EXAM 2 - MATH 325

Thursday, November 20, 2003 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 4 points. It is necessary to show your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

- 1. (a) State and prove the ASA Theorem for similar triangles
 - (b) Let $\triangle ABC$ be a triangle and A' the midpoint of \overline{BC} . Let l be a line through A' that intersects \overline{AB} and \overline{AC} at D and E, respectively. Prove that $\frac{AB}{BD} = \frac{AE}{EC}$. (Hint: Depending on how you draw l, you may need to bring the parallel to \overline{AC} through B or the parallel to \overline{AB} through C. Feel free to consider only one of the possible cases!)
- 2. (a) Give the definition of a tangent line to a circle. Show that, if l is tangent to (O, r) at A, then l is perpendicular to \overline{OA} at A. Use this to show that two tangents to (O, r) through the same point P are equal in length.
 - (b) Show that if \widehat{ABC} is inscribed in a circle (O, r), such that \overline{AB} is a diameter, then $\widehat{ABC} = \frac{1}{2}\widehat{AOC}$.
- 3. (a) Let $\overline{AB}, \overline{CD}$ be two chords of a circle (O, r), intersecting at an interior point E. Prove that $AE \cdot EB = CE \cdot ED$.
 - (b) Let $\triangle ABC$ be a triangle and \overline{AD} the angle bisector of \widehat{A} that intersects the circumcircle at E. Prove that $\frac{AB}{AE} = \frac{AD}{AC}$.
- 4. (a) Let ABCD be a parallelogram. Let l be a line through A that intersects \overline{BD} at E, \overline{BC} at Z and \overline{CD} at H. Show that $EA^2 = EZ \cdot EH$.
 - (b) Prove that a regular *n*-gon inscribed in a circle of radius *r* and with sides of length *s* has area $\frac{n}{2}s\sqrt{r^2 \frac{1}{4}s^2}$.
- 5. (a) Prove that a point P is on the perpendicular bisector of a line segment \overline{AB} if and only if PA = PB. Use this to show that the perpendicular bisectors of the three sides of a triangle $\triangle ABC$ are concurrent.
 - (b) Prove that in a triangle $\triangle ABC$, $bc = 2Rh_a$. Use this to derive Brahmagupta's Formula for the area K of the triangle.