HOMEWORK 1 - MATH 325

DUE DATE: When Chapter 2 has been covered! INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. A few randomly selected problems will be graded for a total of 10 points. It is necessary to show your work.

- GOOD LUCK!!
- 1. Prove SSA for right triangles: If $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ and if $\widehat{B} = 90^{\circ}$ and $\widehat{E} = 90^{\circ}$, then $\triangle ABC \cong \triangle DEF$.
- 2. Prove SAA: If $\widehat{A} \cong \widehat{D}, \widehat{B} \cong \widehat{E}$ and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.
- 3. Let l be a line and P a point not on l. Construct a line that contains P and that is perpendicular to l.
- 4. Let l be a line and P a point not on l. Construct a line that contains P and that meets l at a 45° angle. Construct a line that contains P and that meets l at a 30° angle. (To do this exercise you need to use the fact that the sum of the angles in any triangle is 180° .)
- 5. Given triangles $\triangle ABC$ and $\triangle DEF$ such that $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ and $\widehat{A} > \widehat{D}$, prove that BC > EF.
- 6. Given BC and A_1, \ldots, A_n , prove that $BC < BA_1 + A_1A_2 + \ldots + A_nC$.
- 7. Prove that the sum of the angles in a convex *n*-sided figure is $(n-2)180^{\circ}$.
- 8. Prove that a parallelogram ABCD is a rectangle if and only if the diagonals \overline{AC} and \overline{BD} are congruent.
- 9. Prove that a parallelogram ABCD is a rhombus if and only if the diagonals \overline{AC} and \overline{BD} are perpendicular to each other.