HOMEWORK 1 - MATH 215

DUE DATE: When Section 1.3 has been covered! INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. A few randomly selected problems will be graded for a total of 10 points. It is necessary to show your work.

GOOD LUCK!!

- 1. Make truth tables for the propositional forms $(P \land Q) \lor (P \land R)$ and $(P \land Q) \lor (R \land \sim S)$.
- 2. Which of the following pairs of propositional forms are equivalent? (a) ~ $(P \land Q), \sim P \land \sim Q$ (b) ~ $(P \lor Q), (\sim P) \land (\sim Q)$.
- 3. If P, Q and R are true while S and T are false, which of the following are true? (a) $((\sim P) \lor (\sim Q)) \lor ((\sim R) \lor (\sim S))$ (b) $((\sim T) \land P) \lor (T \land P)$.
- 4. Give a useful denial of the following statements:(a) We will win the first game or the second one.(b) n is even and n is not a multiple of 5.
- 5. P, Q and R are propositional forms, P is equivalent to Q and Q is equivalent to R. Prove that $\sim Q$ is equivalent to $\sim P$ and that $P \wedge Q$ is equivalent to $Q \wedge R$.
- 6. Determine whether each of the following is a tautology, a contradiction or neither. Prove your answers.

(a) $(P \land Q) \lor ((\sim P) \land (\sim Q))$ (b) $(Q \land \sim P) \land \sim (P \land R)$.

- 7. Which of the following conditional sentences are true?
 - (a) If a hexagon has six sides, then the moon is made of cheese.
 - (b) If Euclid's birthday was April 2, then rectangles have 4 sides.
 - (c) 1 + 1 = 2 is sufficient for 3 > 6
 - (d) Horses have 4 legs whenever September 15 falls on a Saturday.
- 8. Which of the following are true?
 - (a) 7+5=12 iff 1+1=2
 - (b) A parallelogram has three sides iff 27 is a prime
 - (c) The Eiffel Tower is in Paris iff the chemical symbol for helium is H
 - (d) $\sqrt{10} + \sqrt{13} < \sqrt{11} + \sqrt{12}$ iff $\sqrt{13} \sqrt{12} < \sqrt{11} \sqrt{10}$.
- 9. Make truth tables for the propositional forms $(P \land Q) \lor (Q \land R) \Rightarrow P \lor R$ and $[(Q \Rightarrow S) \land (Q \Rightarrow R)] \Rightarrow [(P \lor Q) \Rightarrow (S \lor R)].$

- 10. Show that the following pairs of statements are equivalent:
 - (a) $P \Rightarrow (Q \lor R)$ and $(P \land \sim R) \Rightarrow Q$
 - (b) $(P \Rightarrow Q) \Rightarrow R$ and $(P \land \sim Q) \lor R$
 - (c) $P \Leftrightarrow Q$ and $(\sim P \lor Q) \land (\sim Q \lor P)$.
- 11. Give, if possible, an example of a true conditional sentence for which (a) the converse is false (b) the contrapositive is true.
- 12. Give, if possible, an example of a false conditional sentence for which (a) the converse is true (b) the contrapositive is true.
- 13. Determine whether each of the following is a tautology, a contradiction or neither:
 (a) (P ⇔ Q) ⇔ ~ (~ P ∨ Q) ∨ (~ P ∧ Q)
 (b) (P ∨ Q) ⇒ Q ⇒ P
 (c) [P ⇒ (Q ∧ R)] ⇒ [R ⇒ (P ⇒ Q)].
- 14. Translate the following English sentences into symbolic sentences with quantifiers. The universe for each is given in parentheses.
 - (a) No right triangle is isosceles. (All triangles)
 - (b) All people are honest or no one is honest. (All people)

(c) For every positive real number x, there is a unique real number y such that $2^y = x$. (Real numbers)

- 15. Which of the following are true? The universe for each is given in parentheses.
 - (a) $(\forall x)(x + x \ge x)$ (Real numbers)
 - (b) $(\exists x)(2x+3=6x+7)$ (Natural numbers)
 - (c) $(\exists x)(3(2-x) = 5 + 8(1-x))$ (Real numbers)
 - (d) $(\forall x)(x^2 + 6x + 5 \ge 0)$ (Real numbers)
- 16. Give an English translation for each. The universe is given in parentheses.
 - (a) $(\forall x)(x \text{ is prime } \land x \neq 2 \Rightarrow x \text{ is odd})$ (Natural numbers)
 - (b) ~ $(\exists x)(x^2 < 0)$ (Real numbers)
 - (c) $(\forall x)(x \text{ is odd} \Rightarrow x^2 \text{ is odd})$ (Natural numbers)
- 17. Which of the following are true for the universe of all real numbers?
 - (a) $(\exists x)(\forall y)(x+y=0)$
 - (b) $(\exists x)(\exists y)(x^2 + y^2 = -1)$
 - (c) $(\forall y)(\exists !x)(x=y^2)$
 - (d) $(\exists !x)(\exists !y)(\forall w)(w^2 > x y)$
- 18. Give a proof of $(\exists !x)P(x) \Rightarrow (\exists x)P(x)$. Then show that the converse of this conditional sentence is false.