
HOMEWORK 2 SOLUTIONS - MATH 215
INSTRUCTOR: George Voutsadakis

Problem 1 Let x and y be integers. Prove that
(a) if x and y are even, then x + y is even.
(b) if x and y are even, then xy is divisible by 4
(c) if x is even and y is odd, then xy is even.

Solution: (a) Suppose that x and y are even. Then there exist m,n ∈ Z such that x = 2m
and y = 2n. Hence x + y = 2m + 2n = 2(m + n), which is also even, since m + n is an integer.
(b) Suppose that x and y are even. Then, there exist m,n ∈ Z, such that x = 2m and y = 2n.
Hence xy = 2m · 2n = 4(mn) which is an integer multiple of 4. Therefore xy is divisible by 4.
(c) Suppose that x is even and y is odd. Then, there exist m,n ∈ Z, such that x = 2m and
y = 2n + 1. Hence xy = 2m(2n + 1). Since m(2n + 1) is an integer, xy is also an even number. ¥

Problem 2 Let a and b be real numbers. Prove that
(a) |a− b| = |b− a| (b) |a| ≤ b iff −b ≤ a ≤ b.

Solution: (a) We give a proof by cases. If a ≥ b, then a − b ≥ 0 and b − a ≤ 0, whence
|a− b| = a− b, whereas |b− a| = −(b− a). Therefore we have

|a− b| = a− b = −(b− a) = |b− a|.

If, on the other hand, a < b, then a − b < 0 and b − a > 0, whence |a − b| = −(a − b) and
|b− a| = b− a. Therefore

|a− b| = −(a− b) = b− a = |b− a|.
(b) We prove first the implication from left to write, i.e., we show that if |a| ≤ b then −b ≤ a ≤ b.
We employ again the method of proof by cases: If a ≥ 0, then |a| ≤ b implies a ≤ b, whence a, b ≥ 0
and, therefore −b ≤ 0 ≤ a ≤ b. If, on the other hand, a < 0, then |a| ≤ b implies −a ≤ b, whence
−b ≤ a. But then −b ≤ a < 0 ≤ |a| ≤ b, which again verifies the required inequalities.

Now we prove the reverse implication, i.e., that if −b ≤ a ≤ b then |a| ≤ b. We employ once
more the method of proof by cases. If a ≥ 0, then a ≤ b implies |a| ≤ b. On the other hand, if
a < 0, then −b ≤ a implies −a ≤ b, whence |a| ≤ b, which proves the required inequality. ¥

Problem 3 Suppose a, b, c and d are positive integers. Prove that
(a) if a is odd, then a + 1 is even (b) if a divides b, then a divides bc.

Solution: (a) If a is odd, then there exists n ∈ IN, such that a = 2n + 1. hence a + 1 =
2n + 1 + 1 = 2n + 2 = 2(n + 1), which shows that a + 1 is even.
(b) Suppose that a divides b. Then, there exists n ∈ IN, such that b = an. Hence bc = (an)c = a(nc),
whence a divides bc. ¥

Problem 4 Prove by cases that if n is a natural number, n2 + n + 3 is odd.

1



Solution: First, suppose that n is even. Then, there exists k ∈ IN, such that n = 2k. Therefore

n2 + n + 3 = 4k2 + 2k + 3 = 2(2k2 + k + 1) + 1,

whence n2+n+3 is odd. Next, suppose that n is odd, i.e., there exists k ∈ IN, such that n = 2k+1.
Then

n2 +n+3 = (2k +1)2 +2k +1+3 = 4k2 +4k +1+2k +4 = 4k2 +6k +4+1 = 2(2k2 +3k +2)+1,

whence n2 + n + 3 is odd again, as was to be shown. ¥

Problem 5 Use the technique of working backward from the desired conclusion to prove that
(a) if x3 + 2x2 < 0, then 2x + 5 < 11
(b) if an isosceles triangle has sides of length a, b and c, where c =

√
2ab, then it is a right triangle.

Solution: (a)
2x + 5 < 11 iff 2x < 6

iff x < 3

So, it suffices to show that if x3 + 2x2 < 0, then x < 3.

Suppose x3 + 2x2 < 0. Then x2(x + 2) < 0, whence x + 2 < 0, i.e., x < −2. But, in this case,
obviously, x < 3.
(b)

It is a right triangle iff c2 = a2 + b2

iff c2 = (a− b)2 + 2ab
iff c2 = 2ab

iff c =
√

2ab

¥

Problem 6 Let x, y and z be integers. Write a proof by contraposition to show that
(a) if x is odd then x + 2 is odd
(b) if xy is even, then either x or y is even
(c) if 8 does not divide x2 − 1, then x is even
(d) if x does not divide yz, then x does not divide z

Solution: (a) Suppose that x + 2 is not odd. Then x + 2 is even, i.e., there exists k ∈ Z, such
that x + 2 = 2k. Thus x = 2k − 2, whence x = 2(k − 1), and, therefore x is even. Thus x is not
odd. This shows that, if x is odd then x + 2 is also odd.
(b) Suppose that both x and y are odd. Then, there exist k, l ∈ Z, such that x = 2k + 1 and
y = 2l + 1. Therefore xy = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1, whence xy is
not even.
(c) If x is odd, then there exists k ∈ Z, such that x = 2k + 1. Therefore x2 − 1 = (2k + 1)2 − 1 =
4k2 +4k +1− 1 = 4k2 +4k = 8k(k+1)

2 . Note that k(k+1)
2 is always an integer, since either k or k +1

is even. Therefore 8 divides x2 − 1.
(d) If x divides z, then there exists k ∈ Z, such that z = kx. But then yz = ykx = (yk)x, whence
x divides yz. ¥
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Problem 7 Write a proof by contraposition to show that for any real number x, if x3 +x > 0, then
x > 0.

Solution: Suppose x ≤ 0. Then x3 ≤ 0, whence x3 + x ≤ 0. ¥

Problem 8 A circle has center (2, 4).
(a) Prove that (−1, 5) and (5, 1) are not both on the circle.
(b) Prove that if the radius is less than 5, then the circle does not intersect the line y = x− 6.

Solution: (a) It suffices to show that the distance between (2, 4) and (−1, 5) is not equal to
the distance between (2, 4) and (5, 1). We have

d((2, 4), (−1, 5)) =
√

(−1− 2)2 + (5− 4)2 =
√

10

whereas
d((2, 4), (5, 1)) =

√
(5− 2)2 + (1− 4)2 =

√
18.

(b) Suppose that the radius is r < 5. Then the equation of the circle is (x − 2)2 + (y − 4)2 = r2.
Suppose that (s, t) is a point both on the circle and on the given line. Then t = s − 6, whence
(s− 2)2 + (s− 6− 4)2 = r2, i.e., s2 − 4s + 4 + s2 − 20s + 100 = r2, whence 2s2 − 24s + 104 = r2,
and, therefore 2s2 − 24s + 104− r2 = 0. The discriminant of this quadratic is

D = 242 − 4 · 2 · (104− r2) = 576− 832 + 8r2 = −256 + 8r2 = 8(−32 + r2).

For this to be nonnegative, we must have −32 + r2 ≥ 0, whence r2 ≥ 32, and, therefore r > 5,
contrary to hypothesis. ¥

Problem 9 Suppose a and b are positive integers. Write a proof by contradiction to show that
(a) if a is odd, then a + 1 is even
(b) if a− b is odd, then a + b is odd

Solution: (a) Suppose that a is odd and a + 1 is odd. Then, there exists k ∈ IN, such that
a = 2k + 1, whence a + 1 = 2k + 2 = 2(k + 1). Therefore a + 1 is both odd and even, which is a
contradiction.
(b) Suppose that a−b is odd and a+b is even. Then, there exist k, l ∈ IN, such that a−b = 2k+1 and
a+b = 2l. Therefore, by adding the two equations, we get 2a = 2k+2l+1, whence 2a = 2(k+l)+1.
But this is a contradiction, since the same number cannot be both even and odd! ¥

Problem 10 Suppose a, b, c are positive integers. Write a proof of each biconditional statement.
(a) ac divides bc if and only if a divides b.
(b) a + 1 divides b and b divides b + 3 if and only if a = 2 and b = 3.

Solution: (a) If ac divides bc, then a divides b: Suppose ac divides bc. Then, there exists
k ∈ IN, such that bc = kac, whence b = ka, i.e., a divides b.

If a divides b, then ac divides bc: Suppose that a divides b. Then, there exists k ∈ IN, such that
b = ka. Thus, bc = kac, whence ac divides bc.
(b) If a = 2 and b = 3, then a + 1 = 3 and b + 3 = 6, whence, obviously, a + 1 divides b and b
divides b + 3.
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Suppose conversely, that a + 1 divides b and b divides b + 3. Then, there exists k, l ∈ IN, such
that b = k(a + 1) and b + 3 = lb. Then (l − 1)b = 3, which shows that l = 4 and b = 1, or l = 2
and b = 3. The first case yields 1 = k(a + 1), which is not possible, since k, a ∈ IN, whence b = 3.
Therefore 3 = k(a + 1). But then k = 1 and a = 2. ¥

Problem 11 Prove by contradiction that if n is a natural number, then n
n+1 > n

n+2 .

Solution: Suppose that n
n+1 ≤ n

n+2 . Then n(n + 2) ≤ n(n + 1), whence n2 + 2n ≤ n2 + n, i.e.,
n ≤ 0, which contradicts n ∈ IN. ¥

Problem 12 Prove that
(a) there exist integers m and n such that 15m + 12n = 3.
(b) there do not exist integers m and n such that 12m + 15n = 1.
(c) if m and n are odd integers and mn = 4k − 1 for some integer k, then m or n is of the form
4j − 1 for some integer j.

Solution: (a) Take m = 1 and n = −1.
(b) If such integers existed, then 3 would divide 12m + 15n, whence 3 would also divide 1, a
contradiction.
(c) Suppose that m, n are odd. Then there exist p, q ∈ Z, such that m = 2p + 1 and n = 2q + 1.
Therefore mn = (2p+1)(2q+1) = 4pq+2p+2q+1 = 4k−1. This shows that 2(p+q) = −4pq+4k−2,
i.e., p + q = −2pq + 2k − 1. Therefore, either p or q must be odd. If p is odd, then p = 2s + 1, for
some s, whence m = 2p + 1 = 2(2s + 1) + 1 = 4s + 3 = 4(s + 1) − 1. If q is odd, then q = 2t + 1,
for some t, whence n = 2q + 1 = 2(2t + 1) + 1 = 4t + 3 = 4(t + 1)− 1. In both cases either m or n
is in fact of the form 4j − 1 for some integer j. ¥

Problem 13 Prove that, for all integers a, b, c and d, if a divides b and a divides c, then for all
integers x, y, a divides bx + cy.

Solution: Suppose a divides b and a divides c. Then, there exist m, n ∈ Z, such that b = na
and c = ma. Therefore bx + cy = nax + may = (nx + my)a and, hence a divides bx + cy. ¥

Problem 14 Prove that if every even natural number greater than 2 is the sum of two primes,
then every odd natural number greater than 5 is the sum of three primes.

Solution: Assume that every even natural number greater than 2 is the sum of two primes
and suppose that n is an odd natural number greater than 5. Then, there exists k > 2, such that
n = 2k + 1 = 2k − 2 + 3 = 2(k − 1) + 3. But 2(k − 1) is an even natural number greater than 2,
whence it can be written as the sum of two primes 2(k − 1) = p + q by our hypothesis. Therefore
n = 2(k − 1) + 3 = p + q + 3 is the sum of the three primes p, q, 3. ¥

Problem 15 Provide either a proof or a counterexample of each of these statements:
(a) (∀x)(∃y)(x + y = 0) (Universe of all reals)
(b) (∀x)(∀y)(x > 1 ∧ y > 0 ⇒ yx > x) (Universe of all reals)
(c) For all positive real numbers x, x2 − x > 0.
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Solution: (a) Given x, there exists y = −x, such that x + y = 0. So this is a true statement.
(b) This statement is false: x = 2 and y = 1 provide a counterexample.
(c) This is also a false statement. x = 1

2 provides a counterexample. ¥

Problem 16 Prove that
(a) there is a natural number M, such that for every natural number n, 1

n < M.
(b) there is no largest natural number.

Solution: (a) Take M = 2. Then, for every n ∈ IN, 1
n ≤ 1 < 2.

(b) Suppose M is a largest natural number. Then M < M + 1 and M + 1 is also a natural number
larger than M which contradicts the choice of M . ¥

Problem 17 Prove that
(a) for all integers n, 5n2 + 3n + 1 is odd
(b) the sum of 5 consecutive integers is always divisible by 5.

Solution: (a) We use the method of proof by cases: If n is even, then there exists k ∈ Z, such
that n = 2k. Thus

5n2 + 3n + 1 = 5(2k)2 + 32k + 1 = 20k2 + 6k + 1 = 2(10k2 + 3k) + 1

which shows that 5n2 +3n+1 is odd. On the other hand, if n is odd, then there exists k ∈ Z, such
that n = 2k + 1. Therefore

5n2 + 3n + 1 = 5(2k + 1)2 + 3(2k + 1) + 1
= 20k2 + 20k + 5 + 6k + 3 + 1
= 20k2 + 26k + 8 + 1
= 2(10k2 + 13k + 4) + 1,

which again proves that 5n2 + 3n + 1 is odd.
(b) Let k, k + 1, k + 2, k + 3, k + 4 be the consecutive 5 integers. Then, we have

k + (k + 1) + (k + 2) + (k + 3) + (k + 4) = 5k + 10 = 5(k + 2)

which shows that this sum is divisible by 5. ¥

Problem 18 Let l be the line 2x + ky = 3k. prove that
(a) if k 6= −6, then l does not have slope 1

3 .
(b) for every real number k, l is not parallel to the x-axis.
(c) there is a unique real number k, such that l passes through (1, 4).

Solution: (a) We prove the contrapositive. If the slope is 1
3 , then we must have − 2

k = 1
3 , which

gives k = −6.
(b) By contradiction: Suppose that such a k exists. Then − 2

k = 0, which is impossible.
(c) We have 2 + k = 3k implies 2k = 2, i.e., k = 1. For this value of k, 2x + ky = 3k goes through
the point (1, 4). ¥
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Problem 19 Prove that
(a) every point on the line y = 6− x is outside the circle with radius 4 and center (−3, 1).
(b) there exists a three-digit natural number less than 400 with distinct digits such that the sum of
the digits is 17 and the product of the digits is 108.

Solution: (a) If the line had a point on or inside the given circle, then there would be a point
of intersection of the line with the given circle. We show that this is not possible by showing the
the system of equations, consisting of the equations (x+3)2 +(y− 1)2 = 16 and y = 6−x does not
have a solution. Substituting into the first equation, we get (x+3)2 +(6−x−1)2 = 16, which after
algebraic manipulations yields x2 +2x+9 = 0. It is easy to see that this quadratic has discriminant
D = −32 < 0, whence the quadratic does not have any real solutions.
(b) There are at least two such numbers: 269 and 296. Both are less than 400 with distinct digits,
whose sum of the digits is 17 and whose product is 108. ¥

Problem 20 Prove that for all nonnegative real numbers x, |2x−1|
x+1 ≤ 2.

Solution: We employ proof by cases: If 2x − 1 ≥ 0, i.e., if x ≥ 1
2 , we have |2x − 1| = 2x − 1,

whence
|2x−1|
x+1 ≤ 2 iff 2x−1

x+1 ≤ 2
iff 2x− 1 ≤ 2x + 2
iff 0 ≤ 3.

Next suppose that 2x− 1 < 0, i.e., 0 ≤ x < 1
2 . Then we have |2x− 1| = −2x + 1, whence

|2x−1|
x+1 ≤ 2 iff −2x+1

x+1 ≤ 2
iff −2x + 1 ≤ 2x + 2
iff −1 ≤ 4x
iff −1

4 ≤ x.

¥

Problem 21 Let a, b, c and n be natural numbers and LCM(a, b) = m. Prove that
(a) if a divides n and b divides n, then m ≤ n.
(b) for all natural numbers n, LCM(an, bn) = n · LCM(a, b).

Solution: (a) a divides n and b divides n imply that n is a common multiple of a, b. Therefore,
since m is their least common multiple, m must divide n. Thus m ≤ n.
(b) We have to show that n · LCM(a, b) is a common multiple of an and bn and that it divides
every other common multiple of an and bn.

Since LCM(a, b) is a common multiple of a, b, there exist k, l ∈ IN, such that LCM(a, b) = ka
and LCM(a, b) = lb. Therefore nLCM(a, b) = kna and nLCM(a, b) = lnb, whence nLCM(a, b) is a
common multiple of na and nb.

Now suppose that m is a common multiple of na and nb. Then, there exist k, l ∈ IN, such that
m = kna and m = lnb. Thus, m

n = ka and m
n = lb. Therefore m

n is a common multiple of a and b
and, therefore, it is a multiple of LCM(a, b). I.e., there exists j ∈ IN, such that m

n = jLCM(a, b),
whence m = jnLCM(a, b) and, therefore nLCM(a, b) divides m. ¥
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