HOMEWORK 9 - MATH 152 DUE DATE: Monday, December 13 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Consider the following points given in rectangular coordinates. Find two pairs of polar coordinates for each, one pair satisfying $r \ge 0$ and $0 \le \theta < 2\pi$, and the other satisfying $r \ge 0$ and $-\pi < \theta \le \pi$:

(a)
$$(2\sqrt{3}, -2),$$
 (b) $(8, -8)$

2. Identify the following curves by transforming the given equation from polar to rectangular coordinates:

(a)
$$r = 5 \sec \theta$$
 (b) $r = 2 \sin \theta$ (c) $r = 4 \cos \theta + 4 \sin \theta$ (d) $r = \sec \theta \tan \theta$.

3. Sketch the following curves in polar coordinates:

(a)
$$\theta = -\frac{3\pi}{4}$$
 (b) $r = 3$ (c) $r = 4\sin\theta$.

- 4. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point $\theta = \frac{\pi}{3}$ without eliminating the parameter if $x = 2\theta + \cos\theta$ and $y = 1 \sin\theta$.
- 5. Show that the curve with parametric equations $x = t^2 3t + 5$, $y = t^3 + t^2 10t + 9$ intersects itself at the point (3, 1), and find equations for the two tangent lines to the curve at the point of intersection.
- 6. Find the slope of the tangent line to the polar curve $r = 4 3\sin\theta$ for $\theta = \pi$.
- 7. Calculate the arc length of the polar curve $r = \sin^3\left(\frac{\theta}{3}\right)$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$.
- 8. Find the area of the region outside the cardioid $r = 2 2\cos\theta$ and inside the circle r = 4. Make a sketch of the curves on a polar system with your calculators for my benefit.