HOMEWORK 11 - MATH 140 DUE DATE: Monday, November 29 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. A loading ramp 10 feet long that makes an angle of 18° with the horizontal is to be replaced by one that makes an angle of 12° with the horizontal. How long is the new ramp?
- 2. Prove that in any triangle $\triangle ABC$ with sides a, b, c and angles α, β, γ , across from a, b, c, respectively, the following relation holds:

$$a = b\cos\gamma + c\cos\beta.$$

3. Solve the triangle $\triangle ABC$, such that:

(a) a = 6, b = 4 and $\gamma = 60^{\circ}$

- (b) a = 3, b = 3 and c = 4
- 4. Use a Half-angle Formula and the Law of Cosines to show that, for any triangle $\triangle ABC$,

$$\cos\frac{\gamma}{2} = \sqrt{\frac{s(s-c)}{ab}}, \text{ where } s = \frac{a+b+c}{2}.$$

- 5. Find the area of each triangle $\triangle ABC$:
 - (a) a = 2, c = 1 and $\beta = 10^{\circ}$
 - (b) a = 4, b = 3 and c = 6
- 6. If h_a, h_b and h_c are the altitudes dropped from A, B, and C, respectively, in the triangle $\triangle ABC$, show that

$$\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{s}{K}$$

where K is the area of triangle $\triangle ABC$ and $s = \frac{a+b+c}{2}$ its semiperimeter. (**Hint:** Observe that $h_a = \frac{2K}{a}$ etc.)

- 7. For the points $(4, \frac{3\pi}{4})$ and $(-3, 4\pi)$ given in polar coordinates, plot each point **cleanly** and find other polar coordinates (r, θ) , such that, first $r > 0, -2\pi \le \theta < 0$ and, then, $r < 0, 0 \le \theta < 2\pi$.
- 8. Convert the first two to rectangular and the last three to polar coordinates:
 - (a) $(4, \frac{3\pi}{2})$ (b) $(-2, \frac{2\pi}{3})$
 - (c) (0, -2)
 - (d) (-3,3)
 - (e) $(-2, -2\sqrt{3})$