HOMEWORK 5: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Create the sign table and graph the function $f(x) = x^4 - 6x^2 + 8$.

Solution:

We have f(x) = 0 implies $x^4 - 6x^2 + 8 = 0$, whence $(x^2 - 2)(x^2 - 4) = 0$. Thus $(x - \sqrt{2})(x + \sqrt{2})(x - 2)(x + 2) = 0$, and therefore the sign table must have four points $-2, -\sqrt{2}, \sqrt{2}$ and 2 and five rows corresponding to $x - \sqrt{2}, x + \sqrt{2}, x - 2, x + 2$ and f(x). The sign of f(x) turns out to be + if x < -2, - if $-2 < x < -\sqrt{2}$, + if $-\sqrt{2} < x < \sqrt{2}$, - if $-\sqrt{2} < x < 2$ and, finally + if x > 2.

The rough sketch follows:

Problem 2 Study the function $f(x) = \frac{2x-7}{-5x+2}$. (Studying here means what we did in class for rational functions: Find the domain, find the x- and y-intercepts, find the horizontal and vertical asymptotes and then roughly plot the graph.)

Solution:

The domain is $D(f) = \mathbb{R} - \{\frac{2}{5}\}$, since $\frac{2}{5}$ is a root of the denominator. For the *x*-intercept, set y = 0. Then 2x - 7 = 0, whence $x = \frac{7}{2}$. Thus $(\frac{7}{2}, 0)$ is the *x*-intercept. For the *y*-intercept, set x = 0. We get $y = -\frac{7}{2}$, i.e., $(0, -\frac{7}{2})$ is the *y*-intercept. The horizontal asymptote is $y = \frac{2}{-5} = -\frac{2}{5}$ and the vertical asymptote is $x = \frac{2}{5}$.

The rough sketch follows:

Problem 3 Find the equations of the vertical and horizontal asymptotes of the function $f(x) = \frac{x^2 - 4x + 3}{x^2 - 6x + 5}$.

Solution:

The horizontal asymptote is $y = \frac{1}{1} = 1$. To find the vertical asymptotes, we factor both numerator and denominator into linear factors: $f(x) = \frac{(x-3)(x-1)}{(x-5)(x-1)}$. Thus, the only vertical asymptote occurs at the root x = 5 of the denominator that is not a root of the numerator.

Problem 4 Graph on the same axes the functions $f(x) = 3^x$, $g(x) = 3^{-x}$ and $h(x) = -3^x$. Before graphing compute their values at x = -1, x = 0 and x = 1 and depict those clearly both on a small table and on your graphs.

Solution:

We have

x	f(x)	g(x)	h(x)
-1	$\frac{1}{3}$	3	$-\frac{1}{3}$
0	1	1	-1
1	3	$\frac{1}{3}$	-3

The graphs follow:

Problem 5 Solve the equation $9^{x^2} = 81^{\frac{3}{2}x+5}$.

Solution:

We have $9^{x^2} = 81^{\frac{3}{2}x+5}$ implies $9^{x^2} = (9^2)^{\frac{3}{2}x+5}$, whence $x^2 = 2(\frac{3}{2}x+5)$. Therefore $x^2 = 3x + 10$, which yields $x^2 - 3x - 10 = 0$. This gives (x-5)(x+2) = 0, i.e., x = -2 or x = 5.

Problem 6 Solve the equation $7^{3x+7} = (\frac{1}{7})^{5x-8}$.

Solution:

We have $7^{3x+7} = (\frac{1}{7})^{5x-8}$ implies $7^{3x+7} = (7^{-1})^{5x-8}$, whence 3x + 7 = -(5x - 8). Therefore 3x + 7 = -5x + 8. Hence 8x = 1, which, finally, yields $x = \frac{1}{8}$.

Problem 7 Culture studies in the lab have determined that the population of an organism A as a function of time t is given by $f(t) = e^{t^2}$. At the same time, the population of another organism B in the same culture has been increasing according to the function $g(t) = \sqrt{e^{16t+40}}$. At what time will the two organisms have the same populations in the culture?

Solution:

We have $e^{t^2} = \sqrt{e^{16t+40}}$, whence $e^{t^2} = (e^{\frac{1}{2}})^{16t+40}$, i.e., $t^2 = \frac{1}{2}(16t+40)$. This gives $t^2 = 8t+20$, whence $t^2 - 8t - 20 = 0$. We thus get (t-10)(t+2) = 0, i.e., t = -2 or t = 10. Since t represents time t = 10.

Problem 8 Compute $\ln(\sqrt[5]{e^{15}})$ and $\ln(e^{\frac{2}{5}})$ without using a calculator.

Solution:

We get $\ln(\sqrt[5]{e^{15}}) = \ln e^{\frac{15}{5}} = \frac{15}{5} = 3$. Similarly, $\ln(e^{\frac{2}{5}}) = \frac{2}{5}$.