HOMEWORK 2 - MATH 325 INSTRUCTOR: George Voutsadakis

Problem 1 Given triangles $\triangle ABC$ and $\triangle DEF$ such that \overline{AB} and \overline{DE} are parallel and congruent and \overline{BC} and \overline{EF} are parallel and congruent, prove that \overline{AC} and \overline{DF} are parallel and congruent.

Solution: Since \overline{AB} and \overline{DE} are parallel and congruent, the quadrilateral ADEB is a parallelogram, whence \overline{AD} and \overline{BE} are also parallel and congruent. Similarly, since \overline{BC} and \overline{EF} are parallel and congruent, the quadrilateral BEFC is also a parallelogram, whence \overline{BE} and \overline{CF} are parallel and congruent as well. Therefore \overline{AD} is parallel and congruent with \overline{CF} . But then the quadrilateral ACFD is a parallelogram and, therefore, \overline{AC} is parallel and congruent to \overline{DF} .

Problem 2 Given a quadrilateral ABCD such that $\overline{AB} \parallel \overline{CD}$, prove that $\widehat{C} = \widehat{D}$ or $\widehat{C} =$ external (\widehat{D}) if and only if $\overline{AD} \cong \overline{BC}$.

Solution: Suppose, first, that $\widehat{C} = \widehat{D}$ or $\widehat{C} = \operatorname{external}(\widehat{D})$. Bring the perpendiculars AP and BQ from A and B, respectively, to \overline{CD} . then ABQP is a parallelogram, whence AP = BQ. Thus, by AAS for right triangles, $\triangle ADP \cong \triangle BCQ$ and, therefore, AD = BC.

Suppose, conversely, that AD = BC. Let again P and Q be as above. Now we use ASS for right triangles to conclude that $\triangle ADP \cong \triangle BCQ$. Therefore $\widehat{C} = \widehat{D}$ or $\widehat{C} = \operatorname{external}(\widehat{D})$.

Problem 3 Our proof that parallel lines are at a constant distance apart used the parallel postulate. Prove the following without using the parallel postulate: Assume that the lines l_1 and l_2 are at a constant distance apart. Then, if l_1 and l_2 are cut by a transversal, alternate interior angles must be congruent.

Solution: Let l be a transversal and suppose that it cuts l_1 at A and l_2 at B. Let C and D be respectively the perpendiculars from A to l_2 and from B to l_1 . Then in the right triangles $\triangle ADB$ and $\triangle ACB$ we have AB = AB, DB = AC, whence $\triangle ADB \cong \triangle BCA$. Hence $\overrightarrow{DAB} \cong \overrightarrow{CBA}$.

Problem 4 Let ABCD be a parallelogram. Define the base to be \overline{AB} and the height to be the distance between \overline{AB} and \overline{CD} . Prove that ABCD has area = base × height.

Solution: Let CP and DQ be the perpendiculars from C and D, respectively to \overline{AB} . Then, by the formula for the area of a rectangle, we have $\operatorname{Area}(DCPQ) = PQ \cdot CP$. In the right triangles $\triangle AQD$ and $\triangle CBP$, we have DQ = CP and $\widehat{DAQ} \cong \widehat{CBP}$, whence $\triangle AQD \cong \triangle BPC$, whence $\operatorname{Area}(AQD) = \operatorname{Area}(BPC)$ and AQ = BP. Thus we get

$\operatorname{Area}(ABCD)$	=	$\operatorname{Area}(AQD) + \operatorname{Area}(DCBQ)$
	=	$\operatorname{Area}(BPC) + \operatorname{Area}(DCBQ)$
	=	$\operatorname{Area}(DCPQ)$
	=	$PQ \cdot CP$
	=	(QB + BP)CP
	=	(QB + AQ)CP
	=	$AB \cdot CP.$

Problem 5 Assume that in quadrilateral ABCD $\overline{AB} \parallel \overline{CD}$. Let $AB = b_1, CD = b_2$ and let h be the distance between \overline{AB} and \overline{CD} . Prove that ABCD has area $\frac{1}{2}h(b_1 + b_2)$.

Solution: Suppose that the perpendiculars from A and B to \overline{CD} intersect \overline{CD} at P and Q, respectively. If they intersect the extension of \overline{CD} , then the proof has to be modified slightly. We denote x = DP, y = QC. Then we have

$$Area(ABCD) = Area(ADP) + Area(ABQP) + Area(BQC)$$
$$= \frac{1}{2}xh + b_1h + \frac{1}{2}yh$$
$$= \frac{1}{2}(x+y)h + b_1h$$
$$= \frac{1}{2}(b_2 - b_1)h + b_1h$$
$$= \frac{1}{2}(b_1 + b_2)h.$$

Problem 6 Prove that in a right triangle, if the hypotenuse is the base of length c, then the height is $h = \frac{ab}{c}$.

Solution: Let CP be the altitude corresponding to the right angle. Then $\triangle APC \cong \triangle ACB$, whence $\frac{PC}{CB} = \frac{AC}{AB}$, i.e., $PC = \frac{AC \cdot CB}{AB} = \frac{ab}{c}$.

Problem 7 Given a convex quadrilateral ABCD with $AC \perp BD$, prove that $AB^2 + CD^2 = BC^2 + AD^2$.

Solution: Let P be the point of intersection of \overline{AC} with \overline{BD} . Then we have

$$AB^{2} + CD^{2} = AP^{2} + BP^{2} + CP^{2} + DP^{2}$$

= $AP^{2} + DP^{2} + BP^{2} + CP^{2}$
= $AD^{2} + BC^{2}$.

Problem 8 (a) Given \overline{AB} and \overline{CD} construct \overline{EF} such that $EF^2 = AB^2 + CD^2$. (b) Given $\overline{AB}, \overline{CD}$ and \overline{EF} , construct \overline{GH} such that $GH^2 = AB^2 + CD^2 + EF^2$.

Solution: (a) Construct a right angle \widehat{P} and take on one of its sides \overline{PE} , such that PE = AB and on its other side \overline{PF} , such that PF = CD. Then $EF^2 = PE^2 + PF^2 = AB^2 + CD^2$, whence \overline{EF} is the line segment with the property required.

(b) Construct a right angle \widehat{P} . Take on one of its sides \overline{PG} , such that PG = AB. Take on its other side \overline{PQ} , such that PQ = CD. Now construct the perpendicular to \overline{QG} at Q and take on it segment \overline{QH} , such that QH = EF. Then we have

$$\begin{array}{rcl} GH^2 &=& QH^2 + QG^2 \\ &=& EF^2 + QP^2 + PG^2 \\ &=& EF^2 + CD^2 + AB^2. \end{array}$$

Thus \overline{GH} has the property required.

Problem 9 (a) Assume that in $\triangle ABC$, a = 4, b = 9 and c = 11. Calculate the area. (b) Calculate the length of each of the three altitudes in the triangle of part (a). (c) If we let a = 2, b = 3 and c = 7 in Heron's formula we get a problem. What is the problem and why does it happen?

Solution: (a) First, the semiperimeter is $s = \frac{a+b+c}{2} = \frac{4+9+11}{2} = 12$. Now the area is

Area
$$(ABC)$$
 = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{12 \cdot 8 \cdot 3 \cdot 1}$
= $\sqrt{288} = 12\sqrt{2}.$

(b) $h_a = \frac{2\operatorname{Area}(ABC)}{a} = \frac{2 \cdot 12\sqrt{2}}{4} = 6\sqrt{2}.$ $h_b = \frac{2\operatorname{Area}(ABC)}{b} = \frac{2 \cdot 12\sqrt{2}}{9} = \frac{8}{3}\sqrt{2}.$ $h_c = \frac{2\operatorname{Area}(ABC)}{c} = \frac{2 \cdot 12\sqrt{2}}{11} = \frac{24}{11}\sqrt{2}.$ (c) The problem is that $s = \frac{2+3+7}{2} = 6$, whence s - c = -1 and Heron's formula requires the

(c) The problem is that $s = \frac{2+3+7}{2} = 6$, whence s - c = -1 and Heron's formula requires the extraction of the square root of a negative quantity. This happens because the given lengths cannot be the lengths of the sides of a triangle. They violate the triangle inequality.