
HOMEWORK 4 - MATH 351
INSTRUCTOR: George Voutsadakis

Problem 1 Given a vertex v of Cn, find e(v). Show that v has either one or two eccentric vertices,
depending on the parity of n.

Solution: If n = 2k, for some k, then e(v) = k. If e(v) = 2k + 1, for some k, then e(v) = k. In
the first case v has only one eccentric vertex whereas in the second it has two eccentric vertices. ¥

Problem 2 Find the radius and diameter of Cn. Do the same for Pn. Show that the center of Pn

consists of one or two adjacent vertices, depending on the parity of n.

Solution: All vertices v in Cn have equal eccentricity e(v) = bn
2 c. Therefore rad(Cn) =

diam(Cn) = bn
2 c.

In Pn the minimum eccentricity of a vertex is bn
2 c and the maximum eccentricity is n − 1,

whence rad(Pn) = bn
2 c and diam(Pn) = n− 1. Also note that when n is odd, then only one vertex

(the central one) attains the minimum eccentricity, whereas, if n is even, there are two vertices
attaining the minimum eccentricity. Therefore the center of Pn consists of one or two adjacent
vertices, depending on whether n is odd or even, respectively. ¥

Problem 3 Let H be a spanning subgraph of a graph G. Given vertices u and v in G, show that
their distance from one another in H is at least as big as in G, that is dH(u, v) ≥ dG(u, v).

Solution: Let P be the path in H that joins u, v and has length dH(u, v). Since H is a subgraph
of G, P is a path in G that joins u, v and has length dH(u, v). Since by definition the distance of
two vertices is the length of the shortest path joining them and P is already a joining path, we get
dG(u, v) ≤ dH(u, v). ¥

Problem 4 Show that C(Cn) = V (Cn); that is show that the center of an n-cycle consists of all
its vertices. A graph with this property is called self-centered. Find another class of self-centered
graphs.

Solution: Given any vertex v in Cn, we have e(v) = bn
2 c, whence C(Cn) = V (Cn).

The class of complete graphs Kn is also a class of self-centered graphs, since, for any vertex v
in Kn, e(v) = 1. ¥

Problem 5 For the sequential join G = K1+K1+K2+K1+K1, determine rad(G),diam(G), C(G)
and P (G). Then show that G contains a pair of vertices that are mutually eccentric but not antipodal
of one another.

Solution: Let G = 〈V, E〉, with V = {a, b, c, d, e, f} and

E = {{a, b}, {b, c}, {b, d}, {c, e}, {d, e}, {e, f}}.
Then we have e(a) = 4, e(b) = 3, e(c) = e(d) = 2, e(e) = 3 and e(f) = 4. Therefore

rad(G) = 2, diam(G) = 4, C(G) = {c, d}, P (G) = {a, f}.
Note that c, d are mutually eccentric since their eccentricities equal to 2 and the distance dG(c, d) = 2
but they are not antipodal since their distance is not equal to the diameter of G. ¥
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Problem 6 Prove that the wheel W1,n has a spanning tree with one center vertex also has a span-
ning tree with two center vertices.

Solution: Let W1,n = 〈V,E〉, with V = {0, 1, . . . , n} and

E = {{0, 1}, {0, 2}, . . . , {0, n}, {1, 2}, {2, 3}, . . . , {n, 1}}.

First, for any n, T = {V, E′}, with

E′ = {{0, 1}, {0, 2}, . . . , {0, n}}

is a spanning tree for W1,n, with only one center vertex. To construct a spanning tree with two
center vertices we need to consider even and odd n separately.

If n is odd, then To = 〈V, Eo〉, with

Eo = {{0, 1}, {0, 2}, {2, 3}, . . . , {n− 1, n}}

is a spanning tree which is isomorphic to a path of odd length and, therefore, has two center vertices.
If n is even, on the other hand, then Te = 〈V, Ee〉, with

Ee = {{0, 1}, {1, 2}, . . . , {n

2
− 1,

n

2
}, {0,

n

2
+ 1}, {n

2
+ 1,

n

2
+ 2}, . . . , {n− 2, n− 1}, {0, n}}

is a spanning tree with both 0 and 1 center vertices. ¥

Problem 7 Let G and H be graphs, at least one of which is not complete. Show that diam(G+H) =
2. Why must we stipulate that at least one of G or H is not complete?

Solution: If u, v ∈ V (G) or u, v ∈ V (H), then dG+H(u, v) ≤ 2. If u ∈ V (G) and v ∈ V (H),
then dG+H(u, v) = 1 and the same holds if v ∈ V (G) and u ∈ V (H). Therefore diam(G+H) ≤ 2. If
at least one of G or H is not complete, say G, then there are u, v ∈ V (G), such that dG+H(u, v) = 2.
Therefore, in that case diam(G + H) = 2. However, if both G and H are complete graphs then
dG+H(u, v) = 1, for all u, v ∈ V (G + H), whence diam(G + H) = 1. ¥

Problem 8 Find the weight of each vertex in the graph below. Find the centroid.

Solution: The weights are shown in the figure, where the centroid has also been emphasized.

¥
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Problem 9 Find all cut vertices and bridges for the graph below:

Solution: The cut vertices are the vertices e, g and a. The bridges are the edges {a, g} and
{a, k}. ¥

Problem 10 Find three different minimal edge cutsets of size 2 for the graph below:

Solution: The sets {{v, x}, {v, w}}, {{z, x}, {z, w}} and {{z, s}, {z, t}} are edge cutsets of size
2 for the given graph. ¥

Problem 11 Construct a graph G with κ(G) = 2, λ(G) = 3, δ(G) = 4.

Solution: Take two copies of K5 say G1 = 〈V1, E1〉, with V1 = {0, 1, 2, 3, 4} and G2 = 〈V2, E2〉,
with V2 = {5, 6, 7, 8, 9}. Then add the edges {0, 5}, {0, 6} and {1, 5}. The resulting graph G has
κ(G) = 2, λ(G) = 3, δ(G) = 4. ¥

Problem 12 Construct a graph G with κ(G) = 3, λ(G) = 3, δ(G) = 5.

Solution: Take two copies of K6, say G1 = 〈V1, E1〉, with V1 = {0, 1, 2, 3, 4, 5}, and G2 =
〈V2, E2〉, with V2 = {6, 7, 8, 9, 10, 11}. Then add the edges {0, 6}, {1, 7} and {2, 8}. The resulting
graph G has κ(G) = 3, λ(G) = 3, δ(G) = 5. ¥

Problem 13 Determine κ(G) and λ(G) for each of the following graphs:
(a) The octahedron K2 + C4 (b) The sequential join K2 + K3 + K2 + K3. (c) The cartesian
product P4 × C3.

Solution: κ(K2 + C4) = λ(K2 + C4) = 4.
κ(K2 + K3 + K2 + K3) = λ(K2 + K3 + K2 + K3) = 2.
κ(P4 × C3) = λ(P4 × C3) = 3. ¥

Problem 14 Draw the line graph L(W1,4). Then find κ(L(W1,4)) and λ(L(W1,4)).

Solution: κ(L(W1,4)) = λ(L(W1,4)) = 4. ¥

Problem 15 Prove that every k-connected graph on n vertices has at least nk
2 edges.
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Solution: If G is k-connected and has n vertices, then, by κ(G) ≤ δ(G), we get deg(v) ≥ k,
for all v ∈ V (G), whence 2|E(G)| = ∑

v∈V (G) deg(v) ≥ nk and, therefore |E(G)| ≥ nk
2 . ¥

Problem 16 Prove that if G is cubic - that is, 3-regular - then κ(G) = λ(G).

Solution:[Douglas B. West] Let S be a minimum vertex cut set (|S| = κ(G)). Since κ(G) ≤
λ(G) holds always, we need only provide an edge cut set of size |S|. Let H1,H2 be two components
of G − S. Since S is a minimum vertex cut, each v ∈ S has a neighbor in H1 and a neighbor in
H2. Since G is 3-regular, v cannot have two neighbors in H1 and two in H2. For each v ∈ S, delete
the edge from v to a member of {H1,H2}, where v has only one neighbor. These κ(G) edges break
all paths from H1 to H2 except in the case where a path can enter S via v1 and leave via v2. In
this case we delete the edge to H1 for both v1 and v2 to break all paths from H1 to H2 through
{v1, v2}. ¥

Problem 17 Prove that if G is k-connected, then the join K1 + G is (k + 1)-connected.

Solution: Suppose that K1 + G is not (k + 1)-connected, i.e., it is at most k-connected. Then
there exists a set of k vertices in K1 +G whose deletion disconnects K1 +G. All these vertices must
be vertices coming from G, since, if they contained the vertex coming from K1, the remaining k−1
of those vertices would be a vertex cut set of G contradicting the fact that it is k-connected. But
the deletion of any set of vertices from K1 + G that does not include the vertex coming from K1

cannot possibly disconnect K1 + G, since the vertex coming from K1 is connected to every other
vertex. ¥
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