HOMEWORK 5 - MATH 325 DUE DATE: After Chapter 7 has been covered!

INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. A few randomly selected problems will be graded for a total of 10 points. It is necessary to show your work. GOOD LUCK!!

- 1. Prove: if s is the length of a side of an n-gon inscribed in a circle of radius r and t the length of a side of a 2n-gon inscribed in a circle of radius r, then $t^2 = 2r(r \sqrt{r^2 \frac{1}{4}s^2})$.
- 2. Use the previous exercise to get a lower bound for C based on the regular 24-gon; the regular 48-gon.
- 3. Assume that $\triangle ABC$ and $\triangle DEF$ are similar with ratio k. Prove that each of the circumradius, the inradius and the exadii of $\triangle DEF$ are k times the corresponding parts of $\triangle ABC$.
- 4. In each part determine the missing information about $\triangle ABC$. (a) $a = 4, b = 4, c = 2, K = ?, R = ?, r = ?, r_a = ?, r_b = ?, r_c = ?$ (b) $r_a = 2, r_b = 3, r_c = 6, r = ?, K = ?, R = ?, a = ?, b = ?, c = ?$
- 5. Prove that if a quadrilateral ABCD is circumscribed about a circle, then the area of ABCD is one-half times the radius of the circle times the perimeter.
- 6. Let the lengths of the three altitudes be h_a, h_b and h_c . Prove that $\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{1}{r}$.
- 7. Prove that the circle with diameter $\overline{I_b I_c}$ has center on the circumcircle and contains the points B and C.
- 8. Prove $OI_a^2 = R(R + 2r_a)$.