HOMEWORK 3 - MATH 215

DUE DATE: After Section 2.3 has been covered! INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. A few randomly selected problems will be graded for a total of 10 points. It is necessary to show your work. GOOD LUCK!!

- 1. True or false?
 - (a) $[2,5] = \{2,3,4,5\}$ (b) $(6,9] \subseteq [6,10)$ (c) $\{\{\emptyset\}\} \subseteq \{\emptyset,\{\emptyset\}\}$ (d) $\{1,2\} \in \{\{1,2,3\},\{1,3\},1,2\}$ (e) $\{\{4\}\} \subseteq \{1,2,3,\{4\}\}.$
- 2. Give an example, if there is one, of sets A, B and C such that the following are true. If there is no example write "Not possible".
 (a) A ⊆ B, B ⊆ C and C ⊆ A (b) A ⊆ B, B ⊈ C and A ⊈ C.
- 3. Write the power set $\mathcal{P}(X)$ for each of the sets (a) $X = \{S, \{S\}\}$ (b) $X = \{1, \{2, \{3\}\}\}$.
- 4. List all of the proper subsets for each of the following sets (a) $\{\emptyset, \{\emptyset\}\}$ (b) $\{0, \Delta, \Box\}$
- 5. Give an example, if there is one, of each of the following. If there is no example, write "Not possible".
 - (a) A set A such that $\mathcal{P}(A)$ has 64 elements.
 - (b) Sets A and B such that $A \subseteq B$ and $\mathcal{P}(B) \subseteq \mathcal{P}(A)$.
 - (c) A set A such that $\mathcal{P}(A) = \emptyset$.
 - (d) Sets A, B and C such that $A \subseteq B, B \subseteq C$ and $\mathcal{P}(A) \subseteq \mathcal{P}(C)$.
- 6. Prove that if $x \notin B$ and $A \subseteq B$, then $x \notin A$.
- 7. Let $X = \{x : P(x)\}$. Are the following statements true or false? (a) If $a \in X$, then P(a). (b) If P(a), then $a \in X$. (c) If $\sim P(a)$, then $a \notin X$.
- 8. Prove that X = Y, where $X = \{x : x \in \mathbb{R} \text{ and } x \text{ is a solution to } x^2 7x + 12 = 0\}$ and $Y = \{3, 4\}.$
- 9. Prove that X = Y, where $X = \{x \in \mathbb{N} : x^2 < 30\}$ and $Y = \{1, 2, 3, 4, 5\}$.
- 10. Let the universe be all real numbers. Let A = [3, 8), B = [2, 6], C = (1, 4) and $D = (5, \infty)$. Find $B \cup C, A \cap B, D - A, \tilde{D}$ and $(A \cup C) - (B \cap D)$.
- 11. Let $U = \{1, 2, 3\}$ be the universe for the sets $A = \{1, 2\}$ and $B = \{2, 3\}$. Find $\mathcal{P}(A) \cap \mathcal{P}(B)$ and $\mathcal{P}(A) \mathcal{P}(B)$.
- 12. Let A, B, C be sets.
 - (a) Prove that (A B) C = (A C) (B C).
 - (b) Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.
- 13. Let A, B, C, D be sets. Prove that if $A \cup B \subseteq C \cup D, A \cap B = \emptyset$ and $C \subseteq A$, then $B \subseteq D$.

- 14. Let A, B be sets. Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- 15. Provide counterexamples for each of the following: (a) If $A \cap C \subseteq B \cap C$, then $A \subseteq B$. (b) A - (B - C) = (A - B) - C.
- 16. Define the symmetric difference operation \triangle on sets by $A \triangle B = (A B) \cup (B A)$. prove that (a) $A \triangle B = (A \cup B) - (A \cap B)$ (b) $A \triangle \emptyset = A$.
- 17. Find the union and intersection of each of the following families or indexed collections.
 - (a) Let $\mathbb{R}^+ = (0, \infty)$. For $r \in \mathbb{R}^+$, let $A_r = [-\pi, r)$, and let $\mathcal{A} = \{A_r : r \in \mathbb{R}^+\}$.
 - (b) For each natural number $n \ge 3$, let $A_n = [\frac{1}{n}, 2 + \frac{1}{n})$ and $\mathcal{A} = \{A_n : n \ge 3\}$. (c) For each $n \in \mathbb{N}$, let $D_n = (-n, \frac{1}{n})$ and $\mathcal{D} = \{D_n : n \in \mathbb{N}\}$.
- 18. Let $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$ be a family of sets and let B be a set. Prove that $B \cup \bigcap_{\alpha \in \Delta} A_{\alpha} = \bigcap_{\alpha \in \Delta} (B \cup A_{\alpha}).$
- 19. Let \mathcal{A} be a family of sets, and suppose $\emptyset \in \mathcal{A}$. Prove that $\bigcap_{A \in \mathcal{A}} A = \emptyset$.
- 20. If $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$ is a family of sets and if $\Gamma \subseteq \Delta$, prove that $\bigcap_{\alpha \in \Delta} A_{\alpha} \subseteq \bigcap_{\alpha \in \Gamma} A_{\alpha}$.
- 21. Give an example of an indexed collection of sets $\{A_{\alpha} : \alpha \in \Delta\}$ such that each $A_{\alpha} \subseteq (0, 1)$, and for all α and $\beta \in \Delta$, $A_{\alpha} \cap A_{\beta} \neq \emptyset$ but $\bigcap_{\alpha \in \Delta} A_{\alpha} = \emptyset$.
- 22. Let \mathcal{A} and \mathcal{B} be two pairwise disjoint families of sets. Let $\mathcal{C} = \mathcal{A} \cap \mathcal{B}$ and $\mathcal{D} = \mathcal{A} \cup \mathcal{B}$. (a) Prove that \mathcal{C} is a family of pairwise disjoint sets.
 - (b) Give an example to show that \mathcal{D} need not be pairwise disjoint.
 - (c) Prove that if $\bigcup_{A \in \mathcal{A}} A$ and $\bigcup_{B \in \mathcal{B}} B$ are disjoint, then \mathcal{D} is pairwise disjoint.