HOMEWORK 6 - MATH 215 INSTRUCTOR: George Voutsadakis

Problem 1 Which of the relations on the given sets are antisymmetric? (a) $A = \{1, 2, 3, 4, 5\}, R = \{(1, 3), (1, 1), (2, 4), (3, 2), (5, 4), (4, 2)\}$ (b) \mathbb{R}, xRy iff $x^2 = y^2$. (c) $A = \{1, 2, 3, 4\}$ and R is given by the following digraph.

Solution: (a) R is not antisymmetric, since $(2, 4) \in R$ and $(4, 2) \in R$ but $2 \neq 4$. (b) This R is not antisymmetric either: We have, for instance -1R1 and 1R - 1, but $-1 \neq 1$. (c) This relation is antisymmetric, since for no x, y is it the case that xRy and yRx.

Problem 2 Show that if R is antisymmetric, then xRy and $x \neq y$ implies $y \not Rx$.

Solution: Suppose that R is antisymmetric, xRy and $x \neq y$. If yRx, then, by antisymmetry, we have x = y, contrary to the hypothesis.

Problem 3 Give an example of a relation R on a set A which is antisymmetric and such that xRx for some, but not all, $x \in A$.

Solution: Let $A = \{1, 2\}$ and $R = \{(1, 1)\}$. Clearly, xRx is true for some but not for all $x \in A$. Also R is antisymmetric, since the only pair (x, y) for which xRy and yRx is the pair (1, 1) and 1 = 1.

Problem 4 Give an example of a relation S on a set $A = \{a, b, c, d\}$ such that S is transitive, antisymmetric and irreflexive (that is, xSx is false for all $x \in A$).

Solution: Let $S = \{(a, b)\}.$

Problem 5 Define the relation on $\mathbb{R} \times \mathbb{R}$ by (a, b)R(x, y) iff $a \leq x$ and $b \leq y$. Prove that R is a partial ordering for $\mathbb{R} \times \mathbb{R}$.

Solution: Clearly, $x \le x$ and $y \le y$, for all $x, y \in \mathbb{R}$, whence (x, y)R(x, y), for all $(x, y) \in \mathbb{R}^2$, and R is reflexive. Suppose (x, y)R(a, b) and (a, b)R(x, y). Then $x \le a$ and $y \le b$ and $a \le x$ and $b \le y$. therefore x = a and y = b, which shows that (x, y) = (a, b) and R is antisymmetric. Finally, suppose (x, y)R(a, b) and (a, b)R(z, w). Then $x \le a, y \le b, a \le z$ and $b \le w$. Therefore $x \le z$ and $y \le w$, which yields (x, y)R(z, w) and R is also transitive. Thus, R is a partial ordering on \mathbb{R}^2 .

Problem 6 Let **C** be the complex numbers. Define (a + bi)R(c + di) iff $a^2 + b^2 \le c^2 + d^2$. Is R a partial order for **C**? Justify your answer.

Solution: *R* is not a partial ordering on **C**. The reason is that *R* is not antisymmetric. For instance -1R1 and 1R - 1, but $-1 \neq 1$.

Problem 7 Use your own judgement about which tasks should precede others to draw a Hasse diagram for the partial order among the tasks for the following complex job: To back a car out of the garage, Kim must perform 11 tasks: t_1 : put the key in the ignition t_2 :step on the gas t_3 : check to see if the driveway is clear t_4 :start the car t_5 :adjust the mirror t_6 :open the garage door t_7 :fasten the seat belt t_8 :adjust the position of the driver's seat t_9 :get in the car t_{10} :put the car in reverse gear t_{11} : step on the break.

Solution:

Problem 8 Let A be a set. Consider the partial order \subseteq on $\mathcal{P}(A)$.

(a) Let C and D be subsets of A. Prove that the least upper bound of $\{C, D\}$ is $C \cup D$ and the greatest lower bound of $\{C, D\}$ is $C \cap D$.

(b) Let \mathcal{B} be a family of subsets of A. Prove that the least upper bound of \mathcal{B} is $\bigcup_{B \in \mathcal{B}} B$ and the greatest lower bound of \mathcal{B} is $\bigcap_{B \in \mathcal{B}} B$.

Solution: (a) We first show that $C \cup D$ is the least upper bound of $\{C, D\}$. Clearly, $C \subseteq C \cup D$ and $D \subseteq C \cup D$. Thus $C \cup D$ is an upper bound of $\{C, D\}$. Suppose that A is an upper bound of $\{C, D\}$. Then $C \subseteq A$ and $D \subseteq A$. Then $C \cup D \subseteq A$, whence $C \cup D$ is the least upper bound of $\{C, D\}$.

We next show that $C \cap D$ is the greatest lower bound of $\{C, D\}$. Clearly, $C \cap D \subseteq C$ and $C \cap D \subseteq D$. Thus $C \cap D$ is a lower bound of $\{C, D\}$. Suppose that B is a lower bound of $\{C, D\}$. Then $B \subseteq C$ and $B \subseteq D$. Then $B \subseteq C \cap D$, whence $C \cap D$ is the greatest lower bound of $\{C, D\}$. (b) We first show that $\bigcup_{B \in \mathcal{B}} B$ is the least upper bound of \mathcal{B} . Clearly, $B \subseteq \bigcup_{B \in \mathcal{B}} B$, for all $B \in \mathcal{B}$. Thus $\bigcup_{B \in \mathcal{B}} B$ is an upper bound of \mathcal{B} . Suppose that A is an upper bound of \mathcal{B} . Then $B \subseteq A$, for all $B \in \mathcal{B}$. Then $\bigcup_{B \in \mathcal{B}} B \subseteq A$, whence $\bigcup_{B \in \mathcal{B}} B$ is the least upper bound of \mathcal{B} .

We next show that $\bigcap_{B\in\mathcal{B}} B$ is the greatest lower bound of \mathcal{B} . Clearly, $\bigcap_{B\in\mathcal{B}} B \subseteq B$, for all $B\in\mathcal{B}$. Thus $\bigcap_{B\in\mathcal{B}} B$ is a lower bound of \mathcal{B} . Suppose that A is a lower bound of \mathcal{B} . Then $A\subseteq B$, for all $B\in\mathcal{B}$. Then $A\subseteq\bigcap_{B\in\mathcal{B}} B$, whence $\bigcap_{B\in\mathcal{B}} B$ is the greatest lower bound of \mathcal{B} .

Problem 9 For what sets A is $\mathcal{P}(A)$ with set inclusion a linear ordering?

Solution: It is a linear ordering only for $A = \emptyset$ and for A a singleton, i.e., #A = 1.

Problem 10 Prove that every subset of a well-ordered set is well-ordered.

Solution: Suppose that A is a well-ordered set and that $B \subseteq A$. Let $X \subseteq B$, such that $X \neq \emptyset$. Then $X \subseteq A$ and $X \neq \emptyset$, whence X has a least element in A. But this is also a least element in B. Thus B is also well-ordered.

Problem 11 P is a preorder for a set A if P is reflexive and transitive relation on A. Define a relation E on A by xEy iff xPy and yPx. Show that E is an equivalence relation on A.

Solution: We need to show that E is reflexive symmetric and transitive. Since P is reflexive, we have xPx, for all $x \in A$. Therefore xEx, for all $x \in A$, and E is reflexive. Suppose next that xEy. Then xPy and yPx, whence yPx and xPy, which gives yEx and E is symmetric. Finally, let xEy and yEz. Then xPy and yPx and yPz and zPy. But P is transitive, whence the first and third relations yield xPz and the second and fourth yield zPx, i.e., we have xEz and E is also transitive. Thus E is an equivalence relation on A.

Problem 12 If possible, give an example of a graph with order 6 such that

- (a) the vertices have degrees 1, 1, 1, 1, 1, 5
- (b) the vertices have degrees 1, 1, 1, 1, 1, 1
- (c) the vertices have degrees 2, 2, 2, 2, 2, 2
- (d) the vertices have degrees 1, 2, 2, 2, 3, 3
- (e) exactly two vertices have even degree.
- (f) exactly two vertices have odd degree.

Solution: We let $V = \{1, 2, 3, 4, 5, 6\}$. (a) $E = \{\{1, 2\}, \{1, 3\}\}, \{1, 4\}, \{1, 5\}, \{1, 6\}$. (b) $E = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$. (c) $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{4, 5\}, \{4, 6\}, \{5, 6\}\}$. (d) Not possible. (e) $E = \{\{1, 2\}, \{3, 4\}\}$. (f) $E = \{\{1, 2\}.$

Problem 13 f possible give an example of a graph

- (a) with order 6 and size 6
- (b) with order 4 and size 6
- (c) with order 3 and size 6
- (d) with order 6 and size 3.

Solution: (a) Let $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{4, 5\}, \{6, 6\}, \{5, 6\}\}$.

- (b) Let $V = \{1, 2, 3, 4\}$ and $E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$
- (c) Not possible.

(d) Let $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}.$

Problem 14 The complement \tilde{G} of a graph G(V, E) is the graph with vertex set V in which two vertices are adjacent iff they are not adjacent in G. Give the complements of these graphs.

Solution:

Problem 15 Give an example of a graph with 6 vertices having degrees 1, 1, 2, 2, 2, 2 that is (a) connected (b) disconnected

Solution: Let $V - \{1, 2, 3, 4, 5, 6\}$. (a) $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 6\}\}$. (b) $E = \{\{1, 2\}, \{3, 4\}, \{4, 5\}, \{5, 6\}, \{6, 3\}\}$.

Problem 16 Give an example of a graph with 6 vertices having (a) one component (b) two components (c) three components (d) six components.

Solution: Let $V = \{1, 2, 3, 4, 5, 6\}$. (a) $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 6\}\}$. (b) $E = \{\{1, 2\}, \{3, 4\}, \{4, 5\}, \{5, 6\}\}$. (c) $E = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$. (d) $E = \emptyset$.

Problem 17 Give an example of a graph with order 6 such that (a) two vertices u and v have distance 5 (b) for any two vertices u and v, $d(u, v) \le 2$.

Solution: Let $V = \{1, 2, 3, 4, 5, 6\}$. (a) $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 6\}\}$. (b) $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 6\}, \{6, 1\}, \{1, 4\}, \{2, 5\}, \{3, 6\}\}$.