HOMEWORK 5 - MATH 215 INSTRUCTOR: George Voutsadakis

Problem 1 Prove that for any sets $A, B, C, D, (A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Solution: We first show that $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$. Suppose $(x, y) \in (A \times B) \cap (C \times D)$. Then $(x, y) \in A \times B$ and $(x, y) \in C \times D$. Therefore $x \in A$ and $y \in B$ and $x \in C$ and $y \in D$. Therefore $x \in A \cap C$ and $y \in B \cap D$. Hence $(x, y) \in (A \cap C) \times (B \cap D)$.

We show next that $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$. Suppose that $(x, y) \in (A \cap C) \times (B \cap D)$. Then $x \in A \cap C$ and $y \in B \cap D$. Hence $x \in A$ and $x \in C$ and $y \in B$ and $y \in D$. Therefore $(x, y) \in A \times B$ and $(x, y) \in C \times D$, which shows that $(x, y) \in (A \times B) \cap (C \times D)$.

Problem 2 Give an example of sets A, B and C such that (a) $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$. (b) $(C \times C) - (A \times B) \neq (C - A) \times (C - B)$.

Solution: (a) Let $A = B = \{0\}, C = D = \{1\}$. Then $(A \times B) \cup (C \times D) = \{(0,0)\} \cup \{(1,1)\} = \{(0,0), (1,1)\}$ whereas $(A \cup C) \times (B \cup D) = \{0,1\} \times \{0,1\} = \{(0,0), (0,1), (1,0), (1,1)\}$. (b) Let $C = A = \{0\}$ and $B = \emptyset$. Then $(C \times C) - (A \times B) = \{(0,0)\}$ and $(C - A) \times (C - B) = \emptyset \times \{0\} = \emptyset$.

Problem 3 Let T be the relation $\{(3,1), (2,3), (3,5), (2,2), (1,6), (2,6), (1,2)\}$. Find (a) Dom(T) (b) Rng(T) (c) T^{-1} (d) $(T^{-1})^{-1}$.

Solution: (a) $\text{Dom}(T) = \{1, 2, 3\}.$ (b) $\text{Rng}(T) = \{1, 2, 3, 5, 6\}.$ (c) $T^{-1} = \{(1, 3), (3, 2), (5, 3), (2, 2), (6, 1), (6, 2), (2, 1)\}.$ (d) $(T^{-1})^{-1} = T.$

Problem 4 The inverse of $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = 2x + 1\}$ may be expressed in the form $R^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = \frac{(x-1)}{2}, \text{ the set of all pairs } (x, y), \text{ subject to some condition. Use this form to give the inverses of the following relations. In (c) P is the set of all people.$ $(a) <math>R_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = -5x + 2\}.$ (b) $R_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y < x + 1\}.$

(c) $R_3 = \{(x, y) \in P \times P : y \text{ loves } x\}.$

Solution: (a) $R_1^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = \frac{2-x}{5}\}.$ (b) $R_2^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y > x - 1\}.$ (c) $R_3^{-1} = \{(x, y) \in P \times P : y \text{ is loved by } x\}.$

Problem 5 Let $R = \{(1,5), (2,2), (3,4), (5,2)\}, S = \{(2,4), (3,4), (3,1), (5,5)\}$ and $T = \{(1,4), (3,5), (4,1)\}$. Find (a) $R \circ S$ (b) $T \circ T$ (c) $R \circ (S \circ T)$.

Solution: (a) $R \circ S = \{(3,5), (5,2)\}.$ (b) $T \circ T = \{(1,1), (4,4)\}.$ (c) $R \circ (S \circ T) = R \circ \{(3,5)\} = \{(3,2)\}.$ **Problem 6** Let $S = \{(1,3), (2,1)\}$ be a relation on $\{1,2,3\}$. Give the digraphs for the following relations on the set $\{1,2,3\}$. (a) S (b) S^{-1} (c) $S \circ S$.

Solution:

Problem 7 Let $A = \{a, b, c, d\}$. Give an example of relations R and S on A such that (a) $R \circ S \neq S \circ R$ (b) $(S \circ R)^{-1} \neq S^{-1} \circ R^{-1}$.

Solution: (a) Let $R = \{(a, b)\}, S = \{(b, a)\}$. Then $R \circ S = \{(b, b)\}$, whereas $S \circ S = \{(a, a)\}$. (b) Let $R = \{(a, b)\}$ and $S = \{(b, a)\}$. Then $(S \circ R)^{-1} = \{(a, a)\}^{-1} = \{(a, a)\}$, whereas $S^{-1} \circ R^{-1} = \{(a, b)\} \circ \{(b, a)\} = \{(b, b)\}$.

Problem 8 Prove that if A has m elements and B has n elements, then $A \times B$ has mn elements.

Solution: By induction on m. It is easy to see that, if m = 1, then $A \times B$ has $n = m \times n$ elements. Suppose that, if m = k, then $A \times B$ has $k \times n$ elements. Now let A be a set with m = k+1 elements. If $a \in A$, then

$$#(A \times B) = #(\{a\} \times B) + #((A - \{a\}) \times B)
 = n + kn
 = (k + 1)n
 = mn.$$

Problem 9 Indicate which of the following relations on the given sets are reflexive, which are symmetric and which are transitive.

(a) "divides" on \mathbb{N} .

(b) $\perp = \{(l,m) : l \text{ and } m \text{ are lines and } l \text{ is perpendicular to } m\}.$

(c) R, where (x, y)R(z, w) iff $x + z \le y + w$, on the set $\mathbb{R} \times \mathbb{R}$.

Solution: (a) "divides" on \mathbb{N} is reflexive and transitive but not symmetric.

(b) \perp is symmetric but it is neither reflexive nor transitive.

(c) R is symmetric but it is neither reflexive nor transitive.

Problem 10 Let A be the set $\{1, 2, 3\}$. List the ordered pairs in a relation on A which is (a) reflexive, not symmetric and transitive (b) not reflexive, symmetric and transitive.

Solution: (a) $R = \{(1,1), (1,2), (2,2), (3,3)\}.$ (b) $R = \{(1,1), (1,2), (2,1), (2,2)\}.$

Problem 11 For each of the following verify that the relation is an equivalence relation. then give information about the equivalence classes as specified.

(a) the relation R on Z given by xRy iff $x^2 = y^2$. Give the equivalence class of 0; of 4; of -72. (b) The relation V on \mathbb{R} given by xVy iff x = y or xy = 1. Give the equivalence class of 3; of $-\frac{2}{3}$; of 0.

(c) The relation R on the set of all ordered triples from the set $\{1, 2, 3, 4\}$ given by (x, y, z)R(a, b, c)iff y = b. List five elements of (4, 2, 1)/R. How many elements are in the equivalence class of (1, 1, 1)?

Solution: (a) $x^2 = x^2$, for all $x \in \mathbb{Z}$, whence xRx, for all $x \in \mathbb{Z}$ and R is reflexive. xRy means $x^2 = y^2$, whence $y^2 = x^2$ and hence yRx. Therefore R is symmetric. Finally, if xRy and yRz, then $x^2 = y^2$ and $y^2 = z^2$, whence $x^2 = z^2$ and xRz, i.e., R is also transitive. Thus R is an equivalence relation on \mathbb{Z} .

We have $0/R = \{0\}, 4/R = \{-4, 4\}$ and $-72/R = \{-72, 72\}$.

(b) xVx, for all $x \in \mathbb{R}$, by the definition of R, whence R is reflexive. If xVy, then x = y or xy = 1, whence y = x or yx = 1, which gives yVx and V is symmetric. Finally suppose that xVy and yVz. Then x = y or xy = 1 and y = z or yz = 1. So there are four cases to consider: If x = y and y = z, then x = z and xVz. If x = y and yz = 1, then xz = 1, whence xVz. If xy = 1 and y = z, then xz = 1, whence xVz. Finally, if xy = 1 and yz = 1, then $x = z = \frac{1}{y}$, whence xVz. Therefore V is also transitive and, thus, an equivalence relation on \mathbb{R} .

 $3/V = \{\frac{1}{3}, 3\}, -\frac{2}{3}/V = \{-\frac{2}{3}, -\frac{3}{2}\}, 0/V = \{0\}.$

(c) (x, y, z)R(x, y, z), since y = y. So R is reflexive. (x, y, z)R(u, v, w) implies y = v, whence v = y and, therefore (u, v, w)R(x, y, z). Thus R is symmetric. Finally, if (x, y, z)R(u, v, w) and u, v, w)R(a, b, c), then y = v and v = b, whence y = b and, therefore (x, y, z)R(a, b, c) and R is also transitive, i.e., an equivalence relation on $\{1, 2, 3, 4\}^3$.

(4, 2, 1), (1, 2, 1), (2, 2, 1), (3, 2, 1), (5, 2, 1), (5, 2, 2) are five elements of (4, 2, 1)/R. There are 16 elements in total in the equivalence class of (1, 1, 1).

Problem 12 Which of the following digraphs represent relations that are (i) reflexive (ii) symmetric (iii) transitive?

Solution:

Problem 13 For the equivalence relation \equiv_m , prove that (a) if $x \equiv_m y$, then $\overline{x} = \overline{y}$

(b) if $\overline{x} = \overline{y}$, then $x \equiv_m y$.

(c) if $\overline{x} \cap \overline{y} \neq \emptyset$, then $\overline{x} = \overline{y}$.

Solution: (a) Suppose that $x \equiv_m y$ and let $z \in \overline{x}$. Then $z \equiv_m x$, whence $z \equiv_m y$, and therefore $z \in \overline{y}$. Thus $\overline{x} \subseteq \overline{y}$. The reverse inclusion follows similarly.

(b) Suppose $\overline{x} = \overline{y}$. then $x \in \overline{y}$, whence $x \equiv_m y$.

(c) Suppose that $\overline{x} \cap \overline{y} \neq \emptyset$. Let $z \in \overline{x} \cap \overline{y}$. We show that $\overline{x} \subseteq \overline{y}$. The reverse inclusion can be proved then similarly. Let $w \in \overline{x}$. Then $w \equiv_m x$. But $x \equiv_m z$, whence $w \equiv_m z$. Now $z \equiv_m y$ yields $w \equiv_m y$, whence $w \in \overline{y}$ and $\overline{x} \subseteq \overline{y}$.

Problem 14 Consider the relations R and S on \mathbb{N} defined by xRy iff 2 divides x + y and xSy iff 3 divides x + y.

(a) Prove that R is an equivalence relation.

(b) Prove that S is not an equivalence relation.

Solution: (a) We show that R is an equivalence on \mathbb{N} . First x + x = 2x is divisible by 2, for all $x \in \mathbb{N}$, whence $(x, x) \in \mathbb{N}$, for all $x \in \mathbb{N}$ and R is reflexive. Suppose xRy. Then x + y is divisible by 2, whence y + x = x + y is divisible by 2 and $(y, x) \in R$. Thus R is also symmetric. Finally, suppose $(x, y) \in R$ and $(y, z) \in R$. Then 2 divides x + y and 2 divides y + z, whence 2 divides (x + z) + 2y, which implies that 2 divides x + z. Therefore $(x, z) \in R$ and R is also transitive. (b) For instance $(2, 2) \notin S$, whence S is not reflexive.

Problem 15 The complement of a digraph has the same vertex set as the original digraph and an edge from x to y exactly when the original digraph does not have an edge from x to y. Call a digraph symmetric or transitive iff its relation is symmetric or transitive, respectively. (a) Show that the complement \tilde{D} of a symmetric digraph D is symmetric.

(b) Show by example that the complement of a transitive digraph need not be transitive.

Solution: (a) Suppose $xy \in \tilde{D}$. Then $xy \notin D$, whence, since D is symmetric $yx \notin D$. Hence $yx \in \tilde{D}$ and, therefore \tilde{D} is in fact symmetric.

(b) Let D have two vertices x, y and the edges (x, x) and (y, y). This D is transitive. Its complement \tilde{D} has vertices x, y and the edges (x, y), (y, x). It is easy to see that \tilde{D} is not transitive.

Problem 16 Describe the partition for the following equivalence relation: for $x, y \in \mathbb{R}$, xRy iff $x - y \in \mathbb{Z}$.

Solution: The partition is in one-to-one correspondence with the subset [0,1) of the real numbers. The set in the partition corresponding to $r \in [0,1)$ consists of all reals x that have the same fractional part as r does.

Problem 17 Describe the equivalence relation on each of the following sets with the given partition: (a) $\mathbb{R}, \{(-\infty, 0), \{0\}, (0, \infty)\}$. (b) $\mathbb{Z}, \{A, B\},$ where $A = \{x \in \mathbb{Z} : x < 3\}$ and $B = \mathbb{Z} - A$.

Solution: (a) R on \mathbb{R} is defined by

$$xRy$$
 iff $x = y = 0$ or $xy > 0$.

(b) R on \mathbf{Z} may be defined by

$$xRy$$
 iff $(x-\frac{5}{2})(y-\frac{5}{2}) > 0$

Problem 18 For each $a \in \mathbb{R}$, let $A_a = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = a - x^2\}$. (a) Sketch a graph of the set A_a for a = -2, -1, 0, 1, 2.

- (b) Prove that $\{A_a : a \in \mathbb{R}\}$ is a partition of $R \times \mathbb{R}$.
- (c) Describe the equivalence relation associated with this partition.

Solution: (a)

(b) First, we show that every part $A_a, a \in \mathbb{R}$, is nonempty. This is true, since, for all $a \in \mathbb{R}$, $(0, a) \in A_a$.

Next we show that, if $a \neq b$, then $A_a \cap A_b = \emptyset$. Suppose $(x, y) \in A_a \cap A_b$. Then $y = a - x^2$ and $y = b - x^2$. Therefore $y + x^2 = a = b$.

Finally, we show that the union of all parts is the whole space $\mathbb{R} \times \mathbb{R}$. Given $(x, y) \in \mathbb{R} \times \mathbb{R}$, $y = (y + x^2) - x^2$, whence $(x, y) \in A_{y+x^2}$. So $\bigcup_{a \in \mathbb{R}} A_a = \mathbb{R} \times \mathbb{R}$. (c) (x, y)R(z, w) if and only if $y + x^2 = w + z^2$.

Problem 19 List the ordered pairs in the equivalence relation on $A = \{1, 2, 3, 4, 5\}$ associated with the partition $\{\{1\}, \{2\}, \{3, 4\}, \{5\}\}$.

Solution:
$$R = \{(1,1), (2,2), (3,3), (3,4), (4,3), (4,4), (5,5)\}.$$

Problem 20 Let R be a relation on a set A that is reflexive and symmetric but not transitive. Let $R(x) = \{y : xRy\}$. [Note that R(x) is the same as x/R except that R is not an equivalence relation in this exercise.] Does the set $\mathcal{A} = \{R(x) : x \in A\}$ always form a partition of A? Prove that your answer is correct.

Solution: A is not always a partition on A. Let for instance $A = \{1, 2, 3\}, R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)\}$. R is a reflexive and symmetric relation on A but it is not transitive. We have $1/R = \{1, 2\}, 2/R = \{1, 2, 3\}, 3/R = \{2, 3\}$. Obviously, these do not form a partition on A.