HOMEWORK 3 - MATH 325

DUE DATE: After Section 5.3 has been covered! INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. A few randomly selected problems will be graded for a total of 10 points. It is necessary to show your work. GOOD LUCK!!

- 1. Assume that $\triangle ABC$ and $\triangle EFG$ are similar with ratio k. Let \overline{AD} be an altitude of $\triangle ABC$ and \overline{EH} be an altitude of $\triangle EFG$. Prove that $EH = k \cdot AD$. What can you conclude about the areas of the two triangles?
- 2. In triangles $\triangle ABC$ and $\triangle DEF$ assume that $ED = k \cdot AB$, $FE = k \cdot BC$ and that \widehat{C} and \widehat{F} are right angles. Prove that $\triangle ABC$ and $\triangle DEF$ are similar with ratio k.
- 3. Let $\triangle ABC$ be a right triangle at C and with altitude \overline{CD} . prove that $\triangle ABC \sim \triangle ACD \sim \triangle CBD$. Use this to give another proof of the Pythagorean Theorem.
- 4. Let $\triangle ABC$ and $\triangle DEF$ be such that $\overline{AB} \parallel \overline{DE}, \overline{BC} \parallel \overline{EF}$ and $\overline{AC} \parallel \overline{DF}$. Prove that $\triangle ABC \sim \triangle DEF$.
- 5. Assume that you are given a line segment \overline{AB} of length 1.
 - (a) Given line segments of lengths a and b, construct a segment of length $\frac{a}{b}$.
 - (b) Given line segments of lengths a and b, construct a line segment of length ab.
- 6. Given a triangle $\triangle ABC$ and a point P on \overline{AB} with AP > PB, show how to construct a point Q on \overline{AC} such that $\triangle APQ$ will have one-half the area of $\triangle ABC$.
- 7. Find the indicated parts in each figure:

- 8. (a) Prove that the perpendicular bisector of a chord of a circle is a diameter.(b) Given a circle, how would you construct the center?
- 9. Given a quadrilateral ABCD such that each of the four sides is tangent to a circle, prove that AB + CD = AD + BC.