EXAM 1: SOLUTIONS - MATH 215 INSTRUCTOR: George Voutsadakis

Problem 1 Let P and Q be propositional forms. Define the new connective \Box by the following truth table

P	Q	$P \Box Q$
\overline{F}	F	F
F	T	T
T	F	T
T	T	F

- 1. Prove that $P \Box Q$ is equivalent to the negation of $P \Leftrightarrow Q$.
- 2. Is $P \Box Q$ equivalent to $(P \lor Q) \land \sim (P \land Q)$?

Solution:

1. We have

P	Q	$P \Leftrightarrow Q$	$P\Box Q$	$\sim (P \Leftrightarrow Q)$
F	F	Т	F	F
F	T	F	T	T
T	F	F	T	T
T	T	T	F	F
	F F T	$\begin{array}{ccc} F & F \\ F & T \\ T & F \\ T & F \\ \end{array}$	$\begin{array}{c ccc} F & F & T \\ F & T & F \\ T & F & F \\ T & F & F \\ T & T & T & T \end{array}$	$\begin{array}{c cccc} F & F & T & F \\ F & T & F & T \\ T & F & F & T \\ T & F & F & T \\ T & T & T & T \\ \end{array}$

Therefore $P \Box Q \equiv \sim (P \Leftrightarrow Q)$.

2. We have

					$P \Box Q$	$(P \lor Q) \land \sim (P \land Q)$
F	F	F	F	T	F	F
F	T	T	F	T	T	T
T	F	T	F	T T T	T	T
T	T	T	T	F	F	F

Therefore $P \Box Q \equiv (P \lor Q) \land \sim (P \land Q).$

Problem 2 1. Give the definition of the converse and of the contrapositive of an implication.

2. Prove that the contrapositive is equivalent to the original implication.

Solution:

1. The converse of $P \Rightarrow Q$ is $Q \Rightarrow P$. The contrapositive of $P \Rightarrow Q$ is $\sim Q \Rightarrow \sim P$.

2. We have

	-	-			$\sim Q \Rightarrow \sim P$
F	F	T	T	T	T
F	T	F	T	T	T
-	-	T	-	F	F
T	T	F	F	T	T

Therefore $P \Rightarrow Q \equiv \sim Q \Rightarrow \sim P$.

Problem 3 1. Is $((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \land (Q \Rightarrow R))$ a tautology? Explain!

2. Prove that in \mathbb{N} ,

$$(\exists x)(x+3=-x+8) \Leftrightarrow (\forall x)(x^2+5 \text{ is prime}).$$

Solution:

- 1. Look at the case where P, Q and R are assigned the truth values T, F and F, respectively. Then $(P \land Q) \Rightarrow R$ is assigned the value T whereas $(P \Rightarrow R) \land (Q \Rightarrow R)$ is assigned the value F. Thus, under this assignment, the implication $((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \land (Q \Rightarrow R))$ is assigned the value F. This shows that $((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \land (Q \Rightarrow R))$ is not a tautology!
- 2. The only solution of the equation on the left is $x = \frac{5}{2} \notin \mathbb{N}$. Therefore $(\exists x)(x + 3 = -x + 8)$ is false in \mathbb{N} !

If you let x = 1, we get $x^2 + 5 = 6$ which is not a prime number. Therefore $(\forall x)(x^2 + 5 \text{ is prime})$ is also false in \mathbb{N} ! But $F \Leftrightarrow F = T$, whence the given biconditional is true in \mathbb{N} !

- **Problem 4** 1. Suppose that a, b, c are positive integers. Prove that if a divides b and a divides b + c, then a divides c.
 - 2. Prove by contradiction that there is no odd integer that can be simultaneously expressed in the forms 4j - 1 and 4k + 1 for integers j and k.

Solution:

- 1. *a* divides *b* implies there exists $k \in \mathbb{N}$, such that b = ka. Similarly, *a* divides b+c implies there exists $l \in \mathbb{N}$, such that b+c = la. Therefore c = (b+c) b = la ka = (l-k)a, whence *a* divides *c*, as was to be shown.
- 2. Suppose, for the sake of obtaining a contradiction, that there exists an odd integer x that may simultaneously be written in the forms x = 4j 1 and x = 4k + 1 for $j, k \in \mathbb{Z}$. Then 4j 1 = 4k + 1, whence 4j = 4k + 2 or 2j = 2k + 1. But this last integer is both even and odd, which is a contradiction! Thus no odd integer may be written simultaneously in the forms 4j 1 and 4k + 1 for integers j, k.

Problem 5 1. Prove that if x < 1 or x > 3, then $\frac{x-1}{x-3} > 0$.

2. Prove or disprove the following quantified statement: There is a unique three-digit number whose digits have sum 8 and product 10.

Solution:

- 1. This is a classic example of proof by cases! <u>First case</u>: If x < 1, then also x < 3, whence x 1 < 0 and x 3 < 0. Therefore $\frac{x-1}{x-3} > 0$. <u>Second case</u>: If x > 3, then also x > 1, whence x 1 > 0 and x 3 > 0. Therefore again $\frac{x-1}{x-3} > 0$. In every case, therefore, we have $\frac{x-1}{x-3} > 0$, as required.
- 2. Since, for example, both 125 and 152 are three-digit numbers, such that the sum of their three digits is 8 and the product is 10, the given statement is a false statement!