HOMEWORK 5 - MATH 215

DUE DATE: After Section 3.3 has been covered! INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. A few randomly selected problems will be graded for a total of 10 points. It is necessary to show your work. GOOD LUCK!!

- 1. Prove that for any sets $A, B, C, D, (A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
- 2. Give an example of sets A, B and C such that (a) $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$. (b) $(C \times C) - (A \times B) \neq (C - A) \times (C - B)$.
- 3. Let T be the relation $\{(3,1), (2,3), (3,5), (2,2), (1,6), (2,6), (1,2)\}$. Find (a) Dom(T) (b) Rng(T) (c) T^{-1} (d) $(T^{-1})^{-1}$.
- 4. The inverse of $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = 2x + 1\}$ may be expressed in the form $R^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = \frac{(x-1)}{2}$, the set of all pairs (x, y), subject to some condition. Use this form to give the inverses of the following relations. In (c) P is the set of all people. (a) $R_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = -5x + 2\}$. (b) $R_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y < x + 1\}$. (c) $R_3 = \{(x, y) \in P \times P : y \text{ loves } x\}$.
- 5. Let $R = \{(1,5), (2,2), (3,4), (5,2)\}, S = \{(2,4), (3,4), (3,1), (5,5)\}$ and $T = \{(1,4), (3,5), (4,1)\}$. Find (a) $R \circ S$ (b) $T \circ T$ (c) $R \circ (S \circ T)$.
- 6. Let S = {(1,3), (2,1)} be a relation on {1,2,3}. Give the digraphs for the following relations on the set {1,2,3}.
 (a) S (b) S⁻¹ (c) S ∘ S.
- 7. Let $A = \{a, b, c, d\}$. Give an example of relations R and S on A such that (a) $R \circ S \neq S \circ R$ (b) $(S \circ R)^{-1} \neq S^{-1} \circ R^{-1}$.
- 8. Prove that if A has m elements and B has n elements, then $A \times B$ has mn elements.
- 9. Indicate which of the following relations on the given sets are reflexive, which are symmetric and which are transitive.
 - (a) "divides" on \mathbb{N} .
 - (b) $\perp = \{(l, m) : l \text{ and } m \text{ are lines and } l \text{ is perpendicular to } m\}.$
 - (c) R, where (x, y)R(z, w) iff $x + z \le y + w$, on the set $\mathbb{R} \times \mathbb{R}$.
- 10. Let A be the set {1,2,3}. List the ordered pairs in a relation on A which is(a) reflexive, not symmetric and transitive(b) not reflexive, symmetric and transitive.
- 11. For each of the following verify that the relation is an equivalence relation. then give information about the equivalence classes as specified.

(a) the relation R on \mathbb{Z} given by xRy iff $x^2 = y^2$. Give the equivalence class of 0; of 4; of -72. (b) The relation V on \mathbb{R} given by xVy iff x = y or xy = 1. Give the equivalence class of 3; of $-\frac{2}{3}$; of 0.

(c) The relation R on the set of all ordered triples from the set $\{1, 2, 3, 4\}$ given by (x, y, z)R(a, b, c) iff y = b. List five elements of (4, 2, 1)/R. How many elements are in the equivalence class of (1, 1, 1)?

12. Which of the following digraphs represent relations that are (i) reflexive (ii) symmetric (iii) transitive?

- 13. For the equivalence relation \equiv_m , prove that
 - (a) if $x \equiv_m y$, then $\overline{x} = \overline{y}$
 - (b) if $\overline{x} = \overline{y}$, then $x \equiv_m y$.
 - (c) if $\overline{x} \cap \overline{y} \neq \emptyset$, then $\overline{x} = \overline{y}$.
- 14. Consider the relations R and S on N defined by xRy iff 2 divides x + y and xSy iff 3 divides x + y.
 - (a) Prove that R is an equivalence relation.
 - (b) Prove that S is not an equivalence relation.
- 15. The complement of a digraph has the same vertex set as the original digraph and an edge from x to y exactly when the original digraph does not have an edge from x to y. Call a digraph symmetric or transitive iff its relation is symmetric or transitive, respectively.
 (a) Show that the complement D of a symmetric digraph D is symmetric.
 - (b) Show by example that the complement of a transitive digraph need not be transitive.
- 16. Describe the partition for the following equivalence relation: for $x, y \in \mathbb{R}, xRy$ iff $x y \in \mathbb{Z}$.
- 17. Describe the equivalence relation on each of the following sets with the given partition:
 - (a) $\mathbb{R}, \{(-\infty, 0), \{0\}, (0, \infty)\}.$
 - (b) $\mathbf{Z}, \{A, B\}$, where $A = \{x \in \mathbf{Z} : x < 3\}$ and $B = \mathbf{Z} A$.
- 18. For each $a \in \mathbb{R}$, let $A_a = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = a x^2\}.$
 - (a) Sketch a graph of the set A_a for a = -2, -1, 0, 1, 2.
 - (b) Prove that $\{A_a : a \in \mathbb{R}\}$ is a partition of $R \times \mathbb{R}$.
 - (c) Describe the equivalence relation associated with this partition.
- 19. List the ordered pairs in the equivalence relation on $A = \{1, 2, 3, 4, 5\}$ associated with the partition $\{\{1\}, \{2\}, \{3, 4\}, \{5\}\}$.
- 20. Let R be a relation on a set A that is reflexive and symmetric but not transitive. Let $R(x) = \{y : xRy\}$. [Note that R(x) is the same as x/R except that R is not an equivalence relation in this exercise.] Does the set $\mathcal{A} = \{R(x) : x \in A\}$ always form a partition of A? Prove that your answer is correct.