HOMEWORK 3 - MATH 325 INSTRUCTOR: George Voutsadakis

Problem 1 Assume that $\triangle ABC$ and $\triangle EFG$ are similar with ratio k. Let \overline{AD} be an altitude of $\triangle ABC$ and \overline{EH} be an altitude of $\triangle EFG$. Prove that $EH = k \cdot AD$. What can you conclude about the areas of the two triangles?

Solution: We have $\widehat{ABD} \cong \widehat{EFH}$ and $\widehat{ADB} \cong \widehat{EHF}$, whence $\triangle ABD \cong \triangle EFH$. Thus, since $EF = k \cdot AB$, we have $EH = k \cdot AD$. Hence

Area
$$(EFG) = \frac{1}{2}FG \cdot EH = \frac{1}{2}k \cdot BC \cdot k \cdot AD = k^2 \text{Area}(ABC).$$

Problem 2 In triangles $\triangle ABC$ and $\triangle DEF$ assume that $ED = k \cdot AB$, $FE = k \cdot BC$ and that \widehat{C} and \widehat{F} are right angles. Prove that $\triangle ABC$ and $\triangle DEF$ are similar with ratio k.

Solution: $\frac{ED}{AB} = \frac{FE}{BC} = k$ implies $\frac{ED^2}{AB^2} = \frac{FE^2}{BC^2} = k^2$, whence $\frac{ED^2 - FE^2}{AB^2 - BC^2} = k^2$. Therefore $\frac{DF^2}{AC^2} = k^2$, i.e., $\frac{DF}{AC} = k$. Now SAS for similar triangles applies to yield $\triangle ABC \sim_k \triangle DEF$.

Problem 3 Let $\triangle ABC$ be a right triangle at C and with altitude \overline{CD} . prove that $\triangle ABC \sim \triangle ACD \sim \triangle CBD$. Use this to give another proof of the Pythagorean Theorem.

Solution: We have $\widehat{ACB} \cong \widehat{ADC} \cong \widehat{BDC}$ and also $\widehat{BAC} \cong \widehat{DAC} \cong \widehat{BCD}$, whence $\triangle ACB \sim \triangle ADC \sim \triangle CDB$. These similarities yield $\frac{AC}{AB} = \frac{AD}{AC}$ and $\frac{BC}{AB} = \frac{BD}{BC}$, whence $AC^2 = AB \cdot AD$ and $BC^2 = AB \cdot BD$. Therefore

$$AB^{2} = AB(AD + BD) = AB \cdot AD + AB \cdot BD = AC^{2} + BC^{2}.$$

Problem 4 Let $\triangle ABC$ and $\triangle DEF$ be such that $\overline{AB} \parallel \overline{DE}, \overline{BC} \parallel \overline{EF}$ and $\overline{AC} \parallel \overline{DF}$. Prove that $\triangle ABC \sim \triangle DEF$.

Solution: Suppose that P is the point of intersection of \overline{AC} with \overline{DE} and that Q is the point of intersection of \overline{BC} with \overline{DE} . Then we have $\widehat{BAC} \cong \widehat{EPC} \cong \widehat{EDF}$ and $\widehat{ABC} \cong \widehat{DQC} \cong \widehat{DEF}$. Therefore $\triangle ABC \sim \triangle DEF$.

Problem 5 Assume that you are given a line segment \overline{AB} of length 1.

(a) Given line segments of lengths a and b, construct a segment of length $\frac{a}{b}$.

(b) Given line segments of lengths a and b, construct a line segment of length ab.

Solution: (a) Take any angle \widehat{A} and construct on one of its sides \overline{AB} , such that AB = b and \overline{BC} , such that BC = a and on its other side \overline{AD} , such that AD = 1. Now draw the line segment \overline{BD} and construct the parallel from C to \overline{BD} . Let E be the point of intersection of this parallel with \overline{AD} . We claim that $DE = \frac{a}{b}$. Since $\overline{BD} \parallel \overline{CE}$, $\triangle ABD \sim \triangle ACE$, whence $\frac{AB}{AC} = \frac{AD}{AE}$, i.e., $\frac{AB}{BC} = \frac{AD}{DE}$. Therefore $\frac{b}{a} = \frac{1}{DE}$, whence $DE = \frac{a}{b}$.

(b) This is a similar construction. We take on one side of \widehat{A} point B, such that AB = 1 and point C, such that BC = a and on its other side point D, such that AD = b. Draw \overline{BD} and construct the parallel to \overline{BD} from C. Let E be the point of intersection of this parallel with \overline{AD} . Then, it can be shown exactly as in (a) that DE = ab.

Problem 6 Given a triangle $\triangle ABC$ and a point P on \overline{AB} with AP > PB, show how to construct a point Q on \overline{AC} such that $\triangle APQ$ will have one-half the area of $\triangle ABC$.

Solution: Let P' be the point on the extension of \overline{AB} on the side of B such that PP' = AP. Draw $\overline{P'C}$ and construct the parallel from B to $\overline{P'C}$ intersecting \overline{AC} at Q. Then $\operatorname{Area}(APQ) = \frac{1}{2}\operatorname{Area}(ABC)$. To see this is the case, calculate

$$\frac{\text{Area}(APQ)}{\text{Area}(ABC)} = \frac{AP \cdot AQ}{AB \cdot AC} \\ = \frac{1}{2} \frac{AP' \cdot AQ}{AB \cdot AC} \\ = \frac{1}{2} \frac{AC}{AQ} \frac{AQ}{AC} \\ = \frac{1}{2} \frac{AC}{AQ} \frac{AQ}{AC} \\ = \frac{1}{2}.$$

Problem 7 Find the indicated parts in each figure:

Solution: (a) $\triangle AEC \sim \triangle DEB$, whence $\frac{AE}{EC} = \frac{DE}{EB}$, i.e., $AE \cdot EB = DE \cdot EC$. Therefore $4AE^2 = DE \cdot EC$, and, hence, $AE = \frac{3}{2}\sqrt{2}$. Therefore $EB = 4AE = 6\sqrt{2}$. (b)

$$Arc(AD) = 2\widehat{ABD} = 2(90^{\circ} - \widehat{BDC}) = 2(90^{\circ} - \frac{1}{2}Arc(BC)) = 2(90^{\circ} - \frac{1}{2}40^{\circ}) = 140^{\circ}.$$
$$Arc(BD) = 2\widehat{BAD} = 2(90^{\circ} - \widehat{CDA}) = 2(90^{\circ} - \frac{1}{2}Arc(CA)) = 2(90^{\circ} - \frac{1}{2}30^{\circ}) = 150^{\circ}.$$

(c) We have $AC \cdot AD = AE \cdot AF = AB^2 = 100$. Also AC + CD = AD which gives AD = AC + 4 and AE + EF = AF which gives AF = AE + 12. Now we may set up two quadratic equations in AC and AE and solve them to find these lengths.

Problem 8 (a) Prove that the perpendicular bisector of a chord of a circle is a diameter. (b) Given a circle, how would you construct the center?

Solution: (a) Let \overline{AB} be a chord of a circle and \overline{CD} its perpendicular bisector intersecting it at M. To show that \overline{CD} is a diameter, it suffices to show that $\widehat{CAD} = 90^{\circ}$. We have by SAS, $\triangle ACM \cong \triangle BCM$ and $\triangle ADM \cong \triangle BDM$. Therefore $\widehat{CAM} \cong \widehat{CBM}$ and $\widehat{DAM} \cong \widehat{DBM}$. Hence $\widehat{CAD} \cong \widehat{CAM} + \widehat{DAM} \cong \widehat{CBM} + \widehat{DBM} \cong \widehat{CBD}$. But these two are supplementary angles, whence

 $\widehat{CAD} = 90^{\circ}$, as was to be shown.

(b) Take any two chords \overline{AB} and \overline{BC} and construct their perpendicular bisectors. The point of intersection of their perpendicular bisectors is the center of the circle.

Problem 9 Given a quadrilateral ABCD such that each of the four sides is tangent to a circle, prove that AB + CD = AD + BC.

Solution: Let M, N, P and Q be the points of tangency of $\overline{AB}, \overline{BC}, \overline{CD}$ and \overline{DA} , respectively, with the given circle. We then have

$$AB + CD = AM + MB + CP + DP$$

= $AQ + BN + CN + DQ$
= $AQ + DQ + BN + CN$
= $AD + BC$.