HOMEWORK 6 - MATH 152 DUE DATE: Monday, November 15 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

- 1. Find the Maclaurin polynomials of orders 0,1,2,3 and 4 and then the general Maclaurin polynomial of order n for the functions
 - (a) $f(x) = \frac{1}{1+x}$ (b) $q(x) = xe^{x}$
- 2. Show that the *n*-th Taylor polynomial for $\sinh x$ about $x = \ln 4$ is

$$\sum_{k=0}^{n} \frac{16 - (-1)^k}{8k!} (x - \ln 4)^k$$

- 3. Write out the first five terms of the following sequences, determine if the sequence converges and, if so, find its limit.
 - (a) $\{\ln(\frac{1}{n})\}_{n=1}^{+\infty}$
 - (b) $\{n\sin(\frac{\pi}{n})\}_{n=1}^{+\infty}$
 - (c) $\{\frac{n}{2^n}\}_{n=1}^{+\infty}$
 - (d) $\{\sqrt{n^2 + 3n} n\}_{n=1}^{+\infty}$
- 4. Starting with n = 1, and considering the even and odd terms separately, find a formula for the general term of the following sequences. Then determine whether the sequences converge and, if so, find the limits.
 - (a) $1, \frac{1}{2^2}, 3, \frac{1}{2^4}, 5, \frac{1}{2^6}, \dots$ (b) $1, \frac{1}{3}, \frac{1}{3}, \frac{1}{5}, \frac{1}{5}, \frac{1}{7}, \frac{1}{7}, \dots$
- 5. Consider the sequence

$$a_1 = \sqrt{6}, a_2 = \sqrt{6 + \sqrt{6}}, a_2 = \sqrt{6 + \sqrt{6 + \sqrt{6}}}, \dots$$

Find a recursion formula for a_{n+1} and, assuming that the sequence converges, find the limit.

- 6. Consider the sequence $\{a_n\}_{n=1}^{+\infty}$ whose *n*-th term is $a_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+(k/n)}$. Show that $\lim_{n\to\infty} a_n = \ln 2$ by interpreting a_n as the Riemann sum of a definite integral.
- 7. Use the indicated methods to show that the following sequences are monotone:

(a)
$$\{\frac{n}{4n-1}\}_{n=1}^{+\infty}$$
 and $\{n-n^2\}_{n=1}^{+\infty}$ (compute $a_{n+1}-a_n$)

- (b) $\left\{\frac{2^n}{1+2^n}\right\}_{n=1}^{+\infty}$ and $\left\{\frac{5^n}{2^{(n^2)}}\right\}_{n=1}^{+\infty}$ (compute $\frac{a_{n+1}}{a_n}$)
- (c) $\{ne^{-2n}\}_{n=1}^{+\infty}$ and $\{\tan^{-1}n\}_{n=1}^{+\infty}$ (use differentiation of the corresponding function)
- 8. Let $\{a_n \text{ be the sequence defined recursively by } a_1 = 1 \text{ and } a_{n+1} = \frac{1}{2}(a_n + \frac{3}{a_n})$ for $n \ge 1$.
 - (a) Show that $a_n \ge \sqrt{3}$ for $n \ge 2$ by finding the minimum value of $\frac{1}{2}(x + \frac{3}{x})$ for x > 0.
 - (b) Show that $\{a_n\}$ is eventually increasing by examining either $a_{n+1} a_n$ or $\frac{a_{n+1}}{a_n}$ and using part (a).
 - (c) Show that $\{a_n\}$ converges and find its limit.