HOMEWORK 2 SOLUTIONS - MATH 215
INSTRUCTOR: George Voutsadakis

Problem 1 Let x and y be integers. Prove that
(a) if © and y are even, then x +y is even.

(b) if x and y are even, then zy is divisible by 4
(c) if x is even and y is odd, then xy is even.

Solution: (a) Suppose that x and y are even. Then there exist m,n € Z such that x = 2m
and y = 2n. Hence x + y = 2m + 2n = 2(m + n), which is also even, since m + n is an integer.
(b) Suppose that x and y are even. Then, there exist m,n € Z, such that z = 2m and y = 2n.
Hence zy = 2m - 2n = 4(mn) which is an integer multiple of 4. Therefore zy is divisible by 4.
(c) Suppose that = is even and y is odd. Then, there exist m,n € Z, such that x = 2m and
y = 2n + 1. Hence xy = 2m(2n + 1). Since m(2n + 1) is an integer, xy is also an even number. W

Problem 2 Let a and b be real numbers. Prove that
(a)la—0bl=[b—al (b)]a|l <biff —=b<a<b.

Solution: (a) We give a proof by cases. If a > b, then a —b > 0 and b — a < 0, whence
la — b| = a — b, whereas |b — a|] = —(b — a). Therefore we have

la—bl=a—-b=—(b—a)=|b—al.

If, on the other hand, a < b, then a — b < 0 and b — a > 0, whence |a — b| = —(a — b) and
|b — a| = b — a. Therefore

la —bl=—(a—b)=b—a=1|b—al.

(b) We prove first the implication from left to write, i.e., we show that if |a|] < b then —b < a <.
We employ again the method of proof by cases: If a > 0, then |a| < b implies a < b, whence a,b > 0
and, therefore —b < 0 < a < b. If, on the other hand, a < 0, then |a| < b implies —a < b, whence
—b < a. But then —b < a < 0 < |a|] < b, which again verifies the required inequalities.

Now we prove the reverse implication, i.e., that if —b < a < b then |a|] < b. We employ once
more the method of proof by cases. If a > 0, then a < b implies |a|] < b. On the other hand, if
a < 0, then —b < a implies —a < b, whence |a| < b, which proves the required inequality. |

Problem 3 Suppose a,b,c and d are positive integers. Prove that
(a) if a is odd, then a + 1 is even  (b) if a divides b, then a divides bc.

Solution: (a) If a is odd, then there exists n € IN, such that a = 2n 4+ 1. hence a + 1 =
2n+1+1=2n+2=2(n+ 1), which shows that a + 1 is even.
(b) Suppose that a divides b. Then, there exists n € IN, such that b = an. Hence bc = (an)c = a(nc),
whence a divides be. |

Problem 4 Prove by cases that if n is a natural number, n?> +n + 3 is odd.



Solution: First, suppose that n is even. Then, there exists k& € IN, such that n = 2k. Therefore
n?4n+3=4k>+2k+3=22k> + k+1) + 1,

whence n?+n+3 is odd. Next, suppose that n is odd, i.e., there exists k € IN, such that n = 2k+1.
Then

n4n+3=2k+1)>+2k+14+3=4k>+4k+1+2k+4 = 4k*> 4+ 6k +4+1 =2(2k* + 3k +2) + 1,
whence n? 4+ n + 3 is odd again, as was to be shown. |

Problem 5 Use the technique of working backward from the desired conclusion to prove that
(a) if 2° + 22% < 0, then 2z +5 < 11
(b) if an isosceles triangle has sides of length a,b and ¢, where ¢ = \/2ab, then it is a right triangle.

Solution: (a)
2e+5 <11 iff 22 <6
ift <3

So, it suffices to show that if 22 + 222 < 0, then = < 3.
Suppose 3 4 222 < 0. Then 2?(x + 2) < 0, whence = + 2 < 0, i.e., x < —2. But, in this case,
obviously, x < 3.

(b)

It is a right triangle iff ¢ = a® + b?
iff 2= (a—0b)?+2ab
iff ¢
iff ¢

Problem 6 Let x,y and z be integers. Write a proof by contraposition to show that
(a) if x is odd then x + 2 is odd

(b) if xy is even, then either x ory is even

(c) if 8 does not divide % — 1, then x is even

(d) if x does not divide yz, then x does not divide z

Solution: (a) Suppose that = + 2 is not odd. Then x + 2 is even, i.e., there exists k € Z, such
that © 4+ 2 = 2k. Thus * = 2k — 2, whence x = 2(k — 1), and, therefore = is even. Thus x is not
odd. This shows that, if = is odd then x + 2 is also odd.

(b) Suppose that both x and y are odd. Then, there exist k,l € Z, such that z = 2k + 1 and
y = 2l + 1. Therefore zy = (2k + 1)(20 + 1) = 4kl + 2k + 21 + 1 = 2(2kl + k + 1) + 1, whence zy is
not even.

(c) If x is odd, then there exists k € Z, such that x = 2k + 1. Therefore 22 — 1 = (2k +1)2 -1 =
A% +4k +1—1 = 4k%> + 4k = 8@. Note that @ is always an integer, since either k or k41
is even. Therefore 8 divides 22 — 1.

(d) If « divides z, then there exists k € Z, such that z = kz. But then yz = ykax = (yk)x, whence
x divides yz. |



Problem 7 Write a proof by contraposition to show that for any real number x, if 2 +x > 0, then
x> 0.

Solution: Suppose z < 0. Then 23 < 0, whence 23 + 2 < 0. |

Problem 8 A circle has center (2,4).
(a) Prove that (—1,5) and (5,1) are not both on the circle.
(b) Prove that if the radius is less than 5, then the circle does not intersect the line y = x — 6.

Solution: (a) It suffices to show that the distance between (2,4) and (—1,5) is not equal to
the distance between (2,4) and (5,1). We have

d((2,4),(~1,5)) = /(-1 =22+ (5~ 4)? = V10

whereas

d((2,4),(5,1)) = /(5 —-2)2 + (1 —4)2 = V18.

(b) Suppose that the radius is 7 < 5. Then the equation of the circle is (x — 2)? + (y — 4)? = r2.
Suppose that (s,t) is a point both on the circle and on the given line. Then t = s — 6, whence
(s —2)2+(s—6—4)2 =12 ie., s —4s+4+ s> — 20s + 100 = r2, whence 252 — 24s + 104 = 2,
and, therefore 2s% — 24s 4+ 104 — r2 = 0. The discriminant of this quadratic is

D =24 —4-2.(104 — r?) = 576 — 832 + 8r% = —256 + 8% = 8(—32 + ).

For this to be nonnegative, we must have —32 4+ r? > 0, whence 72 > 32, and, therefore r > 5,
contrary to hypothesis. |

Problem 9 Suppose a and b are positive integers. Write a proof by contradiction to show that
(a) if a is odd, then a + 1 is even
(b) if a—b is odd, then a+ b is odd

Solution: (a) Suppose that a is odd and a + 1 is odd. Then, there exists k& € IN, such that
a =2k + 1, whence a + 1 = 2k + 2 = 2(k + 1). Therefore a + 1 is both odd and even, which is a
contradiction.
(b) Suppose that a—b is odd and a+b is even. Then, there exist k,! € IN, such that a—b = 2k+1 and
a+b = 2l. Therefore, by adding the two equations, we get 2a = 2k+2[+1, whence 2a = 2(k+1)+1.
But this is a contradiction, since the same number cannot be both even and odd! |

Problem 10 Suppose a,b,c are positive integers. Write a proof of each biconditional statement.
(a) ac divides be if and only if a divides b.
(b) a+ 1 divides b and b divides b+ 3 if and only if a =2 and b = 3.

Solution: (a) If ac divides be, then a divides b: Suppose ac divides be. Then, there exists
k € IN, such that bc = kac, whence b = ka, i.e., a divides b.

If @ divides b, then ac divides be: Suppose that a divides b. Then, there exists k € IN, such that
b = ka. Thus, bc = kac, whence ac divides bc.
(b) If a = 2 and b = 3, then a + 1 = 3 and b+ 3 = 6, whence, obviously, a + 1 divides b and b
divides b+ 3.



Suppose conversely, that a + 1 divides b and b divides b + 3. Then, there exists k,l € IN, such
that b = k(a+ 1) and b+ 3 = [b. Then (I — 1)b = 3, which shows that [ =4 and b= 1, or [ = 2
and b = 3. The first case yields 1 = k(a + 1), which is not possible, since k,a € IN, whence b = 3.
Therefore 3 = k(a4 1). But then £k =1 and a = 2. [ |
Problem 11 Prove by contradiction that if n is a natural number, then ;%7 > -t

Solution: Suppose that ;%5 < 75. Then n(n+2) <n(n+1), whence n? +2n < n? +n, ie.,
n < 0, which contradicts n € IN. |

Problem 12 Prove that

(a) there ezist integers m and n such that 15m + 12n = 3.

(b) there do not exist integers m and n such that 12m + 15n = 1.

(c) if m and n are odd integers and mn = 4k — 1 for some integer k, then m or n is of the form
47 — 1 for some integer j.

Solution: (a) Take m =1 and n = —1.

(b) If such integers existed, then 3 would divide 12m + 15n, whence 3 would also divide 1, a
contradiction.

(c) Suppose that m,n are odd. Then there exist p,q € Z, such that m = 2p+ 1 and n = 2¢ + 1.
Therefore mn = (2p+1)(2g+1) = 4pg+2p+2g+1 = 4k—1. This shows that 2(p+q) = —4pg+4k—2,
i.e., p+ q = —2pq + 2k — 1. Therefore, either p or ¢ must be odd. If p is odd, then p = 2s 4+ 1, for
some s, whence m =2p+1=22s+1)+1=4s+3 =4(s+ 1) — 1. If ¢ is odd, then ¢ = 2t + 1,
for some ¢, whence n =2¢+1=2(2t +1)+1=4t+3 =4(t+ 1) — 1. In both cases either m or n
is in fact of the form 45 — 1 for some integer j. |

Problem 13 Prove that, for all integers a,b,c and d, if a divides b and a divides c, then for all
integers x,y, a divides bx + cy.

Solution: Suppose a divides b and a divides c. Then, there exist m,n € Z, such that b = na
and ¢ = ma. Therefore bx + cy = nax + may = (nz + my)a and, hence a divides bx + cy. |

Problem 14 Prove that if every even natural number greater than 2 is the sum of two primes,
then every odd natural number greater than 5 is the sum of three primes.

Solution: Assume that every even natural number greater than 2 is the sum of two primes
and suppose that n is an odd natural number greater than 5. Then, there exists k£ > 2, such that
n=2k+1=2k—2+3=2(k—1)+3. But 2(k — 1) is an even natural number greater than 2,
whence it can be written as the sum of two primes 2(k — 1) = p + ¢ by our hypothesis. Therefore
n=2(k—1)+3=p+ g+ 3is the sum of the three primes p, ¢, 3. |

Problem 15 Provide either a proof or a counterexample of each of these statements:
(a) (Vx)(Jy)(z +y = 0) (Universe of all reals)

(b) (Vz)(Vy)(x > 1Ay > 0= y* > x) (Universe of all reals)

(¢) For all positive real numbers x, x? — x > 0.



Solution: (a) Given z, there exists y = —x, such that = +y = 0. So this is a true statement.
(b) This statement is false: = 2 and y = 1 provide a counterexample.
(c) This is also a false statement. z = % provides a counterexample. |

Problem 16 Prove that
(a) there is a natural number M, such that for every natural number n, % < M.
(b) there is no largest natural number.

Solution: (a) Take M = 2. Then, for every n € IN, 2 <1< 2.
(b) Suppose M is a largest natural number. Then M < M +1 and M + 1 is also a natural number
larger than M which contradicts the choice of M. |

Problem 17 Prove that
(a) for all integers n, 5n? + 3n + 1 is odd
(b) the sum of 5 consecutive integers is always divisible by 5.

Solution: (a) We use the method of proof by cases: If n is even, then there exists k € Z, such
that n = 2k. Thus

5n2 +3n+1=5(2k)2 + 32k + 1 = 20k + 6k + 1 = 2(10k® + 3k) + 1

which shows that 5n% 4+ 3n +1 is odd. On the other hand, if n is odd, then there exists k € Z, such
that n = 2k + 1. Therefore

5n2+3n+1 = 502k +1)2+302k+1)+1
20k% + 20k 4+ 5+ 6k +3+1
= 20k?+26k+8+1

= 2(10k* + 13k +4) + 1,

which again proves that 5n% + 3n + 1 is odd.
(b) Let k,k+ 1,k 4+ 2,k + 3,k + 4 be the consecutive 5 integers. Then, we have

k+(k+1)+(Fk+2) 4+ (k+3)+ (k+4) =5k+10 = 5(k +2)
which shows that this sum is divisible by 5. |

Problem 18 Let 1 be the line 2x + ky = 3k. prove that

(a) if k # —6, then | does not have slope %

(b) for every real number k, | is not parallel to the x-axis.

(c) there is a unique real number k, such that | passes through (1,4).

Solution: (a) We prove the contrapositive. If the slope is %, then we must have —% = %, which
gives k = —6.
(b) By contradiction: Suppose that such a k exists. Then —% = 0, which is impossible.
(c) We have 2 + k = 3k implies 2k = 2, i.e., k = 1. For this value of k, 2x 4+ ky = 3k goes through
the point (1,4). [ |



Problem 19 Prove that

(a) every point on the line y = 6 — x is outside the circle with radius 4 and center (—3,1).

(b) there exists a three-digit natural number less than 400 with distinct digits such that the sum of
the digits is 17 and the product of the digits is 108.

Solution: (a) If the line had a point on or inside the given circle, then there would be a point
of intersection of the line with the given circle. We show that this is not possible by showing the
the system of equations, consisting of the equations (z +3)?+ (y —1)2 = 16 and y = 6 — = does not
have a solution. Substituting into the first equation, we get (z +3)?+ (6 —x —1)? = 16, which after
algebraic manipulations yields 2 +2x +9 = 0. It is easy to see that this quadratic has discriminant

D = —32 < 0, whence the quadratic does not have any real solutions.

(b) There are at least two such numbers: 269 and 296. Both are less than 400 with distinct digits,
whose sum of the digits is 17 and whose product is 108. |
Problem 20 Prove that for all nonnegative real numbers x, |2§;11‘ <2.

Solution: We employ proof by cases: If 2¢ —1 > 0, i.e., if z > %, we have |2z — 1| = 22 — 1,
whence
2eoll <9 g 2=l <9

z+1 x+1
iff 20—-1<2x+2
iff 0<3.
Next suppose that 2z —1 < 0,ie., 0 <z < % Then we have |2z — 1| = —2x + 1, whence

[2z—1] e =22+l

o)l <o i <o
iff —2x+4+1<2x+2
iff —1<4x
iff —i < z.

Problem 21 Let a,b,c and n be natural numbers and LCM(a, b) = m. Prove that
(a) if a divides n and b divides n, then m < n.
(b) for all natural numbers n, LCM(an,bn) = n - LCM(a, b).

Solution: (a) a divides n and b divides n imply that n is a common multiple of a, b. Therefore,
since m is their least common multiple, m must divide n. Thus m < n.

(b) We have to show that n - LCM(a,b) is a common multiple of an and bn and that it divides
every other common multiple of an and bn.

Since LCM(a, b) is a common multiple of a, b, there exist k,I € IN, such that LCM(a,b) = ka
and LCM(a,b) = lb. Therefore nLCM(a, b) = kna and nLCM(a, b) = Inb, whence nLCM(a, b) is a
common multiple of na and nb.

Now suppose that m is a common multiple of na and nb. Then, there exist k,! € IN, such that
m = kna and m = Inb. Thus, ™* = ka and 7+ = [b. Therefore 7* is a common multiple of a and b
and, therefore, it is a multiple of LCM(a, b). Le., there exists j € IN, such that ™ = jLCM(a,b),
whence m = jnLCM(a, b) and, therefore nLCM(a, b) divides m. [ |



