is \$11,250 and occurs when 75 bizz are sold.

Problem 7 An object is thrown upward with initial velocity 10 feet per second from an initial height of 11 feet. Then its height after t seconds is given by $h(t) = -t^2 + 10t + 11$. Find the maximum height that the object will attain and how long it will take for the object to hit the ground.

Solution:

The maximum height will be attained at the vertex of the parabola. hence we have $V = (-\frac{b}{2a}, h(-\frac{b}{2a})) = (-\frac{10}{2(-1)}, h(\frac{10}{2})) = (5, h(5)) = (5, 36)$. Thus after t = 5 seconds the object will reach its maximum height h = 36 feet. The object will hit the ground when h = 0. Thus we have $-t^2 + 10t + 11 = 0$, whence $t^2 - 10t - 11 = 0$, i.e., (t - 11)(t + 1) = 0 and therefore t = -1 or t = 11. But time cannot be negative, whence the object will hit the ground after t = 11 seconds.

Problem 8 Create the sign table and graph the function $f(x) = x^3 + 3x^2 - 10x$.

Solution:

First factor into linear terms to find the zeros of the function: $x^3 + 3x^2 - 10x = 0$ implies $x(x^2 + 3x - 10) = 0$, i.e., x(x + 5)(x - 2) = 0, whence x = -5 or x = 0 or x = 2. Create now the sign table to find that $f(x) \le 0$, if $x \le 5$ or $0 \le x \le 2$ and $f(x) \ge 0$ if $-5 \le x \le 0$ or $x \ge 2$. Now put the zeros on your coordinate system and plot the graph according to the data in the sign table.