HOMEWORK 12 - MATH 140

DUE DATE: Monday, December 6 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Transform into rectangular coordinates:

(a)
$$r = 2$$
 (b) $\theta = -\frac{\pi}{4}$ (c) $r \sin \theta = -2$ (d) $r = -4 \cos \theta$

2. Use the different categories of polar graphs in your book to graph the following:

(a)
$$r = 1 + \sin \theta$$
 (b) $r = 4 + 2\sin \theta$ (c) $r = 2\sin(3\theta)$ (d) $r^2 = \sin(2\theta)$

3. Plot in the plane and write in polar and in rectangular form the complex numbers

(a)
$$-1+i$$
 (b) $2+\sqrt{3}i$ (c) $3(\cos 210^{\circ}+i\sin 210^{\circ})$ (d) $4(\cos \frac{\pi}{2}+i\sin \frac{\pi}{2})$

4. Find zw and $\frac{z}{w}$, leaving your answers in polar form, for

$$z = 4(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8})$$
 and $w = 2(\cos\frac{9\pi}{16} + i\sin\frac{9\pi}{16}).$

5. Write each expression in the standard form a + bi:

(a)
$$\left[\sqrt{3}(\cos 10^{\circ} + i\sin 10^{\circ})\right]^{6}$$
 (b) $\left[\frac{1}{2}(\cos 72^{\circ} + i\sin 72^{\circ})\right]^{5}$

- 6. Find the complex 4-th roots of $\sqrt{3} i$.
- 7. ind the following:
 - (a) \mathbf{v} in the form $a\mathbf{i}+b\mathbf{j}$, where \mathbf{v} has initial point P=(-3,2) and terminal point Q=(6,5). Make also a graph of the situation.
 - (b) $||\mathbf{v}||$ if $\mathbf{v} = -5\mathbf{i} + 12\mathbf{j}$
 - (c) $3\mathbf{v} 2\mathbf{w}$, where $\mathbf{v} = 3\mathbf{i} 5\mathbf{j}$ and $\mathbf{w} = -2\mathbf{i} + 3\mathbf{j}$
 - (d) the unit vector having the same direction as $\mathbf{v} = 2\mathbf{i} \mathbf{j}$
- 8. Write the vector \mathbf{v} in the form $a\mathbf{i} + b\mathbf{j}$, if $||\mathbf{v}|| = 8$ and the angle α that it makes with the positive x-axis is $\alpha = 45^{\circ}$.

1