HOMEWORK 2 - MATH 152 DUE DATE: Tuesday, September 21 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Sketch the region enclosed by the curves $x^2 = y$ and x = y 2 and find its area.
- 2. (a) Find the area of the region enclosed by the parabola $y = 2x x^2$ and the x-axis.
 - (b) Find the value m so that the line y = mx divides the region in part (a) into two regions of equal area.
- 3. Find the volume of the solid that results when the region enclosed by the given curves is revolved around the *x*-axis:
 - (a) $y = x^2, y = x^3$
 - (b) $y = \frac{e^{3x}}{\sqrt{1+e^{6x}}}, x = 0, x = 1, y = 0$
- 4. Find the volume of the solid that results when the region enclosed by $y = \sqrt{x}$, y = 0 and x = 9 is revolved around the line y = 3.
- 5. Use cylindrical cells to find the volume of the solid generated when the region enclosed by the curves $y = e^{x^2}$, x = 1, $x = \sqrt{3}$, y = 0 is revolved around the *y*-axis.
- 6. The region enclosed between the curve $y^2 = kx$ and the line $x = \frac{1}{4}k$ is revolved about the line $x = \frac{1}{2}k$. Use cylindrical cells to find the volume of the resulting solid. (Assume k > 0.)
- 7. (a) Find the exact arc length of the curve $y = \frac{x^6+8}{16x^2}$ from x = 2 to x = 3. (It would be nice if you would also graph it using your calculators and make a sketch of the graph over [2, 3].)
 - (b) Find the exact arc length of the parametric curve $x = \cos t + t \sin t$, $y = \sin t t \cos t$, $0 \le t \le \pi$, without eliminating the parameter.
- 8. (a) Find the area of the surface generated by revolving the curve $x = y^3, 0 \le y \le 1$, about the y-axis.
 - (b) Show, by revolving the semicircle $y = \sqrt{r^2 x^2}$ about the *x*-axis, that the area of the surface of a sphere of radius *r* is $4\pi r^2$.